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SYMMETRY IN SOME OVERDETERMINED PROBLEMS

SUMMARY

In the present study, overdetermined symmetry problems for elliptic and parabolic
cases are studied for one-phase, two-phase and multi-phase versions. The study
contains five main sections.

In the first section, a general introduction is given including some information
about symmetry in elliptic and parabolic multi-phase overdetermined problems with
nonlinear governing equations. Existing results in literature are also argued briefly.

The second section is devolved to the background. Related terminology with basic
definitions and theorems about Laplace and heat equations are reviewed.

In the third section, symmetry for an elliptic overdetermined problem, related to balls
is analysed. A general overview of existing results is given. First, Laplace equation
with nonlinear boundary conditions is considered for both one-phase and two-phase
cases. For one-phase case the nature of the problem is indicated. The difficulties
of the problem is observed for the two-phase case. Then, p-Laplacian operator is
considered and in order to generalize the results, exact definitions and forms of the
Green’s functions for the ball are written. Multi-phase version of the problem for
the p-Laplacian is examined in detail. These results also cover the symmetry for the
Laplace equation for multi-phases.

In the fourth section, symmetry for a parabolic overdetermined problem, related to heat
balls is analysed. The one-phase, two-phase and multi-phase versions with nonlinear
overdetermined boundary conditions are proved. Along with these ideas spherical
space symmetry problems for the solutions of similar overdetermined problems are
also stated and proved.
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BAZI ASIRI BELIRGIN PROBLEMLERDE SIMETRI

OZET

Bu yiiksek lisans tez calismasinda iki temel konu ele alinmigstir. Bunlardan ilki
eliptik agsir1 belirgin problemleri, ikincisi ise parabolik asir1 belirgin problemleri
kapsamaktadir.

Eliptik yapida temel bir problem ele alinmak istendiginde

Au = —cydy, Q  Dbolgesinde,
u=0, dQ smirinda.

denklemleri uygun bir se¢imdir. Burada A Laplasyeni, &y dirac delta fonksiyonunu,
dQ ise Q bolgesinin sinirin1 gostermektedir.

Yukaridaki verilen probleme

dyu = F(|x|), dQ smirinda,

seklinde bir ek siir kosulu getirdigimizde problem asir1 belirgin bir hal alacaktir.
Burada, F, sonradan belirlenecek bir fonksiyon olmak iizere, v i¢ normal dogrultusunu
gostermektedir. Ayrica, Q C R” (n>2) bolgesi sinirli C! sinifindan secilmistir.

Yukarida verilen siir deger probleminde € bolgesinin hangi kosullar altinda kiire
olabilecegi ilging bir soru olarak karsimiza ¢ikmaktadir.

Asirt belirgin bir eliptik problemde goriilen ek sinir kosulu altinda bolgenin G Green
fonksiyonu ele alindiginda |VG]| siirda sabit bir deger olarak elde edilir. Bu ise bize
Q bolgesinin bir kiire oldugu sonucunu verir.

Diger yandan, iki fazli bir yapida u™ ve u~ olarak iki Green fonksiyonu ile
calisilmaktadir. Q bolgesi icinde 6rnedin orijinde kutup noktasina sahip olan u™
Green fonksiyonu ve € bolgesinin disinda sonsuzda kutuba sahip olan u~ Green
fonksiyonu arasinda bir iligki elde edilebilir. Bu iligki Q bolgesinin sinirinda Green
fonksiyonlarinin normalleri cinsinden asagidaki gibi yazilabilir:

dyut = F(dyu~), dQ smirinda.

Burada F verilen bir fonksiyon olup, hangi 6zellikleri saglamasi durumunda Q
bolgesinin bir kiire olabilecegi sorusuna cevap aranmaktadir.

Iki fazli durumdan ¢ok fazli duruma gegildiginde, asir1 belirgin problem icin simetrinin
gosterilmesi biraz daha zahmetli ve detayli hesaplar icermektedir. Bu calismada, bu
hesaplarin yanisira ¢ok fazli durumda agir1 belirgin A,u , p-Laplace denklemi icin
sonuglar genellestirilmisgtir.
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Bir parabolik problemin incelenmesinde en temel denklem olan 1s1 denklemi

Hu = —0d, D; bolgesinde,
u=>0, dD; sinirinda,

seklinde verilen sinir deger problemi olarak incelenebilir. Burada H = A — d; 1s1
operatorii olup, Dj 1s1 yuvarini, dD; ise 1s1 yuvarinin sinirini gostermektedir.

Parabolik sinir deger problemine ek olarak
X
=22,

sinir kosulunun tanimlanmasi problemi asir1 belirgin bir sisteme doniistiiriir.  Is1
denklemindeki u ¢Oziimiiniin ek sinir kosulunu da sagladig1 gosterilebilir. Burada
Opu, ny dogrultusundaki dogrultu tiirevidir.

Tezde ¢alisilan ikinci temel konu, yukarida verilen parabolik sinir deger probleminde
Q bolgesinin hangi kosullar altinda bir 1s1 yuvari olabilecegidir. Parabolik problem
yapi itibari ile 1s1 yuvarlan ile ilgili oldugundan teknik olarak eliptik problemden
farkli yontemler kullanmamiz1 gerektirir. Ornegin, elliptik bir sistemde maksimum
prensibi sonug¢ verirken, parabolik bir sistemde Hopf lemmasindan faydalanmamiz
gerekmektedir. Parabolik problemde de eliptik problemde oldugu gibi ¢ok fazlh
ortamda genel sonuclar elde edilmis, 6zel durumlarda bu sonuglarin tek fazli ve iki
fazli ortamlardaki sonuglar1 kapsadigi gosterilmistir.

Bu yiiksek lisans tezinde, eliptik ve parabolik durumlar i¢in asir1 belirgin simetri
problemleri tek fazli, iki fazli ve ¢ok fazli durumlar i¢in ele alinmigtir. Calisma bes
ana boliimden olugsmaktadir.

Birinci boliimde, konuya genel bir giris yapilmus, eliptik ve parabolik ¢ok fazli asiri
belirgin problemlerde simetri problemi ile ilgili sinir degerlerin dogrusal olmayan
fonksiyonlardan olustugu durumda bazi bilgiler verilmistir. Konuyla ilgili literatiirde
mevcut olan bazi sonuglar da kisaca 6zetlenmistir.

Ikinci boliimde, Laplace ve 1s1 denklemleri tamitilmis, ilgili terminoloji gozden
gecirilmis; Diverjans Teoremi, Maksimum Prensibi, Hopf Lemmasi gibi temel tanim
ve teoremlere yer verilmisgtir.

