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REGULARIZED TRACES AND SPECTRAL PROPERTIES OF
DIFFERENTIAL OPERATORS

SUMMARY

This thesis consists of five main chapters. Inaodtrction, we give a general
information about the theory of Sturm-liouville eptors and previous works in the
literature which is realatively close to our stdieAlso establishment of the
problems is given in introduction.

In the second chapter, we extend some spectraéprep of regular Sturm-Liouville
problems to those which consist of a Sturm-Lioevidlquation with discontinuous
weight at two interior points together with spektparameter-dependent boundary
conditions. By modifying some techniques of [C.Hulton, Two-point boundary
value problems with eigenvalue parameter containethe boundary conditions,
Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 293-3D8Sh. Mukhtarov and M.
Kadakal, Some spectral properties of one Sturmalillgu type problem with
discontinuous weight, Siberian Mathematical Joyraél (2005) 681-694], we give
an operator-theoretic formulation for the considepeoblem and obtain asymptotic
formulas for the eigenvalues and eigenfunctions.

In the third chapter, we investigate discontinutus-point boundary value problems
with eigenparameter in the boundary conditions &iid transmission conditions at
the finitely many points of discontinuity. Namelyewconsider the discontinuous
eigenvalue problem which consist of Sturm-Liouvélguation

ru =-U"(x) +q(x)u(x) = Au(x)

on[-1,h)O(h,h,)0...0(h,.J . together with eigenparameter-dependent boundary
conditions

ru=au(-1)+au'(-1)=0,

ru=(BA+B)u(l)~(BA+B,)u®)=0
and transmission conditions at the points of disnaity x=h (i =1,m),

T,.u=u(h -0)-du(h +0)=0,
T,,,u=u'(h-0)-au'(h+0)=0,
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where -1<h <h,<..<h, <1, g(x) is a given real-valued function continuous in
[-1h).(h.h,)....(h,,]] and has finite limitsq(h +0)=lim, _, ,,q(x) (i :1,_m);
A is a complex eigenvalue parametér(i =1,_m) a.,a, B, B (i=12) are real

numbers; |a,| +|a,|#0 and J #0 (i :1,_m). This section organised as follows:

Firstly we give operator formulation of the probléma suitable Hilbert space (i.e.,
A self-adjoint linear operatoA is defined in a suitable Hilbert spat¢ such that
the eigenvalues of the considered problem coingwita those of A) and then
asymptotic approximate formulas of characteristiection derived for four distinct
cases. Asymptotic formulas for eigenvalues andndigetions of the problem is
given and finally we show that the eigenfunctiohsfoare complete irH .

In the fourth chapter, assumin is a separable Hilbert space, we consider the
operatorsL, andL generated by the differential expressions

o (Y) ==y"(X) + Ay(X)
and

I(y)=-y"(x)+ Ay(x) + Q(X) y(x)

respectively, in the Hilbert spacél, =L,([0,1],H), with the same boundary
conditions

y(0)=0, y +by (1= 0,b> 0O

where A is a positive definite self-adjoint operator ki and Q(x) satisfies some
additional conditions.

Let the eigenvalues of the operatoty and L be g <u,<..<u <.. and
A <A, <..<A <.. respectively. In this section, firstly we investig the spectrum
and resolvent of the operatotg and L. Finally, under the conditions (1)-(3) the
following formula has been found for the reguladizeace ofL :

im (4 - ) =5 Q) -rQ(0)].

In the fifth chapter, we investigate the resolvemerator and completeness of
eigenfunctions of a Sturm-Liouville problem withsdontinuities at two points. The
problem contains an eigenparameter in the one whdery conditions. For operator-
theoretic formulation of the considered problem define an equivalent inner

product in the Hilbert spack,[-1,1]LJ C and suitable self-adjoint linear operator in
it.
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DIFERANSIYEL OPERATORLER IN DUZENLI1 iZLER i VE SPEKTRAL
OZELL iKLER i

OZET

Matematiksel fizgin bazi problemlerinde zamangigkenine gore kismi tlirev sadece
diferansiyel denklemde di# ayni zamanda sinir kalarinda da ortaya ¢ikmaktadir.
Boyle problemlere uygun olan sinirgge problemlerinde 6zger parametresi
sadece diferansiyel denklemde gidle ayni zamanda sinir kallarinda da
bulunmaktadir. Sureksiz sinirgkr problemleri ise farkli fiziksel ve mekanik
Ozellikleri bulunan cisimler arasindaki 1s1 ve maddetimi veya bgka gecs
sureclerinde ortaya cikmaktadir. Literatirde steel&urm-Liouville problemleri
hakkinda cadmalar mevcuttur, ama sureksizlik noktasi sayigldrrfazla oldgunda
O0zdeser ve 6zfonksiyonlarin asimtotik davrglarinin ve bazi spektral 6zelliklerinin
nasil dgistigi bu tezde incelenen konular arasindadir. Yinedtigde diferansiyel
ifadede sureksiz operatér iceren Sturm-Liouvillemorlerinin dizenli izleri birkag
calisma dsinda aratirlmamstir. Bu tezde daha genel ve farkli sinirsdtarina
sahip sureksiz operator katsayili bir diferansomrator icin dizenli iz formulla elde
edilmistir.

Bu tezin esas kismi 5 bélimden ghaktadir. Gig bdliminde tezde incelenen
problemler tanitilmy, bunlarin uygulama alanlarindan bahsedijnteorik 6nemi
belirtiimis ve bunlarla ilgili olarak yapilan camalar hakkinda literatir 6zeti
verilmistir.

Ikinci bolimde isg-1h)0(h,h,)0(h,] aralginda tamimli; iki noktada
sureksizlge sahip

of, xO[-1h),
w(X) = wzz, XD(hvhz)’
o, x0(h,1

agirhk fonksiyonuna sahip
-u"+qg(xX)u = Aa(X)u
diferansiyel operatoru ve

cosau(-J+ simu'(- }= 0

A(Bu(®)-Bu (9)+(Bu()-Bu (D)= o,

XV



seklinde sinir keullarinin birinde 6zdger parametresinin yer afll

geck (iletim) kosullarina sahip sinir-ger probleminin - dzdgerleri  ve
ozfonksiyonlari igin asimtotik formul bulunngwr. «(x)=1 ve y =3 (i=14)
olarak alindginda problem surekli bir sinir-gder problemine doriir ve elde edilen
sonuglar [C. T. Fulton, Two-point boundary valueolgems with eigenvalue
parameter contained in the boundary conditions¢.FRoy. Soc. Edinburgh Sect. A
77 (1977) 293-308] camasinda elde edilen sonuclarla gaki Surekisizlik
noktalarinin sayisini tek bir nokta olarak almamiurumunda ise sonuclar [O. Sh.
Mukhtarov and M. Kadakal, Some spectral propertiesne Sturm-Liouville type
problem with discontinuous weight, Siberian Math&ozd Journal, 46 (2005) 681-
694] calsmasindaki sonuclarla c¢gki. Yani elde edilen sonuclar literattrdeki
sonugclarin bir geneligiriimesidir.

Ucuincti béliimde ise sinir falunda 6zdger parametresi olan tanim agahda sonlu
sayilda  siureksiz  noktaya sahip olan sinfede problemi; yani

[-1h)O(h,h,)O0..0(h, .1 aralginda tanimli
=u"(x) +q(x)u(x) = Au(x)
diferansiyel operatoru;

au(-1)+au'(-1)=0,

(BA+B)u(1)-(BA+B)u@)=0

sinir kaullan ve

u(h -0)-gu(h +0)=0,
u'(h -0)-gu'(h +0) =0,

geck kosullari ile oluturulan sinir-dger problemi uygun bir Hilbert uzayi ve bu
uzayda kendinesebir lineer operator tanimlanarak problem operdgitklem olarak
ifade edilmgtir. Kokleri (sifirlart) sinir-dger probleminin 6zdgerleri olacaksekilde
bir polinom bulunmg ve 6zdgerlerin kathlgl incelenmgtir. Daha sonra 6zger ve
0zfonksiyonlar icin asimtotik formuller bulunmu spektrumunun sadece
Ozdeserlerden ibaret oldiu ispatlanmy, resolvent operatori incelengni
0zfonksiyonlar cinsinden seri acilimi elde edidmie 6zfonksiyonlarin tangi
incelenmgtir.

