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SYMMETRY IN SOME OVERDETERMINED PROBLEMS

SUMMARY

In the present study, overdetermined symmetry problems for elliptic and parabolic
cases are studied for one-phase, two-phase and multi-phase versions. The study
contains five main sections.

In the first section, a general introduction is given including some information
about symmetry in elliptic and parabolic multi-phase overdetermined problems with
nonlinear governing equations. Existing results in literature are also argued briefly.

The second section is devolved to the background. Related terminology with basic
definitions and theorems about Laplace and heat equations are reviewed.

In the third section, symmetry for an elliptic overdetermined problem, related to balls
is analysed. A general overview of existing results is given. First, Laplace equation
with nonlinear boundary conditions is considered for both one-phase and two-phase
cases. For one-phase case the nature of the problem is indicated. The difficulties
of the problem is observed for the two-phase case. Then, p-Laplacian operator is
considered and in order to generalize the results, exact definitions and forms of the
Green’s functions for the ball are written. Multi-phase version of the problem for
the p-Laplacian is examined in detail. These results also cover the symmetry for the
Laplace equation for multi-phases.

In the fourth section, symmetry for a parabolic overdetermined problem, related to heat
balls is analysed. The one-phase, two-phase and multi-phase versions with nonlinear
overdetermined boundary conditions are proved. Along with these ideas spherical
space symmetry problems for the solutions of similar overdetermined problems are
also stated and proved.
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BAZI AŞIRI BELİRGİN PROBLEMLERDE SİMETRİ

ÖZET

Bu yüksek lisans tez çalışmasında iki temel konu ele alınmıştır. Bunlardan ilki
eliptik aşırı belirgin problemleri, ikincisi ise parabolik aşırı belirgin problemleri
kapsamaktadır.

Eliptik yapıda temel bir problem ele alınmak istendiğinde

∆u =−c0δ0, Ω bölgesinde,
u = 0, ∂Ω sınırında.

denklemleri uygun bir seçimdir. Burada ∆ Laplasyeni, δ0 dirac delta fonksiyonunu,
∂Ω ise Ω bölgesinin sınırını göstermektedir.

Yukarıdaki verilen probleme

∂νu = F(|x|), ∂Ω sınırında,

şeklinde bir ek sınır koşulu getirdiğimizde problem aşırı belirgin bir hal alacaktır.
Burada, F , sonradan belirlenecek bir fonksiyon olmak üzere, ν iç normal doğrultusunu
göstermektedir. Ayrıca, Ω⊂ Rn (n≥ 2 ) bölgesi sınırlı C1 sınıfından seçilmiştir.

Yukarıda verilen sınır değer probleminde Ω bölgesinin hangi koşullar altında küre
olabileceği ilginç bir soru olarak karşımıza çıkmaktadır.

Aşırı belirgin bir eliptik problemde görülen ek sınır koşulu altında bölgenin G Green
fonksiyonu ele alındığında |∇G| sınırda sabit bir değer olarak elde edilir. Bu ise bize
Ω bölgesinin bir küre olduğu sonucunu verir.

Diğer yandan, iki fazlı bir yapıda u+ ve u− olarak iki Green fonksiyonu ile
çalışılmaktadır. Ω bölgesi içinde örneğin orijinde kutup noktasına sahip olan u+

Green fonksiyonu ve Ω bölgesinin dışında sonsuzda kutuba sahip olan u− Green
fonksiyonu arasında bir ilişki elde edilebilir. Bu ilişki Ω bölgesinin sınırında Green
fonksiyonlarının normalleri cinsinden aşağıdaki gibi yazılabilir:

∂νu+ = F(∂νu−), ∂Ω sınırında.

Burada F verilen bir fonksiyon olup, hangi özellikleri sağlaması durumunda Ω

bölgesinin bir küre olabileceği sorusuna cevap aranmaktadır.

İki fazlı durumdan çok fazlı duruma geçildiğinde, aşırı belirgin problem için simetrinin
gösterilmesi biraz daha zahmetli ve detaylı hesaplar içermektedir. Bu çalışmada, bu
hesapların yanısıra çok fazlı durumda aşırı belirgin ∆pu , p-Laplace denklemi için
sonuçlar genelleştirilmiştir.
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Bir parabolik problemin incelenmesinde en temel denklem olan ısı denklemi{
Hu =−δ0, Dλ bölgesinde,

u = 0, ∂Dλ sınırında,

şeklinde verilen sınır değer problemi olarak incelenebilir. Burada H = ∆− ∂t ısı
operatörü olup, Dλ ısı yuvarını, ∂Dλ ise ısı yuvarının sınırını göstermektedir.

Parabolik sınır değer problemine ek olarak

|∂nxu|= λ
|x|
2t

,

sınır koşulunun tanımlanması problemi aşırı belirgin bir sisteme dönüştürür. Isı
denklemindeki u çözümünün ek sınır koşulunu da sağladığı gösterilebilir. Burada
∂nxu, nx doğrultusundaki doğrultu türevidir.

Tezde çalışılan ikinci temel konu, yukarıda verilen parabolik sınır değer probleminde
Ω bölgesinin hangi koşullar altında bir ısı yuvarı olabileceğidir. Parabolik problem
yapı itibari ile ısı yuvarları ile ilgili olduğundan teknik olarak eliptik problemden
farklı yöntemler kullanmamızı gerektirir. Örneğin, elliptik bir sistemde maksimum
prensibi sonuç verirken, parabolik bir sistemde Hopf lemmasından faydalanmamız
gerekmektedir. Parabolik problemde de eliptik problemde olduğu gibi çok fazlı
ortamda genel sonuçlar elde edilmiş, özel durumlarda bu sonuçların tek fazlı ve iki
fazlı ortamlardaki sonuçları kapsadığı gösterilmiştir.

Bu yüksek lisans tezinde, eliptik ve parabolik durumlar için aşırı belirgin simetri
problemleri tek fazlı, iki fazlı ve çok fazlı durumlar için ele alınmıştır. Çalışma beş
ana bölümden oluşmaktadır.

Birinci bölümde, konuya genel bir giriş yapılmış, eliptik ve parabolik çok fazlı aşırı
belirgin problemlerde simetri problemi ile ilgili sınır değerlerin doğrusal olmayan
fonksiyonlardan oluştuğu durumda bazı bilgiler verilmiştir. Konuyla ilgili literatürde
mevcut olan bazı sonuçlar da kısaca özetlenmiştir.

İkinci bölümde, Laplace ve ısı denklemleri tanıtılmış, ilgili terminoloji gözden
geçirilmiş; Diverjans Teoremi, Maksimum Prensibi, Hopf Lemması gibi temel tanım
ve teoremlere yer verilmiştir.

Üçüncü bölümde, bir aşırı belirgin eliptik problem için küreler ele alınarak simetri
analiz edilmiştir. Literatürde mevcut olan sonuçlar göz önünde bulundurularak,
öncelikle, lineer olmayan sınır koşulları altında Laplace denklemi tek fazlı ortamda
incelenmiştir. Ardından, problem iki fazda ele alınmıştır. Tek fazlı durum için
problemin yapısı ile ilgili fikirler verilirken, iki fazlı durumda ise problemin zorlukları
irdelenmiştir. Daha sonra, sonuçları genelleştirmek adına, p-Laplace operatörü
ele alınmış, küre için Green fonksiyonlarının tanımları ve formları açık şekilde
yazılmıştır. P-Laplace denklemi için çok fazlı versiyon detaylı olarak incelenmiştir.
Elde edilen sonuçların aynı zamanda Laplace denkleminin çok fazlı durumundaki
simetri özelliğini de kapsadığı belirtilmiştir.

Dördüncü bölümde, parabolik aşırı belirgin bir problem için ısı yuvarları ele alınarak
simetri analiz edilmiştir. Doğrusal olmayan sınır koşulları altında aşırı belirgin tek

xvi



fazlı, iki fazlı ve çok fazlı durumlarda simetri kanıtlanmıştır. Diğer bir değişle,
hangi ek sınır koşulları altında bölgenin bir ısı yuvarı olabileceği detaylı bir şekilde
incelenmiştir. Bu fikirler ile birlikte benzer problemlerde küresel simetri de ifade ve
ispat edilmiştir.
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1. INTRODUCTION

In this thesis, we study symmetry for both elliptic and parabolic versions of

multi-phase overdetermined problems.

