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BEHAVIORAL CLASSIFICATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS IN MATHEMATICAL FINANCE

SUMMARY

We study the behavior of solutions for stochastic differential equations such as Heston
stochastic volatility model, Merton-Black Scholes model and Merton’s Jump Diffusion
model. We examine the numerical solutions using Euler Maruyama, Milstein and
stochastic Runge-Kutta methods when we analyze Heston stochastic volatility model
to investigate whether there is a role of the methods for different volatility cases
or not, related to the impact of cumulative errors on this application. We perform
simulations for different stock market conditions by using the large data set from Borsa
Istanbul-100 (BIST-100).

We use volatilities in terms of extreme values at the overlapping case when we
examine initial and long term volatilities for the application of the Heston model.
While we explore strengths and limitations of Heston stochastic volatility model,
Merton-Black Scholes model and Merton’s Jump Diffusion model based on behavior
of their numerical solutions, we suggest some model improvements in the light of the
applications. Moreover, we introduce 3-dimensional matrix norms as generalizations
of the matrix norms and prove the related lemmas, Duran and Izgi 2015, by using the
applicable numerical linear algebra and analysis arguments. Furthermore, we define
moving matrix for 2D and 3D matrices. Afterwards, we define market impression
matrix norm as an application to the 3-dimensional matrix norms using moving
matrices, Duran and izgi, 2015. We can benefit from it to quantify market impression
approximately by means of the numerical solutions for the stochastic differential
equations. We analyze the simulation results for various parameters such that we
perform high peak and fat-tail analysis for the impact of Heston, Merton-Black Scholes
and Merton’s jump diffusion models parameters’ on the simulations of the extreme
situations by using the first four standardized moments and extreme value tools such
as quantile quantile (QQ), mean excess (ME) and Hill plots to examine the fat-tailness
of the distributions. We also illustrate high peak and fat-tail analysis for BIST-100
index.

On the other hand, we investigate 3D dynamics of the average logarithmic stock
return, interest rate and speed of mean reversion variables, together. In addition, we
believe that polarization and the transitions between polarizations and comovements
are important part of extreme situation picture. Therefore, we investigate comovement
and polarization of interest rates and daily returns of BIST-100 index in order to
understand the corresponding behavioral dynamics. Heston stochastic volatility model
predicts that the average logarithmic stock return increases as interest rate rises.
Actually, we observe that there are also sufficiently large time intervals where interest
rates were decreased and stock prices increased gradually in US stock markets and
Borsa Istanbul, unlike the Heston stochastic volatility model suggests.
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Moreover, we analyze and compare the behavior of solutions for Merton-Black Scholes
model and Merton’s Jump Diffusion model. Especially, we focus on analyses of
logarithmic stock price distributions obtained for these models using impression matrix
norm and extreme value theory perspective. We achieved to present jump parameters’
effects onto the behavior of solutions and also logarithmic stock price distributions
using jump-adapted approximation method. Finally, we present price fluctuations for
the Merton’s jump diffusion and the Merton-Black Scholes models using impression
matrix norm which reflects the effects of the jump parameters explicitly.
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MATEMATIKSEL FINANSTAKI STOKASTIK
DIFERANSIYEL DENKLEMLERIN DAVRANISSAL SINIFLANDIRMASI

OZET

Stokastik diferansiyel denklemlerden Heston stokastik volatilite, Merton-Black
Scholes ve Merton sicramal1 difiizyon modellerinin ¢oziimlerinin davraniglar: iizerine
calistlmigtir. Literatiirde oldukca cok kullanilan Heston modeli 1993 yilinda; Cox,
Ingersoll ve Ross (CIR) tarafindan faiz oranlari icin 1985 yilinda yapilan CIR
modelinden tiiretilmistir. Her iki modelin uygulamalarinda da sirasiyla varyans ve
faiz oranlarinin pozitifliligi i¢in Feller’in 1951 yilinda yayimlanan makalesinde ortaya
koydugu Feller kosulunun dikkate alinmasi gerekmektedir.

Bir diger model olan Merton-Black Scholes modeli ise Robert C. Merton tarafindan
1960’1arin sonu ve 1970’lerin baslarinda gelistirilmistir. Ik olarak ise Fisher Black ve
Myron Scholes tarafindan 1973 yilinda yayinlanan makalelerinde kullanilmigtir. Bu
model sayesinde 1997 yilinda Ekonomi dalinda Nobel 6diiliine layik goriilmiislerdir.
Ortaya konan difiizyon modeli her ne kadar yol gosterici olmasi acisidan kullanigh
olsa da, literatiirdeki uygulama sonuclarindan da goriilebilecegi gibi piyasalardaki
ani fiyat degisimlerini yansitmakta yeterli degildi. Bu ylizden Merton 1976
yilinda Merton-Black Scholes modelini gelistirerek hisse senedi fiyatlarindaki sigrama
durumlarini da yansitan Merton si¢gramali difiizyon modelini elde etmistir.

Bu modellerin bazi1 parametrelerinin ¢coziimlere olan etkileri ele alinan yontemler
yardimiyla ayrintili olarak incelenmistir.  Simiilasyon uygulamalarindan degisik
volatilite durumlarinda, simiilasyon yontemlerinin birikimli hatalarindan kaynaklanan
etkilerinin olup olmadigim1 arastirmak icin Heston stokastik volatilite modeli
Euler-Maruyama, Milstein ve Stokastik Runge-Kutta metodalariyla analiz edilmistir.
Hisse senedi piyasalarinin degisik kosullar1 i¢in Borsa Istanbul - 100 (BIST - 100)
endeksinin datalar1 kullanilarak simiilasyonlar yapilmistir. Yapilan simiilasyonlardan
elde edilen sonuglar gercek datalarla karsilastirilarak analiz edilmistir.

Heston stokastik volatilite modelinin uygulamasinda baglangic ve uzun vadeli
volatiliteleri elde etmek igin iist iiste gelme durumlarindaki ekstremum degerler
yontemi kullanilmigtir. Ekstremum degerler yontemiyle yaklagik olarak elde edilen
giinliik volatiliteler de kullanilarak modelin avantajlar1 ve limitleri arastirilmistir.
Ayrica, matris normlarinin genellemeleri olarak 3-boyutlu matrisler i¢in norm
tanimlamalar1 ve ilgili lemmalarin da ispatlar;, Duran ve Izgi 2015, uygun niimerik
lineer cebir ve analiz argiimanlar1 kullanilarak yapilmistir. Daha sonra, 2-boyutlu ve
3-boyutlu hareketli matris tantmlamalar1 yapilmig olup, tanimlanan 3-boyutlu matris
normlarinin uygulamasi olarak da piyasanin izlenim matris normu, hareketli matrisler
iizerinde tanimlanmustir, Duran ve Izgi, 2015. Bu normlarin gerek simiilasyon gerekse
gercek datalarla yapilan uygulamalart ayrintili ve karsilagtirmali olarak ele alinmustir.
Yapilan analizler ve incelemeler 15181 altinda izlenim matris normunun kullanighlig1 da
ortaya konulmustur.
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Bir¢ok disiplin dallarinda ekstremum durumlar1 anlamak ve olasiliklarinin tahmininde
bulunmak i¢in ekstremum deger teorisi oldukca onemli rol tistlenmektedir. Finans,
ekonomi, yer bilimi ve hidroloji gibi alanlar da bu teorinin uygulama alanlarindan
bazilaridir. Finansal anlamda, ekstremum durumlar kayip veya kazanclarin oldukg¢a
yiiksek olabilecegi durumlar olmasindan dolayi, dikkate alinmasi ve incelenmesi
gereken Onemli noktalardan biridir. Bu yiizden Heston, Merton-Black Scholes
ve Merton sicramali diflizyon modellerinin bazi parametrelerinin simiilasyon
sonuglarindaki ekstremum durumlarina olan etkilerini incelemek icin, u¢ nokta ve
kalin kuyruk analizleri standartlastirilmis ilk dort moment degerleri ve ekstremum
deger teorisi araclarindan quantile quantile, ortalamay1 asan (mean excess) ve tepe
(hill) grafikleri yardimiyla yapilmustir.

Bu metodlar kullanilarak BIST-100 endeksi i¢in de u¢ nokta ve kalin kuyruk analizleri
orneklendirilmistir. Boylece gercek datalarin ekstremum durumlarindaki davraniglari
ile gercek datalar kullanilarak elde edilen simiilasyon sonuglarindaki ekstremum
durumlar kargilastirilmistir.

Finans piyasalar1 dinamik oldugundan birden ¢ok parametrenin birbirlerine gore
etkilerini ve davraniglarini incelemek olduk¢a Onemlidir. Bu yiizden modelleme
ve simiilasyonlar yapilirken ele alinan model parametrelerinin dinamiklerini kontrol
altinda tutmak zor ve gerekli islemlerdendir. Bu sebepten otiirii Heston stokastik
volatilite modeli ile yapilan simiilasyonlarda; logaritmik hisse senedi getirisi, faiz orani
ve ortalamaya doniis hiz1 dinamikleri 3-boyutlu olarak arastirilmistir. Bu dinamiklerin
birbirlerine olan etkileri 3-boyutlu grafikler yardimiyla da degisik market senaryolari
icin kapsamli bir sekilde ayr1 ayr olarak ortaya konulmustur.

Ayrica, dinamiklerdeki es hareketlilik ve es hareketlilikten zit hareketlilife gecisin
ekstremum durumlarda Onemli olduguna inanilmaktadir. Bu yiizden, faiz oram
ve giinlikk BIST-100 endeks dinamiklerinin davraniglarin1 daha iyi anlamak icin es
ve zit hareketleri incelenmistir. Heston modeli logaritmik hisse senedi getirisinin,
faiz oranlariin artigina paralel olarak artacagini 6ngormektedir. Aslinda, Heston
modelinin aksine yeterince genis bir zaman araliginda faiz oranlarinin diiserken
gerek Amerikan hisse senedi piyasasinin gerekse Borsa Istanbul endekslerinin arttig1
gbzlemlenmistir.

Bunun yan sira, gercek piyasalarda karsimiza ¢ikan sigrama durumlarin1 anlamak ve
kontrol altinda tutmak da yatinm stratejisi ve risk kontrolii icin oldukca onemli ve
gereklidir. Bu yiizden, Merton-Black Scholes modeli ile Merton sigramali difiizyon
modelinin ¢6ziim davraniglar analiz edilerek, elde edilen sonuclar karsilastirilmistir.
Ozellikle, simiilasyonlardan elde edilen logaritmik hisse senedi fiyat dagilimlari
incelenmis olup, ilgili dagilimlar izlenim matris normu ve ekstremum deger teorisi
kullanilarak analiz edilmistir. Model parametrelerinin, sigramali stokastik diferansiyel
denklemlerin sayisal ¢6ziim yontemlerinden olan sigrama uyumlu (jump-adapted)
metodla elde edilen logaritmik hisse senedi fiyat dagilimma ve modellerin ¢oziim
davraniglarina olan etkisi gosterilmistir.