H sonsuz boyutlu ayrilabilir bir Hilbert uzayr olmalizere H1:L2(0,1;H)
uzayinda

XVi



o (y) ==Y (%) + Ay(x),
1(y) = =y"(x) + Ay(x) + Q(X) y(X)
diferansiyel ifadeleri ve ayni
y(0)=0,YyD)+by@)= 0, b> (
sinir kaullar ile olusturulan operatorler sirasiyld, ve L olsun. BuradaA,
D(A)OH olmak iizereD(A) danH ye

A=A zI,A*Og,(H)

kosullarini sglayan bir operatordir v@(x), operator fonksiyonL[O,]] aralginda
tanimhdir ve gagidaki kasullar salar:

a.) Her XD[O,]] icin Q(x):H — H ikinci mertebeden zayif tireve sahiptir.
Q"(x) zayif  olgulebilirdir  ve her  x0[0,]] icin
Q" (x):H - H (i=0,1,2 kendine g nukleer operatérlerdir.

b.) HQ(i)(X)Hal(H) (i =0,1,2) fonksiyonlari [0,]] aralginda sinirl ve

Olculebilirdir. Buradaal(H), H dan H a nikleer operatorler uzayini
gostermektedir.

c.) Her f OH igin Jl'(Q(x) f,f),dx=0dr.

L, operatorinin ozgerleri (4 <, <..< i <...ve L operatorlerinin dzdeerleri
A=A, <...< A, <...olsun. Dorduncl bolimdel, ve L operatorlerinin saf ayrik

spektruma sahip olgu gosterilmg, resolvent operatérleri icin bazsidikler elde
edilmis ve L operatdrinin dizenli izi igin

Mp

im, . >"(4, - 4) =5 [rQ() ~trQ(0)]

k=1

seklinde bir formul bulunmgtur. Eger diferansiyel ifadedeki sinirsiz katsayil
operatdri yaniA operatorini 6zdgeolarak sifira git alirsak elde edilen sonuclar [K.
Koklu, I. Albayrak, A. Bayramov, A regularized texdormula for second order
differential operator equations, Mathematica Scaanca, 107 (2010) 123-138]
calismasindaki sonuglar ile ¢cala.

Besinci bélimde ise [-1,1] arag@inin h ve h, gibi iki i¢ noktasinda sureksiz olan,
katsayilari sonlu

fu ::i) ~(p(x)u) +a(x)up=Au,x0[~1h) O, ) O (h, ]

r(x
diferansiyel denkleminden,
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u(-1) =0,
(/]al+lgl)u(1) _(/]az"'lgz)u '(]) =0

sinir kaullarindan ve x4, x=h, sireksizlik noktalarindaki

yu(h,—0)=2ou(h,+0),

yzu’(rﬁ -0)= a_2u'(hl+ 0),
yau(h, —0) =ou(h,+0),
yu'(h,=0)=0,u'(h,+0),

geck kosullarindan olgan bir Sturm-Liouville probleminin 6zfonksiyonlarm
tamligl incelenmgtir. Sinir-deger-gecs problemi 6nce uygun Hilbert uzayinda
kendine ¢ bir operator yardimiyla 6zder problemi olarak ifade edilgtir. Daha
sonra bu operatoriin simetrik bir operator @lduspatlanmy ve 06zfonksiyonlar
sistemine acilim teoremi ispatlarytm.

XVili



1. INTRODUCTION

Let L be a linear operator defined on some set of elsném elementy #0 is
called an eigenfunction df if Ly =Ay; the numberi is called an eigenvalue df
One of the most important operators which is frexdjyeencountered in applications
is an operator of the form

d2

L=-"_
dx?

+a(x),
where the functiorg(x) will be assumed real and, to begin with, contirmion some

interval [a,b]. For this operator the set of elemeny$x) mentioned above is

determined by the obvious differentiability comaiit and also by certain conditions

on the boundary of the interv, b .

The most important boundary conditions for the ajmrL are the followings:

l. y(@)cosa+y'@)sim= 0
y(b)cosB+y (b) sinB= 0
Il y(a) = y(b), y'(a)=y'(b).

The boundary value problem

d2
Ly(x) =— r Z’+q(><)y=/1y,
X

y(a)cosa +vy '@)sim = 0,
y(b)cosB+y (b) sinB= 0

is known in the literature as the Sturm-Liouvill®blem [30].

Sturmian theory is one of the most extensively tiag fields in theoretical and
applied mathematics [1-24. 29-46, 48, 50-52, 54-B@lticularly, there has been an

19



increasing interest in the spectral analysis of nidaumy-value problems with
eigenvalue-dependent boundary conditions [2, 305,11, 16, 20-23, 33-42, 50-52,
57-60, 63, 65, 66, 69]. Sturm-Liouville problemssa as a result of using the
method of separation of variables to solve clasgagial differential equations of
physics, such as Laplace’s equation, the heat iequanhd the wave equation. A
Sturm-Liouville problem with eigenparameter con&inn the boundary condition
arise upon separation of variables in the one-daeal wave and heat equations
for a varied assortment of physical problems, mghe diffusion of water vapour
through a porous membrane and several electrizitiproblems involving long
cables. (for example, see [16, 41]), vibratingngtnproblems when the string loaded
additionally with point masses (for example, sed])5Also some problems with
transmission conditions arise in thermal conducpooblems for a thin laminated
plate (i.e., a plate composed by materials witlfied#ht characteristics piled in the
thickness) [32, 56]. In this class of problemsnsraission conditions across the
interfaces should be added since the plate is kedh The study of the structure of
the solution in the matching region of the layethmthe basis solution in the plate
leads to consideration of an eigenvalue problemaosecond order differential
operator with piecewise continuous coefficieatgl transmission conditions [29, 32,
45, 54, 56]. Sturm-Liouville problems with transsi@n conditions at one interior
point have been studied by many authors [2-7, 3138, 36, 39-43, 50, 52, 57, 59,
60, 66, 68]. In [22] and [65] Sturm-Liouville prign with transmission conditions
at two interior points studied. Li et al. [31] gathe complete descriptions of self-
adjoint boundary conditions of the Schrodinger epmr with d(x) and J'(x)

interaction. Adjoint and self-adjoint boundary walyproblems with interface

conditions have been studied by Zettl [67].
In 1977, Fulton [16] considered the Sturm-Liouviligenvalue problem
—-u"+qu = Au,

cosau @)+ simu’ & = 0,

~(Bu(b) - A (5) = A( BLutd) - U b)
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and obtained asymptotic formulas for eigenvaluesl a&mgenfunctions of this
problem.

In 2004, Altinisk et al. [3] investigated the asyotrs of eigenvalues and
eigenfunctions for the differential equation

—a(x)u’(x) +a(x)u(x) = Au(x)

in the interval[—l,]] except one inner poink=0 together with the eigenvalue-
dependent boundary conditions

au(-1)+au' (-1 =0,

(,81'/] + ,81) u(l) = (,82'/] + ,82) u'(d)

and transmission conditions at the point of disicwiity

yu(0-)=9du(0+),
yu' (0-)=o,u'(0+).

wherea(x) =a’ for xJ(0,] anda(x)=a; for x0O[-1,0) and obtained asymptotic

expressions for eigenvalues and eigenfunctions.
In 2005, Mukhtarov and Kadakal [39] considered $twerm-Liouville equation

-u" +q(X)u = Aa(X)u

in the interval[-1,0)0(0,1; where w(x) is a discontinuous weight function such
that w(x)=«f for xO[-1,0), and w(x)=a; for x0(0,1], together with the

standart boundary condition a&t=-1
cosau (-1 + simu'(- 1= 0

the spectral parameter dependent boundary conditim=1

21



A(Bu(R)- A (1) +(Bu()- A (9) = o
and the two transmission conditions at the pdimtigcontinuity x =0

yu(-0)~5u(+0) = 0

y,u'(-0) - d,u’ (+0) = 0.