First we consider an elliptic overdetermined symmetry problem where it is usual to

consider the problem in a given domain, involving only one function, and an extra

boundary condition. If the Green’s function G of a domain, has the property that |∇G|

is constant on the boundary, then one expects the domain to be a ball. The proof of

this theorem, for C1 domains follows a simple argument, given in [1]. On the other

hand, recent years has seen a lot of mathematical problems where there are more than

one phase entering into the game, or the physical model. One such example is the

so-called multi-phase flows, where several liquids are present. In such problems, there

is a different governing equation on the “free boundary”, that in general, is a nonlinear

equation. More exactly, suppose for a bounded C1 domain Ω⊂Rn (n≥ 2) the Green’s

function u+ with pole at some interior point (origin, say), and the Green’s function u−

of the exterior domain with pole at infinity we have the boundary gradient condition

∂νu+ = F(∂νu−) on ∂Ω,

where F is a given function, with certain properties, and ν is the inward normal

direction. Can we conclude that Ω is a ball? We prove a multi-phase version of this

problem, with general governing conditions, and with the p-Laplacian, see [2].

Second main result is for the parabolic version, which is related to heat balls. Let u be

a solution to problem (1.1).{
Hu =−δ0, in Dλ ,
u = 0, on ∂Dλ .

(1.1)

Here δ0 is the Dirac delta function and Dλ denotes the heat ball. Then one can show

that u satisfies the extra boundary gradient condition (1.2).

|∂nxu|= λ
|x|
2t

. (1.2)
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It is also well known [3] that under mild conditions the heat balls are the only domains

admitting such a solution with extra boundary gradient condition (1.2).

In a series of papers [4], [5] and [6], the authors have considered various related

symmetry problems. E.g. in [4], the authors consider this problem under some

regularity conditions. In a recent paper [6] the authors considered the same problem

under very weak regularity conditions.

However, it is less known that the extra boundary gradient condition can be given as a

nonlinear equation, e.g.

|∂nxu|= F(|x|, t).

The question is what kind of nonlinearity F one has to choose in order to achieve a

similar symmetry result.

The parabolic setting introduces a substantial difficulty on what kind of functions F

we should choose in order to conclude that the heat balls are the only solutions to the

problem. It should be noted that F would depend on the (x, t) variable. A natural

choice is that F depends on the level sets of the fundamental solution w(x, t) of the

heat equation

F = F(w(x, t)).

We generalize the above symmetry problem by considering nonlinearities F with

certain assumptions. We also introduce two- and multi-phase versions of this problem.

Along with these ideas we also state and prove spherical space symmetry problems for

the solutions of similar overdetermined problems.
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2. BACKGROUND

2.1 Divergence theorem

Theorem 2.1 Let Ω be a bounded domain with C1 boundary ∂Ω and let ν denote the

unit outward normal to ∂Ω. For any vector field w in C1(Ω̄). Then we have equation

(2.1), where ds indicates the (n−1)-dimensional area element in ∂Ω.∫
Ω

div w dx =
∫

∂Ω

w ·ν ds (2.1)

In particular if u is a C2(Ω̄) function we have, by taking w = Du in equation (2.1), we

can have (2.2). ∫
Ω

4u dx =
∫

∂Ω

∂u
∂ν

ds. (2.2)

2.2 Laplace’s equation

Among the most important of all partial differential equations are undoubtedly

Laplace’s equation (2.3) and Poisson’s equation (2.4).

4u = 0 Laplace’s equation, (2.3)

−4u = f Poisson’s equation. (2.4)

In both (2.3) and (2.4) equations, x ∈ U and the unknown is u : Ū → R,u = u(x),

where U ⊂ Rn is a given open set. In (2.4) the function f : U → R is also given. The

Laplacian of u is 4u = ∑
n
i=1 uxixi . A C2 function u satisfying equation (2.3) is called

a harmonic function. The function (2.5) defined for x ∈ Rn, x 6= 0, is the fundamental

solution of Laplace’s equation [7].

Φ(x) :=

{
− 1

2π
ln|x| (n = 2)
1

n(n−2)α(n)
1
|x|n−2 (n≥ 3)

(2.5)
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Consider now an open set U ⊂Rn and suppose u is a harmonic function within U . We

next derive the important mean-value formulas, which declare that u(x) equals both the

average of u over the sphere ∂B(x,r) and the average of u over the entire ball B(x,r),

provided B(x,r)⊂U .

Theorem 2.2 (Mean-value formulas for Laplace’s equation). If u∈C2(U) is harmonic,

then we have (2.6) for each ball B(x,r)⊂U .

u(x) =−
∫

∂B(x,r)
u ds =−

∫
B(x,r)

u dy (2.6)

Proof. 1. Set

φ(r) :=−
∫

∂B(x,r)
u(y)dS(y) =−

∫
∂B(0,1)

u(x+ rz)dS(z).

Then

φ
′(r) =−

∫
∂B(0,1)

Du(x+ rz) · zdS(z),

and consequently, using Green’s formulas, we compute

φ
′(r) =−

∫
∂B(x,r)

Du(y) · y− x
r

dS(y)

=−
∫

∂B(x,r)

∂u
∂ν

dS(y)

=
r
n
−
∫

B(x,r)
4u(y)dy = 0.

Hence φ is constant, and so

φ(r) = lim
t→0

φ(t) = lim
t→0
−
∫

∂B(x,t)
u(y)dS(y) = u(x).

2. Observe next that our employing polar coordinates gives∫
B(x,r)

udy =
∫ r

0

(∫
∂B(x,s)

udS
)

ds

= u(x)
∫ r

0
nα(n)sn−1ds = α(n)rnu(x).

Theorem 2.3 (Converse to mean-value property). If u ∈C2(U) satisfies

u(x) =−
∫

∂B(x,r)
u dS

for each ball B(x,r)⊂U , then u is harmonic.
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Proof. If 4 6≡ 0, there exists some ball B(x,r) ⊂ U such that, say, 4u > 0 within

B(x,r). But then for φ as above,

0 = φ
′(r) =

r
n
−
∫

B(x,r)
4u(y) dy > 0,

a condradiction.

Theorem 2.4 (Strong maximum principle). Suppose u ∈C2(U) ∩ C(Ū) is harmonic

within U .

(i) Then

max
Ū

u = max
∂U

u.

(ii) Furthermore, if U is connected and there exists a point x0 ∈U such that

u(x0) = max
Ū

u,

then u is constant within U .

Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong

maximum principle. Replacing u by−u, we recover also similar assertions with "min"

replacing "max".

Proof. Suppose there exists a point x0 ∈ U with u(x0) = M := maxŪ u. Then for

0 < r < dist(x0,∂U), the mean-value property asserts

M = u(x0) =−
∫

B(x0,r)
u dy≤M.

As equality holds only if u ≡ M within B(x0,r), we see u(y) = M for all y ∈ B(x,r).

Hence the set x ∈U | u(x) = M is both open and relatively closed in U , and thus equals

U if U is connected. This proves assertion (ii), from which (i) follows.

2.3 Heat equation

The heat equation (2.7) and the nonhomogeneous heat equation (2.8) are given, where

t > 0 and x ∈U , where U ⊂ Rn is open.

ut−4u = 0 (2.7)

ut−4u = f (2.8)

5



The unknown is u : Ū × [0,∞)→ R,u = u(x, t), and the Laplacian 4 is taken with

respect to the spatial variables x = (x1, ...,xn) : 4u = 4xu = ∑
n
i=1 uxixi . In equation

(2.8) the function f : U × [0,∞) → R is given. The function (2.9) is called the

fundamental solution of the heat equation [7].

Φ(x, t) :=

 1
(4πt)n/2 e−

|x|2
4t (x ∈ Rn, t > 0)

0 (x ∈ Rn, t < 0)
(2.9)

For the heat operator H = ∆−∂t , we have the following fact.