Ilgili analizler dahilinde Merton sicramali difiizyon modelinin Merton-Black Scholes
modeline gore fiyatlardaki ekstremum durumlarini daha iyi yansittig1 gézlemlenmistir.
Merton sicramali difiizyon modelinin bu 6nemli 6zelligi dikkate alindigi takdirde
yatirim stratejisi belirlenme asamasinda 6nemli olacagi kanaatine varilmustir.
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Son olarak, Merton-Black Scholes modeli ile Merton sicramali difiizyon modelinin
fiyat salinimlari, sicrama parametrelerinin etkilerini de yansitan izlenim matris norm
kullanilarak agik bir sekilde gosterilmistir. Izlenim matris normunun simiilasyon
veya gercek datalarla yapilan analizlerde si¢gramalarin varliginin belirlenmesinde
alternatif bir ara¢ olarak kullanilabilecegi sonucu elde edilmistir. Ayrica izlenim matris
normunun, sicrama potansiyelinin oldugu tam olmayan marketlerdeki gercek hisse
senedi piyasalarinda da hisse senedi fiyat salinimlarin1 ve davraniglarini anlamak igin
kullanigh olacagi sonucuna varilmustir.
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1. INTRODUCTION

We study several behaviors of stochastic differential equations (SDEs) in Mathematical
Finance. The solution space of stochastic differential equations has rich behaviors.
Also, the solution space of SDEs in mathematical finance has certain characteristics
such as overreaction, underreaction, jumps, stable and unstable situations (see Duran
and Caginalp [1], Duran [2] and references therein). In particular, we focus on
advantages and limitations of solutions for Heston Stochastic Volatility model [3],
Merton-Black Scholes model [4] and Merton’s Jump Diffusion model [S] among
others. In addition, we analyze these models with respect to the extreme value theory
and impression matrix norm in order to understand extreme behaviors of the models
and model parameters’ effects onto the impression of the market while we perform
simulations for the real data (see Duran and izgi [6-8]). Moreover, we discuss financial
interpretation of the analysis results and compare them by the sense of financial
usefulness. In this chapter, we present basic definitions, theorems, numerical methods

and some of the properties of the SDEs which we generally use throughout the thesis.

1.1 Basic Stochastic Differential Equations

In mathematics, Brownian motion is described by the Wiener process. Although it
originates in work of botanist Robert Brown in 1828, a continuous-time stochastic
process named in honor of Norbert Wiener who was first proved it mathematically
in 1923. It is one of the best known Lévy processes (stochastic processes, which is
right continuous with left limit, by the stationary independent increments) and occurs

frequently in pure and applied mathematics, economics and physics among others [9].

Definition 1.1.1. (Brownian motion) A standard one-dimensional Brownian motion is
a continuous, adapted process W = {W,, F;; 0 <t < oo}, defined on some probability
space (Q,F,P), with the properties that Wy = 0 a.s. and for 0 < s < 7, the increment
W; — W; is independent of F and is normally distributed with mean zero and variance

t—s.



Properties of Brownian Motion

* W(0)=0.
e W(t) —W(s) is normally distributed with mean zero and variance ¢ — s, for s < .

* The process W has independent increments: for any set of times 0 <1 <1 <
... < ty, the random variable W (t;) — W(t1), W(t3) —W(t2),.... W(tn) — W (t,—1)

are independent.

* The sample paths {W(z);t > 0} are continuous functions of t. Moreover, the paths
of Brownian motion are very erratic and they are nowhere differentiable.
« E[W? = 3t? and E[|W; — W,[*] = 3|t — 5|*. More generally;
(2k)!

E[VVZZk] = mtk and E[‘/Vtzk+1] =0, keZ,.

 Brownian motion is a martingale such that E[W;|F] = W;. (for more details [9, 10]).

It6’s formula (or Ito lemma) is the analog in Stochastic calculus of the chain rule in
classical calculus. It is quite useful in Stochastic Calculus, as it is use to find SDEs
satisfied by functions of a particular class of stochastic processes. It has very wide

applications at the mathematical finance.

Theorem 1.1.1. (It0’s formula) Let f(t,x) be a function that has a continuous

derivative with respect to t and two continuous derivatives with respect to x (i.e.

f € CY2). Then, the process f(t,X(t)) satisfies
AF(EX(0) = [fit 50 ful (X (0)dt + £ X (0)dX (1)
for the given diffusion process
dX(t) = u(t,X(t))dt +o(t,X(t))dW(1).
If we substitute for dX (t), we get the following useful form of Ito’s rule:

AF(X(0) = [+ it 502l (0. X()de + (O£ (1 X (0)aW (1)



1.1.1 Merton-Black Scholes model

Merton-Black Scholes (MBS) model is one of the most important mathematical model
in the finance literature. Robert C. Merton developed the finance theory of this model
in the late of 1960 and early 1970s. Fisher Black and Myron Scholes was used this
model at their paper in 1973 [4] and it was the first paper published by using this
model. After that, Merton and Scholes received Nobel Price in Economics in 1997 for
their pioneer work. Unfortunately, Black could not get the Nobel Price since he passed
away in 1995.

Merton-Black Scholes model has the following general form:
dS(t) = S(t)udt +S(t)ocdW (1) (1.1)

where p is linear drift coefficient, ¢ is linear diffusion coefficient and W(¢) is a
standard one-dimesional Brownian motion. Moreover, it can be shown that S(¢) =
S(0)eH—29")+0W(1)  §(0) = 5(0) is the solution of (1.1) by using the Itd’s formula
[11]. MBS model predicts that the stock price can only change by a small amount in a

short interval of time.

1.1.2 Merton’s jump diffusion model

Merton was the one of the first scientist who achieved to introduce and analyze
jump and diffusion process by using rich behavior of the solution space of stochastic
differential equations at his model. In 1976, Merton extended the MBS diffusion model
to a model that also has a jump component. Merton take MBS model one step a head
with his jump-diffusion model which allows for a positive probability of a stock price
change of extraordinary magnitude in a short or long interval of time [see figure 4.2
and [5]]. He suggested the number of the jumps N(z) between time 0 and time 7 should

be a so-called Poisson process which governed by poisson distribution.

Merton’s jump-diffusion (MJD) model can be represented with the following SDE:
dS(t) =S(t—)udt+ S(t—)ocdW (t)+ S(t—)dJ (1) (1.2)

where 1 and o are constant, W is a standard one-dimesional Brownian motion, S(7—)

is a value of just before a potential jump, and J is a jump process independent of W
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with piecewise constant sample paths. In particular, J (compound poisson process) is

given by
N(1)
Jo)=Y (X;—1) (1.3)
j=1

where X1,X>, ... are identical independent random variables and independent of N()
(as well as W). Here, N(¢) is a counting process such that there are random arrival
times 0 < 7y < 7 < ---and N(t) = sup{n : 1, <t} [12]. The size of jump is X; — 1 if
t = 7j and 0 if 7 does not coincide with any of the 7;. We can also interpret the Merton’s
jump-diffusion model such that the increment in S at # depends on S(r—) and not S(¢).
The jump in S at time 7 is S(¢) — S(¢—) and it is O unless the J jump times. At the jump
time (t = 7;),

S(t;) = S(7—)X;.

It means that the X;’s are just the ratio of the asset price before and after a jump. On

the other hand, the solution of (1.2) is given by

N(t)
S(r) = S(0)ek—207+oW I TT x, (1.4)

~

that is nothing more than generalization of the corresponding solution for geometric
Brownian motion in (1.1). It can be shown that (1.4) is the solution of the (1.2) by

using Ito-Doeblin formula for jump process.

1.1.3 Heston stochastic volatility model

In Heston’s stochastic volatility model the asset price process S; and the variance

process v; := 67 solve the following two-dimensional stochastic differential equation

[3]:

dS[ = (r - q)Sldl + \/V—[S[dW1 (t)
dV[ = K‘(G —V[>dt+§\/v_tdW2(t>

At the Merton-Black-Scholes model [4] the volatility o was assumed to be constant.
The main difference between MBS and Heston model is volatility behavior. It is
stochastic and it satisfies mean reverting property with a mean reverting drift at the
Heston model. The W; and W, represent Brownian motions of asset price process and

the variance process are correlated, with correlation coefficient p € [—1,1]. We also

4



use the following SDE for the related correlation:
dW, = pdWy +1/1—p2dW, p € [-1,1].

On the other hand, & > 0 is the volatility parameter of the variance process, r > 0
is the risk-free interest rate, ¢ > 0 is the dividend yield, ¥ > 0 is the rate of mean
reversion, and 6 > 0 is the long run variance level [3]. Stochastic volatility model of
Heston (1993) is frequently used. Heston’s model is derived from the CIR model of
Cox, Ingersoll and Ross (1985) for interest rates [13]. We choose the parameters as
they satisfy the Feller condition 2x6 > £ at our simulations so that non-negativity of

volatility can be guaranteed [14].

1.2 Numerical Methods

Definition 1.2.1. The discrete time approximation is said to converge weakly with
order p to y if for each polynomial g (which is 2(p + 1) times continuously

differetiable), 3C > 0 (independent of h) and & > 0 such that

IE(¢(y)) —E(g((tn))) |l < CRP, h € (0,8).

Definition 1.2.2. Let Yy be the numerical approximation to y(zy) after N steps with
constant stepsize h = (ty — o) /N; then ¥ is said to converge strongly to y with order p

if 3C > 0 (independent of h) and & > 0 such that

E(llyy —y()l)) < Ch”, h € (0,9).

1.2.1 Euler Maruyama method

Lets consider the following SDEs:
dy = f(t,y)dt +g(,y)dW, y(0) = yo. (1.5)

The first method for solving SDEs numerically was Euler-Maruyama method [15]. If

we apply this method to the (1.5), Euler-Maruyama method has form as follow :

Ayi = f(ti,yi)Ati+g(ti,yi) AW,
At = tiy1—
AW, = Wi 1 —W;

5



The Euler-Maruyama method for SDEs has strong order 1/2. Also Brownian motion
AW; can be modeled as AW; = z;1/At; where z; is chosen from N(0,1) standard normally

random variable, as well.

1.2.2 Milstein method

Milstein method has the following form for the equation (1.5):

1 d
Ayi = f(ti,yi)Ati+g(ti, yi) AW; + Eg(ti’yi)a_i(ti’yi) (AW — Ary)
At = tip1—t

AW; = Wi =W

The Milstein Method has strong order 1 for solving SDEs [16]. It is obvious from the
above equation if the (1.5) does not have y term in the diffusion part g(¢,y), Milstein

Method is identical to the Euler Maruyama Method.

1.2.3 Stochastic Runge-Kutta method

When we consider the dy = f(¢,y)dt + g(t,y)dW SDEs, maybe the most general class
of Stochastic Runge-Kutta (SRK) methods takes the form:
i—1 i—1 0
Y, = yn—|—h ;aijf(yj) +Ji .Zlbij g(Yj)7 i=1,..,s
j: =

J
s

N
Yart = YathY, of(Y)+0 Y vie(Y))
=1 =1

At the above equations, A = (a;;) and B = (b;;) are matrices in RS while o/ =
(oq,...,0) and ¥' = (11,...,7s) are row vectors in R®. If both A and B are strictly
lower traingular matrices then method is said to be explicit, otherwise it is implicit.
At this method, the stochastic component comes from the J; Stratonovich integral

(J1 = ti”“ odW) associated with B and y [17].