In the second chapter, following [39] we conside boundary value problem for

the differential equation
ru :=-u"+qg(X)u = Aa(X)u (1.1)

for xO[-1,h) O (h,h,)O(h,,q (i.e., x belongs to[-1,1] but the two inner points
x=h and x=h,), where q(x) is a real valued function, continuous [inl,hl),
(h.h,) and(h,,1] with the finite limitsq(+h) =lim,_,, , q(£h,) =lim, . ; @(X)
is a discontinuous weight function such thafx) = «f for xO[-1,h), w(x)= a2
for xO(h,h,) and w(x)=af for xO(h,,1, w>0 together with the standart

boundary condition ak =-1
Lu =cosau(- 3+ sirau'(- )= 0, (1.2)
the spectral parameter dependent boundary conditim=1
Lu =4 (,Bl'u (1)- B (1)) + (ﬁlu ()-Bu( J)) =0, (1.3)
and the four transmission conditions at the padfidiscontinuityx=h andx=h,

Lu = ypu(h-0)-ou(h,+0) =0, (1.4)
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L,u =pu'(h,—0)-du'(h,+0)=0, (1.5)
Lu = yu(h,-0)-du(h,+0)=0, (1.6)
Leu = pu'(h,—0)-ou'(h,+0) =0, (1.7)

in the Hilbert spaceL,(-1,h,)0L,(h,,h,)0L,(h,1) where AOC is a complex
spectral parameter; and all coefficients of thernglauy and transmission conditions

are real constants. We assume naturally that|+|a,|#0, ‘,[31"+‘E2‘¢0 and

|B]+|B,|#0. Moreover, we will assume that p =B8,-33,>0. We find

asymptotic formulas for eigenvalues and eigenfmstiof the problem (1.1)-(1.7).

In the third chapter, we examine eigenvalues angendunctions of one
discontinuous eigenvalue problem which consisttafr8-Liouville equation

Tu :=-u"(X) +gq(x)u(x) = Au(x) (1.8)

on[-1,h)O(h,h,)0..0(h,,3 . together with eigenparameter-dependent boundary

conditions

ru=au(-1)+au'(-1)=0, (1.9)
ru=(BA+B)u(1)-(BA+B,)u@®)=0 (1.10)

and transmission conditions at the points of disioaity x="h (i =1,m),
T,.u=u(h-0)-3du(h+0)=0, (1.11)

T u=u'(h -0)-Ju'(h +0)=0, (1.12)
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where -1<h <h,<..<h, <1, g(x) is a given real-valued function continuous in
[-1h).(h.h,),....(h,, ] and has finite limitsq(h +0)=1lim, _,,,q(X) (i :1,_m);

A is a complex eigenvalue parameté,r(i =1_m) ,a;, aJ'., B, ,BIf (j =1, 2) are real
numbers; |a,|+|a,|#0 and J#0 (i =1_m) As following [16] we assume

everywhere thap = ﬁ’l',[z’z - ,[:’1,[:"2 >0.

Third chapter organised as follows: following theecator formulation of the
problem (1)-(5) in a suitable Hilbert space in S&P2, asymptotic approximate
formulas of characteristic function derived for ffodistinct cases in Sect. 3.3,
asymptotic formulas for eigenvalues and eigenfomstiof the problem (1)-(5) is
given in Sect. 3.4, and in the last section we emath the completeness of

eigenfunctions of the problem (1.8)-(1.12).

Let H be a separable Hilbert space. We denote the pnoeluct inH by (Elj] and
the norm inH by |if. Let f be a strongly measurable function defined[ort]
with values inH such that

1.) The scalar functior(f(x),g) Is Lebesgue measurable for evagylH in the

interval [0,1];
2) [IF G dx<eo.

The set of all functionsf satisfying the above conditions is denoted by
H,=L,(0,H). If the inner product of two arbitrary element§ and f, of the

spaceH, is defined as

(f, ), = [(f.00, F,00)dx  (f,f,0H),

O ey
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then H, becomes a separable Hilbert space [24]. The narithe space H, is

denoted by|[], . o.,(H) denotes the set of compact operators freimto H . If
Alo,(H) then A'A is a nonnegative self-adjoint operator a(nldA)mDam (H)

[13]. Let the nonzero eigenvalues of the operator (A*A)ll2 be
52s,2..25 (0sk<w). Here each eigenvalue is repeated according to its

multiplicity. The numberss,s,,...,5, are called s-numbers of the operatar If

k<o, thens, =0 where j =k +1,k + 2,... The s-numbers of the operatéris also
denoted bys (A) (k=1,2,..). If A is a normal operator, that i& A= AA" then,
s(A)=|A (A) (k=12,..) [13]. Here, 4(A),A(A),...A (A) are the non-zero
eigenvalues of the operat@k. We will denote the set of all operato/A 1o, (H)

such that the s-numbers of which satisfy the cdmditzsf(A)mo by o, or
k=1

o,(H). The seto, is a separable Banach space with respect to tme no
1
2 p
A= S8

(see [13]).
For p=1 the spaceg,(H) is called the space of kernel operators. Thuspenator

in g,(H) is called a kernel operator. k0o, (H) then for any linear bounded

operatorB:H - H we haveAB,BADg, (H) and

|BA

|AB

aw) <IBIIA
aw) <I[BIIA

ay(H)’

oy(H) "

(see [13]). IfAO g, (H) and{ej}il 0 H is any orthonormal basis then the series

00

Z(Aei’ei)

j=1
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Is convergent and the sum of the serE%Aej ,ej) does not depend on the choice of
j=1

. The sum of the serieE(Aej ,ej) is said to be matrix trace dk
=1

the basis{e}”

=1

and is denoted byrA(see [13]). We have

u(A)

trA= Z/\k (A).

Here each eigenvalue is counted according to its algebraic multiplicity number

and u(A) denotes the sum of algebraic multiplicity of nare eigenvalues oA
(see [13]). A self-adjoint operator is said to hgwarely-discrete spectrum if its

spectrum consist of eigenvalugs }” of finite multiplicity andlim __|A;|=e.

00
=1

The first work about the theory of regularized &sof differential operators belongs

to Gelfand and Levitan [17]. They considered theri@tLiouville operator
-y"+[a(x) - A]y =0,
with boundary conditions
y(0)=y'(7)=0,

where q(x) DCl[O,n] . Under the conditiorqu(x) dx =0 they obtained the formula

(4, =4 (a(0) +a(m).

n=0

Here, y, are the eigenvalues of the operatgy’ +q(x) y=Ay and A, =n® are the

eigenvalues of the same operator wgix) = 0. The limit given in the form

n

lim, > (A1)

k=1
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is called the regularized trace of operalar

First, the trace formulas for the Sturm-Liouvillpavator were obtained in [15, 17].
Afterwards these works have been followed by numeisiudies. The bibliography
on the subject is very extensive and we refer ¢olit of the works in [30, 48]. The
trace formulas related to the Sturm-Liouville pexbl with bounded self-adjoint

operator were considered in [1, 8, 9, 14, 25].

Koklh et al. [25] under some additional conditimigained the formula

;{;(/‘m —(m—%D —:[trQ(x) dx} :le[trQ(l) ~trQ(0) ]

for the operatoiL generated by the differential expression
—Y' (%) +Q(X) y(X)
with the boundary conditions

y(0)=0, y(Q)+ay (D)= 0, a> (

in the Hilbert spaceH, = Lz([O,J] ,H) where Q(x):H - H self-adjoint nuclear

operator andH is a separable Hilbert space.
Let L, and L be operators which are formed by the differergigressions
l,(y) =-y"(x)

and
1(y) ==y (3) +Q(X) y(X)
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respectively, in the spade, (0,7T;H) with the same boundary conditions

y(0)=~-y(m), y(©0)=-y'(n)

where H is a separable Hilbert space. Bayramov et aloff@ined the formula

for the regularized trace of operator

Let H be a separable Hilbert space. In the Hilbert spHGe LZ([O,J] ,H) we

consider the self-adjoint operatbr generated by the expression

1(y) ==y" (%) + Ay(x) + Q) y(X)
with the boundary conditions

y(0)=0, y (D)+by ()= 0,b> O (1.13)
where A is a positive definite self-adjoint operator kh, which is the inverse to a

compact operator; we may assume tAat | where | is the identity operator and

suppose that the operator functi@fx) satisfies the following conditions:

(1) Q(x) has a weak derivative of second order in vakef0,1]. The operator
function Q'(X) is weakly measurable and for everi[0,], Q"(x): H - H

(i=0,1,2) are self-adjoint nuclear operators.
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(2) The functionsHQ(i)(x)

(i=0,1,2) are bounded and measurable in the

ay(H)
interval [O]] . Here al(H) denotes the space of the nuclear operators frbrio
H.