Uciincii boliimde, bir agir belirgin eliptik problem icin kiireler ele alarak simetri
analiz edilmistir. Literatiirde mevcut olan sonuglar géz Oniinde bulundurularak,
oncelikle, lineer olmayan sinir kosullar1 altinda Laplace denklemi tek fazli ortamda
incelenmigtir. Ardindan, problem iki fazda ele alinmistir. Tek fazli durum icin
problemin yapast ile ilgili fikirler verilirken, iki fazli durumda ise problemin zorluklari
irdelenmistir. Daha sonra, sonuclari genellestirmek adina, p-Laplace operatorii
ele alinmig, kiire i¢in Green fonksiyonlarinin tanimlari ve formlart acik sekilde
yazilmistir. P-Laplace denklemi icin ¢ok fazli versiyon detayli olarak incelenmistir.
Elde edilen sonuglarin ayn1 zamanda Laplace denkleminin cok fazli durumundaki
simetri 0zelligini de kapsadig: belirtilmistir.

Dordiincii boliimde, parabolik agirt belirgin bir problem i¢in 1s1 yuvarlari ele alinarak
simetri analiz edilmigtir. Dogrusal olmayan sinir kosullar1 altinda asirt belirgin tek
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fazli, iki fazli ve ¢ok fazli durumlarda simetri kamitlanmistir. Diger bir degisle,
hangi ek siir kosullar altinda bdlgenin bir 1s1 yuvart olabilecegi detayl bir sekilde
incelenmigtir. Bu fikirler ile birlikte benzer problemlerde kiiresel simetri de ifade ve
ispat edilmistir.
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1. INTRODUCTION

In this thesis, we study symmetry for both elliptic and parabolic versions of

multi-phase overdetermined problems.

First we consider an elliptic overdetermined symmetry problem where it is usual to
consider the problem in a given domain, involving only one function, and an extra
boundary condition. If the Green’s function G of a domain, has the property that |VG|
is constant on the boundary, then one expects the domain to be a ball. The proof of
this theorem, for C! domains follows a simple argument, given in [1]. On the other
hand, recent years has seen a lot of mathematical problems where there are more than
one phase entering into the game, or the physical model. One such example is the
so-called multi-phase flows, where several liquids are present. In such problems, there
is a different governing equation on the “free boundary”, that in general, is a nonlinear
equation. More exactly, suppose for a bounded C!' domain Q C R” (n > 2) the Green’s
function u™ with pole at some interior point (origin, say), and the Green’s function u~

of the exterior domain with pole at infinity we have the boundary gradient condition
avu+ - F(a\/ui) on aQ,

where F' is a given function, with certain properties, and v is the inward normal
direction. Can we conclude that Q is a ball? We prove a multi-phase version of this

problem, with general governing conditions, and with the p-Laplacian, see [2].

Second main result is for the parabolic version, which is related to heat balls. Let u be

a solution to problem (1.1).

Hl/l:—50, in Dl,
{u:O, on dD;. (L1

Here 0y is the Dirac delta function and D, denotes the heat ball. Then one can show

that u satisfies the extra boundary gradient condition (1.2).

K
Onyl =25 (1.2)
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It is also well known [3] that under mild conditions the heat balls are the only domains

admitting such a solution with extra boundary gradient condition (1.2).

In a series of papers [4], [5] and [6], the authors have considered various related
symmetry problems. E.g. in [4], the authors consider this problem under some
regularity conditions. In a recent paper [6] the authors considered the same problem

under very weak regularity conditions.

However, it is less known that the extra boundary gradient condition can be given as a
nonlinear equation, e.g.

|Onu = F (|x]1).

The question is what kind of nonlinearity F one has to choose in order to achieve a

similar symmetry result.

The parabolic setting introduces a substantial difficulty on what kind of functions F
we should choose in order to conclude that the heat balls are the only solutions to the
problem. It should be noted that F would depend on the (x,#) variable. A natural
choice is that F depends on the level sets of the fundamental solution w(x,?) of the
heat equation

F =F(w(x,1)).

We generalize the above symmetry problem by considering nonlinearities F with
certain assumptions. We also introduce two- and multi-phase versions of this problem.
Along with these ideas we also state and prove spherical space symmetry problems for

the solutions of similar overdetermined problems.



2. BACKGROUND

2.1 Divergence theorem

Theorem 2.1 Let Q be a bounded domain with C! boundary dQ and let v denote the
unit outward normal to dQ. For any vector field w in C'(Q). Then we have equation

(2.1), where ds indicates the (n — 1)-dimensional area element in Q.

/divwdx=/ w-vds 2.1)
Q oQ

In particular if u is a C>(Q) function we have, by taking w = Du in equation (2.1), we

can have (2.2).

du
/Q Audx = /a s, 2.2)

2.2 Laplace’s equation

Among the most important of all partial differential equations are undoubtedly

Laplace’s equation (2.3) and Poisson’s equation (2.4).
Au =0 Laplace’s equation, 2.3)

—/Au= f Poisson’s equation. 2.4

In both (2.3) and (2.4) equations, x € U and the unknown is u : U — R u = u(x),
where U C R" is a given open set. In (2.4) the function f : U — R is also given. The
Laplacian of uis Au= Y, uy,,. A C* function u satisfying equation (2.3) is called
a harmonic function. The function (2.5) defined for x € R", x # 0, is the fundamental
solution of Laplace’s equation [7].

—-LIn|x n=2
D(x) := { o d | ( 3) (2.5)
A e (2> 3)

v



Consider now an open set U C R" and suppose u is a harmonic function within U. We
next derive the important mean-value formulas, which declare that u(x) equals both the
average of u over the sphere dB(x,r) and the average of u over the entire ball B(x,r),

provided B(x,r) C U.

Theorem 2.2 (Mean-value formulas for Laplace’s equation). If u € C?(U) is harmonic,

then we have (2.6) for each ball B(x,r) C U.

u(x) = uds:][ u dy (2.6)
( ) ]Z(;B(xJ) B(x,r)

Proof. 1. Set

Then
o' (r) :][ Du(x+rz)-zdS(z),
dB(0,1)

and consequently, using Green’s formulas, we compute

1eN y—x
o) =4, Duby)ast)
du

= 22ds
IB(x,r) OV )

Hence ¢ is constant, and so

o(r) =limo(r) =lim+ ) u(y)dS(y) = u(x).

2. Observe next that our employing polar coordinates gives

/ udy :/ (/ udS) ds
B(x,r) 0 dB(x,s)

= u(x) /Orna(n)s"_lds = a(n)r'u(x).

Theorem 2.3 (Converse to mean-value property). If u € C?(U) satisfies

= dS
! <X) ]Z(;B (x,r) !

for each ball B(x,r) C U, then u is harmonic.

4



Proof. If A # 0, there exists some ball B(x,r) C U such that, say, Au > 0 within

B(x,r). But then for ¢ as above,

a condradiction.

Theorem 2.4 (Strong maximum principle). Suppose u € C*(U) N C(U) is harmonic
within U.
(i) Then

maxu = maxu.
U U

(i1) Furthermore, if U is connected and there exists a point xo € U such that
u(xp) = maxu,
U

then u is constant within U.
Assertion (1) is the maximum principle for Laplace’s equation and (ii) is the strong
maximum principle. Replacing u by —u, we recover also similar assertions with "min"

replacing "max".