An explicit stochastic Runge-Kutta method with strong order 2

The SRKs method with strong order 2 can be written as

i—1 i—1 J '
Yi = yot+h) aiif(¥;)+ (b,(})fﬁrbg)%)g(l’j), i=1,..s
j=1 j=1
S S 1 ) J
Ynel = ynthY oif(Y;)+ Z(?’,( 1 +7J(~ )%)g(Yj)
j=1 =1



The maximum strong order of the stochastic Runge-Kutta method is 1.0 when the
method does not include Jyg (i.e. Jio = | [ odW;,ds). On the other hand, J; and Jio
can be defined as J; = g1v/h and Jyo = h*/2(g1 +g2/+/3) /2 for a given pair (g;,g2) of

standard normally distributed random variables (see [17-20] and references therein).

1.3 Stochastic Calculus for Jump Process

We present the Ito’s formula for the continuous process, which is the analog in
Stochastic calculus of the chain rule in classical calculus, at the previous section. The
main question is "how can we describe the time evolution of the process while the
processes does not continuous? or the processes have jumps term?". The new version

of the Ité’s formula is needed to overcome the difficult situations.

1.3.1 Ito-Doeblin formula for jump process

Theorem 1.3.1. Let X be a diffusion process with jumps, defined as the sum of a drift

term, a Brownian stochastic integral and a Poisson process:
dX(t)=pu(t,X(t))dt+o(t,X(t))dW(t)+dJ(t)
or in the integral form

X(t) = +/ (s,X (s ds—i—/ o (s,X(s))dW (s +ZAJ

where (t,X(t)) and o (t,X(t)) are continuous adapted process with E[ [ 62dt] < oo.
Then, for any function f: [0,T] x R — R, f € C'2, the process f(t,X(t)) can be

represented as follow:

2
f,X() = f(0,X(0 +/ 8_f —+562%)(S,X(s))ds
s [ x@aW 6+ E X))~ - X606
0<s<t

The differential form of the Ito-Doeblin formula for jump process (1.6) is not always
possible since it is not always possible to write the sum of the jumps in differential
form. Shreve explains this situation at his book more explicitly [21]. Under the given

information, if we assume that the last term of the Ito-Doeblin formula can be written



in differential form then we can rewrite (1.6) in differential form as follow:

df(t,X(6)) = (2 u?l 12Dy xw)an+ (02D )0 X )W)+ [1(e.X0) — - X eppant) (1.7)

1t6’s formula for the continuous process

characterizes the jumps

Ito-Doeblin formula for jump process

Example 1.3.1. (Geometric Poisson process, [Shreve, [21]]) Let’s consider the

geometric Poisson process
S(t) = S(0)exp{N(1)log(c + 1) — Aot} = S(0)e " (c+ DN (1.8)

where 0 > —1 is a constant. If o > 0, this process jumps up and moves down between
jumps; if —1 < o < 0, it jumps down and moves up between jumps. Moreover, we can
write S(t) = S(0)f(X(¢)),wheref(x) = ¢* and X (t) = N(t)log(c + 1) — Aot where the
continuous part is X“(t) = —A ot and pure jump part is J(t) = N(t)log(c + 1). Now,
we can use [to-Doeblin formula for jump processes,

S() = 8(0)(£(X(0)) -0 /Otf'<x<u>>du+ Y X)) - (X))

O<u<t

= S(0)— /16/ wdu+ Y [S u—)) (1.9)

O<u<t
If there is a jump at time u, then S(u) = (6 + 1)S(u—), then

oS(u—), whenever there is a jump at time u;
if there is no jump at time u.

} = 6S(u—)AN ().

This representation permits us to rewrite the sum on the right-hand side in a integral
form as follow:
t
Y S = Y oSu (u)za/ S(u—
O<u<t O<u<t 0
It does not matter whether we write the Riemann integral on the right-hand side of
(1.9) as [ S(u)du or [jS(u—)du. The integrand in these two integrals differ at only
finitely many times. When we integrate with respect to du, these differences do not

matter since the measure of these difference cases are zero. Therefore, we may rewrite

(1.9) as

Stt) = S(0)— /mo/’< )du—i—G/OtS(u—)dN(u)

= +0‘/S —)dCN (u



where CN is the compensated Poisson process CN(u) = N(u) — Au, which is a
martingale. In this case, the Ito-Doeblin formula (1.9) has a differential form (for

more details please see [21-23]), namely,
dS(t) =oS(t—)dCN(t) = —AoS(t)dt + cS(t—)dN(t).

We were able to obtain this differential form since we were able to write f(X(u)) (i.e.
jump in S(u)) at the jump time u in terms of f(X(u—)) (i.e. in terms of S(u-) before

the jump time).

1.3.2 Simulation strategy of the jump process

Simulation of the jump diffusion process is harder than simulation of the pure diffusion
process. Therefore, strategy of the simulation takes important role for the jump
diffusion model at the numerical approach. Although it is hard to distinguish effects
of the jump and diffusion terms at the model, simulation of the process at a fixed set of
dates is one of the strategy using at the literature. On the other hand, simulation of the
jump diffusion model can be done by simulating the jump times 7y, 7, ... explicitly.
At the latter strategy, effects of the jumps are presented more clearly. Moreover,
combination of these strategies, which is also called as jump-adapted approximations,
can be used at the simulation of the jump diffusion process (for more details please

see [12,23]).

Simulation at fixed dates
We can generalize explicit solution of the Merton’s jump diffusion model in (1.4) at

time ty,1,...,1, as follow:

o2 N(tir1)
S(tis1) = S(ti)e(ﬂ—T)(tm—ti)+0[W(t;+1)—W(ti)] H X;. (1.10)
J=N(t;)+1

Now, we can simulate directly from this representation or we can use its equivalent
representation which obtains under the Y (t) = log(S(¢)) change of variable. If we do
so, the explicit solution in (1.10) become as follow by changing the products with sums

which is preferable at the simulations

2 N(tit1)
Y(tip1) =Y (t:)+ (1 — %)(ml —1;)+ oW (i) =W+ ), log(X;). (1.11)
J=N()+1



If we use this representation while we perform the simulations, we can generate
samples of the S(#;) by exponentiate simulated values of the X(z;). The following

steps can be used for simulating (1.11) from #; to ;4 1:

1. generate standard normal random variable: Z ~ N(0, 1)

2. generate N poisson process: N ~ Poisson(A(tiy1 —1t;)); if N =10, set M = 0 and go

to step 4

3. generate log(Xi),...,log(Xy) from their common distribution and set M =

log(X1)+ ... +1log(Xy)

4. lastly, set

62

2 )(ti—i-l —ll‘) +ovtiv1 —tZ+M.

Y(tipr) =Y (1) + (1

We take account two main properties of the Poisson process at this method: the
increment N(t;+1) — N(#;) has a Poisson distribution with mean A(f;11 —t;), and it
is independent of increments of N over [0,#;]. We can simplify this method with
assumptions on the distribution of the X; (i.i.d.). If we assume X; have lognormal

distribution LN(a, b?), then log(X;) ~ N(a,b?) and
n
Z log(X;) ~ N(an,b*n) = an-+b/nN(0, 1).
j=1

Now, we can replace step 3 with "generate new standard normal random variable:

Zy ~N(0,1); set M = aN + b\/NZ," [12].

Simulating jump times

Simulation method based on fixed dates for the equation (1.11) generates the total
number of jumps in each time interval (;,#;+1] by using the fact that the number
of jumps has a Poisson distribution. It is the disadvantage part of the this method.
Therefore, simulating jump times is an alternative method based on simulates the jump
times 7y, 7o, ... explicitly. Simulation of the (1.2) reflects jumps behavior at each jump
time as in the real market by using the simulating jump times method, and it gets

solution behavior analysis more easy and realistic.

S(t) evolves like an ordinary Brownian motion between the two jump times since we

have assumed that W and J in (1.2) are independent of each other. According to the

10



times 71, 7o, ... of the jumps,
S(Tjip1—) = S(Tj)e(”_%z)(ff“_ff')J“G[W(Tf“)_W(TJ)] (before the jump)
and

S(Tj+1) =S8(7j+1—)Xj+1 (jump effects)
If we take logarithms and combining these steps, we get;

2
Y(Tjp1—) =Y (1) + (1 — %)(Tm —7j) + oW (Tj41) —W(1))] +log(Xj+1).

Finally, a general scheme for simulating one step of this recursion has the following

form:

1. generate R;.; from the exponential distribution with mean 1/A: R;;| =

—log(U)/A with U ~ Unif]0, 1].
2. generate standard normal random variable: Z; 1 ~ N(0, 1)
3. generate the jump size log(X;+1)

4. setTjy1 =7T;+Rjy1 and
2

o
Y(tj—)=Y(7j) + (1 — T)Rjﬂ +0\/Rj11Zjr1+10g(Xjt1).

On the other hand, the two approaches to simulating S(¢) can be combined which
is called as jump-adapted approximation. For instance, suppose we fix a date ¢ in
advance that we would like to include among the simulated dates. Suppose it happens

that 7; <t < Tj1; (i.e., N(t) = N(t—) = j). Then,

o2

S(t) = S(Tj)e(u—7)(t—fj)+6[W(t)—W(fj)]

and
S(tj1) = S(t)e(ﬂ—%z)(fjﬂ—f)+0[W(Tj+1—W(f))]XH_l
[12].

The remainder of the thesis is organized as follows. In Chapter 2, we generally
study the behavior of solutions for Heston stochastic volatility model on its real data

applications. First of all, we introduce 3-dimensional matrix norms as generalizations
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of the matrix norms and prove the related lemmas [6], by using the applicable
numerical linear algebra and analysis arguments (see [24,25] and references therein)
and give the definition of the moving matrix [6]. Furthermore, we define market
impression matrix norm as an application to the 3-dimensional matrix norms using
moving matrix [6]. We focus on the numerical solutions and their comparisons using
Euler Maruyama, Milstein and stochastic Runge-Kutta methods. Especially, we use
these methods to investigate whether there is a role of the methods for different
volatility cases or not, related to the impact of cumulative errors on this application.
We use volatilities in terms of extreme values at the overlapping case when we examine
initial and long term volatilities for the real data applications of the Heston model. At

the end of this chapter, we analyze the simulation results for various parameters.

In Chapter 3, we briefly introduce the extreme value theory and its tools such as
quantile quantile (QQ), mean excess (ME) and Hill plots. We present high peak
and fat tail formation of logarithmic stock return distributions from Heston model
under different market situations [7]. After that, we investigate fat-tail and high peak
situations of the BIST-100 index between 02.01.2004 and 17.06.2013. Moreoever, we
examine 3D dynamics of the average logarithmic stock return, interest rate and speed
of mean reversion variables [7]. Finally, we discuss the comovement and polarization

of interest rates and daily returns of BIST - 100 index between 2010 and 2013.