Fact 1. If Hu = −δ0, and ur(x, t) = rnu(rx,r2t), then Hur = −δ0. To see this, let

ϕ ∈C∞
0 and H̃ = ∆+∂t . Then we have

< Hur,ϕ >=< ur, H̃ϕ >= rn
∫∫

u(rx,r2t)H̃ϕ(x, t)dxdt

= r−2
∫∫

u(ξ ,τ)H̃ϕ(
ξ

r
,

τ

r2 )dξ dτ =
∫∫

u(ξ ,τ)H̃ϕ(ξ ,τ)dξ dτ

=< u, H̃ϕ >=< Hu,ϕ >=<−δ0,ϕ > .

Fact 2 (Dini continuity). A modulus of continuity α is called a Dini modulus of

continuity if ∫
0+

α(r)
r

dr < ∞

and a function h is called Dini continuous if h has a Dini modulus of continuity [8].

Fact 3 (Hopf’s Lemma). Let Cδ (x, t) be Bδ (x)× (t − δ 2, t + δ 2) and let u ≥ 0 be a

weak solution to the heat equation and u > 0 in the interior of Ω∩Cδ (x0, t0) and that

u(x0, t0) = 0. Assume that Ω is C1,Dini at (x0, t0). C1,Dini means the boundary is C1 with

a Dini continuous normal. Then

∂nxu(x0, t0)≥C > 0,

where nx denotes inward space normal direction and C is a constant [8].

6



3. AN ELLIPTIC OVERDETERMINED PROBLEM

3.1 One-phase case (Exploratory)

Suppose we are given the overdetermined problem (3.1) for some bounded C1 domain

Ω⊂ Rn (n≥ 2).

∆u =−c0δ0 in Ω,

u = 0 on ∂Ω, (3.1)

∂νu = F(|x|) on ∂Ω,

A bounded domain is of class C1 if its boundary may be locally represented as the

graph of finitely many C1 functions, i.e. continuous functions that have continuous

first order derivatives.

A question that has challenged several mathematicians is whether Ω is a ball. A natural

follow-up question would then be the uniqueness of the solution. If we replace the

boundary normal derivative with |∇u|(x) = F(|x|), then the smoothness assumption on

the boundary can be relaxed considerably. For example one can allow this boundary

gradient condition to hold a.e. on the boundary, and still ask the same question [3].

However, in the discussion to follow below, we will only consider C1 domains.

The departing point of any analysis of this problem would be to set the right conditions

on F, so that an appropriate ball can be a solution. Indeed, a simple integration gives∫
∂Ω

Fds =
∫

∂Ω

∂νuds =
∫

Ω

−∆udx = c0.

In particular if Ω is the ball BR(0) then

F(R) ωn Rn−1 = c0,

where ωn is the surface area of the unit sphere. This suggests that if for any R we have

the above condition fulfilled then the ball BR(0) and its Green’s function would be a

7



solution to our problem. In particular there would be no solution if the condition above

is not satisfied for any ball BR(0). The uniqueness also fails when the above condition

holds for more than one R. For example if

F(t) := c0t1−n/ωn

then all balls with centers at the origin are solutions to our problem.

In proving that a solution must be a ball, one can use standard argument of scaling and

comparison between the solution and the scaled version of it. So let us start with a

solution u and the corresponding Ω to our problem (3.1). Let us first set c0 = ωn for

simplicity. Then the requirement that the appropriate ball is a solution is F(R) = R1−n

for at least one R. Suppose that this condition fails. Then one can easily see that

there cannot be any solution (u,Ω) to our problem. Indeed, suppose F(R)> R1−n, for

all R. Let us take the smallest ball Br(0) ⊃ Ω and its Green’s function Gr. Then by

comparison principle u≤ Gr in Ω and hence

r1−n = ∂νGr(z)≥ ∂νu(z) = F(r)

where z is a touching point between the boundary of Ω and the sphere |x| = r. This

contradicts that F(R) > R1−n for all R. A similar argument (taking largest ball from

inside) also shows the failure of existence when the reverse condition F(R) < R1−n

holds.

Let us now look for further conditions that forces solutions to be spherical. Assume

we have a solution (u,Ω) and also that (Gr,Br) is the corresponding ball solution. If

Br \Ω 6= /0 then we may scale so that Btr ⊂ Ω and it touches the boundary of Ω at z,

and that t > 1. Then one can easily show that v(x) := tn−2Gr(tx) satisfies ∆v = −ωn

and hence by comparison principle v≤ u in Btr. In particular

∂ν(v−u)(z)≤ 0

where ν is the inward normal direction, resulting in

tn−1F(t|z|)≤ F(|z|).

If we assume that rn−1F(r) is strictly increasing (or just increasing for C1,dini domains,

by the use of Hopf’s lemma) then the above inequality results in

tn−1F(t|z|)≤ F(|z|) = |z|
n−1

|z|n−1 F(|z|)< tn−1F(t|z|).

8



It is noteworthy that the above condition on F can be relaxed considerably. Indeed,

it would be enough to assume that T (r) := rn−1F(r)− 1 vanishes at only one point

and that T (r) < 0 for small values of r and T (R) > 0 for large values of R. To see

this we need a different argument than scaling. So let us again consider the largest

ball Br inside our domain and the smallest one BR containing it. A similar comparison

argument as above gives that the inward normal derivative of u−Gr and GR− u are

non-negative (r < R). In particular we will have

∂ν(u−Gr)≥ 0, ∂ν(GR−u)≤ 0

F(r)≥ r1−n, F(R)≤ R1−n

or that T (r) := rn−1F(r)−1≥ 0 and T (R) := Rn−1F(R)−1≤ 0. But this along with

the conditions on T implies that T vanishes at two points, at least. A contradiction.

3.2 Two-phase case

In this section we will consider the two-phase counterpart of the symmetry problem.

We will need to set the conditions on the function F to ensure that our arguments will

go through.

Definition 3.1 (Nonlinear joining condition.) We will denote by F =F(t) a continuous

increasing function with the property (3.2).

F(t) =


< b tn−1 for t large enough
> b tn−1 for t small enough
= b tn−1 for just one t

(3.2)

Here

b =

{
c0/ωn (n−2)2−n c1−n, n≥ 3

c0/(2π c̄), n = 2

and c̄ denotes a constant.

Let us further set u+ := max(u,0) and u− := min(u,0), δ0 denotes the Dirac delta

function.
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Theorem 3.1 Let Ω be a bounded smooth domain in Rn with ν the normal vector on

∂Ω pointing towards the interior of Ω. Suppose we have a solution to the problem

(3.3).

∆u =−c0δ0 in Rn\∂Ω,

u = 0 on ∂Ω,

u→−c as |x| → ∞, n≥ 3 (3.3)

u→−∞ as |x| → ∞, n = 2

∂νu+ = F(∂νu−)

Then, Ω is a sphere centered at the origin.

Proof. Let us take the largest sphere BR1(0)⊂Ω centered at the origin, touching ∂Ω at

some point x1. Denoting the Green’s function corresponding to the sphere with radius

R1 by GR1 , we have

∆(u+−G+
R1
) = 0 in BR1(0),

u+−G+
R1
≥ 0 on ∂BR1(0),

and by maximum principle of harmonic functions, we get

G+
R1
≤ u+ in BR1(0).

If we consider the normals at the point x1,

∂νG+
R1
(x1)≤ ∂νu+(x1),

and by the last equation (3.3) we have (3.4).

∂νG+
R1
(x1)≤ ∂νu+(x1) = F

(
∂νu−(x1)

)
(3.4)

On the other hand, we may take

G−R1
= c

(
|x|2−n

R2−n
1
−1

)
,

G−R1
−u−→ 0 as |x| → ∞,
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and have

G−R1
≤ u− ≤ 0 on ∂Ω,

G−R1
≤ u− in Ω

c.

By considering the normals at the point x1,

∂νu−(x1)≤ ∂νG−R1
(x1).

Since F(t) is increasing the inequality (3.5) is right.

F
(
∂νu−(x1)

)
≤ F

(
∂νG−R1

(x1)
)
. (3.5)

Thus, (3.4) and (3.5) give (3.6).