Proof. Suppose there exists a point xo € U with u(xg) = M := maxgu. Then for

0 < r < dist(xp, dU ), the mean-value property asserts

M:u(xo):]i( )udySM.
X0,

As equality holds only if u = M within B(xg,r), we see u(y) = M for all y € B(x,r).
Hence the set x € U | u(x) = M is both open and relatively closed in U, and thus equals

U if U is connected. This proves assertion (ii), from which (i) follows.

2.3 Heat equation

The heat equation (2.7) and the nonhomogeneous heat equation (2.8) are given, where

t >0andx € U, where U C R" is open.
u— Au=0 2.7)

u—ANu=f (2.8)



The unknown is u : U x [0,00) — R,u = u(x,t), and the Laplacian A is taken with
respect to the spatial variables x = (x1,...,x,) : Au= A =Y" | uy,y,. In equation
(2.8) the function f : U x [0,0) — R is given. The function (2.9) is called the

fundamental solution of the heat equation [7].

1 —@ n
P(x,1) = { Gmpr® * WERLIZ0)

0 (xeR",t <0)

2.9)

For the heat operator H = A — d;, we have the following fact.
Fact 1. If Hu = —&, and u,(x,t) = r"u(rx,r’t), then Hu, = —&. To see this, let
@ € Cy and H = A+ 9;. Then we have

< Hup, @ >=<u, Hp >=r" [ | u(rx,r?t)Ho(x,1)dxdt
¢ o ¢

=2 [[ w00, Sagar= [[ Do, nagaz

=<u,Hp >=<Hu,p >=< —8),¢ > .
Fact 2 (Dini continuity). A modulus of continuity « is called a Dini modulus of
continuity if

r

/()+@dr<oo

and a function 4 is called Dini continuous if /4 has a Dini modulus of continuity [8].

Fact 3 (Hopf’s Lemma). Let Cs(x,) be Bs(x) x (t — 8%,t + &%) and let u > 0 be a
weak solution to the heat equation and u > 0 in the interior of QN Cg(xp,%)) and that
u(xo,t0) = 0. Assume that Q is C1-P™ at (xo,19). C1"P™ means the boundary is C! with

a Dini continuous normal. Then
O, u(x0,t0) > C >0,

where n, denotes inward space normal direction and C is a constant [8].



3. AN ELLIPTIC OVERDETERMINED PROBLEM

3.1 One-phase case (Exploratory)

Suppose we are given the overdetermined problem (3.1) for some bounded C! domain

QCR"(n>2).

Au=—cpdy in Q,
u=0 on JQ, 3.1)

oyu=F(|x|) on 0JQ,

A bounded domain is of class C! if its boundary may be locally represented as the
graph of finitely many C' functions, i.e. continuous functions that have continuous

first order derivatives.

A question that has challenged several mathematicians is whether Q is a ball. A natural
follow-up question would then be the uniqueness of the solution. If we replace the
boundary normal derivative with |Vu|(x) = F(|x|), then the smoothness assumption on
the boundary can be relaxed considerably. For example one can allow this boundary
gradient condition to hold a.e. on the boundary, and still ask the same question [3].

However, in the discussion to follow below, we will only consider C I domains.

The departing point of any analysis of this problem would be to set the right conditions

on F, so that an appropriate ball can be a solution. Indeed, a simple integration gives
/ Fds = dyuds = / —Audx = cyp.
20 Q Q
In particular if Q is the ball Bg(0) then
F(R) w, R ! = ¢y,

where @, is the surface area of the unit sphere. This suggests that if for any R we have

the above condition fulfilled then the ball Bg(0) and its Green’s function would be a

7



solution to our problem. In particular there would be no solution if the condition above
is not satisfied for any ball Bg(0). The uniqueness also fails when the above condition

holds for more than one R. For example if
F(t):=cot'™/w,
then all balls with centers at the origin are solutions to our problem.

In proving that a solution must be a ball, one can use standard argument of scaling and
comparison between the solution and the scaled version of it. So let us start with a
solution u and the corresponding €2 to our problem (3.1). Let us first set co = w, for
simplicity. Then the requirement that the appropriate ball is a solution is F(R) = R!~"
for at least one R. Suppose that this condition fails. Then one can easily see that
there cannot be any solution (u,Q) to our problem. Indeed, suppose F(R) > R!~", for
all R. Let us take the smallest ball B,(0) D Q and its Green’s function G,. Then by

comparison principle # < G, in  and hence
P71 = 0,Gy(2) > dvu(z) = F(r)

where 7 is a touching point between the boundary of Q and the sphere |x| = r. This
contradicts that F(R) > R'~" for all R. A similar argument (taking largest ball from
inside) also shows the failure of existence when the reverse condition F(R) < R'™"

holds.

Let us now look for further conditions that forces solutions to be spherical. Assume
we have a solution (#,Q) and also that (G,,B,) is the corresponding ball solution. If
B, \ Q # 0 then we may scale so that B;, C Q and it touches the boundary of Q at z,
and that # > 1. Then one can easily show that v(x) := 1" ~2G,(tx) satisfies Av = —,

and hence by comparison principle v < u in By,. In particular
d(v—u)(z) <0
where V is the inward normal direction, resulting in
" (tlz]) < F(l2]).

If we assume that 7"~ F (r) is strictly increasing (or just increasing for C' Aini gomains,

by the use of Hopf’s lemma) then the above inequality results in

_ |z _
" F(1]2]) < F(J2l) = |Z|n_1F(\ZD<f” 'F(t]2]).

8




It is noteworthy that the above condition on F can be relaxed considerably. Indeed,
it would be enough to assume that 7'(r) := #"~!F(r) — 1 vanishes at only one point
and that T'(r) < 0 for small values of r and T(R) > 0 for large values of R. To see
this we need a different argument than scaling. So let us again consider the largest
ball B, inside our domain and the smallest one Bg containing it. A similar comparison
argument as above gives that the inward normal derivative of u — G, and Gg — u are

non-negative (r < R). In particular we will have
a\/(M—Gr)ZO, av(GR—u>§0

F(r)>rl, F(R) <R'™

or that T(r) := " 'F(r) =1 >0and T(R) := R* 'F(R) — 1 < 0. But this along with

the conditions on T implies that 7' vanishes at two points, at least. A contradiction.

3.2 Two-phase case

In this section we will consider the two-phase counterpart of the symmetry problem.
We will need to set the conditions on the function F to ensure that our arguments will

go through.

Definition 3.1 (Nonlinear joining condition.) We will denote by F = F(¢) a continuous

increasing function with the property (3.2).

<bt"! fort large enough
F(t)=<{ >bt""! fort small enough 3.2)
=b1"! for just one ¢

Here

b_{co/a)n (n—2)2" cl=n >3

, n
co/(2m¢é), n=2

and ¢ denotes a constant.

Let us further set u™ := max(u,0) and u~ := min(u,0), & denotes the Dirac delta

function.



Theorem 3.1 Let Q be a bounded smooth domain in R” with v the normal vector on
dQ pointing towards the interior of Q. Suppose we have a solution to the problem

(3.3).