In Chapter 4, we work on behavioral analysis of Merton-Black Scholes and Merton’s
Jump Diffusion Models [8]. Moreover, we present high peak and fat tail formation of
logarithmic stock price distributions from Merton-Black Scholes and Merton’s Jump
Diffusion models for different model parameters using extreme value theory. We
investigate and illustrate jump parameters effects onto the logarithmic stock price
distribution for these models by the sense of impression matrix norm [8]. Chapter

5 concludes the thesis.
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2. APPLICATION OF HESTON MODEL FOR BORSA ISTANBUL

Our goal in this chapter is to study the behavior of solutions for stochastic differential
equations (SDEs) such as Heston model [3]. Heston model is a very useful stochastic
volatility model used in financial markets where the evolution for the stock price
volatility is described and the volatility is a random process. Market situations at
relatively low volatility levels have attracted academic attention. For example, Duran
and Bommarito [26] argued that there may be a temporary silence at the beginning
of a credit crunch, especially when prices are overvalued at a high level, and the low
market volatility may indicate the silence before a storm. We extend our approach [27]
by using several numerical solution methods for Heston stochastic volatility model and
by applying to Borsa Istanbul-100’s (BIST-100) large data set between 04.01.2007 and
31.12.2012. Moreover, Duran and Izgi consider application of the Heston model for
Borsa Istanbul using impression matrix norm at their paper [6]. Especially, we use
Euler Maruyama, Milstein and stochastic Runge-Kutta (SRK) methods whose rates
of convergence for the stochastic differential equations are 0.5, 1 and 2, respectively,
[15-19]. We examine the trade-off between cost and robustness of the methods while
choosing a suitable method for the application dealing with the relatively low volatility
cases. We perform simulations for different stock market conditions by using the real
large data set.

At the application of the Heston model, we also need to know the initial and long
term variances like the other parameters. However, it can sometimes be hard to
estimate these values for a large data set. For this purpose, the natural log ratio of
the highest price to the lowest price [28], standard deviation or simple return based
on the highest and the lowest prices in the interval can be considered by taking
their squares. We prefer volatilities having simple return of extreme values at the
overlapping case which is applied for closed-end funds [29] when we examine initial
and long term volatilities of BIST-100 index for each year between 2007 and 2012. We
also employ unit volatility of extreme values to estimate the volatilities of BIST-100

index in our analyses. It is important to find a method to quantify market impression
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approximately, and summarize large data set in presence of several variables together.
Although market price reflects all past publicly available information according to
weak-form efficient-market hypothesis (EMH) [30], many traders believe that prices
can be overvalued or undervalued. Therefore, we seek to find a scheme for market
impression in addition to market price [6]. We believe that market impression may be

expressed via several variables such as volatility, interest rate, and time, together.

2.1 3-Dimensional Matrix Norms

Matrix norms are essential parts of numerical linear algebra [24] and its applications

in science, engineering and finance [6].

Definition 2.1.1. A 3-dimensional matrix norm | - || is a function from m-by-n-by-s

complex matrices into R that satisfies the following properites:

* ||[A]|>0and | A ||=0if and only if A = 0;
e |aA ||=|a]|| A, for scalar a;

* |A+B||<||A] + || B||; where A and B are matrices in m-by-n-by-s dimensional

space.

Definition 2.1.2. The 1 —norm and o — norm of A € C"™*"*S are defined as follows:

N m
JA[1=max ) )| ag{) |= the largest absolute block-column sum.
k=1i=1

N n
|Aflo=max} Y} | al(f) |= the largest absolute block-row sum.
k=1j=1

Lemma 2.1.1. Let A € C"*"*S then the || A || and || A ||~ are norms.

Proof. Proofs are straightforward and just come from the definition of them.

Definition 2.1.3. The p — norm of A € C"™*"** is defined as follow:
|A||,= (1;12:12:1 |’ [P)7, forl < p <eo.
=1i=1j=

Lemma 2.1.2. Let A be a matrix in m-by-n-by-s dimensional space then || A ||, is a

norm.
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Proof. * |A||,>0and || A |,= 0if and only if A = O (by the definition)

cJaal, =YY Y |aa |Pé=<|a|pzzlz|a§§‘)|f’>é=|a|||A||p

k=1i=1j=1 k=1i=1j=1

» We have to show | A+ B ||,<||A ||, + || B||, where A,B € C"*"**,

g?) - bl(;f) |”; by the Minkowski inequality
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The special case (p = 2) of p-norm is the Frobenius norm of A € C™*"**_and it can be

defined as follow.

Definition 2.1.4. The Frobenius norm of A € C™*"*¢ is defined as follow:

= \/2 Y ¥ 14
k=1i=1j=1

Definition 2.1.5. Let A € C™*"*S then 2-norm of A is defined as follow:

| A [l2= maxg—;,_ s (max,—; || AR ||, ) = VAL, where A%, is the largest
eigenvalue of (A ))*Ak for all k. Also, it can be defined as || A ||3= max()L,fwx) where
Ak e =max (| (AW)*Ak — 4T |=0); (k=1.....5).

Lemma 2.1.3. The || A |2 is a norm where A € C™ "5,

Proof. * || A |o= y/max(Ak_ ) > 0 (since all eigenvalues of (AK))*A¥ are real and

non-negative) and || A [|3=0=A=0
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e | aA |3= max(z,;«m) = m]?x{max(((ocA)(k))*aAk — M)} where

is the eigenvalue of (atA®))* Ak,

Also we know from the definition || A ||,= max { max ((A( VAR — )} where A

is the eigenvalue of (A(*))*A¥,

(@A®) aaky = L
AR araAky = A
AR)* o2Akx = A
a2 (AR ARy = Aex
a’lx = ivkx
(@Ph—A)x = 0;  (x#0vector)

7Lk = Olzlk

2 2
) =oa" [[A];

Finally; || @A ||3= max(?Lr’;mx) = ml?x((le,ﬁax) = azm]?x(/l,ﬁax

= aA 2= a|]Al:

* We have to show || A+ B ||2<|| A ||z + || B |2 where A,B € C"™*"*and A, B* ¢
men.

|A+B|, = max

7 )

max || (4 Y+ BY)x )

[Ixll2=1

(m
= ax (max | AW x + B tz)
Lowsp  lxll2=1

x (

< fnax ( max ||A X||2+||B X||2))

58 |xll2=1

< krr%ax (Hnﬁax | A% x||2)-|- max (Hnﬁax | B x||2)
=1,.. x

= [[Al2+ 1Bl

2.2 Impression Matrix Norm

Solutions for dynamic large data sets are important in financial markets. Investors
would like to tune their positions according to the real time market impression under
fluctuating market price, volatility and interest rate. It is hard to deal with lots of

variables at the same time. Therefore, it is necessary to define a proxy to reflect the
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market impression quickly. We consider a 3-dimensional matrix having time, interest

rate (r), and stochastic volatility dimensions where matrix entries are market prices.

As an application of 3-dimensional norms we define impression matrix norm [6].

Table 2.1 : Simulation parameters.

t=10; the initial time

q=0; the dividend yield

T = 1; the terminal time -in
years

N=1000; number of paths

1= 100; the number of discretization
points between0 and T

At=0.01; the uniform mesh
size

p=0.7; the correlation coefficient

S0=751.340.96 ;theinitialstock
price

K= 4; the rate of mean
reversion

£=0.001; the volatility parameters
of variance process
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Figure 2.1 : One thousand realizations of simulation when
r="7.5%,vo=119x10""and 6 =52 x 10~".

Definition 2.2.1. Let A € C"™*" be a matrix. The 2-D row-wise moving matrix M C A

is defined as follows:

M=Aliti+a—1,],i=1273,...m—a+1, M € C*"

w.n

where a represents the number of row-wise sub-interval. The colon “:" refers to all the

elements in the column of a matrix. Similarly, the column-wise moving matrix B C A

is defined as:
B=A[,j:j+a—-1], j=1,2,3,...n—a+1, Be C"

where a represents the number of column-wise sub-interval. The colon “:" refers to all

the elements in the row of a matrix.
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Definition 2.2.2. If A € C"™*"* then the 3-D row-wise moving matrix C C A is defined

as follows:
C=Aliti+a—1,],i=123,...m—a+1,C¢e Caxnxs

where a represents the number of row-wise sub-interval. While the first colon “:"
refers to all the elements in the second dimension, the second colon “:" refers to all the

elements in the third dimension of the matrix A.

Analogously, 3-D moving matrices in other dimensions can be defined as well. Now,
we define impression matrix norm (IMN) as a norm of the moving matrix with respect
to time. IMN is generated by evaluating the norm of the matrix at each related time
sub-interval. IMN of the 3-D matrix gives us a good picture of all the 3-D matrix data,
and helps us to understand and interpret 3-D matrix more easily.

We believe that the impression matrix norms are useful for various time dependent data
sets. When we consider financial applications using Heston model, we need to choose
parameters so that they can satisfy the Feller condition 2x6 > £2 where non-negativity
of volatility can be guaranteed [14] and we may deal with financially meaningful model
realizations.

For example, we examine BIST-100 data between 02.01.2012 —31.12.2012 and used
the parameters in table 2.1, accordingly. We perform the simulations with the daily
initial (vg) and long term (0) variances and obtain the graph in figure 2.1 by using
the parameters in table 2.1. In the top panel of figure 2.1 fluctuation of stock price is
presented. It shows that the model may not promise much valuable information for a
long time scale since the effect of the initial information is decreased as time passes.
In the bottom panel of figure 2.1 the mean reversion property for the variance process
is presented. It starts from initial variance level and reverts to the long term variance

level as it is expected from the Heston model.

2.3 Simulations Results

2.3.1 Scenarios: Randomly generated interest rates

Interest rates generally change randomly at the real market. Therefore, we have

to take this situation account in order to converge the real market behavior by this
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aspect. For this purpose, we focus on two different interest rates scenarios when
we perform extensive simulations. We obtain these scenarios as follows. We start
with initial interest rate as %8, which presents in table 2.2, and generate 280 new
random interest rates by adding random number within %[—2,2] and %][—10, 10] to
the previous interest rate at each step for the first and second scenarios, respectively.
Here, we present some graphics obtained from simulations by using the parameters in
table 2.2 and the interest rates for the second scenario via Euler-Maruyma, Milstein
and Stochastic Runge-Kutta methods. Firstly, we obtain graphs in figure 2.2 which
show price evolution in 3-D at the left panel and the fluctuations of variance and stock

price by the time at the right panel.

Table 2.2 : Parameters for different interest rates scenarios.

t = 0; the initial time

q = 0; the dividend yield

T = 1: the terminal time -in
years

N = 1000: number of
paths

n = 100; the number of discretization
points between 0 and T

p = 0.7; the correlation coefficient

At =0.01; the uniform
mesh size

So=10; the initial
stock price

ro = 0.08; the interest rate

vo = 0.4; the initial variance

K = 4; the rate of mean
reversion

6 = 0.3; the long run
variance

€= 0.1; the volatility parameters of
variance process
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Figure 2.2 : One thousand realizations of simulation for second scenario.

After that, we get 3-dimensional stock price expectation matrix M (M €
C1000>101x280y " 1f e use IMN in the 2-norm to analyze M, as an example we select
the length of time sub-intervals as 0.01 year and the number of time sub-interval as 3,
then we obtain the graphs in figure 2.3, figure 2.4 and figure 2.5. We observe that the
norm values at the terminal time can be ordered by the inverse relation with the rates

of convergence of the methods.

19



3B
34
32

Iogm(E - Morrn)

[
o m W

EULER - MARUYAMA METHOD

0.1

0z

03

0.4 0A& 0B 07 0 0g 1
Tirme

Figure 2.3 : Impression norm of matrix M for second scenario by Euler - Maruyama
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Figure 2.4 : Impression norm of matrix M for second scenario by Milstein method.
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Figure 2.5 : Impression norm of matrix M for second scenario by stochastic

Runge-Kutta method.