(3) f5(Q(x) f, f), dx=0 for every f OH.

Let L, be the operator generated by the differential esgion
l,(y) =-y"(¥)+ Ay(x) and the boundary conditions (1.13).

In the fourth chapter, we obtain a formula for tperatorsL, andL=L,+Q. This

formula is said to be regularized trace formula.

In this work, the problem that we consider is dif& from [25] by appearence of
unbounded operator coefficient.

The trace formulas can be used for approximateautzion of the first eigenvalues of
an operator [48], and in order to establish necgssad sufficient conditions for a

set of complex numbers to be spectrum of an opejé®.

The operatorsL, and L have purely-discrete spectrum [19]. Let the eigdures
of the operators L, and L be y<iu,<..sy,<.. and A <A <.<A <.

respectively.

Let y,<),<..<), <..be the eigenvalues of the operatdrand ¢,4,....@% ,.. be
the orthonormal eigenfunctions corresponding tee¢heigenvalues. It is known [19]
that, if

y; 0aj” asj - o (a> Og> 2

then

‘N

a

% asn - o | (1.14)

)

A, 4, Odn



hered > 0. By using this asymptotic formula, it is easily sdbat the sequent{ejn}

has a subsequengg, <y, <..<y, <...suchthat
M = My, >d1(k%—n,§%) (k:np+1,np+2,..) , (1.15)

here d, >0.

In this work, under the conditions (1)-(3) the @lling formula has been found for

the regularized trace df :

im (4 - 4) = 3 [1Q() -vQ(0)]

In 2010, Wang et al. [60] studied completenessigérdunctions of the following
Sturm-Liouville problem with eigenvalue-dependenbubdary conditions and

transmission conditions at one interior point:

~(a(u'(x)) +a()u(x) = Au(x),
au(-1)+au' (-1 =0,
A(Blu)- Ay (9)+ Bu()-par 0= 0
u(0+)-azu(0-)-Bu'(0-)=0,
u(0+)-a,u(0-)-Bu(0-)=0.

In 2014, Aydemir and Mukhtarov [6] investigated theompleteness of

eigenfunctions of the following boundary-value lpem:

=p()y" (x) +a(x)y(x) = Ay(x),
cosay )+ sinry' (-m) = 0,
cosBy(m)+ sinBy' (m)= 0

where singularity of the solutiog = y(x,4) prescribed by transmission conditions
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By (0-)+ By (0-)+ Bry (0+)+ Bry(0-) = O,
By (0-)+ Broy(0-) + Boy' (0+) + Byy(0-) = 0

In chapter 5, we shall investigate the Sturm-Lidevequation
‘u ::—{—(p(x)u')'+q(x)u}:Au, (1.16)

on three disjoint intervald-1,h), (h.h,) and (h,,1 with the eigenparameter

dependent boundary condition
u(-1)=o0, (1.17)

(Aa,+ B)u(1) —(Aa,+ B,)u'(d)=0 | (1.18)

and the transmission conditions

du(h,+0)= pu(h,-0), (1.19)
gu'(h +0)=y ' (h, - 0), (1.20)
au(h, +0)= yu(h,-0), (1.21)
o,u'(h,+0)=yu'(h,~0). (1.22)

Here p(x), g(x),r(x) are continuous functions oh=[-1,h)0(h,h,)0(h,.q;
and have finite limits p(h +0)=lim, .,p(x), q(h +0)=1lm, _,q(x),
r(hx0)=lim,_,,r(x) (i=1,2); AOC is eigenparameten;, 5 (i=1,2), 5;,y; (]
=1,2,3,4) are real numbers adgy, #0 (j=1,2,3,4). Also throughout this paper, we

assume thap:= a, B, — a, 5,>0, p(x) >0 andr(x)>0.
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We investigate the resolvent operator and compésterof eigenfunctions of the

problem (1.16)-(1.22). For operator-theoretic folation of the considered problem
we define an equivalent inner product in the HillsgraceL,[-1,1]J C and suitable

self-adjoint linear operator in it. We obtain thesolvent operator and prove
compactness of it. Finally we prove the main theoebout expansion in series of

eigenfunctions. In the special case @) =q(x)=1 and the transmission

coefficients 3 =y, (i=1,4) in the results obtained in this work coincide with

corresponding results in the classical continudusn®Liouville operator.
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2. ASYMPTOTIC PROPERTIES OF EIGENVALUES AND
EIGENFUNCTIONS OF A STURM-LIOUVILLE PROBLEM WITH
DISCONTINUOUS WEIGHT FUNCTION

The results of this chapter were the object ofahele “Asymptotic properties of
eigenvalues and eigenfunctions of a Sturm-Liouvgleblem with discontinuous
weight function, Miskolc Mathematical Notes, Vob,INo. 1, pp. 197-209, 2014".

2.1 Operator-Theoretic Formulation of the Problem

In this section, we introduce a special inner pobdin the Hilbert space
(L,(-1.h) O L,(h,h,) O L,(h,2))0 C and define a linear operatdk in it so that
the problem (1.1)-(1.7) can be interpreted as thenalue problem forA. To this
end, we define a new Hilbert space inner product on

H =(L,(-1h)0L,(h,h,)OL,(h,2))0 Chy

(F.6), =af [ (93 a2 22 [ (9a0u

172

30,00, ¢ o) . OO, . —
+of L2 f(x)g(x)dx+—=="4 f g
ylyzygnj hy 0 M

_(F() _(9(x) . . _
for F = ¢ andG = g OOH . For convenience we will use the notations
1 1

R (u) =4u@)- By @), R(u) =4u@-By Q)

In this Hilbert space we construct the operator H — H with domain
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D(A) = { ( ]E )j| f (x), f'(x) are absolutely continuous nh,0[h,h,]

0[h,.1]; and has finite limité K+ O) h{x Of, h{x 0), h{+0);
rfOL,(-1h)0L,(h,h,)0L,(h,);Lf=Lf=Lf=Lf=L§f=0,

f, =R(f)]
(2.1)
which acts by the rule
AF = Zol waF:(foojDDu». (2.2)
~R(f) R(f)

Thus we can pose the boundary-value-transmissmioigin (1.1)-(1.7) inH as

u(x)

AU=AU, U ;[,
R(u)

jDD@) (2.3)

It is readily verified that the eigenvalues éf coincide with those of the problem
(1.1)-(1.7).
Theorem 2.1.The operatorA is symmetric.

o _[f(X)j _[g(X)j | .
roof. Let F=| and G=| be arbitrary elements dD(A) . Twice
R(f) R(9)

integrating by parts we find

(AF.G), ~(F,AG), =W(f,g:h-0)-W(f g;-1

5152 .
+—yly2( h2 0) (f g;h + 0))
51525354 . .
+E@aawﬁth—w(tgm+@) (2.4)
3.0,0.0, -
pylyzygn(Ri(”Rl(g) R(FR(9))
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where, as usuaW( f, g;x) denotes the Wronskian df and g; i.e.,

W (f,g;x) = f(x)g'(x)~ f'(X)g(X).

Since F,GOD(A), the first components of these elements, f.eand g satisfy

the boundary condition (1.2). From this fact weilgaee that
w(f,g;-1)=0, (2.5)

since cosa andsina are real. Further, a$ and g also satisfy both transmission

conditions, we obtain

w(f.gin-0)=2ew(f.gih+ ) (2.6)
- 33,00 -
W(f,g;h, -0 :Ww(f,g;hﬁo). 2.7)

Moreover, the direct calculations give

R(DR(G)~R(R(9) =-p(f,g:2). (2.8)
Now, inserting (2.5)-(2.8) in (2.4), we have

(AF,G), =(F,AG), (FGOD@®)

and soA is symmetric.

Recalling that the eigenvalues of (1.1)-(1.7) caeowith the eigenvalues oA, we

have the next corollary:

Corollary 2.1. All eigenvalues of (1.1)-(1.7) are real.
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Since all eigenvalues are real it is enough to ystasly the real-valued
eigenfunctions. Therefore we can now assume thatigénfunctions of (1.1)-(1.7)
are real-valued.