∂νG+
R1
(x1)≤ F

(
∂νG−R1

(x1)
)

(3.6)

By symmetry property of the Green’s function, the inequality (3.6) holds for every

x ∈ ∂BR1 .

Now, let us take the smallest sphere BR2(0)⊃Ω centered at the origin, touching ∂Ω at

some point x2. Denoting the Green’s function corresponding to the sphere with radius

R2 by GR2 , a similar reasoning gives inequality (3.7).

F
(

∂νG−R2
(x2)

)
≤ ∂νG+

R2
(x2) on ∂BR2 (3.7)

For n≥ 3,

G+
R (x) =

c0

ωn

(
|x|2−n−R2−n

1
)

G−R (x) = c
(
Rn−2

1 |x|2−n−1
)
.

Hence we have equations (3.8) and (3.9).

∂νG+
R1
(x1) =

c0

ωn
(n−2)R1−n

1 , (3.8)

∂νG−R1
(x1) = c (n−2)R−1

1 . (3.9)

Equations (3.8) and (3.9) together with (3.6) gives (3.10).

(n−2)
c0

ωn
R1−n

1 ≤ F
(
c (n−2)R−1

1
)
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If we let r1 = c(n−2)R−1
1 , then the inequality (3.10) becomes a result.

F(r1)≥ b rn−1
1 . (3.10)

Similarly, for r2 = c(n−1)R−1
2 , we obtain an inequality (3.11).

F(r2)≤ b rn−1
2 . (3.11)

Equations (3.10) and (3.11) contradicts (3.2).

For n = 2, we have

G+
R (x) =

c0

2π

(
ln |x|−1− lnR−1

1
)
,

G−R (x) = c̄
(
ln |x|−1− lnR−1

1
)
,

and equations (3.12), (3.13).

∂νG+R1(x1) =
c0

2π
R−1

1 , (3.12)

∂νG−R1(x1) = c̄ R−1
1 . (3.13)

Equations (3.12) and (3.13) together with (3.6) gives

c0

2π
R−1

1 ≤ F(c̄ R−1
1 ).

If we let r1 = c̄ R−1
1 , then we have an inequality (3.14).

F(r1)≥ b r1. (3.14)

Similarly, for r2 = c̄ R−1
2 , we obtain (3.15).

F(r2)≤ b r2. (3.15)

Equations (3.14) and (3.15) contradicts (3.2).

It follows easily that the function F(t) can be assumed to depend on |x| as well. Then,

F(|x|, t) is an increasing function in t having the same property given by (3.2) for n≥ 2.

Hence, the inequality (3.10) becomes (3.16).

F
(

a
r1
,r1

)
≥ b rn−1

1 (3.16)

The inequality (3.11) becomes (3.17).

F
(

a
r2
,r2

)
≤ b rn−1

2 (3.17)

Equations (3.16) and (3.17) contradicts (3.2).
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3.3 The Radial Green’s and Capacitor function

In this section we compute explicitly the Green’s functions and the capacitor potential

of a sequence of spherical rings, that we will use as barriers from below and from

above in the sequel.

Define the p-Laplacian

∆pu := div(|∇u|p−2
∇u) (1 < p < ∞).

For a given positive integer m, and positive real numbers

0 < r1 < r2 < · · ·< rm < ∞, 0 = α1 < α2 < · · ·< αm < αm+1 < ∞

consider Bri(0) and the corresponding Green’s/capacitor functions Gi:

∆pGi = 0, in Bri \Bri−1 , i = 2, · · · ,m

Gi =−αi, on ∂Bri, Gi =−αi−1, on ∂Bri−1 , i = 2, · · · ,m

and for i = 1 and i = m+1

∆pG1 =−c0δ0, in Br1, G1 = 0, on ∂Br1

and

∆pGm+1 = 0, in Rn \Brm, Gm+1 =−αm, on ∂Brm,

lim
x→∞

Gm+1 =−αm+1, p < n, lim
x→∞
|x|

n−p
p−1 Gm+1 =−αm+1 p > n.

We can compute explicitly all these functions, and we obtain results (3.18 - 3.24).

Case: n 6= p

G1 =
c0

ωn

∣∣∣∣|x| p−n
p−1 − r

p−n
p−1
1

∣∣∣∣ , (3.18)

Gi = (−αi +αi−1)
|x|

p−n
p−1 − r

p−n
p−1
i

r
p−n
p−1
i − r

p−n
p−1
i−1

−αi, i = 2, · · · ,m, (3.19)

Gm+1 = (αm+1−αm) r
n−p
p−1
m |x|

p−n
p−1 −αm+1, p < n, (3.20)

Gm+1 =−αm+1 r
n−p
p−1
m |x|

p−n
p−1 , p > n. (3.21)
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Case: n = p

G1 =
c0

ωn
(ln |x|−1− lnr−1

1 ), (3.22)

Gi = (−αi +αi−1)
ln |x|−1− lnr−1

i

lnr−1
i − lnr−1

i−1
−αi, i = 2, · · · ,m, (3.23)

Gm+1 =−αm+1 (ln |x|−1− lnr−1
m )−αm. (3.24)

3.4 Multi-phase case

In this section we consider the multi-phase version of overdetermined problem

discussed in sections 3.1 and 3.2. To start we need some definitions.

Definition 3.2 For the multi phase case we will define Fi(A,B), i = 1, · · · ,m with the

properties (3.26 - 3.30).

Fi(A,B)< Fi(A1,B1), for (A,B)< (A1,B1), i = 1, · · · ,m (3.25)

F1(A,B)≥CB
1+α

p−1 −A (0 < α < n−2) for A,B large enough (3.26)

Fi(A,B)≥CB−A for A,B large enough, i = 2, · · · ,m (3.27)

Fi(A,B)≤CB
n−1
p−1 −A for A,B small enough, i = 1, · · · ,m−1 (3.28)

Fm(A,B)≤CBα −A (α < 1) for A,B small enough, (3.29)

Here (A,B)< (A1,B1) means either A < A1 or B < B1 or both and C is a constant.

Theorem 3.2 Let Ωi (i = 1, · · · ,m) be bounded smooth domains in Rn with Ωi−1 ⊂

Ωi, 0 = α1 < α2 < · · · < αm+1, and suppose there exist ui (i = 1, · · · ,m) solving the

following problem (3.30) along with the boundary gradient condition (3.31).

∆pu1 =−c0δ0 in Ω1,

∆pui = 0, in Ωi\Ωi−1, (i = 2, · · · ,m)

∆pum+1 = 0, in Rn\Ωm,

ui = ui−1 =−αi−1, on ∂Ωi−1, (i = 2, · · · ,m+1) (3.30)

um+1→−αm+1 as |x| → ∞, 1 < p < n,

|x|
n−p
p−1 um+1→ −αm+1 as |x| → ∞, n < p,

um+1/ ln |x|−1→ −αm+1 as |x| → ∞, n = p.
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Fi(∂νui,∂νui+1) = 0, i = 1, · · · ,m (3.31)

Then, Ωi (i = 1, · · · ,m) are balls centered at the origin.

Remark 3.1 In the above theorem the Dirac source δ0 can be replaced by a Dirichlet

data on Bs(0) ⊂ Ω (for some s) and/or Ωm with ball Brm(0). Then one may need to

modify the assumptions on the functions Fi slightly.

Proof. We split the proof into two cases.

Case A: n 6= p.

Step 1: (Largest ball from inside.)

Let us first consider the largest ball Bri ⊂ Ωi (i = 1,2, · · · ,m) and denote Gi, the

capacitor potential for each ring-shaped region Bri \Bri−1 (i = 2,3, · · · ,m). For Br1

we let G1 denote the Green’s function with source −c0δ0 and for Rn \Brm we let Gm

be the harmonic function in Rn \Brm with Gm+1 =−αm on ∂Brm and Gm+1 = um+1 at

infinity. For G1 and Gi, we have

G1 ≤ u1 in Br1(0),

Gi ≤ ui in Bri(0)\Ωi−1.

Let xi ∈ ∂Bri ∩∂Ωi. Then we have inequalities (3.33 - 3.36).