We can summarize the analyses results for the both scenarios with the table 2.3. These

results show that there is an inverse relationship between rates of convergence of the

numerical methods and the norm values which are obtained for each of the method.

2.3.2 Volatility in terms of extreme values

Overlapping Case: Let S; denote the stock price at time t. Duran [29] defines the

volatility of stock price on Day i, with a memory of the most recent ¢ + 1, for example

25, trading days, by

VSi_(

max S; —
i—0<t<i

min S;. 2.1

min St)/i—¢<t<i

i—p<t<i
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Table 2.3 : Average values of norms obtained by using randomly generated interest
rates.

According to new interest rates which are updated
within % [-2, 2] randomly at each step

Mean (log.o(IMN)) Euler Milstein SRK
1-norm 3.9874 3.9863 39221
2-norm 2.8494 2.8489 2.7785
Inf-norm 6.4681 6.4641 64022
Fro-norm 4.0357 40322 3.9686

According to new interest rates which are updated
within % [-10,10] randomly at each step

Mean {logg(IMN}) Euler Milstein SRK
1-norm 4.0396 4.0165 3.9647
2-norm 2.9506 2.9095 28626
Inf-norm 6.5227 6.4928 64486
Fro-norm 4.0901 4.0612 4.0171

Unit volatility at the overlapping case: Let S; denote the stock price at time t. The
unit volatility of stock price is defined on Day i as

max S;— min S

i—¢<t<i i—¢<r<i
vs, = : (2.2)
(6+1)(,_min_5)

on a time interval whose length is ¢ + 1 (with a memory of the most recent ¢ + 1), for

example 25, trading days.

When we apply (2.1) and (2.2) to the BIST-100 data set, we obtain volatility (o) and

approximate variance (=~ 6%) of BIST-100 for each year as shown in the table 2.4.

Table 2.4 : Volatilities in terms of extreme values.

P Number of Max Min T . & i a .
Time interval 4 Volatility Variance Dailiy volatility Daily variance
trading days BIST-100 BIST-100
04.01.2007-31.12.2007 252 58.231,90 36.629,89 0,59 0,35 0,0023402 0,0000055
02.01.2008-31.12.2008 251 54.708,42 21.228,27 1,58 2,49 0,0062835 0,0000395
02.01.2009-31.12.2009 252 52.825,02 23.035,95 1,29 1,67 0,0051316 0,0000263
04.01.2010-31.12.2010 250 71.543,26 48.739,43 0,47 0,22 0,0018715 0,0000035
03.01.2011-30.12.2011 253 70.072,02 49.621,67 041 0,17 0,0016290 0,0000027
02.01.2012-31.12.2012 253 78.579,08 49.836,98 0,58 0,33 0,0022795 0,0000052

2.3.3 Real data applications

For the real data application of the Heston model, we use 253 daily interest returns
between 02.01.2012 — 31.12.2012 (see figure 2.6) and the initial stock price as
51.340,96 TRY from BIST-100 on 02.01.2012 (see figure 2.10). We obtain an
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approximate initial volatility level (on 02.01.2012) as an average of the last 5 years’

volatilities by using the data in table 2.4.
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Figure 2.6 : Daily interest returns between 02.01.2012 and 31.12.2012.

At this step we perform analyses for two different initial volatilities with the
corresponding long run volatilities. The first analysis is done for the annual volatility
whose initial volatility level on 02.01.2012 obtained from the average of the annual
volatilities between 2007 and 2011 in the 5 column of the table 2.4. The average of
the daily volatilities between 2007 and 2011 in the 7" column of the table 2.4 is used
to approximate the initial daily volatility level on 02.01.2012 for the second analysis.
We use approximate long run volatility levels as 0.58 for the annual volatility and 228 x
1073 for the daily volatility as in table II for 2012. The corresponding approximate
long run variance levels between 02.01.2012 and 31.12.2012 are evaluated by taking
square of these volatility values (i.e. long run annual variance is approximately
(0.58)% ~ 0.33 & long run daily variance is approximately (228 x 107°)% ~ 52 x
1077).

Then, we perform simulations for these values by using the parameters in table 2.1 and
obtain 3-dimensional stock price expectation matrix M (M € C'000x101x253y Now, for
example, let us select the length of time sub-intervals as 0.01 year (i.e. approximately
2.53 trading days) and the number of time sub-interval as 3. Afterwards, we use IMN in
the 2-norms for M to analyze and quantify price impression approximately and obtain
the graphs in figure 2.7, figure 2.8 and figure 2.9. These graphs show almost parallel
behaviors to the graph of BIST-100 index between 02.01.2012 —31.12.2012 which is
shown in figure 2.10.
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Figure 2.10 : BIST-100 between 02.01.2012 and 31.12.2012.
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When we estimate the numerical solutions of stochastic differential equations,
simulation methods and their rates of convergence are important. Practitioners
generally choose methods which is faster than the others especially when concerned
with financial markets since investment timing is important. For this purpose, we
perform simulations with Euler Maruyama, Milstein and stochastic Runge-Kutta
methods to compare their advantages and limitations using the 3-dimensional norms.
These methods are consistent and stable [15, 16, 19].

Application of the Euler Maruyama (with 0.5 strong order) and Milstein (with 1 strong
order) methods are almost similar and they are generally used by the practitioner since
their applications to the stochastic differential equations are easy.

Burrage and Burrage [17] consider the high strong order explicit stochastic Runge
Kutta Methods (see [17] and references therein). We use explicit SRK method with
strong order 2 in our analysis. On the other hand, Mitsui, Burrage and Burrage
showed implementation and stability issues of the numerical solutions of stochastic
differential equations in their paper. Stochastic Runge-Kutta methods for solving
stochastic differential equations are efficient and consistent. They also have good

precision and stability (see [18—20] and references therein).

Table 2.5 : Average values of norms obtained by using the annual volatility at the
overlapping case.

Mean{IMN) Euler Milstein SRK
1-norm 4,3121E+07 4,27 78E+DT 3,6732E+07
2-norm 3,3966E+07 3,3808E+06 2,8541E+06

Inf-norm 1,2992E+10 1,2984E+10 1,1129E+10
Fro-norm 5,0576E+07 5,0525E+07 4,3077E+07

Table 2.6 : Average values of norms obtained by using the daily volatility at the
overlapping case.

Mean(IMN) Euler Milstein SRK
1-norm 3,8996E+07 3,8996E+07 3,8996E+07
2-norm 2,8135E+06 2,8135E+06 2,8135E+06

Inf-norm 1,2994E+10 1,2994E+10 1,2994E+10
Fro-norm 4,4744E+07 4,4744E+07 4 A7A4E+DT

We observe from the table 2.5 that there is an inverse relationship between rates of
convergence of the numerical methods and the norm values which are obtained for

each of the method when we use the initial and long term annual volatilities. The
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results can be explained by the cumulative error of the numerical methods. In other
words, the cumulative error decreases as the order of convergence increases, consistent
with the literature [15, 16, 19]. On the other hand, in the daily volatilities case, the
results in table 2.6 show that the model reflects the effect of the low volatilities, when
the initial and long term daily volatilities are very small for the BIST-100 large data set.
Consequently, we can interpret the results in table 2.6 as the rate of convergence of the
methods can not be more dominant than small volatility situations while performing
the simulations. Given similar robustness one may prefer Euler Maruyama method

because of its lowest cost compared to Milstein and SRK methods [6].
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3. EXTREME VALUE ANALYSIS AND ITS APPLICATION IN FINANCE

3.1 Application of Extreme Value Theory on Heston Model

It is hard to find one single model to capture all kinds of behaviors in stock markets.
Therefore, it is valuable to examine strengths and weaknesses of related mathematical
models or approaches. In this chapter, we focus on 3D extreme value analysis for the
average logarithmic stock return, interest rate and speed of mean reversion variables
from the Heston stochastic volatility model [3] which may capture limited kinds of
behaviors and may reflect fat-tails and high peaks in the logarithmic return distributions
under different market situations. We conduct various simulations using numerical
solutions of the stochastic differential equations (SDEs) with different parameters via
Milstein method [16, 19]. We provide an extensive tail behavior analysis of the daily
logarithmic stock return distributions for some of the model parameters with respect
to the extreme value based analysis. We also analyze the daily logarithmic return
distributions of the Borsa Istanbul - 100 (BIST-100) index between 02.01.2004 and
17.06.2013. On the other hand, Duran and Izgi discuss the extreme situations using
extreme value theory in [7] by 3D perspective. Moreover, it is important to analyze
and distinguish the comovement and polarization of the time dependent variables in
financial markets. We are interested in the comovement and polarization of interest
rates and daily returns of BIST-100 index between 2010 and 2013 [7,31].

Initial variance, long term variance and speed of mean reversion are some of the
main characteristic parameters of the Heston stochastic volatility model. We use
Parkinson extreme value method while we estimate variances of BIST-100 index for
each year between 02.01.2004 and 31.12.2012. After that, we perform simulations
and generate quantile-quantile plot (QQ-plot), mean excess function against the the
different thresholds plot (ME-plot) and Hill-plot of the logarithmic stock return
distributions as an application of the extreme value theory. Then, we present and

quantify fat-tailness of the logarithmic stock return distributions by using QQ-plot,
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ME-plot and Hill-plot. Furthermore, we make some of the parameters analysis of
Heston model. In particular, we examine 3D dynamics of the average logarithmic
stock return, interest rate and speed of mean reversion variables for the various market
situations such as flight to more stable or more unstable situations. Heston stochastic
volatility model suggests that the average logarithmic stock return increases as interest
rate increases. On the other hand, it is important to find polarization domains where
comovement of financial variables may turn out to be distant from each other (see
Bommarito and Duran [32] and references therein). Therefore, we check that whether
there are also sufficiently large time intervals where the Heston stochastic volatility

model may not work in terms of interest rates and daily returns in real data.

3.1.1 Extreme value theory

Extreme value theory has a importance role to explain and predict probability of
extreme events in many disciplines. Finance, economics, earth science, climatology
and hydrology are some of the applicability area for the extreme value theory.
Embrechts et al. [33] have very important study of extreme value theory to finance
and insurance literature. Reiss and Thomas [34], Beirlant et. al. [35] have extensive
works on statistical analysis of extreme values. Huisman et. al. [36] and Mcneil [37]
are also have important works about extreme value theory and tail estimates, among
others.

In finance literature, it is expected that the stock price has log-normal distribution. On
the other hand, the financial returns (i.e. stock returns) are expected to have normal
distribution which may have fat-tail or heavy-tail. We use main characteristics of the
distributions such as mean, variance, standard deviation, skewness and kurtosis etc. at
the statistical analyses. Especially, the kurtosis (or the fourth standardized moment)
can be used to catch some clue about the tail behavior of the distributions although it
is not enough to explain fat-tailness of the distribution [33,38]. At this point, extreme
value theory based analyses help us to study the tail behavior of the distributions.
First of all, we need to give the definition of the fat-tailness (or heavily tailness)
of a distribution whose definition is not unique in the literature [33]. We assume
distributions have fat-tail if their density functions have power decay at the tail region

otherwise they have thin-tailness (i.e. exponential decay or a finite end points, [38]).
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In the extreme value theory and its applications; histogram of the distribution, the
quantile-quantile plot (QQ-plot) and mean excesses against the thresholds plot are
frequently used tools to examine the fat-tailness of the distributions [34]. QQ-plot
is useful tool to compare quantiles of the empirical distribution with the hypothesized
distribution. The quantiles of the empirical distribution are generally plotted against
the exponential distribution to quantify fat-tailness of the distribution at the extreme
value theory analysis. If the empirical data comes from reference distributions, then
QQ-plot is expected to be almost linear. At the tail region, concave departure from
straight line is an indication of the fat-tailed distribution while convex departure
is an indication of thin tailed distribution when the hypothesized’s and empirical
distributions quantiles are on the vertical and horizontal axis, respectively [33].