2.2. Asymptotic Formulas for Eigenvalues and Fundaental Solutions

Let us define fundamental solutions

¢,(x,A), xO[-1h), Xxi(xA), xO[-1h)
d(xA)=10,(x.4), xO(h,h,), andy(x ) =3 x,(x 4) , xO(h, h,)
¢,(x4),  x0(h,.q Xs(x.4), x0(h,.d

of (1.1) by the following procedure. We first consider tiext initial-value problem:

-u"+q(x)u=Aa¢fu, xO[-1,h] (2.9)
u(-1) = sina, (2.10)
u'(-1) =-cosx (2.11)

By virtue of ([55], Theorem 1.5) the problem (2(2)11) has a unique solution
u=¢,(x,A) which is an entire function of0C for each fixed xO[-1h].

Similarly,

-u"+q(x)u=Actu, xO[h,h,] (2.12)
u(h) =2-,(h, A), (2.13)
u'(h) =§¢;(h1,/1), (2.14)
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has a unique solutiom =¢2(x,)l) which is an entire function oA JC for each

fixed xO[h, h,]. Continuing in this manner

-u"+q(x)u=Adku, xO[h,,] (2.15)
u(h,) =§¢2(h2,/1), (2.16)
u'(h,) =?¢;(hz,/l), (2.17)

has a unique solutiom =¢,(x,4) which is an entire function oiCJC for each
fixed xO[h,,1]. Slightly modifying the method of ([55], Theorein5) we can

prove that the initial-value problem

~u"+q(x)u=Aaku, xO[h,,]] (2.18)
u)=BA+5,, (2.19)
u@)=8A+p4 (2.20)

(2.18)-(2.20) has a unique solutiam= x,(x,A) which is an entire function of

spectral parameted OC for each fixedxO[h,,1]. Similarly,

-u"+q(x)u=Aatu, xO[h,h,] (2.21)
o,
u(h,) =7)(3(h2,/1), (2.22)
, o,
u(h2)=7)(3(h2./l), (2.23)
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has a unique solution =)(2(x,)l) which is an entire function ofl JC for each

fixed xO[h, h,]. Continuing in this manner

~u"+q(x)u=Aafu, xO[-1h] (2.24)
)
u(h,) :7X2(h1,/1), (2.25)
ey Gy
u'(h) =7X2(h1,/1), (2.26)

has a unique solutiom = x,(x,4) which is an entire function oiIC for each

fixed xO[-Lh].

By virtue of (2.10) and (2.11) the solutioyj(x,)l) satisfies the first boundary
condition (1.2). Moreover, by (2.13), (2.14), (9 1hd (2.17), ¢(x,A) satisfies

also transmission conditions (1.4)-(1.7). Similathy (2.19), (2.20), (2.22), (2.23),
(2.25) and (2.26) the other solutiom(x,A) satisfies the second boundary condition

(1.3) and transmission conditions (1.4)-(1.7).sltwell-known from the theory of

ordinary  differential equations that each of the owakians
D, (A) =W(B(xA) X (%.A)), B, (A1) =W(8,(x.A). x,(x,4))and
Dy (A)=W(g;(xA), x5(x.4)) are independent ok in [-L,h], [h,h,] and[h,,1]

respectively.

Lemma 2.1.The equality A, (1) =227, (A1) =222 A (2) holds for eac O C.

A7 WY a

Proof. Since the above Wronskians are independent ofusing (2.16), (2.17),
(2.19), (2.20), (2.22), (2.23), (2.25) and (2.2@ fmnd
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8,(4) = ¢, (h. A) xi(huA) =4, (h,A) x (D, A)
(o[ Beal Bo e
:iﬁ 2:(4)= [y]yzm )](szz;)( (hz’A)J

(554¢3(h2,A)][”x(h A)j 98004y ()
YoV, Vs Yy

Corollary 2.2. The zeros ofp, (1), A,(A) andA,(A) coincide

In view of Lemma 2.1 we denota, (1), %A, (A) and £22:A, (1) by A(A).

nyaVaVa

Recalling the definitions of, (x,4) and x; (x,4), we can state the next corollary.
Corollary 2.3. The functionA(4) is an entire function.

Theorem 2.2.The eigenvalues of (1.1)-(1.7) are the root&\¢#i ) =

Proof. Let A(A,)=0. Then W(g,(x4,),x,(x.A,))=0 for all xO[-1h].
Consequently, the functiong, (x,4,) and x,(x,4,) are linearly dependent, i.e.,
X (%A) =kg,(x,4,), xO[-Lh], for some k#0. By (2.10) and (2.11), from this

equality, we have

cosax (- 14,)+ sirax’' (- 1,) = cosx, (= Bo)+ simxy(- 4,)

=k(cosag, (- 14,) + simag, (- U,)) =k( cos s+ sm(- cag)=

and so x(x,4,) satisfies the first boundary condition (1.2). Réng that the
solution x(x,4,) also satisfies the other boundary condition (&r8) transmission
conditions (1.4)-(1.7). We conclude thﬁ(x,/lo) is an eigenfunction of (1.1)-(1.7);
i.e., A, is an eigenvalue. Thus, each zeraiqf1) is an eigenvalue. Now let, be

an eigenvalue and Ielo(x) be an eigenfunction with this eigenvalue. Suppbsg¢
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A(A,)#0. WhenceW (g, (x,4). x:(x.40)) £ 0, W(,(x,4,). x»(x,A,)) % 0 and
W (&, (x,4,) . x3(x.A,)) £ 0. From this, by virtue of the well-known propertie§
Wronskians, it follows that each of the paifs(x,4,), X.(X4,): @,(%4).
X, (X%4,) and @,(x,4,), xs(x.4,) is linearly independent. Therefore, the solution

U,(X) of (1.1) may be represented as

C1¢1(X,/]0)+C2)(1(X,/]O), XD[_l’hJ) g
Uy (X) =5 ¢, (X, Ag) +Coxx(x.Ag), xO(hyhy),
G (X, Ao) +CoXa(X,A,), xO(h, 1,

where at least one of the coefficierts (i =ﬁ‘>) is not zero. Considering the true

equalities

L, (u(X))=0, v=186, (2.27)

as the homogenous system of linear equations iaahablesc, (i :1_6) and taking
(2.13), (2.14), (2.16), (2.17), (2.22), (2.23),28). and (2.26) into account, we see
that the determinant of this system is equal—l@%A4 (/10) and so it does not

vanish by assumption. Consequently the system \2&3 the only trivial solution

¢ =0 (i :1_6) . This is a contradiction. And the proof is complete

Theorem 2.3.Let A =47 and Imu =t . Then the following asymptotic equalities
hold as || - oo

(1) In casesina £ 0

¢1(k)(x,/1)=sina§—);( cog pe) (x+ ;L]+O[ﬁ exflt|cg (x+ )])J (2.28)
U
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oY) (x, 1) = glsmad cog #(wx+wh +w)]

1

. (2.29)
+O(WGXP(M(%X+GM+WD)J :
B (x, 1) = gl?sma; cog (wx+awh,+w)]
> (2.30)

+O{| |11k exp(|t| (wx+wh, +a)))J

(2) In casesina =0

-1
¢ X, A ——cosa— sin u x+ +0O| — expt|a (x+ (2.31)
()= ] e (x+ )] [M Bl )1)}

¢£k)(x,/1) IUL;_cosa— sn{,u WX+ wh +a))]
L (2.32)
+O{W8XP(|t|(%X+a&hl+wl))} :
¢(")(x A)=- Ns cosa— sn{,u WX+ awh, +a))]
P U0, dx*
(2.33)

1
+O[W exp(|t| (wx+wh, + a)l))} :

for k=0 and k =1. Moreover, each of these asymptotic equalitiesi$rainiformly

for x.
Proof. Asymptotic formulas forg, (x,4) and ¢,(x,4) are found in ([55], Lemma
1.7) and ([39], Theorem 3.2) respectively. But fleemulas for ¢3(x,/1) need

individual considerations, since this solution efided by the initial condition with
some special nonstandart form. The initial-valuebfgm (2.15)-(2.17) can be

transformed into the equivalent integral equation
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_¥ Y,
ux) =24, (h,,A) cosuw.x +
(x) 53¢2(2 ) U, w3,

¢'2(h2 /]) sinuwx

(2.34)
+%I;sin[,ua)3(x—y)]q(y)u(y)dy.
Let sina # 0. Inserting (2.29) in (2.34) we have
(% 4) :%sina cog p(wx+wh,+w)]
+22 ] sinf e (x=y)]a(y) 4o (y.A) o (2.35)

+O(ﬁ exp(|t| (wx+wh, + a)l))j :
Multiplying this by exp(-[t| (wx+wh, + @) and denoting
F(x,A)= exp(—|t|(a%x+ w)h, + a)l))¢3(x A),
we have the following integral equation

F(x,A) =%sina ex;(—|t|(a%x+ wh, + a)l)) cog/,/(a)3x+ wh,+ wj)]

173

X . 1
+%fﬁ'“[”‘%(x‘ y)] ex(~[t| e (x=))a(y)F & 4 ny+o(;j
Putting M (4) =max, |F (x.A ), from the last equation we derive that

M(A)SM{% +ﬂ

1~3
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for some  M;>0. Consequently, M(1)=0(1) as [} -, and so
¢3(x,/1):O(exp(|t|(a%x+a)2h2+a)l))) as |A| - ». Inserting the integral term of

(2.35) yields (2.30) for k=0 . The case k=1 of (2.30) follows at once on
differentiating (2.29) and making the same procedas in the casek=0 . The
proof of (2.33) is similar to that of (2.30).