∂νG1 ≤ ∂νu1 at x1, (3.32)

∂νGi ≥ ∂νui at xi−1, (3.33)

∂νGi ≤ ∂νui at xi, i = 2,3, · · · ,m, (3.34)

∂νGm+1 ≥ ∂νum+1 at xm. (3.35)

By using these inequalities and considering the monotonicity of Fi, see (3.25), we get

inequality (3.36).

0 = Fi(∂νui,∂νui+1)≥ Fi(∂νGi,∂νGi+1), i = 1, · · · ,m (3.36)

Let us define equations (3.37), (3.38) and (3.39) , for i = 2, · · · ,m− 1, and y =

(y1, · · · ,ym).

Ti(y) := Fi

(
Ai y−1

i

(yi/yi−1)
n−p
p−1 −1

,
Bi y−1

i

1− (yi/yi+1)
n−p
p−1

)
(3.37)
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and

T1(y) := F1

(
A1 y

1−n
p−1
1 ,

B1 y−1
1

1− (y1/y2)
n−p
p−1

)
, (3.38)

Tm(y) := Fm

(
Am y−1

m

(ym/ym−1)
n−p
p−1 −1

, Bm y−1
m

)
. (3.39)

Here

A1 =
c0

ωn

|n− p|
p−1

, B1 = α2
|n− p|
p−1

,

Ai = (αi−αi−1)
n− p
p−1

, Bi = (αi+1−αi)
n− p
p−1

, i = 2, · · · ,m−1,

Am = (αm−αm−1)
n− p
p−1

, Bm = (αm+1−αm)
n− p
p−1

, n > p,

Am = (αm−αm−1)
p−n
p−1

, Bm = αm+1
p−n
p−1

, n < p.

Finally define, T (y) = (T1(y), · · · ,Tm(y)). We need to remark that

Ti−1(y)≥ Ti−1(y′), Ti+1(y)≥ Ti+1(y′) if yi < y′i and y j = y′j, j 6= i.

Let us also use the notation T (y) ≤ 0 if the inequality holds for all components Ti.

From (3.36) we have that T (r) ≤ 0, where r = (r1, · · · ,rm) are the radii of the balls.

Next consider the domain

D := {y : T (y)≤ 0}.

The idea is to prove that for y = (y1, · · · ,ym) ∈D, we have yi > s0 > 0 for some s0, and

for all i = 1, · · · ,m.

From now on we will also let Ci be constants, that might change value, depending only

on the ingredients such as n,m,c0, · · · .

It should be noted that while working with the largest balls from inside, we will take

yi small, so that y−1
i is large and will use the assumptions on Fi(A,B), i = 1, · · · ,m

where A and B are large enough.

Let y ∈ D, then we extract from (3.27) for Fm and from (3.36) the inequality (3.40).

Am y−1
m

(ym/ym−1)
n−p
p−1 −1

≤C Bm y−1
m . (3.40)

and
1

(ym/ym−1)
n−p
p−1 −1

≤C1,
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so that
1

1− (ym−1/ym)
n−p
p−1
≤ 1+C1.

Now we will use this for the next step, Fm−1, and see that

1

(ym−1/ym−2)
n−p
p−1 −1

≤C2,

and as before
1

1− (ym−2/ym−1)
n−p
p−1
≤ 1+C2.

Iterating this all the way down to i = 1 we obtain inequality (3.41).

1

1− (y1/y2)
n−p
p−1
≤ 1+Cm−1 (3.41)

On the other hand, the equation (3.26) gives inequality (3.42).

A1 y
1−n
p−1
1 ≤C

(
B1 y−1

1

1− (y1/y2)
n−p
p−1

) 1+α

p−1

(3.42)

(3.41) and (3.42) gives us

y
n−2−α

p−1
1 ≥Cm,

and we conclude with the inequality (3.43) uniformly for all ri, i = 1, · · · ,m.

y1 ≥Cm+1, (3.43)

This proves that all yi are confined within the convex cone

D⊂ {y1 > s0, yi > s0yi−1, i = 2, · · · ,m},

for some constant s0 > 0.

Let us now take the smallest element ρ in D, i.e. if for any y with T (y) ≤ 0 we have

ρ ≤ y. In particular this means that there is an element ρ ∈ D with T (ρ) = 0. Indeed,

if this fails, then for some i we have Ti(ρ) ≤ 0. If we decrease ρi to ρi− ε , for small

enough ε > 0, and set ρε = (ρ1, · · · ,ρi−ε, · · · ,ρm), then by continuity Ti(ρ
ε)< 0. It is

also apparent that changing ρi will only give rise to changes of the value Ti,Ti−1,Ti+1,

for i = 2, · · · ,m−1. For i = 1, the changes occur only for two elements T1,T2, and for

i = m the changes occur only for two elements Tm−1,Tm.

17



Using monotonicity of Ti, it is seen that we should have Ti−1(ρ
ε)< 0 and Ti+1(ρ

ε)< 0.

Hence the minimality of ρ is violated. Thus, for an element ρ ∈ D we must have

T (ρ) = 0.

Step 2: (Smallest ball from outside.)

Let us now take a reverse situation. Let BRi be the smallest ball containing Ωi, with the

corresponding Green’s functions Gi. Then a similar argument as in the previous case

shows that Gi≥ ui and considering the monotonicity of Fi, see (3.25), we get inequality

(3.44).

0 = Fi(∂νui,∂νui+1)≤ Fi(∂νGi,∂νGi+1), i = 1, · · · ,m. (3.44)

Now we use a similar iteration as we did in the earlier case. As in the previous case, we

define T (y) = (T1(y), · · · ,Tm(y)) and T (R) ≥ 0, where R = (R1, · · · ,Rm) are the radii

of the balls. We need to show the estimate (3.40) and the further ones. Next consider

the domain

D′ := {y : T (y)≥ 0}.

We will take yi large, so that y−1
i is small. We start with F1, using (3.28) and (3.44),

we obtain

C

(
B1 y−1

1

1− (y1/y2)
n−p
p−1

) n−1
p−1

≤ A1 y
1−n
p−1
1 .

Hence we have
1

1− (y1/y2)
n−p
p−1
≤C1 ,

and consequently
1

(y2/y1)
n−p
p−1 −1

≤C1−1.

In analogy with Step 1, we can use this estimate, along with (3.44) to derive a similar

estimate
1

(y3/y2)
n−p
p−1 −1

≤C2−1.

Iterating this up to i = m, we obtain

1

(ym/ym−1)
n−p
p−1 −1

≤Cm−1−1.
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For ym we use the estimate for Fm, and have

C
(
Bm y−1

m
)α ≤ Am y−1

m

(ym/ym−1)
n−p
p−1 −1

y1−α
m ≤Cm

that simplifies to inequality (3.45).

ym ≤Cm+1 (3.45)

Then according to our analysis above we have that

D′ ⊂ {ym < s0, yi > s0yi−1, i = m, · · · ,2},

where the latter cone is bounded. Now, a similar argument used in the previous case,

gives us that the largest element ρ ′ ∈ D′ must be so that T (ρ ′) = 0.

Step 3: (Putting things together.)

From the above two cases we see that we will have two values ρ,ρ ′ for which T

becomes zero. Since Fi are strictly increasing this gives us a contradiction that we

were looking for.

Case B: n = p.

The same argument can be used for n = p. We need to show (3.43) and (3.45), the rest

of the prove will follow as in the previous steps. For n = p, while working with the

largest balls from inside, we start with Fm, use (3.27) and (3.36), we obtain

(αm−αm−1)y−1
m

ln(ym/ym−1)
≤C c̄ y−1

m ,

which gives
1

ln(ym/ym−1)
≤C1.

Using this for the next step and iterating up to i=1 gives

1
ln(y2/y1)

≤Cm−1,

and with the assumption on F1 we get

c0

ωn
y−1

1 ≤C

(
α2y−1

1
ln(y2/y1)

) 1+α

p−1

,
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y
1− 1+α

p−1
1 ≥Cm,

which gives y1 ≥Cm+1. While working with the smallest balls from outside, we start

with F1, we get
C α2 y−1

1
ln(y2/y1)

≤ c0

ωn
y−1

1 ,

which gives
1

ln(y2/y1)
≤C1,

by iteration
1

ln(ym/ym−1)
≤Cm−1.