On the other hand, mean excess plot (ME-plot) is the representation of the mean excess

function. The mean excess function of the random variable X is defined as follow:
e(u) =EX —ulX>ul, 0<u<Xp

where u is the sufficiently high threshold and Xr is the right endpoint. Shortly, the
mean excess function evaluate the average of the excesses over the threshold and it can
be used as an indicator of fat-tailness of the distribution if it has positive slope (for
more details please see [33,34]).

The other important tool is Hill-plot which is used to evaluate shape parameter
&= é where « is the tail index. The shape parameters {& = 0 (Gumbel distribution),
& > 0 (Fréchet distribution) or & < 0 (Weibull distribution) indicate an exponentially
decaying, power-decaying, or finite-tail distributions in the limit, respectively. By
the Hill-plot aspect, empirical distributions may have fat-tail when & > 0, according
to the definition of the fat-tailed distribution. The shape parameter & needs to be
choosen at the relatively stable area at the Hill-plot [33, 37,39]. Consequently, we
use histogram of the distributions with the best fitted normal distribution, QQ-plot,
ME-plot and Hill-plot when we examine fat-tailness of the empirical distributions by

using the EVIM software [40].

3.1.2 High peak and fat tail analysis for the model parameters

We investigate some of the model parameters effect for the high peak and fat-tail

analysis while we perform simulations with Heston stochastic volatility model for
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BIST-100 between 02.01.2012 and 31.12.2012. We focus on behavior of the
logarithmic stock returns (i.e. r; = log(S;/Si—1) where the S; represents the stock
price) at our anlaysis. When we consider financial applications using Heston model,
we need to choose parameters so that they can satisfy the Feller condition 2x6 > &2
where non-negativity of volatility can be guaranteed [14] and we may deal with
financially meaningful model realizations. For example, we examine BIST-100
data between 02.01.2012 — 31.12.2012 and used the following parameters while we
conduct simulations: ¢ = O (the initial time), 7 = 1 (terminal time), n = 100 (the
number of discretization point between 0 and 7'), Ar = 0.01 (the uniform mesh size),
N = 1000 (the number of paths), g = 0 (dividend yiled), & = 0.01 (volatility parameters
of variance process) and Sy = 51.340, 96 (the initial stock price).

Moreover, we use the Parkinson extreme value method [28] when we estimate
variances of the BIST-100 index for each year between 01.02.2004 and 31.12.2012.
The Parkinson’s method suggested that using the natural log of the ratio of highest
to lowest price in the interval as a better estimator of volatility than the traditional
volatility measure and the standard deviation. We also evaluate the approximate daily
volatility by dividing the annual volatility value to the length of time interval where it
is estimated with the Parkinson method. As a result, we obtain daily volatilities (o)
with the corresponding approximate variances (~ ¢2) of BIST-100 for each year as

shown in the table 3.1.

Table 3.1 : Daily volatilities and variances in terms of extreme values.

. . Number of Max Min . - . .
Time interval i Dailiy volatility Daily variance
trading days BIST-100 BIST-100
02.01.2004-29.12.2004 249 24.971,68 15.922,44 0,0365881 0,0013387
03.01.2005-30.12.2005 254 39.837,27 23.285,94 0,0382450 0,0014627
02.01.2006-29.12.2006 250 47.728,50 31.950,56 0,0386655 0,0014950
04.01.2007-31.12.2007 252 58.231,50 36.629,89 0,0396053 0,0015686
02.01.2008-31.12.2008 251 54.708,42 21.228,27 0,0415088 0,0017230
02.01.2009-31.12.2009 252 52.825,02 23.035,95 0,0408805 0,0016712
04.01.2010-31.12.2010 250 71.543,26 48.739,43 0,0401387 0,0016111
03.01.2011-30.12.2011 253 70.072,02 49.621,67 0,0392322 0,0015352
02.01.2012-31.12.2012 253 78.579,08 49.836,98 0,0405775 0,0016465

We believe that Heston model can reflect limited kinds of fat-tails and high peaks in the
daily stock return distributions under various market situations. Before we perform the
simulations of the Heston model we need initial daily variance level, as well. We obtain
approximate initial daily volatility level (on 02.01.2012) as an average of the daily

volatilities between 2004 and 2011 in the 5 column of the table 3.1. After that, we
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evaluate the corresponding initial daily variance level as 155 x 10~ by taking square
of this volatility. Furthermore, we use long run daily variance level approximately
165 x 1073 (i.e. square of the daily volatility) for 2012 as it is shown in table 3.1. Then,
we start to make an analysis of fat-tailness and high peaks for the different correlation
coefficients (p), between Brownian motions of asset price process and the variance
process, such that p = 0.8 and p = —0.8 while the speed of mean reversions (k) are
0.1,1,2,3,4,5,6 and the interest rate (r) is 7.5%. We present some of the figures of the

distributions for the logarithmic stock return obtained from the simulations.
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Figure 3.1 : Distribution of logarithmic stock return when r = 7.5%, Kk = 6 and
p =0.8.
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Figure 3.2 : Distribution of logarithmic stock return when r = 7.5%, k¥ = 0.1 and
p=—-0.38.

At the left panel of the figure 3.1, the distribution of the logarithmic stock return with
the best fitted normal distribution is presented while the right tail is zoomed at the
right panel for the positive correlation coefficient. Similarly, the figure 3.2 represents

the distribution for the logarithmic stock return for the negative correlation coefficient.
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Table 3.2 : Statistics for distributions of logarithmic stock return for positive
correlation coefficient.

K 0.1 1 2 3 4 5 6
Mean  0,002274 0,001878 0,001555 0,001321 0,001151 0,001051 0,000989
Maximum  0,01921 0,01884 0,01853 0,01831 0,01814 0,01806 0,01802
Minimum -0,01466 -0,01509 -0,01543 -0,01566 -0,01583 -0,01595 -0,01604
Std. Dev.  0,01075 0,01077 0,01078 0,01078 0,01078 0,01079 0,01081
Range 0,03386 0,03393 0,03396 0,03397 0,03397 0,03401 0,03405
Kurtosis 3,1075  3,0753  3,0592  3,0511  3,0465  3,0435  3,0414
Skewness  0,0612 00611 0,0612 0,0614 0,0615 0,0616 0,0617

We obtain table 3.2 and table 3.3 for the quantitative information which help us to
understand and explain behavior of the distributions more easily. We observe from
the table 3.2 that the mean, maximum and minimum values of the logarithmic stock
returns decrease while the rates of mean reversion increase for the positive correlation
coefficient. We also observe from the table 3.3 that the mean and maximum values of
logarithmic returns decrease and the minimum values almost increase for the negative
correlation. Furthermore, these values for the positive correlation are larger than that
of the negative correlation coefficient which is also in the line of the findings in Duran
and Izgi [31].

Table 3.3 : Statistics for distributions of logarithmic stock return for negative
correlation coefficient.

K 0.1 1 2 3 a 5 6
Mean 0,0006702 0,0003582 0,0002211 0,0002829 0,0001774 0,0000538 -0,0000460
Maximum 0,01859  0,01777 0,01726 0,01716 0,01706 0,01697  0,01689
Minimum  -0,01725  -0,01706 -0,01682 -0,01659 -0,01670  -0,01686 -0,01698

std. Dev. 0,01137  0,01106 0,01082 0,01071 0,01072 0,01074  0,01075
Range 0,03584  0,03483  0,03408 0,03375 0,03376 0,03382  0,03387
Kurtosis 3,1165 3,0810  3,0624  3,0525  3,0466 3,0427 3,0401
Skewness -0,0532  -0,0530 -0,0530 -0,0531 -0,0531 -0,0532  -0,0533

The standard deviations have almost same behaviors with the sign of the correlation
coefficients. In other words, standard deviations almost increase for the positive
correlation while they almost decrease for the negative correlation for the incremental
values of k. On the other hand, kurtoses are greater than 3 at the both cases. Although
it can be interpreted as an indicator of the fat-tailness, as we mention at the extreme

value theory section, it is not enough evidence for the fat-tailness of the distributions. It
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represents that distributions of the logarithmic stock return have relatively high peaks
for all values of k¥ and p while they have right and left skew for the positive and

negative correlation coefficients, respectively.

Fat-tailness of the distributions is still uncertain case which needs to investigate more
deeply by using the other methods. Extreme value theory’s tools especially QQ-plot
and mean excess function plot against to the different thresholds may explain the
fat-tailness of the distributions. For this purpose, we generate the following graphs

for some of the model parameters:
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Figure 3.3 : Mean Excess (left) and QQ (right) plots for positive correlation
coefficient.
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Figure 3.4 : Mean Excess (left) and QQ (right) plots for negative correlation
coefficient.

The mean excess plots in the left panels of figure 3.3 and figure 3.4, which have positive
uptrend for threshold values greater than approximately 0.015, indicate a heavy right
tails for the logarithmic stock return distributions. We obtain from ME-plot that there
is a positive relationship between its slope at the tail region and the speeds of mean
reversion for the positive correlation. On the other hand, we observe that there is
an inverse relationship between ME-plots slopes’ at the tail region and the speeds of
mean reversion for the negative correlation coefficient. Moreover, the QQ plots against

the exponential distribution in the right panel of figure 3.3 and figure 3.4, where the
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sufficiently large concave departure from linearity is presented at the right tail region,

support evidences of fat-tailness of the underlying distributions.

For the shape parameters estimation we generate the Hill-plots of the empirical
distributions for the various speed of mean reversions. The Hill-plots of the logarithmic
stock return distributions with a 0.95 confidence interval are displayed in figure 3.5
and figure 3.6 for the positive and negative correlation coefficients, respectively. The

relatively stable regions are indicated with the rectangular.
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Figure 3.5 : Hill plots for positive correlation coefficients.
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Figure 3.6 : Hill plots for negative correlation coefficients.

The shape parameters & estimate approximately between 0.12 and 0.13 for k¥ = 0.1
and between 0.11 and 0.12 for k¥ = 3 and 6 at the relatively stable regions in figure 3.5.
Similarly, the shape parameters & estimate approximately between 0.119 and 0.121 for
K =0.1, between 0.113 and 0.116 for ¥ = 3, and between 0.107 and 0.116 for k = 6
at the relatively stable regions in figure 3.6. All the shape parameters are greater than

zero (& > 0) which implies power-decaying tail and also heavy tail.
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The power-decaying tail with an exponent tail index o varies between 7.7 and 8.3 for
Kk =0.1, between 8.3 and 9.1 for k¥ = 3 and 6 for the positive correlation and similarly it
varies between 8.3 and 8.4, between 8.6 and 8.9, between 8.6 and 9.3 for k =0.1,3,6,
respectively, for the negative correlation coefficients. These tail index means that, for
example 7.7 < a0 < 8.3, if the expectation of the logarithmic stock return greater than
r is P then probability of the logarithmic stock return greater than 4 - r is in the h~7"7P
and h=83P.