Theorem 2.4.Let A =%, u=o+it. Then the following asymptotic formulas hold
for the eigenvalues of the boundary-value-transionsgroblem (1.1)-(1.7):

Case 1: 3,20, sina# 0

-1
U :M...o(lj, (2.36)
a%+w2h2+wl n
Case 2:3,#0, sina=0
-1
U, :M.Fo(lj' (2.37)
C(%+C{)2h2+a)1 n
Case 3:3,=0, sina# 0
-1
y78 :M+O(1j, (238)
a%+a)2h2+a)l n
Case 4:5,=0, sina=0
m 1
=———+0| — |, 2.39
T s 2.39)

Proof. Let us consider only the case 1. Puttixgl in

D, (A) =0 (%,A) x5 (%,A) = P5(X.A) x5(X.A)
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and inserting x,(LA)=8A+p8,. x;(LA)=BA+B, we have the following

representation fon, (1):

By (A)=(BA+B)85(1A) = (BA+B,)#(14) . (2.40)
Putting x=1 in (2.30) and inserting the result in (2.40), veeide now that

A4(A) :%%ﬁ’;(sina);ﬁ sin u(w,+ wh,+w) |

+O(|,u|2 exp( 3t|(w+ah, + a)l))) :

(2.41)

By applying the Rouché Theorem, it follows that(4) has the same number of
zeros inside the contour as the leading term {2 Hence, ifA, <A, <A,... are the

zeros ofp,(A) and 12 = A,, we have

mn-1
_mny) +3, (2.42)
a’é + w2h2 + wl
for sufficiently largen, where |J| < oy Tor sufficiently largen. By putting

in (2.41) we haved, :O(%) , and the proof is completed in Case 1. The prtmfs

the other cases are similar.

Theorem 2.5 The following asymptotic formulas hold for the eifienctions

¢,(x.4,), xO[-1h),
¢ﬂn(x)= ¢2(X’/]n)' XD(hl’h2)7
¢,(x.A,),  xO(h,.]]

of (1.1)-(1.7):

Case 1:8,#0, sina# 0
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sina COS{M]+O(%) xO[- 1) ,

Wty
¢, (x)=14sina CO{%W}O(%) xO(h )

4 sing cog (2 2malird [ o(2) xO(h, )

Case 2:5,#0, sina=0

_W+w  cosa @n(n-3)(x+1)
@ nn-l )Sm[ wz+w1 :|+O(n_12 XD[ 1hl

B, (%)= | e gmmsin] (el ] o (1), x0(n b

4 @ n(n-)
i o sinl (e ]2 o(1), x0(h, 1]-

5153 w n(n ) Wztwh 7w, n

Case 3:3,=0, sina# 0

sina cos{”"(:“l{m}+o(%) xO[- 1h) |
9, (X)={4sina cog 0 [+ 0(2) xO(h )

Wy twhtw,
W (@yx+anhy+a) n(n-3)
51535”10' CO{W +O(%) ,XD(hZ ,]I-
Case 4:8,=0, sina=0
_ W+ cosr am(x+1) i
sl e o), uof- 1),
— ) K wtw, ; @yx+arhy+ay) m
@, (x) =1L c;iasm[ B } (n) xO(h h,)
“WVs @t wyx+ashytay) m
51333 - C?_mS”S|n|: w3+w;1+a)1 i| O(n_lz) xO hZ’J]

All these asymptotic formulas hold uniformly far
Proof. Let us consider only the Case 1. Inserting (2.8Q@he integral term of (2.35),

we easily see that
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j sin[ e, (x=y)]a(y)@,(y.A)dy = O(exp(ltl (wx+awh, ”")))

Inserting in (2.28) yields

,(x, 1) = glg?’sma cog (wx+awh,+w)]
1+3

(2.43)

+O£ﬁ expt|(ax+wh, + a)l)J :

We already know that all eigenvalues are real.Heunhore, puttingl=-H, H >0
in (2.41) we infer thato(-H) -  asH - +co, and sow(-H)# 0 for sufficiently

large R>0. Consequently, the set of eigenvalues is boundeldwb Letting

\/I = M, in (2.43) we now obtain

¢,(xA,) = g}? sina cog 4, (wx+wh, +w) ]+O(;]

13

sincet, =Imy, for sufficiently largen . After some calculation, we easily see that

_ [ (ewx+awh,+w)m(n-1) 1
cod 4, (@x+awh,+w)]|= co{ %i;zhzl*'wl +O(—j

Consequently,

¢ (XA ) ylyssma, CO{((“)&X-'_a)2h2+w1)ﬂ(n_1)j|+o(1j
51 3 w3+w2h2+a)l

In a similar method, we can deduce that

#,(xA,) =§sina co{(a’z”“’lhl*“’l) ”(”‘1)} +o(1j

1 (4.)2+(4.)lh1+0.)1
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and

@, (x.4,) =sina co{qﬂ(”‘l)(x’fl)} +o(1j

W+ a4 n

Thus the proof of the theorem completed in Casgéheg. proofs for the other cases

are similar.
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3. SPECTRAL PROPERTIES OF DISCONTINUOUS STURM-LIOUV ILLE
PROBLEMS WITH A FINITE NUMBER OF TRANSMISSION
CONDITIONS

The results of this chapter are gathered in the&lart'Spectral properties of
discontinuous Sturm-Liouville problems with a fenitnumber of transmission
conditions, Mediterranean Journal of Mathematic®| 20.1007/s00009-014-0487-
X, in press (with O. Sh. Mukhtarov)”.

3.1. Operator Formulation
By using the method introduced in [40] we shallimefdirect sum of Hilbert spaces

but with the usual inner product replaced by appabe multiples. Namely, in the

Hilbert spaceH = L,(-1,1) O C we define an inner product by

(F.G) ;:Zm:[ j ijhjff (x) g(X)dx+-= | f,0,,

j=0\ 1= h; /0

whereh,=-1, h.,, =1, 9,=1, for

F:(f(x)>,6:<g(x)>eH.
fq 01

For convenience we put
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The function f (x) is defined or{-1,h ) O (h;,h,) 0..0(h, ] and has finite limits

f(h£0) =lim, ., f(x) (i=Im). By f,(x) (i=Lm+1 we denote the

functions
im, .o f(X, x=h,
f(x), x0O[-1,h), "
f,(X) ::{Iim {9, x=h f,(x) = f (x), x0O(h,h,) ...
w0 1A% | im, .o (0,  x=h,
im, o f(,  x=h, .
B 1 Clim, e T(X), x=hy,
fm(X) T f(X), XD(hm—l'hm)’ fm+1(X) ._{f(X), XD(hm,l]

lim, o f (¥, x=h_,

which are defined on Q :=[-1h], Q, :=[h,h],...Q, =[h..h.].