Au = —cydy in R"\0Q,

u=20 on JQ,

u— —c as |x|—o, n>3 3.3)
Uu—>—oco as |x| >, n=2

dyut =F(dyu")

Then, Q is a sphere centered at the origin.

Proof. Let us take the largest sphere Bg, (0) C Q centered at the origin, touching dQ at
some point x'. Denoting the Green’s function corresponding to the sphere with radius

R by Gg,, we have

A" =Gy )=0 in Bg(0),

u"—Gg >0 on 0B (0),

and by maximum principle of harmonic functions, we get

G;l <u' in Bg,(0).
If we consider the normals at the point x',

8VG1}L1 (x!) < oput (xh),
and by the last equation (3.3) we have (3.4).

QVG;I () <out(x)=F (Avu~ (xl)) 3.4)

On the other hand, we may take

3 |x|27n >
GR =C 2_ _1 9
1 (Rl n

Gg, —u~ —0 as  |x| — oo,

10



and have
Gg, <u <0 on 0Q,
G,;l <u in QF°
By considering the normals at the point x!,
dyu~ (x') < dvGp, (xh).
Since F(t) is increasing the inequality (3.5) is right.
F (9w () < F (3G, (+1)) 3.5)
Thus, (3.4) and (3.5) give (3.6).
WGy () < F (avc;,;1 (xl)) (3.6)

By symmetry property of the Green’s function, the inequality (3.6) holds for every

X € 8BR,.

Now, let us take the smallest sphere Bg,(0) D € centered at the origin, touching JQ at
some point x*. Denoting the Green’s function corresponding to the sphere with radius

R> by Gg,, a similar reasoning gives inequality (3.7).

F(&vGEZ(x2)> <3G () on 9B, 3.7)

Forn > 3,

(o)) _ _
G ) =" (k" —R ")

n

Gr(x)=c (R’f_2|x]2_” —1).

Hence we have equations (3.8) and (3.9).

WG (x) =2 (n—2)RI™", (3.8)

o7

dvGr (x')=c (n—2)R;". (3.9)
Equations (3.8) and (3.9) together with (3.6) gives (3.10).
(n—=2) 2 RI" < F (c (n—2)Ry")
Wy
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If we let rj = c(n— 2)R1_] , then the inequality (3.10) becomes a result.
F(r)>bri" (3.10)
Similarly, for r, = c¢(n—1)R; ! we obtain an inequality (3.11).
F(r) <bri ! (3.11)
Equations (3.10) and (3.11) contradicts (3.2).

For n = 2, we have

€0
2n
Gr(x)=c¢ (ln\x\*l —lanl) ,

GE) = <2 (1nfsf~" ~ nR;").

and equations (3.12), (3.13).

G R (x)) = zc—fr Ry (3.12)
WG R (x")=cR . (3.13)

Equations (3.12) and (3.13) together with (3.6) gives
5_;): Ry < F(@ERY).
Ifweletr; =¢ Rfl, then we have an inequality (3.14).
F(r1) >br. (3.14)
Similarly, for r, = ¢ R !, we obtain (3.15).
F(r) <bnr. (3.15)
Equations (3.14) and (3.15) contradicts (3.2).

It follows easily that the function F(¢) can be assumed to depend on |x| as well. Then,
F(|x|,#) is an increasing function in # having the same property given by (3.2) forn > 2.

Hence, the inequality (3.10) becomes (3.16).

F (ﬁ,rl) > b ! (3.16)
r
The inequality (3.11) becomes (3.17).
F (3,r2> <br! (3.17)
rn

Equations (3.16) and (3.17) contradicts (3.2).
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3.3 The Radial Green’s and Capacitor function

In this section we compute explicitly the Green’s functions and the capacitor potential

of a sequence of spherical rings, that we will use as barriers from below and from

above in the sequel.

Define the p-Laplacian
Apu:=div(|VulP72Vu) (1< p<oo).

For a given positive integer m, and positive real numbers

O<r<rm< - <y <oo, D=0 <0< <Oy <Oy <oo

consider B;,(0) and the corresponding Green’s/capacitor functions G;:

A,Gi=0, inB,\B, |, i=2,---,m
Gi=—a;, ondB,, Gi=-0;_1, ondB, ,, i=2,---.m
andfori=landi=m+1

Ap,Gi = —co&, inB,, Gy =0, ondB,

and

Ame+1 = O, in R" \Brm, Gm+1 = -0y, On QBrm,

: : n=p
im Gy = =01, p<n, lim|x|?7"1Gpy) =—0pr1 p>n.
X—>oo X—>oo

We can compute explicitly all these functions, and we obtain results (3.18 - 3.24).

Case: n# p
C p=n 2=
G == | =1 — 07
@y
_ p-n
xf =] .
Gl ( o+ oG 1) pn p — O, 122,-",7}’1,
rﬁ rﬁ
i 1
Y
Gni1 = (am+1_(xm) T |x|p1_am+17 p <n,
np
Guil = —Opi1 ' |x|P1, p>n.

13
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Case:n=p

Gi =2 (I~ ~Inry), (3.22)
@y
Injx|~! —Inr;! _
Gi=(—a+a_) — - — o, i=2,---,m, 3.23)
Inr;" —Inr;,_|
Gyt = =0yt (Inlx|" =Inr, 1) — o, (3.24)

3.4 Multi-phase case

In this section we consider the multi-phase version of overdetermined problem

discussed in sections 3.1 and 3.2. To start we need some definitions.

Definition 3.2 For the multi phase case we will define F;(A,B), i=1,--- ,m with the
properties (3.26 - 3.30).

Fi(A,B) < Fi(A,By), for (A,B)<(A,B1), i=1,---.m 3.25)
Fi(A,B) > CBr T —A (0<o<n—2) forA,B large enough (3.26)
Fi(A,B) >CB—A forA,B large enough, i=2,---,m (3.27)

Fi(A,B) < CB;;—% —A forA,Bsmall enough, i=1,---,m—1 (3.28)
Fn(A,B) <CB*—A (a<1) forA,B smallenough, (3.29)

Here (A,B) < (A1,B;) means either A < A} or B < B; or both and C is a constant.

Theorem 3.2 Let Q; (i = 1,---,m) be bounded smooth domains in R” with Q; | C
Qi,0=01 < < - < Qp+1, and suppose there exist u; (i = 1,--- ,m) solving the
following problem (3.30) along with the boundary gradient condition (3.31).

Apul = —6050 in .Ql,

Apul- =0, in Qi\Qi,h (1:27 ,I’I’l)

Aptmi1 =0, in R™NQ,,

up=u_1=—0;_1, on 9Q; |, (i=2,---,m+1) (3.30)
Upil = — Oyl a8 |x| = oo, 1< p<n,

7 it = a1 as i e, n<p,

Upir/In|x| ™' = —qup as |x| = e, n=p.
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Fi(avuhavuﬂrl) = 07 i= 17 Tee,m (3'31)

Then, Q; (i=1,---,m) are balls centered at the origin.