Consequently, we present fat-tailness of the logarithmic stock return distributions,
which are generated from the Heston stochastic volatility model via Milstein method,

by using the QQ-plots, ME-plots and Hill-plots based on extreme value theory.

3.2 High Peak and Fat Tail Analysis for BIST-100

As a real data application, we analyze the fat-tailness and high-peaks of the daily
logarithmic BIST-100 return distribution. We use large data set which include the
daily closing of BIST-100 index between 02.01.2004 and 17.06.2013. There are 2380
observations in the data set. We start the analysis by obtaining some of the main

characteristics of the data as shown in table 3.4.

Table 3.4 : Statistics for distribution of daily logarithmic BIST-100 returns, 2004 -
2013.

Mean Maximum Minimum 5Std. Dev. Range Kurtosis Skewness
0,005317 0,1192 -0,1086 0,06754  0,2278 6,238 -0,279

When we investigate loses of the BIST-100 (i.e. focus on the left tail of BIST-100
distribution, see figure 3.7) using extreme value theory, we need to analyze BIST-100
negative return distribution where the returns multiplied by -1 since the extreme value
analysis works with the right tail of the distribution [40]. The histograms of the
logarithmic BIST-100 returns and negative logarithmic BIST-100 returns with the
best fitted normal distribution are displayed in the left panels of the figure 3.7 and
figure 3.10 while the right tails are zoomed at the right panel of them. Although the
logarithmic BIST-100 returns distribution has relatively low skewness —0.279 level
(i.e. skewed to the left and the negative logarithmic BIST-100 returns has relatively
low skewness 0.279 (i.e. skewed to the right) which can be obtained by using the

fundamental properties of statistics), it also has relatively high kurtosis 6.238 value.
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The kurtosis value may be interpreted as evidence of the high-peaks but it is not enough
evidence for the fat-tailness. For this purpose, we get more extensive analysis with

QQ-plot, ME-plot and Hill-plots.
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Figure 3.7 : Distributions of logarithmic BIST-100 returns between 02.01.2004 and
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Figure 3.9 : Hill plot of BIST-100 for the right tail, 2004 - 2013.
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Figure 3.11 : ME (left) and QQ (right) plots of BIST-100 for the left tail, 2004 - 2013.
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The important part of the analyzing BIST-100 return distribution with the

corresponding right tail is that the graphs which are ploted for the negative returns

can be used to explain loses by the means of the extreme value theory. The ME-plots

are presented at the left panel of the figure 3.8 and figure 3.11. They have positive
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slopes for threshold values greater than approximately 0.05 at the right and left tail
regions which indicates fat-tail for the logarithmic BIST-100 returns distributions.
Moreover, the QQ-plots are presented in the right panel of the figure 3.8 and figure
3.11. We observe the concave departures from linearity at the tail regions which are
also confirmed the fat-tailness of the distributions. On the other hand, the Hill-plots
of the data with a 0.95 confidence interval are presented in figure 3.9 and figure
3.12. These graphs exhibit that shape parameters & estimate approximately between
0.23 and 0.26, between 0.26 and 0.29 at the relatively stable region enclosed by
rectangular, respectively. These values imply power-decaying tail and also fat-tail.
The power-decaying tail with an exponent tail index o varies approximately between

3.8 and 4.3, between 3.4 and 3.8 for the right and left tail respectively.

3.3 3D Dynamics of the Average Logarithmic Stock Return, Interest Rate and

Speed of Mean Reversion Variables

We analyze the logarithmic stock return behaviors with respect to some of the model
parameters especially for various interest rates (r) and speed of mean reversions (k)
when the stock variance (0) increases or decreases. We perform simulations by using
the same brownian motions at each analysis to make a more precise comparison. For
example, we make an analysis for the following parameters r = 2.5%,5%,10%, 15%,
k=0.1,1,2,3,4,5 while stock variance changes 6 from 0.2 to 0.3, from 0.3 to 0.4 and
from 0.4 to 0.5, and vice versa at our analyses.

We obtain 3D graphics of the average logarithmic stock return, interest rate and speed
of mean reversion as are in figure 3.13 and figure 3.14. In the both panels of the figure
3.13, the average logarithmic stock return increases as interest rate and speed of mean
reversion increase.

Similarly, in figure 3.14, the average logarithmic stock return increases as interest rate
increases for all values of k. On the other hand, the average logarithmic stock return
increases as the speed of mean reversion increases for larger values of k ( k > 2), while
it drops for 0.1 < k < 2. The results in figure 3.14 are in the line of the findings in [41]

and the all analysis results are almost parallel to the results in Duran and izgi [31].
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3.4 Comovement and Polarization of Interest Rates and Daily Returns

While daily interest rates in Turkey had large oscillations at high levels between
1996 and 2002, they decreased slowly relatively lower levels with smaller oscillations
between 2002 and 2013 according to Central Bank of the Republic of Turkey, as seen
in figure 3.15.

By using the methodology having time-dependent return correlation matrices to
measure the time dependent polarization [42], we observe that the polarization of
BIST-100 and interest rates increases from 2010 to 2011, later it levels off at a
relatively high level between 2011 and 2012, and then the polarization decreases
slowly in 2013.
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Figure 3.15 : Daily Interest Rates, 1996 - 2013.

Moreover, oscillations of interest rates between 2010 and 2013 are presented in figure
3.16. On the other hand, figure 3.17 shows the comovement and polarization of

BIST-100 versus interest rates from May 31, 2010 to June 17, 2013.
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4. JUMP DIFFUSION VS MERTON-BLACK SCHOLES MODELS

Our goal in this chapter is to analyze and compare the behavior of solutions for
Merton-Black Scholes and Merton’s Jump Diffusion models [4, 5] with respect to the
impression matrix norm [6] and extreme value theory [7]. Although there are many
studies on MBS and MJD models in the literature, comparisons of their behavior of
solutions have not been done by using their extreme values and impression matrix
norm together in order to represent jump parameters’ effects more easily. Moreover,
we occasionally come face with the jump situations at the financial market. It is really
hard to estimate and explain abnormal price changes (i.e. jumps, sudden upsurges
or other cases, see [43]). For this purpose, we need a useful model which reflects
the jumps effect at the security. On the other hand, the underlying stock dynamics
are generally described by a stochastic process with a continuous sample path. By
their nature, jumps are cutting part of the continuity cases. As a result of the fact that
the model generated by a combination of both continuous and jump process is called
jump-diffusion process. Therefore, it is challenging to compare the pure diffusion
model and jump diffusion model using impression matrix norm (IMN) and extreme

value theory (EVT) perspective [8].

4.1 Behavioral Comparisons of Merton Jump Diffusion and Merton-Black

Scholes Models

At this section, we discuss advantage and limitations of Merton Black Scholes and
Merton’s jump diffusion models caused by jump effects. It is noted at Merton’s
pioneer papers, which has been written about jump diffusion model in 1976 [5], that
Merton-Black Scholes model reflects variations of the market situations in a short
interval of time as the stock price can only change a small amount. Therefore, it is not
able to reflect the fluctuations of the price as it is in the real market. For this purpose,
Merton extended the Merton-Black Scholes (MBS) diffusion model to a model that

also has a jump component which is called Merton’s Jump Diffusion model (MJD) and
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allows for a positive probability of a stock price change of extraordinary magnitude in
a short or long interval of time [5]. There are different types of the jumps in the
literature, for example, Ait-Sahalia and Jacod have extensive work on small and large
jumps in their paper [44]. We consider jump situations at our analyses as it is in the real
market (i.e. except economic crisis, crashes etc.) when there are only finitely many
jumps in each finite time interval in the market. Hanson and Westman has studied
parameter estimation problem, which is one of the important part for the jump diffusion
applications, for jump-diffusion models at their paper, comprehensively [45]. For this
purpose, we focus on mean and variance of the jump and analyze their effects onto

behavior of the solutions at the finite time interval via IMN and EVT.

For example, we choose the following model parameters: ¢ = O (the initial time),
S(0) = 10 (the initial stock price), T = 1 (terminal time), N = 1000 (the number
of paths), us = 0.05 (expected return rate), og = 0.2 (volatility parameter of stock
process), A = 25 (jump intensity), while we perform simulations for extensive
analyses. We conduct simulations on the same paths to compare MBS and MJD models
more precisely and present effects of the jumps, which are lognormally distributed
random variables with mean py = 0 and variance G)% = 1, by using the jump-adapted

approximation method [12,23].

Since it is hard to see their parallel behavior until the first jump occurs, we choose
jump intensity A = 2 to present variations at the model caused by the jump more
explicitly (see figure 4.1). Moreover, we present logarithmic stock price graphics and
their histograms with the best fitted normal distribution for each model that obtained
from one thousand simulations according to the above parameters in figure 4.2 and
figure 4.3, respectively.

Generally the changes in stock prices from MBS model are smaller than those of MJD
model, in the same finite time interval. Figure 4.2 displays that the logarithmic stock
prices coming from MBS model vary between 1.6 and 3 while those of MJD fluctuate
extraordinary magnitude between — 15 to 25 in the same time interval (i.e. between O to
1), due to jump effects. This situation is also supported by their distributions in figure
4.3. We will investigate the jump effects using various parameters more quantitatively

in the following sections.
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Black Scholes vs Jurnp Diffusion (A=2)
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Figure 4.1 : One path of MBS and MJD while A = 2.
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Figure 4.2 : One thousand simulation paths of MBS (left) and MJD (right) while
ux =0 and ox = 1 for MJD.
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Figure 4.3 : Histograms of MBS (left) and MJD (right) with the best fitted normal
distribution while pxy = 0 and oy = 1 for MJD.

4.1.1 Extensive behavioral analysis of the jump

We choose jump terms from log-normal distribution as it is considered by Merton (X;’s
are from LN(u, 62), see [5]) so that stock price has log-normal distribution, as well.
Moreover, we focus on analysis of their behavioral effects at the solutions (such as

logarithmic stock price) especially for different jumps’ mean and variance values. We
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also present extreme value analysis (i.e. skewness, fat-tailness) based on extreme value
theory. Here some of the graphics are presented which obtained from simulations for
MIJD model for different ty and oy by using the given parameters at the previous
section. We note that the mean and variance values are just chosen as an example for
the different four scenarios at this application, and it can be done for different values

for each scenario, as well.

e For the negative mean value of the jump parameter : ME-plot, QQ-plot and Hill plot

are presented for the left tail (prices multiplied by -1) of the distribution.
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Figure 4.4 : Solutions behavior of MJD while tty = —0.2 and oy = 1.
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e For the positive mean value of the jump parameter :
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Figure 4.5 : Solutions behavior of MJD while tty = 0.2 and oy = 1.
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e Extensive analyses for the incremental variance values of the jump parameter :
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Figure 4.6 : Solutions behavior of MJD while 6y = 0.22 and uyx = 0.
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Figure 4.7 : Solutions behavior of MJD while oy = 0.55 and ty = 0.
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4.2 Summary of the Extensive Behavioral Analyses

After the all simulation results, we are at the position to interpret behavior of the
logarithmic stock price more easily under the consideration of the histograms, Mean
Excess plots (ME-plots), Quantile-Quantile plots (QQ-plots) and Hill-plots of the
logarithmic stock price distributions. We present approximate statistical values of the
logarithmic stock price distribution in table 4.1 which obtained from simulations for
MBS model using the related parameters. Moreover, we obtain table 4.2 and table 4.3
for the quantitative information for MJD model to present effects of the jumps more

explicitly when we compare them with the MBS model’s statistical values.