Finally by using the assumption on Fm, we obtain

C
(
c̄ y−1

m
)α ≤ (αm−αm−1)y−1

m
ln(ym/ym−1)

,

y1−α
m ≤Cm,

which gives ym ≤Cm+1. Hence the rest of the proof becomes straightforward.
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4. A PARABOLIC OVERDETERMINED PROBLEM

We will give the general notation used in the parabolic version of our problem together

with some definitions. Ω will be a domain in Rn+1. All functions considered will be

assumed to be C1
x up to the boundary of their domain of definition. u+ = max(u,0) and

u− = min(u,0). w(x, t) will denote the heat kernel (4.1) for (x, t) = (x1,x2, · · · ,xn, t) ∈

Rn×R+.

w(x, t) = (4πt)−n/2exp(−|x|
2

4t
) (4.1)

For t ≤ 0, we let w(x, t)≡ 0. For λ > 0, we define heat balls

Dλ = {(x, t) : w(x, t)> λ}.

Q(x0, t0,r) is the cylinder {(x, t) : |x− x0| < r, 0 < t0 − t < r2}. For a bounded

domain Ω ⊂ Rn+1, we define the parabolic boundary ∂parΩ to be the set of all points

(x0, t0) ∈ ∂Ω such that for any ε > 0, the cylinder Q(x0, t0,ε) contains points not in Ω.

Condition 4.1 Throughout this section the boundaries of the domains will be assumed

to be C1Dini,1/2
x,t type, i.e., the boundary is C1 in the variable x with a Dini continuous

normal; C1/2 in the t direction.

Condition 4.2 All the domains in this section are assumed to contain some interval

of the type {(0, t) : t ∈ (0,T )}, so that we can take heat balls in these domains. The

domains considered here are bounded and have the property that there exist heat balls

containing them. It is also assumed that the largest heat ball inside the domain and the

smallest heat ball outside the domain touch the boundary ∂parΩ at some points (x1, t1)

and (x2, t2) with t1, t2 > 0.
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4.1 One-phase case

Suppose we are given the overdetermined problem for the heat equation (4.2) under

the Conditions 4.1 and 4.2.
Hu =−δ0 in Ω,
u = 0 on ∂parΩ,

∂nxu = |x|
t F(w(x, t)) on (∂parΩ)\{t = 0},

(4.2)

Here F is a continuous function and w is the heat kernel (4.1). If (x, t) ∈ ∂Dλ , then

|∂nxw(x, t)|= λ
|x|
2t

.

The Green’s function of Dλ can be written as

Gλ = w(x, t)−λ .

Let us now set the right conditions on F for our problem (4.2), so that an appropriate

heat ball can be a solution. Since

∂nxGλ = λ
|x|
2t

, on ∂Dλ ,

we need F(λ ) = λ/2 to hold for at least one λ . Then Dλ is a solution to our one-phase

problem (4.2). In particular, if F(λ ) 6= λ/2 for any λ , then we cannot have a solution

of the type Dλ .

Remark 4.1 The same problem in the elliptic case was considered before. It can be

noted that in this case the function F in (4.2) was taken as a function of |x|, the level

sets of the fundamental solution.

Before stating the first theorem for the one-phase case, we need the following

condition.

Condition 4.3 F(s) is a continuous function having properties in (4.3).

F(s) =


< s/2 for s > s0,
> s/2 for s < s0,
= s0/2 for just one s0.

(4.3)
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Theorem 4.1 Suppose that there exists a non-constant u solving the overdetermined

problem (4.2) under the Conditions 4.1 and 4.2. Then, Ω is a heat ball.

Proof. Let us take the largest heat ball D
λ̄

in Ω which touches the boundary at some

point (x̄, t̄) with t̄ > 0 (by Condition 4.2) and consider its corresponding Green’s

function G
λ̄

. For the touching point (x̄, t̄) on the boundary we write w(x̄, t̄) = λ̄ . By

strong comparison principle, we have G
λ̄
< u and by Hopf’s boundary lemma, we get

∂nxGλ̄
< ∂nxu which gives

1
2
|x̄|
t̄

λ̄ = ∂nxGλ̄
< ∂nxu =

|x̄|
t̄

F(λ̄ )

i.e., we have (4.4).
λ̄

2
< F(λ̄ ) (4.4)

If we take the smallest heat ball D
λ̃

from outside, touching the boundary at some point

(x̃, t̃) and consider the corresponding Green’s function G
λ̃

, we obtain

1
2
|x̃|
t̃

λ̃ = ∂nxGλ̃
> ∂nxu =

|x̃|
t̃

F(λ̃ ),

i.e., we obtain (4.5).
λ̃

2
> F(λ̃ ) (4.5)

On the other hand, since D
λ̄
⊂ D

λ̃
, we have (4.6).

λ̄ > λ̃ (4.6)

Equations (4.4), (4.5) and (4.6) contradicts with (4.3) and hence we cannot have strict

inequalities. Then, we can conclude that D
λ̄
= D

λ̃
, i.e., Ω coincides with D

λ̄
and D

λ̃
.

We get the conclusion that Ω is a heat ball.

Theorem 4.2 Suppose that there is a non-constant solution u to the following

overdetermined problem (4.7) and the boundary gradient condition (4.8) under the

Conditions 4.1 and 4.2, together with (4.9).
Hu =−δ0 in Ω,
u = 0 on ∂parΩ,

u = 0 on ({t = 0}∩Ω)\{x = 0},
(4.7)

∂nxu = F(|x|, t) on ∂parΩ (4.8)
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F(|x|, t)< rn+1F(r|x|,r2t), where r > 1. (4.9)

Then, Ω∩ (t = τ) is a ball for all τ .

Proof. Let Ω be a domain fulfilling the Conditions 4.1 and 4.2, also let u be a solution

to (4.7). Then, let us suppose that Ω∩ (t = τ) is not a ball. We consider a rotation in

space Ω̃ 6= Ω of Ω, and let ũ be the same rotation of u. Define the scaled function

ũr(x, t) := rnũ(rx,r2t), where r > 1.

which satisfies (4.7) in Ω̃r := {x/r : x∈ Ω̃}. We choose r > 1 to be the smallest possible

so that Ω̃r ⊂ Ω and ∂ Ω̃r ∩ ∂Ω 6= /0. By using the strong comparison principle, ũr < u

in Ω̃r and we have ∂nx ũr < ∂nxu = ∂nx ũ. For a touching point (x1, t1) ∈ ∂ Ω̃r ∩∂Ω , we

get

rn+1F(r|x1|,r2t1) = rn+1
∂nx ũ(rx1,r2t1) = ∂nx ũr < ∂nxu = F(|x1|, t1)

and the last inequality contradicts with (4.9).

4.2 Two-phase case

In the two-phase case, Green functions are

G+ = w(x, t)−λ , G− = c
(

w(x, t)
λ
−1
)
.

The normal derivatives can be written as given in equations (4.10). [9]

∂nxG
+ =
|x|
2t

w(x, t), ∂nxG
− =

c
λ

|x|
2t

w(x, t) (4.10)

Theorem 4.3 Suppose that there is a non-constant solution u to the problem (4.11)

under the Conditions 4.1 and 4.2, along with the extra boundary condition (4.12),

where c is a positive constant.
Hu =−δ0 in Rn×R+ \∂parΩ,
u = 0 on ∂parΩ,
u−→−c as x→ ∞

(4.11)

∂nxu
+ = w(x, t) ∂nxu

− on (∂parΩ)\{t = 0}, (4.12)

Then, Ω is a heat ball.
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Proof. We will give the proof in three steps.

Step 1: (Largest heat ball from inside) Let us take the largest heat ball in Ω, touching

∂parΩ at some point (x̄, t̄). We denote the Green’s function corresponding to the

level surface λ̄ = w(x̄, t̄) by G1, and define G+
1 , G−1 by (4.10). By strong comparison

principle, we get G+
1 < u+ in the largest heat ball. By considering the normals at the

point (x̄, t̄) and using the Hopf’s lemma, we get (4.13).