Remark 3.1 In the above theorem the Dirac source & can be replaced by a Dirichlet
data on B;(0) C Q (for some s) and/or ,, with ball B,, (0). Then one may need to

modify the assumptions on the functions F; slightly.

Proof. We split the proof into two cases.

Case A: n # p.

Step 1: (Largest ball from inside.)

Let us first consider the largest ball B, C &; (i = 1,2,---,m) and denote G;, the
capacitor potential for each ring-shaped region B, \ B,, , (i =2,3,---,m). For B,

we let G| denote the Green’s function with source —cyy and for R" \ B,,, we let G,

be the harmonic function in R”\ B,, with G, .1 = —a,, on dB,, and G| = Uy at

'm

infinity. For G| and G;, we have
G1 S ui in Br1 (0),
G,’ < u; in Br,- (O)\.Q.,'_l.

Let x' € dB,, N dL;. Then we have inequalities (3.33 - 3.36).

oGy < oyu; at x!, (3.32)
oG > dyu; at x 1 (3.33)
WG <owu; at x', i=23,--.m, (3.34)

&ma+1 Z avum+1 at xm. (3.35)

By using these inequalities and considering the monotonicity of F;, see (3.25), we get

inequality (3.36).

OZE(aVui7aVui+l) ZE(a\/Gba\/Gi-l-l)? = 17 ,m (3'36)

Let us define equations (3.37), (3.38) and (3.39) , for i =2,--- m—1, and y =

()’17"' 7ym)

_ (3.37)

np -
i/yic1)P T =1 1= (yi/yiy1)7~
15
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and

1on Byy!
Ti(y) == F (Al w1 n,,) , (3.38)
L—(y1/y2)7!
Ap vt _
To(y) = Fm< min ____ B, ym1>. (3.39)
(ym/ym—l) -1
Here
A= o lnzpl g o Inmpl
w, p—1 —1
n— n—
A,:(OC,' Ot,l)p_?, B,’Z((X,’H—OCZ')I)_I;, 1—2, ,m—l,
n—p n—p
Am_(am am—l) p_la Bm:(am—i—l_am) —17 n>p,
—n —n
Am = (O — Q1) 4 , Bun=0Qui1 ——, n<p.
p—1 —1

Finally define, T'(y) = (T1(y),- - -, T(y)). We need to remark that
1) >Ta(y), Tia(y)>Ta(y)  if yi<y;  and y;j=)Y, j#i

Let us also use the notation 7'(y) < 0 if the inequality holds for all components 7;.
From (3.36) we have that 7(7) < 0, where 7 = (ry,---,r,) are the radii of the balls.
Next consider the domain

D:={y:T(y) <0}.
The idea is to prove that for y = (yy,--- ,ym) € D, we have y; > so > 0 for some s, and

foralli=1,---,m.

From now on we will also let C; be constants, that might change value, depending only

on the ingredients such as n,m,co,- - -.

It should be noted that while working with the largest balls from inside, we will take
yi small, so that y;” !'is large and will use the assumptions on Fi(A,B),i=1,---.m

where A and B are large enough.

Let y € D, then we extract from (3.27) for F,, and from (3.36) the inequality (3.40).

A —1
m Y <CBny; . (3.40)

n—

(ym/)’mfl)’F

S|

—

—1

and
1

<y,

BN
S

(ym/)’m—l)p_ —1
16



so that
1
n—p

1— (y m— 1/ Ym) p-1
Now we will use this for the next step, F;,—1, and see that

<1+C;.

1

<,

=
IS]

»—“

(ym l/ym 2) -1

and as before
1
<1+4+G.

n—p —

1= (m—2/Ym-1)7""
Iterating this all the way down to i = 1 we obtain inequality (3.41).

W <1+GCu-1 3.41)
On the other hand, the equation (3.26) gives inequality (3.42).
=
Al y{l’J <C (%) - 3.42)
L= (i /y2)7 !
(3.41) and (3.42) gives us
y: - > Cp,
and we conclude with the inequality (3.43) uniformly for all r;, i =1,--- ,m.
Y1 2= Gy, (3.43)

This proves that all y; are confined within the convex cone
D C {y1 > 50, yi > Soyi-1, 1 =2, ,m},

for some constant sg > 0.

Let us now take the smallest element p in D, i.e. if for any y with T(y) < 0 we have
p <y. In particular this means that there is an element p € D with T(p) = 0. Indeed,
if this fails, then for some i we have T;(p) < 0. If we decrease p; to p; — €, for small
enough € > 0, and set p = (py,---,pi—€, -+, Pm), then by continuity 7;(p?) < 0. Itis
also apparent that changing p; will only give rise to changes of the value 7;,7;_1, T;+1,
fori=2,--- ,m—1. For i = 1, the changes occur only for two elements 77, 7>, and for

i = m the changes occur only for two elements 7,1, T,,.

17



Using monotonicity of T;, it is seen that we should have 7;_ (p%) < 0and T; 1 (p%) <O.

Hence the minimality of p is violated. Thus, for an element p € D we must have

T(p)=0.

Step 2: (Smallest ball from outside.)

Let us now take a reverse situation. Let Bg, be the smallest ball containing €2;, with the
corresponding Green’s functions G;. Then a similar argument as in the previous case
shows that G; > u; and considering the monotonicity of F;, see (3.25), we get inequality
(3.44).

0 = F;(dvu;, dvuir1) < F;(dyGi,dyGiy1), i=1,--- m. 3.449)

Now we use a similar iteration as we did in the earlier case. As in the previous case, we
define T(y) = (T1(y), -+, Tu(y)) and T(R) > 0, where R = (Ry,-- ,R,,) are the radii
of the balls. We need to show the estimate (3.40) and the further ones. Next consider

the domain
D':={y:T(y) > 0}.

We will take y; large, so that y; !'is small. We start with Fj, using (3.28) and (3.44),

we obtain

n—1

B —1 ﬁ ﬂ
C (%) <Ay -
1—(y1/y2)7!

1
1= (y1/y2) 7T

=

Hence we have

IN

Cla

S|

and consequently
1

N
(v2/y1)r T =1
In analogy with Step 1, we can use this estimate, along with (3.44) to derive a similar

<C -1

estimate
= <G —1.
(v3/y2)r T =1
Iterating this up to i = m, we obtain
n—p S Cm—l —1.
(Ym/)’m—l)pil —1
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For y,, we use the estimate for F;,,, and have

-1
C(Byy;)* < — Amdn_
Om/Ym—1)r T =1
Y < C
that simplifies to inequality (3.45).
Ym S Cm+1 (3'45)

Then according to our analysis above we have that
D' C {ym < s0, yi > soyi—1, i =m,---,2},

where the latter cone is bounded. Now, a similar argument used in the previous case,

gives us that the largest element p’ € D' must be so that T'(p’) = 0.

Step 3: (Putting things together.)

From the above two cases we see that we will have two values p,p’ for which T
becomes zero. Since F; are strictly increasing this gives us a contradiction that we

were looking for.

Case B:n=p.