Table 4.1 : MBS: Statistics for the distribution of logarithmic stock price.

Merton Black Scholes Model

Min Mean Max Standard deviation Skewness Kurtosis
1.674 2.307 2.94 0.3795 0.0891 3.9930

First of all, we see the effects of the jumps from standardized moments values when we
compare table 4.1 with table 4.2 and table 4.3, clearly. Such that, the minimum, mean
and maximum values of the logarithmic stock price distributions have sensitivity with
jump. We observe that they present parallel behavior with respect to the incremental

jump’s mean for the constant variance value of the jump (see table 4.2).

On the other hand, we present that the minimum values of the distributions represent
inverse relation as jump’s variance values increase for the constant mean of the jump.
Moreover, the maximum values behave almost parallel with their behavior (see table
4.3). Although the logarithm stock price distribution for the MBS model has relatively
low standard deviation level, it also has relatively high standard deviation levels for the
different mean and variance values of the jump at the MJD model (see table 4.2 and

table 4.3).

The other most important observation is that the distribution has negative skewness for
the negative mean of the jump while it has positive skewness for the positive mean of
it (see figure 4.4 and figure 4.5). This is consistent with the literature results for the
MJD model [43,46], and its skewness is Aty (g +30%) which can be obtained for

(03+A(03+13)3 i
MIJD model. Here Gg and 0')% are variances of the stock price and jump respectively

while uy is the mean parameter of the jump.
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Table 4.2 : MJD: Statistics for the distributions of logarithmic stock price for uy
while oy = 1.
. Standard ,
Ux Min Mean Max d an gr Skewness Kurtosis
eviation
-0.2 -18.26 -2.603 13.06 9.318 -0.6641 3.8121
0 -14.47 3.847 2217 10.9 0.0604 4.4027
0.2 -7.534 8.62 24.77 9.612 0.7539 3.8631
Table 4.3 : MJD: Statistics for the distributions of logarithmic stock price for ox
while uy = 0.
2 . Standard .
G"x Min Mean Max d a_r.l gr Skewness Kurtosis
eviation
0.05 -0.9109 2.658 6.227 2.123 0.0494 4.0928
0.3 -6.235 2.966 12.17 5.474 0.0111 3.9811
1 -15.83 2.492 20.81 10.9 0.1355 4.3855

When we compare the kurtosis values of the MBS model and MJD model, we see that
they have relatively high kurtosis values. Therefore, it may be interpreted as they have
high peaks. Although the kurtosis value is generally necessary sign, when it is greater
than 3, for the fat-tailness of the related distributions, it is not sufficient condition to
decide about fat-tailness of the distribution just by using this magnitude [7, 33, 40].
For this purpose, we use extreme value theory tools such that ME-plot, QQ-plot and
Hill-plot while we analyze fat-tailness for the distribution of the logarithm stock price.
The extreme value analyses results of the MJD model for the different jump parameters
are already displayed in figures 4.4-4.7. Here in figure 4.8, we present graphics for the

MBS model obtained from extreme value analysis.
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Figure 4.8 : Extreme value analysis of the MBS model: ME-plot (top-left), QQ-plot
(top-right) and Hill-plot (bottom).

ME-plot for the left tail analysis (prices multiplied by -1) in figure 4.4 and the all other
ME-plots for the MBS and MJD models have positive slope at the tail regions which
indicate a heavy right tails (it indicates a heavy left-tail for the negative mean value
of the jump parameter, see figure 4.4) for the logarithmic stock price distributions.
Moreover, the QQ-plots against the exponential distribution, where the sufficiently
large concave departure from linearity is presented at the right tail region (at the "left
tail region" for the negative mean value of the jump parameter analysis), support
evidences of fat-tailness of the underlying distributions. In addition, we observed
from the all analysis results that the shape parameters & are all positive (& > 0) at
the relatively stable regions, which are indicated with the rectangular, in the Hill-plots
obtained for the logarithmic stock price distributions with a 0.95 confidence interval.

These results imply that a power-decaying tail and also heavy tail [7,33,40].
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4.3 Application of Impression Matrix Norm for Jump Process

Interpretation of the dynamic large data sets is important in financial market in order
to make exact and correct investment decision quickly. Financial instruments’ prices
are generally depend on lots of variables at the same time. Controlling of them is the

one of the hardest situations when determining the investment strategy.

We consider a 2-dimensional matrix having time and different scenario dimensions
where matrix entries are market prices. As an application of 2-dimensional norms we
use moving matrix which we define in the chapter 2. Also, we use impression matrix
norm (IMN) as a norm of the moving matrix with respect to time. IMN is generated
by evaluating the norm of the matrix at each related time sub-interval [6,27]. We
represent usefulness of the IMN for the 3-D matrix in the chapter 2, comprehensively
(see also [6,27]). Here, we use IMN for 2-D matrix which gives us a good picture of
all the 2-D matrix data, and reflects model properties to understand and interpret 2-D

matrix more easily.

Irnpression Matrix Marm of MBS model
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Figure 4.9 : Impression Matrix Norms of the MBS model (top) and MJD for different
means (bottom-left) and variances (bottom-right) of the jump.
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After we perform simulations for a given parameters in section 4.1, we obtain
2-dimensional expectation matrix M (M € C100x 1000). Now, for instance, let us select
the length of time sub-interval as 0.01 year (i.e. approximately 2.53 trading days) and
the number of time sub-interval as 3. After that, we use impression matrix norm in the
2-norm for M to analyze and quantify price impression approximately and obtain the
graphs in figure 4.9.

These graphs reflect almost the expected behaviors comes from the naturality of the
models especially for the Merton’s jump diffusion model. Moreover, IMN presents
relationship between effect of the mean (and variance) of the jump parameters and
price fluctuations, explicitly. Furthermore, we show that prices have almost parallel
behavior with jump’s variance and mean magnitudes using impression matrix norm in

the bottom panel of the figure 4.9.
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S. CONCLUSIONS AND RECOMMENDATIONS

We find that defining 3-dimensional matrix norms, summarizing large financial data
set and quantifying market impression with respect to several variables together are
useful. We obtain a proxy for time evolution of market impression value, and perform
simulations for various model parameters. We see that using the volatility in terms
of extreme values makes it easy to evaluate volatilities when we perform simulations
with the large real data set. According to the simulation results, Heston stochastic
volatility model can not promise much things at the long time interval since the initial

information lose their effect by the time.

It is challenging to compare the advantages and limitations of the higher order
SDE-solvers. ~ We present that there is inverse relationship between speed of
convergence of the methods and impression matrix norm (IMN) values while using
the annual volatilities having extreme values as in the line of literature. When we
examine the numerical methods using IMN in terms of their trade-offs, although SRK
takes more time, it worths to prefer SRK to Euler-Maruyama method and Milstein
method just because that SRK’s lower cumulative error is important for our financial

applications.

We obtained from the results in table 2.6 that it does not matter which method is
used for the applications having such relatively low volatility cases with respect to
the robustness. On the other hand, we suggest Euler Maruyama method because of its

lowest cost for daily volatility usage or market situations at such low volatility levels.

Moreover, we obtained valuable results for the solution behaviors of the Heston
stochastic volatility model from the various model parameter analyses. We present
relationships between speed of the mean reversions and the extreme values of the
logarithmic stock returns obtained from Heston stochastic volatility model for the
positive and negative correlation coefficients. We show that the logarithmic stock
return distributions not only for Heston model but also for BIST - 100 index have

fat-tails and high-peaks by using the extreme value theory. Consequently, we obtained
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for some of the model parameters that Heston model reflects high-peaks and fat-tails

for the logarithmic stock returns distribution with various behaviors.

In addition, Heston stochastic volatility model may capture comovement of stock
price return and interest rates. We observe that the average logarithmic stock return
rises gradually as interest rate and speed of mean reversion increase, while stability
of stock market decreases, according to the Heston model. Actually, interest rates
were decreased around 2008 and stock prices increased gradually in US stock markets,
unlike the Heston model suggests. Borsa Istanbul experienced similar situations
between 2002 and 2013, and this is a kind of polarization of stock price return and
interest rates for some sufficiently large time intervals. Krugman, 2008 nobel laureate
in economics, appreciates lower interest rates in order to encourage investments (see

Krugman [47]). The polarization may be explained by Krugman’s this argument.

Furthermore, the Heston model predicts that the average logarithmic stock return
increases as interest rate goes up for all values of k, when the stability of stock market
gets better. On the other hand, the average logarithmic stock return increases as the
speed of mean reversion increases for larger values of x, while it drops for 0.1 < kK <2

and this is consistent with the arguments of Avellaneda and Jee [41].

It is valuable to prefer a more realistic model which capture all parameters’ effect in a
short or long time interval. We believe that MJD model may reflect much more variety
of market situations with suitable jump parameters based on our quantitative analysis
using extreme value tools such that QQ-plot, ME-plot and Hill plot. We illustrate
some model parameters effects at the logarithmic stock price distributions for the
Merton-Black Scholes and Merton’s Jump Diffusion models. Moreover, we success
to show fat-tailness and high peak of the distributions, which may happen in the real
stock market, obtained by the simulations using extreme value theory and standardized
moments values. In particular, the relationship between the jump parameters (mean
and variance of the jump parameter) and the logarithmic stock price distribution are
presented by means of the fat-tailness and high peak sense. These extreme situations
may not materialize at the Merton-Black Scholes model as much as the Merton’s jump
diffusion model (see figure 4.2) in a same time interval. Because extreme situations are
generally rare events, one may consider MBS model, at first glance. However, the lose

or gain amount is considerable during the extreme events. We suggest traders using
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MIJD model in order to catch and control the extreme behavior of the price fluctuations,
so that they can avoid to generate potential arbitrage cases at their investment for the

others by this distinguished property of the MJD model.

Finally, we show that applications of the impression matrix norm for the Merton’s
jump diffusion and Merton-Black Scholes models are also useful as it is shown at the
real data applications for Heston model. IMN can be alternative tool to examine the
presence of the jump at the empirical or real data applications. One of our contribution
is that IMN can be used for the real stock market especially at the estimation for the
price behavior in the incomplete markets which reflect jumps or any other anomalies
that are caused by jumps. The relationship between incomplete market and jumps
is also consistent in the line of the findings in Ait-Sahalia and Jacod [44]. For this
purpose, we suggest the practitioners using MJD model, while they are modeling any
security, since theoretical and numerical results show that MBS model can not reflect
most abnormal situations at the market as much as MJD model. Therefore, the market
players may mislead by using MBS model instead of MJD model. Moreover, even
there is sudden upsurges in prices, applications of the IMN for the jump diffusion
model can make feasible to control lots of variable together. This is one of the

important parts of the investment strategies.
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