∂nxG
+
1 (x̄, t̄)< ∂nxu

+(x̄, t̄) = w(x̄, t̄) ∂nxu
−(x̄, t̄) (4.13)

On the other hand, we have G−1 < u− in the largest heat ball from inside and inequality

(4.14).

∂nxu
−(x̄, t̄)< ∂nxG

−
1 (x̄, t̄) (4.14)

Equations (4.13) and (4.14) give us inequality (4.15).

1
w(x̄, t̄)

∂nxG
+
1 (x̄, t̄)< ∂nxG

−
1 (x̄, t̄) (4.15)

Using (4.10) in (4.15), we get (4.16).

1 < c (4.16)

Step 2:(Smallest heat ball from outside.) Let us take the smallest heat ball containing

Ω, touching ∂parΩ at some point (x̃, t̃). We denote the Green’s function corresponding

to the level surface λ̃ = w(x̃, t̃) by G2 and define G+
2 , G−2 by (4.10). By strong

comparison principle G+
2 > u+ in the smallest heat ball. By using Hopf’s lemma and

considering the normals at the point (x̃, t̃), we get (4.17).

∂nxG
+
2 (x̃, t̃)> ∂nxu

+(x̃, t̃) = w(x̃, t̃) ∂nxu
−(x̃, t̃) (4.17)

On the other hand, we have G−2 > u− in the smallest heat ball from outside and

inequality (4.18).

∂nxu
−(x̃, t̃)> ∂nxG

−
2 (x̃, t̃) (4.18)

Equations (4.17) and (4.18) give us inequality (4.19).

1
w(x̃, t̃)

∂nxG
+
2 (x̃, t̃)> ∂nxG

−
2 (x̃, t̃) (4.19)
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Using (4.10) in (4.19) gives (4.20).

1 > c (4.20)

Step 3: (Putting things together.)

Equations (4.16) and (4.20) give us a contradiction. We conclude that the largest heat

ball in Ω and the smallest heat ball containing Ω coincide and that Ω is a heat ball

itself.

Theorem 4.4 Suppose that there is a non-constant solution u satisfying (4.11) under

the Conditions 4.1 and 4.2, along with the extra boundary condition (4.21) and c is a

constant.

∂nxu
+ = ∂nxu

−− (w(x, t)− c)
|x|
2t

on (∂parΩ)\{t = 0} (4.21)

Then, Ω is a heat ball.

Proof. For the largest heat ball from inside, say D
λ̄
⊂Ω, we have

∂nxG
+
1 (x̄, t̄)+(w(x̄, t̄)− c)

|x̄|
2t̄

< ∂nxu
−(x̄, t̄)< ∂nxG

−
1 (x̄, t̄)

and by denoting w(x̄, t̄) = λ̄ , we get

λ̄ < c.

By using the similar argument, while working with the smallest heat ball from outside,

say D
λ̃
⊃Ω, with w(x̃, t̃) = λ̃ , we get

λ̃ > c,

which gives λ̄ < λ̃ and this contradicts with the fact that D
λ̄
⊂Ω⊂ D

λ̃
.

Theorem 4.5 Suppose that there is a non-constant solution u to the following problem

(4.22) under the Conditions 4.1 and 4.2, along with the extra boundary condition

(4.23), where c is a constant and F is an increasing function (4.24) with A denoting

any constant. 
Hu =−δ0 in Ω,
u = 0 on ∂parΩ,

u = 0 on ({t = 0}∩Ω)\{x = 0},
u−→−c as x→ ∞

(4.22)
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∂nxu
+ = F(∂nxu

−) on ∂parΩ. (4.23)

rn+1F(A)> F(rn+1A), where r > 1. (4.24)

Then, Ω∩ (t = τ) is a ball for all τ .

Proof. Let Ω be a domain fulfilling the Conditions 4.1 and 4.2, also let u be a solution

to (4.22). Then, let us suppose that Ω∩ (t = τ) is not a ball. We consider a rotation

in space Ω̃ 6= Ω of Ω, and let ũ be the same rotation of u, obviously ũ 6= u. Then, we

define the scaled function

ũr(x, t) := rnũ(rx,r2t), where r > 1,

which satisfies (4.22) in Ω̃r. We choose r > 1 to be the smallest possible so that Ω̃r ⊂Ω

and ∂ Ω̃r ∩∂Ω 6= /0. By using the strong comparison principle, ũ+r < u+ in Ω̃r and we

have ∂nx ũ
+
r < ∂nxu

+. For a touching point (x1, t1)∈ ∂ Ω̃r∩∂Ω, we get inequality (4.25).

rn+1
∂nx ũ

+(rx1,r2t1) = ∂nx ũ
+
r < ∂nxu

+ = F(∂nxu
−) (4.25)

On the other hand, ũ−r < u− outside Ω̃r and we have ∂nxu
− < ∂nx ũ

−
r . By using the

monotonicity of F, we get (4.26) for the same touching point (x1, t1) on the boundary

of Ω̃r.

F(∂nxu
−)< F(∂nx ũ

−
r ) = F(rn+1

∂nx ũ
−(rx1,r2t1)) (4.26)

Equations (4.25) and (4.26) give us (4.27).

rn+1
∂nx ũ

+(rx1,r2t1)< F(rn+1
∂nx ũ

−(rx1,r2t1)) (4.27)

By using (4.23), we can write the last equation (4.27) as follows:

rn+1F(∂nx ũ
−(rx1,r2t1))< F(rn+1

∂nx ũ
−(rx1,r2t1))

which contradicts with (4.24).
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4.3 Multi-phase case

For a given positive integer m, let

0 < λm < λm−1 < · · ·< λ1 < ∞, 0 = α1 < α2 < · · ·< αm < αm+1 < ∞.

Consider λi and the corresponding Green’s/capacitor functions Gi as

HGi = 0, in Dλi \Dλi−1, i = 2, · · · ,m

Gi =−αi, on ∂Dλi, Gi =−αi−1, on ∂Dλi−1, i = 2, · · · ,m.

For i = 1, we have

HG1 =−δ0, in Dλ1 , G1 = 0, on ∂Dλ1

and for i = m+1, we have

HGm+1 = 0, in Rn×R+ \Dλm, Gm+1 =−αm, on ∂Dλm,

lim
x→∞

Gm+1 =−αm+1.

We can compute explicitly all these functions, and we obtain results (4.28 - 4.30).

G1 = w(x, t)−λ1, (4.28)

Gi = (αi−αi−1)
w(x, t)−λi

λi−1−λi
−αi, i = 2, · · · ,m, (4.29)

Gm+1 = (αm+1−αm)
w(x, t)

λm
−αm+1. (4.30)

Computing the normals of these functions gives us results (4.31 - 4.33).

∂nxG1 =
|x|
2t

w(x, t), (4.31)

∂nxGi =
αi−αi−1

(λi−1−λi)

|x|
2t

w(x, t), i = 2, · · · ,m, (4.32)

∂nxGm+1 =
αm+1−αm

λm

|x|
2t

w(x, t). (4.33)

The multi-phase version of the Theorem 9 will be given as follows.
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Theorem 4.6 Let Ωi (i = 1, · · · ,m) be domains in Rn+1 satisfying the Conditions 4.1

and 4.2, with Ωi−1 ⊂ Ωi, 0 = α1 < α2 < · · · < αm+1 < ∞, and suppose there exist

non-constant ui (i = 1, · · · ,m) solving the following problem (4.34) along with the

boundary gradient condition (4.35) where ci’s are constants.
Hu1 =−δ0 in Ω1,
Hui = 0, in Ωi\Ωi−1,
Hum+1 = 0, in Rn×R+\Ωm,
ui = ui−1 =−αi, on ∂Ωi−1,
um+1→−αm+1 as |x| → ∞,

(4.34)

{
∂nxui = ci ∂nxui+1, on ∂par(Ωi\Ωi−1), i = 1, · · · ,m−1,

∂nxum = w(x, t)∂nxum+1, on (∂par(Rn×R+\Ωm))\{t = 0}. (4.35)

Then, Ωi, (i = 1, · · · ,m) are heat balls.

Proof. We will give the proof in three steps.