The same argument can be used for n = p. We need to show (3.43) and (3.45), the rest
of the prove will follow as in the previous steps. For n = p, while working with the
largest balls from inside, we start with F;,;, use (3.27) and (3.36), we obtain

(am_ amfl))%l

In(ym/ym-1) =ce yml,
which gives
1
In(ym/ym-1) =
Using this for the next step and iterating up to i=1 gives
L
In(y2/yr) = "7V

and with the assumption on F; we get

LN
2 y_l <C —aZy]_ ’
o, ' T \In(y2/y1) ’

19



1-1te
A2 P > Cp,

which gives y; > C,;,4+1. While working with the smallest balls from outside, we start
with Fj, we get
—1
n(y2/y1) = @, "'’

which gives
1

— < (j,
In(y2/y1)

by iteration
1

In(Ym/Ym—1)

Finally by using the assumption on F,;,, we obtain

< Gu-1-

O — Ol 1)V,
In(Yim/Ym—1)

Clex) <t

yi-e<c,,

which gives y,, < C,,41. Hence the rest of the proof becomes straightforward.
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4. A PARABOLIC OVERDETERMINED PROBLEM

We will give the general notation used in the parabolic version of our problem together
with some definitions. Q will be a domain in R"*!. All functions considered will be
assumed to be C) up to the boundary of their domain of definition. #™ = max(«,0) and
u~ =min(u,0). w(x,t) will denote the heat kernel (4.1) for (x,7) = (x1,x2, -+ ,Xu,t) €

R”x RT.
x|
41

Fort <0, we let w(x,7) = 0. For A > 0, we define heat balls

w(x,t) = (4mt) " ?exp(— =) 4.1)

Dy ={(x,1) :w(x,t) > A}.

Q(xo,t0,7) is the cylinder {(x,¢) : |[x —xo| <7r, 0 <t9—t < r*}. For a bounded
domain Q C R"**!, we define the parabolic boundary dpar€2 to be the set of all points

(x0,20) € d such that for any € > 0, the cylinder Q(xo,y, €) contains points not in Q.

Condition 4.1 Throughout this section the boundaries of the domains will be assumed
to be C;’I,)mi’l/ 2 type, i.e., the boundary is C' in the variable x with a Dini continuous

normal; C 1/2 in the ¢ direction.

Condition 4.2 All the domains in this section are assumed to contain some interval
of the type {(0,7) : t € (0,T)}, so that we can take heat balls in these domains. The
domains considered here are bounded and have the property that there exist heat balls
containing them. It is also assumed that the largest heat ball inside the domain and the
smallest heat ball outside the domain touch the boundary d,,-Q at some points (x;,#)

and ()Q,tz) with ¢1,, > 0.
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4.1 One-phase case

Suppose we are given the overdetermined problem for the heat equation (4.2) under
the Conditions 4.1 and 4.2.

Hu= -9 in Q,
u=0 on 0y, 4.2)
Ot = LF(w(x,1)) on  (dparQ)\{t = 0},

Here F is a continuous function and w is the heat kernel (4.1). If (x,z) € dD,, then

X
|0 w(x,1)| = l%.
The Green’s function of D; can be written as
Gy =w(x,t)—A.

Let us now set the right conditions on F for our problem (4.2), so that an appropriate

heat ball can be a solution. Since
8,1 Gl = l—’ ’ on 8D)L,
x 2’

we need F(A) =A/2 tohold for at least one A. Then D, is a solution to our one-phase
problem (4.2). In particular, if F(A) # A /2 for any A, then we cannot have a solution

of the type D; .

Remark 4.1 The same problem in the elliptic case was considered before. It can be
noted that in this case the function F in (4.2) was taken as a function of |x|, the level

sets of the fundamental solution.

Before stating the first theorem for the one-phase case, we need the following

condition.

Condition 4.3 F(s) is a continuous function having properties in (4.3).

<s/2 fors> s,
F(s)=4 >s/2 fors < sy, 4.3)
=s09/2 for just one sp.
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Theorem 4.1 Suppose that there exists a non-constant u solving the overdetermined

problem (4.2) under the Conditions 4.1 and 4.2. Then, Q is a heat ball.

Proof. Let us take the largest heat ball D; in € which touches the boundary at some
point (%,7) with 7 > 0 (by Condition 4.2) and consider its corresponding Green’s
function G . For the touching point (¥,7) on the boundary we write w(¥,7) = A. By
strong comparison principle, we have G; < u and by Hopf’s boundary lemma, we get

0, G3 < dy,u wWhich gives

L P _ ¥
5?2’ = 8nxG/1 < anxbt = 7 F(A)
i.e., we have (4.4). B
% <F(A) 4.4)

If we take the smallest heat ball D5 from outside, touching the boundary at some point

(%,7) and consider the corresponding Green’s function G , we obtain

=

. ) B m .
1 =09,Gy > du="2F (L),

N | =
~n|

i.e., we obtain (4.5).

>F(L) 4.5)

On the other hand, since D; C D;, we have (4.6).
A>A (4.6)

Equations (4.4), (4.5) and (4.6) contradicts with (4.3) and hence we cannot have strict
inequalities. Then, we can conclude that D; = Di’ i.e., Q coincides with D5 and D/’L'

We get the conclusion that € is a heat ball.

Theorem 4.2 Suppose that there is a non-constant solution u to the following
overdetermined problem (4.7) and the boundary gradient condition (4.8) under the

Conditions 4.1 and 4.2, together with (4.9).

Hu=—-06) in Q,
=0 on Q. 4.7)
u=0 on ({r=0}NQ)\{x=0},

it =F(x,t) on dpuQ 4.8)
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F(|x|,1) < " F(r|x|, 1), where r> 1. 4.9)

Then, QN (r = 7) is a ball for all 7.

Proof. Let Q be a domain fulfilling the Conditions 4.1 and 4.2, also let u be a solution
to (4.7). Then, let us suppose that QN (¢ = 7) is not a ball. We consider a rotation in

space Q # Q of Q, and let i be the same rotation of u. Define the scaled function
i (x,t) == r"a(rx,r*t), where r> 1.

which satisfies (4.7) in Q" := {x/r: x € Q}. We choose r > 1 to be the smallest possible
so that Q" C Q and 9Q" N IQ # 0. By using the strong comparison principle, i, < u
in Q" and we have 0, ii, < d,u = dy,ii. For a touching point (x;,;) € Q" NIQ , we
get

r”+1F(r|x1|,r2t1) = r”+18nxﬁ(rx1,r2t1) = Op iy < Op,u = F(|x1|,11)

and the last inequality contradicts with (4.9).

4.2 Two-phase case

In the two-phase case, Green functions are

G =w(x,t)—A, G:c(@—l).

The normal derivatives can be written as given in equations (4.10). [9]

M —_chH
0, G" = > w(x,t), 0, G~ = 12 w(x,1) (4.10)

Theorem 4.3 Suppose that there is a non-constant solution u to the problem (4.11)
under the Conditions 4.1 and 4.2, along with the extra boundary condition (4.12),

where c is a positive constant.