Q.. =[h,1 respectively.
In the Hilbert spacéH we introduce a linear operatdy on the domain

D(A) ::{FDH‘fi(x), f. (x) are absolutely continuous @ (i = nif ) T 0

)
Lz[_l’]] v Dol FU(h-@-J.U(h+ (): 0,75,.u ;u’(h_ ()—Jiu'(h+ 9): F
(i :1,m+1) and, =R (f)

by action low

tf
AF = .
( —Rq(f) )

Then we can rewrite the considered problem (1.8)2)lin the operator formulation
as

AF = AF

where
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Consequently, the problem (1.8)-(1.12) can be cmmsed as the eigenvalue problem

for the operatorA. Obviously, we have

Lemma 3.1.The eigenvalues of the boundary value problem {{IL&)?2) coincide
with those of A, and its eigenfunctions are the first componehth® corresponding

eigenelements oA

Lemma 3.2.The domainD (A) is dense inH .

f(x)

Proof. Let F :£ ‘ jD H, FOD(A) and let ’5;0 be the set of all functions

1

P
¢1(X), X € [-1,hy),

$(x) = < $2(X),X G (h1,hy),

| $m100.x € (i, 1

for  ¢,(x)0Co[-1h,), ¢,(x)0Co (h,h,), @, () OCs (h,, Y. Since

o u(x)) _ ~e
Co JOOD(A) (0OC) and U =( E))jDCo 000 is orthogonal toF , we have

(F.U Z( fffjh'ff

h

We can learn thaf (X) is orthogonal toCo in L*[-1,1], this implies f (x) =0. So

g(x) I'J

1

for all G:( JDD(A), (F,.G)= =0. Thus f,=0 since g, =R (g)

0
can be chosen arbitrarily. %Z(Oj' which proves the assertation.
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Theorem 3.1.The linear operatoA is symmetric inH .

Proof. Let F, GOD(A). By two partial integrations, we get
(AF,G)=(F,AG)+(W(f,g:h - 0)-w(f g;-1)
+02 (W (f,9:h, ~0)-W( f,g:h,+ 0))
+@wﬂw(n&m—Q—w(n&m+q%n“
+EH%W(L&Q—W(ﬂ&m+®)

J{fﬁdnaﬁkﬁﬁﬁﬂa)

(3.1)

where

W(F,3:%) = f0)7 () - F 0)g(x)

denotes the Wronskian of the functioris and g. Since f and g satisfy the
boundary condition (1.9), it follows that

W(f,g:-1)=0 (3.2)
From the transmission conditions (1.11)-(1.12)gee
W(f,g:h-0)=8"W(f,g;h+0),i=1m (3.3)

Furthermore,
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)
=(a1@-a1 () As()-£5 (3)-(81 (-5 (3)(p:3(3-£5()
(.6.-8.8)t Wa()+(86.-85)1(Ja ()

o We()-1(9g (§)=-w(r g9

(3.4)
Finally, substituting (3.2)-(3.4) in (3.1) then we get
(AF,G)=(F,AG) (F,GOD(A)). (3.5)

Now we can write the following theorem with the helps of Tkao 3.1, Naimark's

Patching Lemma [44] and using the similar way as in [40].
Theorem 3.2.The linear operatoA is self-adjoint inH .
Corollary 3.1. All eigenvalues of the problem (1.8)-(1.12) are real.

We can now assume that all eigenfunctions are real-valued.

Corollary 3.2. If A, and A, are two different eigenvalues of the problem (1.8)-

(1.12), then the corresponding eigenfunctioms and u, of this problem are

orthogonal in the sense of the following equality:

i[ j 5,2] ]:lul(x)uz(x)dx+ '=pl R, (u)R,(u,)=0.

We need the following lemma, which can be proved by the same d¢eehas in

[57].
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Lemma 3.3. Let the real-valued functiorq(x) be continuous in[—l,]] and

f (1), g(A) are given entire functions. Then for aAy1C initial value problem

—u"+g(x)u=Au, xe[-1,1],

u(-1)= 1 (A)u (-9 =g(a) (oru(= 1 (2) u (3=0(2))

has a unique solution =u(x,4) which is an entire function ol for each fixed

xO[-1,1].

We shall define two solutions

., (x), xO[-1h), Xu (%), xO[-1h) ,
5, (x)= #.1(x), )(ED(hvhz)’ and x, (x) = )(ZA(X),XED(hl,hz),
[ (x), xO(h,. 9, X(m) (x) . xO(h, .3

of the equation (1.8) as follows: Lek, (x) :=¢,(x,4) be the solution of equation

(1.8) on[-1,h], which satisfies the initial conditions

u(-1)=a,, u(-1)=-a,. (3.6)

By virtue of Lemma 3.1, after defining this solutjowe may define the solution
$,(x.A) =g, (x) of equation (1.8) or{h,h,| by means of the solutiog, (x, 1)

by the initial conditions
u(h)=07¢,(h,A), u'(hy)=5,¢(h, ). (3.7)

After defining this solution, we may define the w@n ¢,(x,A) =¢, (x) of

equation (1.8) orfih,, h,] by means of the solutiog, (x,A) by the initial conditions
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u(h,)=8;'9,(n,A), u'(h,) =8, (h,A). (3.8)

Continuing in this manner, we may define the sohut,, (x,4) =@y, (x) of

equation (1.8) on[hm,l] by means of the solutiog,, (x,/1) by the initial conditions

u(hy) = 3, (i), ' (1) = 8,70 (4) (3.9)

Therefore,¢(x,1) satisfies the equation (1.8) ¢n1,h )0 (h,h,)O0..0(h, ., the
boundary condition (1.9), and the transmission @@ (1.11)-(1.12).
Analogically, first we define the solutiof,,.,), (X) = Xy (% 4) on[h,,1] by the

initial conditions
u@)=BA+5, u()=BA+5. (3.10)

Again, after defining this solution, we may defithe solution x,,, (x) = x,,(x,A)

of the equation (1.8) ofh,,,h,] by the initial conditions

u(hm)zdm)(mﬂ(hm’/])’ u'(hm)za_m)(;ml(hm’/‘)' (311)

Continuing in this manner, we may define the sohutjy,, (x) = x,(x,4) of the

equation (1.8) on[-1,h] by the initial conditions

u(h)=0x,(h,2), u (h)=dx,(h,4). (3.12)
Therefore, y(x,A) satisfies the equation (1.8) ¢n1,h )0 (h,h,)O0..0(h, ., the

boundary condition (1.10), and the transmissionddams (1.11)-(1.12). It is

obvious that the Wronskians
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@ (1) =W, (4.x6:%) =4,(xA) x (x4) =4, (xA) X (x4), xOQ (i=1m+}.
are independent afJQ, and are entire functions of .

Lemma 3.4.For each AC,

A= e 1) =052 0) == [J e 1)

Proof. By using (3.7), (3.8), (3.9), (3.1and (3.12), it is easy to show that

V%(¢1,X1;h1)=5m(¢2,X2:h])=52W( s X3 )=00W, (4 o1 sh )
= 02O, (B, X 4ih mdzj (2 W N

50 (1) =& (4) = 80%0,) == []0 . )

Now we may introduce the characteristic functiotha&f considered problem as

CL)(/‘) = ai(A) = 5120)2(/1) = 512550)3(/1) = ...:(l:lé_izja)mﬂ(/])
Theorem 3.3. The eigenvalues of the problem (1.8)-(1.12) are zlkros of the
function w(A).

Proof. Let w(4,)=0. ThenW, (4., x,;x) =0 and therefore the functiong,, (x)

and x,, (x) are linearly dependent, i.e.

X, (X) =k, (X)’ XD[_l’hl]
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for somek, #0. From this, it follows thaty(x,4,) satisfies also the first boundary
condition (1.9), so,\/(x,)lo) is an eigenfunction of the problem (1.8)-(1.12)

corresponding to this eigenvaluk.

Now we let u,(X) be any eigenfunction corresponding to eigenvaldg, but
w(A,)#20. Then the functions @,,X,, @, Xs:---Be1 Xy Would be linearly

independent of-1,h], [h,h,] and [h,,1] respectively. Therefore, (x) may be

represented in the following form

o (X Ag) +Coxi(x.A,), xO[-1h),
(=] (A reu(xAd. xO(huh).

C2m+1¢m+1(x’/]0) +C2m+ 2/Ym+ 1(X’/] O) ’ XD(hm 7]] :

where at least one of the constant, C,,....C,,,,, IS not zero. Considering the

equations

7,(u(x))=0, u=1an+ Z (3.13)

as the homogenous system of linear equations ofahablesc, c,, C,,,, and taking

(3.7), (3.8), (3.9), (3.11) and (3.12) into accounfollows that the determinant of
this system is equal to

_(Ijgizwl (;lo)jajn:ﬂ()lo) #0.

Therefore, the system (3.13) has only the trivadbson ¢ =0 (i =1,2m+ 2). Thus

we get a contradiction, which completes the proof.