Step 1: (Largest heat ball from inside.) Let us first consider the largest heat ball D
λ̄i

in

Ωi (i= 1,2, · · · ,m) touching ∂Ωi at some point (x̄i, t̄i). By strong comparison principle,

we get

G1 < u1 in D
λ̄1
,

Gi < ui in D
λ̄i
\Ωi−1.

Let (x̄i, t̄i)∈ ∂D
λ̄i
∩∂Ωi. Then, by Hopf’s boundary lemma we get results (4.36 - 4.39).

∂nxG1 < ∂nxu1 at (x̄1, t̄1), (4.36)

∂nxGi > ∂nxui at (x̄i−1, t̄i−1), i = 2,3, · · · ,m, (4.37)

∂nxGi < ∂nxui at (x̄i, t̄i), i = 2,3, · · · ,m, (4.38)

∂nxGm+1 > ∂nxum+1 at (x̄m, t̄m). (4.39)

Using (4.35), (4.38) and (4.39) at (x̄m, t̄m), we obtain

w∂nxGm+1 > w∂nxum+1 = ∂nxum > ∂nxGm,

which by (4.32) and (4.33) results in inequality (4.40).

αm+1−αm >
αm−αm−1

λ̄m−1− λ̄m
(4.40)
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Using (4.35), (4.37) and (4.38), at (x̄i−1, t̄i−1) we obtain

∂nxGi > ci−1∂nxui = ∂nxui−1 > ∂nxGi−1, i = 3, · · · ,m

which gives (4.41).

αi−αi−1

λ̄i−1− λ̄i
>

αi−1−αi−2

ci−1(λ̄i−2− λ̄i−1)
, i = 3, · · · ,m (4.41)

It results in inequality (4.42).

αm+1−αm >
α2−α1

c2 · · ·cm−1(λ̄1− λ̄2)
(4.42)

Finally, using (4.35), (4.36) and (4.37) at (x1, t1), we obtain

c1∂nxG2 > c1∂nxu2 = ∂nxu1 > ∂nxG1

and we get (4.43).

α2−α1 >
λ̄1− λ̄2

c1
. (4.43)

Equations (4.42) and (4.43) give us the inequality (4.44).

αm+1−αm >
1

c1 · · ·cm−1
(4.44)

Step 2: (Smallest heat ball from outside.) Let us now take a reverse situation and

consider the smallest heat balls D
λ̃i

containing Ωi (i = 1,2, · · · ,m). Then a similar

argument as in the previous case shows that Gi > ui and at the point (x1, t1), we get

c1∂nxG2 < c1∂nxu2 = ∂nxu1 < ∂nxG1

which gives inequality (4.45).

α2−α1 <
λ̃1− λ̃2

c1
(4.45)

Similarly

ci−1∂nxGi < ci−1∂nxui = ∂nxui−1 < ∂nxGi−1, i = 3, · · · ,m

which gives inequality (4.46).

αi−αi−1

λ̃i−1− λ̃i
<

(αi−1−αi−2)

ci−1(λ̃i−2− λ̃i−1)
i = 3, · · · ,m (4.46)
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Finally, at the point (xm, tm) we obtain

w ∂nxGm+1 < w ∂nxum+1 = ∂nxum < ∂nxGm

and get inequality (4.47).

αm+1−αm <
αm−αm−1

λ̃m−1− λ̃m
(4.47)

Equations (4.45), (4.46) and (4.47) give us the inequality (4.48).

αm+1−αm <
1

c1 · · ·cm−1
(4.48)

Step 3: (Putting things together.) Equations (4.44) and (4.48) give us a contradiction.

The following theorem is the multi-phase version of Theorem 10.

Theorem 4.7 Under the hypotheses of Theorem 13, with equations (4.35) replaced by

equations (4.49) and (4.50) where ci’s are constants, Ωi, (i = 1, · · · ,m) are heat balls.

∂nxui = ci ∂nxui+1, on ∂par(Ωi\Ωi−1), i = 1, · · · ,m−1, (4.49)

∂nxum = ∂nxum+1− (w(x, t)−αm+1)
|x|
2t

,

on (∂par(Rn×R+\Ωm))\{t = 0}, (4.50)

Proof. If we consider the largest heat ball from inside, (4.38), (4.39) and (4.50) at

(x̄m, t̄m), we obtain

∂nxGm+1 > ∂nxum+1 = ∂nxum +(w−αm+1)
|x̄m|
2t̄m

> ∂nxGm +(w−αm+1)
|x̄m|
2t̄m

which gives inequality (4.51).

2αm+1−αm

λ̄m
> 1+

αm−αm−1

λ̄m−1− λ̄m
(4.51)

Using (4.37), (4.38) and (4.49) at (x̄i−1, t̄i−1) we obtain (4.41). Using (4.36) and (4.49)

at (x̄1, t̄1) we obtain (4.43). Equations (4.51), (4.41) and (4.43) give

2αm+1−αm > λ̄m(1+
1

c1 · · ·cm−1
).

By using the same argument, while working with the smallest heat ball from outside,

we get

2αm+1−αm < λ̃m(1+
1

c1 · · ·cm−1
).

Since D
λ̄m
⊂ D

λ̃m
, we have λ̄m > λ̃m and obtain a contradiction.

The multi-phase case of Theorem 11 is stated in the following theorem.
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Theorem 4.8 Let Ωi (i = 1, · · · ,m) be domains satisfying Conditions 4.1 and 4.2,

with Ωi−1 ⊂ Ωi, 0 = α1 < α2 < · · · < αm+1, and suppose there exist non-constant

ui (i = 1, · · · ,m) satisfying (4.34) along with the boundary gradient condition (4.52)

and Fi,(i = 1, · · · ,m) denoting increasing functions with the property (4.53) with A

denoting any constant.

∂νui = Fi(∂νui+1), i = 1, · · · ,m, (4.52)

rn+1Fi(A)> Fi(rn+1A), where r > 1. (4.53)

Then, Ωi∩ (t = τ) (i = 1, · · · ,m) are spheres for all τ .

Proof. Let Ωi be domains fulfilling the Conditions 4.1 and 4.2, also let ui be solutions

satisfying (4.34). Let us suppose that Ωi ∩ (t = τ) is not a ball. Then, we consider

rotations in space Ω̃i 6= Ωi of Ωi, and let ũi be the same rotation of ui. Then we define

the scaled function

ũri(x, t) := rn
i ũi(rix,r2

i t), where ri > 1, i = 1, · · · ,m,

where ri > 1 are the smallest possible so that Ω̃r
i := {x/r : x ∈ Ω̃i}, Ω̃r

i ⊂ Ωi and

∂ Ω̃r
i ∩∂Ωi 6= /0.

By using the strong comparison principle, ũri < ui in Ω̃r
i \ Ω̃r

i−1 and we have ∂nx ũri <

∂nxui. For touching points (xi, ti) ∈ ∂ Ω̃r
i ∩∂Ωi , we get (4.54).

rn+1
i ∂nx ũi(rixi,r2

i ti) = ∂nx ũri < ∂nxui = Fi(∂nxui+1) (4.54)

On the other hand, ũri+1 < ui+1 in Ω̃r
i+1\Ω̃r

i and we have ∂nxui+1 < ∂nx ũri+1 . By using

the monotonicity of F, we get (4.55).

Fi(∂nxui+1)< Fi(∂nx ũri+1) = Fi(rn+1
i ∂nx ũi+1(rixi,r2

i ti)) (4.55)

for the same touching point (xi, ti) on the boundary of Ω̃r
i . Equations (4.54) and (4.55)

give us inequality (4.56).

rn+1
i ∂nx ũi(rixi,r2

i ti)< Fi(rn+1
i ∂nx ũi+1(rixi,r2

i ti)) (4.56)

From (4.52), we can write the last inequality (4.56) resulting in (4.57).

rn+1
i F(∂nx ũi+1(rixi,r2

i ti))< Fi(rn+1
i ∂nx ũi+1(rixi,r2

i ti)) (4.57)
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The last inequality (4.57) contradicts with (4.53). Hence, we can conclude that Ωi ∩

(t = τ) (i = 1, · · · ,m) are spheres for all τ .
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