Hu=-& in R*xXR'\d,,Q,
u=0 on JdyuQ, 4.11)
U — —Cc as Xx— oo

Ot =w(x,t) dpu~ on  (9parQ)\{t =0}, 4.12)

Then, Q is a heat ball.
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Proof. We will give the proof in three steps.

Step 1: (Largest heat ball from inside) Let us take the largest heat ball in Q, touching
dparQ) at some point (¥,7). We denote the Green’s function corresponding to the
level surface A = w(x,f) by G|, and define Gf, G, by (4.10). By strong comparison
principle, we get G;’ < u" in the largest heat ball. By considering the normals at the

point (x,7) and using the Hopf’s lemma, we get (4.13).

On, GT (%,F) < Oyt (%,7) = w(x,7) Iy u (%,7) (4.13)

On the other hand, we have G| <u™ in the largest heat ball from inside and inequality
(4.14).
Ot (%,7) < 0y, Gy (%,7) 4.14)
Equations (4.13) and (4.14) give us inequality (4.15).
1
w(X,7)
Using (4.10) in (4.15), we get (4.16).

On, GT (%,F) < 9n, Gy (%) (4.15)

I <c (4.16)

Step 2:(Smallest heat ball from outside.) Let us take the smallest heat ball containing
Q, touching d,,2 at some point (¥,7). We denote the Green’s function corresponding
to the level surface A =w(%,7) by G, and define GI, G, by (4.10). By strong
comparison principle G; > u" in the smallest heat ball. By using Hopf’s lemma and

considering the normals at the point (¥,7), we get (4.17).

On Gy (%,1) > I (X,7) = w(E,7) Ip,u (%,7) 4.17)

On the other hand, we have G, > u™ in the smallest heat ball from outside and
inequality (4.18).
O (%,7) > 0y, G, (%,7) (4.18)

Equations (4.17) and (4.18) give us inequality (4.19).
1
w(X,7)

On G5 (%,1) > 0, G5 (%,1) (4.19)
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Using (4.10) in (4.19) gives (4.20).
1>c 4.20)

Step 3: (Putting things together.)

Equations (4.16) and (4.20) give us a contradiction. We conclude that the largest heat
ball in Q and the smallest heat ball containing Q coincide and that Q is a heat ball

itself.

Theorem 4.4 Suppose that there is a non-constant solution u satisfying (4.11) under
the Conditions 4.1 and 4.2, along with the extra boundary condition (4.21) and c is a
constant.

x|

O ut =y u~ — (w(x,t) —c) 5, on (9parQ)\{t = 0} 4.21)

Then, Q is a heat ball.

Proof. For the largest heat ball from inside, say D; C Q, we have

On, GT (%,F) + (w(x,7) — 6)% < U™ (X,7) < 9, Gy (X,7)
and by denoting w(%,7) = A, we get
A <ec.

By using the similar argument, while working with the smallest heat ball from outside,

say Dj D Q, with w(%,7) = A, we get
A>c,

which gives A < 2 and this contradicts with the fact that D; CQCD;.

Theorem 4.5 Suppose that there is a non-constant solution u to the following problem
(4.22) under the Conditions 4.1 and 4.2, along with the extra boundary condition
(4.23), where c is a constant and F is an increasing function (4.24) with A denoting

any constant.

Hu= -9 in Q,

u=0 on Jdy,Q,

u=0 on ({r=0nQ)\{x=0},
U — —C aS X—
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On ™ =F(Oput™) on  dpg Q. (4.23)
PF(A) > F(P"T1A),  where r> 1. (4.24)

Then, QN (r = 7) is a ball for all 7.

Proof. Let Q be a domain fulfilling the Conditions 4.1 and 4.2, also let u be a solution
to (4.22). Then, let us suppose that QN (¢ = 7) is not a ball. We consider a rotation
in space Q # Q of Q, and let i be the same rotation of u, obviously 7 # u. Then, we

define the scaled function
i (x,1) ;= "ii(rx,r’*t), where r>1,

which satisfies (4.22) in Q. We choose r > 1 to be the smallest possible so that Q' cQ
and dQ" N JQ # 0. By using the strong comparison principle, @ < u™ in Q" and we

have 9, @i, < 9, u™. For a touching point (x,#,) € Q" NIQ, we get inequality (4.25).
r"+18nxﬁ+(rx1,r2t1) = Oy dl; < Opu’ =F (I u") 4.25)

On the other hand, i, < u~ outside Q" and we have d, u~ < 0, ii, . By using the
monotonicity of F, we get (4.26) for the same touching point (x;,7;) on the boundary
of Q.

F(Opu™) < F(n iy ) = F(r" 0, i (rxi,r’1)) (4.26)

Equations (4.25) and (4.26) give us (4.27).
P, it (rxy, ) < F(/ M0 (rxy, 1) 4.27)
By using (4.23), we can write the last equation (4.27) as follows:
P (i~ (rx1,r?01)) < F (P 0 (rxy, 1))

which contradicts with (4.24).

27



4.3 Multi-phase case

For a given positive integer m, let
0< Ay <Ay < - <A <oo, D= <o < <Oy < Oy <oo.

Consider A; and the corresponding Green'’s/capacitor functions G; as

HG;=0, inDy\D; ,, i=2,---,m
Gi=—0;, ondD,, Gi=—0;_1, ondDy ,, i=2,---,m.
For i = 1, we have
HG, = —0dy, inDy,, G1 =0, ondD,,

and for i = m+ 1, we have

HG, .1 =0, in ]R"XRJ“\D;LM, Gpni1 = —0y, ondDy ,

m

lim Gm+l = —0Op+1-
X—yo0

We can compute explicitly all these functions, and we obtain results (4.28 - 4.30).

G = w(x,t) — 7(‘1, (4.28)

Gi:(ai_ai—l) M_aia i:27"'7m7 (4'29)
Aici — A
w(x,t

Gimt1 = (Opg1 — Cn) gt ) — Opy1- (4.30)
m

Computing the normals of these functions gives us results (4.31 - 4.33).
_ K
0, G| = > w(x,1), 4.31)
o; — O0G—q |X| .

O Gi= t =2, 4.32

n l (),l,I _)‘l) Zt W(x, )7 l 9 7m7 ( )

O Gy = Gt O XL 4.33)

Am 2t

The multi-phase version of the Theorem 9 will be given as follows.
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Theorem 4.6 Let Q; (i =1,---,m) be domains in R"*! satisfying the Conditions 4.1
and 4.2, with Q; | C Q;, 0 =0q < 0p < -+ < O +1 < oo, and suppose there exist
non-constant u; (i = 1,---,m) solving the following problem (4.34) along with the
boundary gradient condition (4.35) where ¢;’s are constants.

Hu1 = —50 in .Q.l,

Hu,' = 0, in .Q.,'\Q.i_],

Hipy =0, in R"xRM\Q,, (4.34)
wi=ui_1=—0; on JdQ_j,

Up+l —> —Opy1  aS  |x| — oo,

On i = Ci O Uiy1, ON  Opr(Q\Qi—1), i=1,---,m—1,
On,ttm = w(X,1) O tmr1, on  (Ipar(R" X RT\Q,,))\{t = 0}.

Then, Q;, (i=1,---,m) are heat balls.

(4.35)

Proof. We will give the proof in three steps.

Step 1: (Largest heat ball from inside.) Let us first consider the largest heat ball D;. in
Q; (i=1,2,---,m) touching dQ; at some point (¥;,7;). By strong comparison principle,

we get

Gy <wup in DZN

G;<u; in Dii\.Q.i,I.

Let (X;,7;) € dD3,MdQ;. Then, by Hopf’s boundary lemma we get results (4.36 - 4.39).

8nxG1 < 8nxu1 at ()fl,t_l), (4.36)

anx(;i > anxui at (xi—l 7t_i—1)7 =23, ,m, (4.37)
8,,XG,- < 8nxu,~ at ()fl',f,'), i=2,3,---,m, (4.38)
anxGm—b—l > anxum—}—l at (Xmafm)- (4.39)

Using (4.35), (4.38) and (4.39) at (X, ), we obtain
WanxG’n+] > Wanxum_l’_l - anxum > anxGn«”

which by (4.32) and (4.33) results in inequality (4.40).

Oy — Op—1
Oy 1 — Oy > ———
)mel - Am
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Using (4.35), (4.37) and (4.38), at (X;—1,7;—1) we obtain

On,Gi > Ci—10n, Ui = Oy i1 > 0y, Gi—1, 1=3,--

which gives (4.41).

o — O Oi—1 — 02
Y A Y Y b
Aic1—A cimi1(Aica—Aizy)

It results in inequality (4.42).

Oh — 0
e em1 (A — 1)

Finally, using (4.35), (4.36) and (4.37) at (x1,¢;), we obtain

Clansz > Clanxuz = 8,,Xu1 > 8nXG1

and we get (4.43). _ _
M—A
o — 0 > .
C1

Equations (4.42) and (4.43) give us the inequality (4.44).

Cl Cm—1

(4.41)

4.42)

(4.43)

(4.44)

Step 2: (Smallest heat ball from outside.) Let us now take a reverse situation and

consider the smallest heat balls D/’L- containing Q; (i = 1,2,--- ,m). Then a similar

argument as in the previous case shows that G; > u; and at the point (x;,#;), we get

Clansz < c18,,xu2 = 8,,xu1 < 8nxG1

which gives inequality (4.45).

Similarly

Ci10,Gi < €i—10p, Ui = Oy tti—1 < 9y, Gi—1, =3,

which gives inequality (4.46).

o — O — o1 — OGi—
~l 1~1< (l~1 l~2) i:3,---,m

Aici =i cim1(Aima — Aisy)
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Finally, at the point (x;,,f,) we obtain

and get inequality (4.47).

Oy — Oly—1
O] — Oy < =——=— 4.47)
" 1= D
Equations (4.45), (4.46) and (4.47) give us the inequality (4.48).
1
O] — Oy < ——— (4.48)
Cl " Cm—1

Step 3: (Putting things together.) Equations (4.44) and (4.48) give us a contradiction.

The following theorem is the multi-phase version of Theorem 10.

Theorem 4.7 Under the hypotheses of Theorem 13, with equations (4.35) replaced by
equations (4.49) and (4.50) where ¢;’s are constants, Q;, (i = 1,--- ,m) are heat balls.

On i = Cj O i1, ON  Oper(Q\Qi—1), i=1,---,;m—1, (4.49)

X
anx’/tm = anxl/lm—i-l - (W(xat) - am-i—l)%?

on (Fper(R" x RF\Q,))\ {7 = 0}, (4.50)

Proof. If we consider the largest heat ball from inside, (4.38), (4.39) and (4.50) at

(Xm,Im), we obtain

X, X,
8nxGm+1 > anxum+| = anxum + (W — am+])|2tfm| > B,IXGm + (W — am+])¥
which gives inequality (4.51).
20 — 0 Oy, — Ol
SOl T T Tl 4.51)
Am 2'}’I’L—l - A’m

Using (4.37), (4.38) and (4.49) at (X;_1,%;—) we obtain (4.41). Using (4.36) and (4.49)
at (X1,7;) we obtain (4.43). Equations (4.51), (4.41) and (4.43) give
- 1
2041 — Oy > A (1 + ———).
Cl " Cm—1
By using the same argument, while working with the smallest heat ball from outside,

we get

= 1
20441 — Oy < A1+ ————).
Cl.“cm71

Since Dim C Dj , we have Zm > ;lm and obtain a contradiction.

The multi-phase case of Theorem 11 is stated in the following theorem.
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Theorem 4.8 Let Q; (i = 1,---,m) be domains satisfying Conditions 4.1 and 4.2,
with Q; | C Q;, 0 =01 < i < --- < 04,11, and suppose there exist non-constant
u; (i=1,---,m) satisfying (4.34) along with the boundary gradient condition (4.52)
and F;, (i = 1,--- ,m) denoting increasing functions with the property (4.53) with A

denoting any constant.
av”i:E(avui+l); = 17 , N, (4'52)

" E(A) > F(7"1A), where r> 1. (4.53)
Then, Q;N(t =7) (i=1,--- ,m) are spheres for all 7.
Proof. Let Q; be domains fulfilling the Conditions 4.1 and 4.2, also let u; be solutions
satisfying (4.34). Let us suppose that Q; N (f = T) is not a ball. Then, we consider

rotations in space Q, = Q; of Q;, and let i; be the same rotation of u;. Then we define

the scaled function
iy, (x,) := ”,"Zﬁi(”ix,r,zt), where r;>1, i=1,---,m,

where r; > 1 are the smallest possible so that Q! := {x/r: x € &;}, QF C Q; and
QI NAQ; £ 0.

By using the strong comparison principle, i, < u; in Q7 \ Q7 | and we have d, i, <

O, u;. For touching points (x;,#;) € QQ{ NJQ; , we get (4.54).
rf‘“&nxﬂ,-(r,-xi,rl-zti) = &”xlzri < 8nxu,- = F,-(&nxu,-H) (454)

On the other hand, ii,,,, < u;41 in Qf, | \Q/ and we have d, ui1 < 0y, fy,, . By using

the monotonicity of F, we get (4.55).
Fi(Onuis1) < Fi(On,iir,,,) = F(r 1 Oy i1 (rixi, rit;)) (4.55)

for the same touching point (x;, ;) on the boundary of Ql’ . Equations (4.54) and (4.55)
give us inequality (4.56).

rf‘“&nxﬁi(r,-xi, rizt,‘) < Fi(r?+lanxl7ti+1 (r‘,‘x,', r,-zti)) (4.56)
From (4.52), we can write the last inequality (4.56) resulting in (4.57).

IV (O iy (rixi, 1)) < Fi(r2 1 Oy iy (rixi, 17t7)) (4.57)
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The last inequality (4.57) contradicts with (4.53). Hence, we can conclude that Q; N

(t=1)(i=1,---,m) are spheres for all 7.
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