57



Lemma 3.5.1f A=/, is an eigenvalue, ther(x,4,) and x(x,4,) are linearly
dependent.

Proof. Let A = A, be an eigenvalue. Then by virtue of Theorem 3.3

W(B, Xy X) = @ (1) = 0

and hence
Ko () =K, (x) (i=Tm+] (3.1

for somek, 70, k, #0,...k ., # 0 We must show thatk, =k, =...=K_,,. Suppose,
if possible, that k, #k,,.,.Taking into account the definitions of the solago

#.(x, 1) and y; (x,4) from the equalities (3.14), we have

T2m+1(XAO) =X/10 (hﬂ _0) _Jm)(/lo (hﬂ + 0) :Xm/lo (hﬂ) _Jm)((mﬂ)/lo (hﬂ)
= km¢m (hﬂ) - Jmkm+1¢m+1(hﬂ) = km5m¢m+1(hm) _5mkm+1¢m+l(hﬂ)
= Jm(km - km+1)¢m+l(hm) = 0

since T, (X, )=0 and &, (k, -k,.,)#0, it follows that

¢(m+1)/10 (hm) =0. (315)

By the same procedure frorgmz()(%) =0 we can derive that

Bmerys, () =0 (3.16)

From the fact thap ., (x) is a solution of the differential equation (1.8) [dy,,1]
and satisfies the initial conditions (3.15) andl€3, it follows thatg,,.,, (x) =0

identically on [h,,1] because of the well-known existence and unigusetiesorem
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for the initial value problems of the ordinary laredifferential equations. Making
use of (3.9), (3.14) and (3.15), we may also detnad

B, () = B, (M) = 0. (3.17)

Continuing in this matter, we may also find that

¢(m—l)/10 (hm—l) = ¢£m_l)ﬁo (hm_l) =0.
: (3.18)

Do, (hl) - ¢1,10 (hl) =0.

identically on[h, . h,],...[-1h] respectively. Hencef(x,4,)=0 identically on
[-1h)O(h.h,)O..0(h,.J. But this contradicts with (3.6). Hencek, =K.

Analogically we can prove th&,_, =k, ..., kK, =k; andk =Kk,.

Corollary 3.3. If A=/, is an eigenvalue, then bot(x,4,) and x(x,4,) are

eigenfunctions corresponding to this eigenvalue.

Lemma 3.6.All eigenvalues/, are simple zeros af(A).

Proof. Using the Lagrange's formula (cf. [44]), it candb®wn that

ész(mm:l) (3.19)

j=0 1=1

(1 ‘”n){i[ djw (9, (x) dx} :( -

for any A. Recall that
X, (X) =k, (x), xO[-1h)0O(h h,)0..0O(h, 1.

for somek, #0, n=1,2,... Using this equality for the right side of (3.1@) have

59



W(g,.9,:1)==W(g, .x, 1 =ki(/1nR; (8,)+R(2,)

= L[@()-(1-A)R (2,)]

~0-2) 2R 0|

1
kn
1

Substituting this formula in (3.19) and letting — A, we get

Z[lljdﬂhjﬂﬁ” (x)dX:'zk—l(“’ (1.)-R (%))- (3.20)

Now putting

in (3.20) we getwf (4,) 2 0.

Definition 3.1. The geometric multiplicity of an eigenvaluk of the problem (1.8)-
(1.12) is the dimension of its eigenspace, i.e.nhmber of its linearly independent

eigenfunctions.

Theorem 3.4.All eigenvalues of the problem (1.8)-(1.12) aremetrically simple.
Proof. If f and g are two eigenfunctions for an eigenvaldg of (1.8)-(1.12) then
(1.9) implies that f (-1) =cg(-1) and f'(-1) =cg'(-1) for some constant[JC. By
the uniqueness theorem for solutions of ordinarffedintial equation and the

transmission conditions (1.11)-(1.12), we have tHatcg on[-Lh], [h,h,] and

[h,.1]. Thus the geometric multiplicity od, is one.
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3.2 Asymptotic Approximate Formulas of w(A) for Four Distinct Cases
We start by proving some lemmas.

Lemma 3.7.Let ¢(x,4) be the solutions of equation (1.8) defined in Bec8.1,

and letA = s*. Then the following integral equations hold f&r=0,1 :

¢1(:) (x)= a’z(coss(x+ j))(k) ‘alé( sirs(x+ ))(k)

+§jl(sins(x— y))(k) a(y)du (v)dy.

By (X) =28, (h)(coss(x-h))" +22¢, (h)(sirs(x-h))"

+§£(sin5(x-y))(k) A(Y) s (v)dy, i = 1m,

(3.21)

where([)](k) =< (D).

Proof. It is enough to substitutes’d,, (y)+8,(y), S, (¥)+8s (Y)--ns

SBimeays (¥) * By (¥) instead ofa(y)dy, (v), a(y) 8o (¥): A(Y) Py, (¥) in

the integral terms of the (3.21), respectively, artegrate by parts twice.

Lemma 3.8.Let A=s’, Ims=t. Then the functionsp,, (x) have the following

asymptotic formulas for |/l|_>oo, which  hold uniformly for x0Q,

(for i =1,m+1 andk = O,]).

48 E (o 3 r0( 4701 o2

j-1

Dd

if a,#0,
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#)) (x) = -2 (sins(x+1)" +0(|g/ ) (3.23)

j-1

sti

if a,=0.

Proof. Since the proof of the formulas fgt, (x) is identical to Titchmarsh's proof
to similar results forg, (x) (see [55], Lemma 1.7 p. 9-10), we may formulatanth
without proving them here.

Since the proof of the formulas fg, (x) and ., (x) are identical to Kadakal's and
Mukhtarov's proof to similar results faf, (x) (see [22], Lemma 3.2 p. 1373-1375),
we may formulate them without proving them heret Bwe similar formulas for
B0r (X),-.., By ) need individual consideration, since the last tswhs are

defined by the initial conditions of these speciahstandart forms. We shall only
prove the formula (3.22) fok =0 andm=3.

Let a, #0. Then according to (3.22) fon=2

4, (h3) _ a, COZSO(_hg + ]) +O(|S|_l ét\(kbﬂ))

1-2

and

g (n) = - ZS0 Y o i)

1-2

Substituting these asymptotic expressions intal{3\2e get

_a,coss(x+3 1% _ 1 p(xe)
¢5M(x)——515253 +Srj;sms(x y)q(y)¢M(y)dy+O(|s{ d ) (3.24)

x+1)

Multiplying through bye™**¥  and denoting
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F,, (x) =eg, (x)
we have

= 32C08(X+ ) iy

Lt cins(x— -xe) 1
Ful¥) =555 +< [sins(x-y)a(y)e**F,, (y)dy+0(l§”).

hs

DenotingM :=max, 4|F,, (x)| from the last formula, it follows that

8|0’2| M (4) ¢ M,
<22 B fq(y)ay+ Mo
aga)’ 19 10

2 8

M (A)

for some M, >0. From this, it follows that (,1) =O(1) as] . S0
¢4A (X) = O(ét\[(X-hs)+(ha-hz)+(h2—h])+(hl+1)] )

Substituting this back into the integral on thehtigide of (3.24) yields (3.22) for

k=0 and m=3. The other cases may be considered analogically.

Theorem 3.5.Let A =5?, t=Ims. Then the characteristic functio( 1) has the
following asymptotic formulas

Case L If B,#0, a,#0, then
w(/i)=,8;azs3(”5i)sin 25+O(|s|2e2‘t‘). (3.25)
Case 2 If §,#0, a,=0, then

w(A) :ﬂ;alsz[ﬁdjcos$+o(|s|ze2t) (3.26)
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Case 3 If ,=0, a, %20, then
=Ba, sz(ﬁ jc0525+0(|s|2 2‘”) (3.27)

Case 4 If 5,=0, a,=0, then

(1) = —,[:’ials(ljéijsin25+o(|sfe2t) | (3.28)

Proof. The proof is completed by substituting (3.22) ar®l28) into the

representation

(3.29)

Corollary 3.4. The eigenvalues of the problem (1.8)-(1.12) arenbed below.

Proof. Putting s=it (t>0) in the above formulas, it follows thad(~t*) - o as

t - oo, Therefore,a)(A) # 0 for A negative and sufficiently large.

3.3. Asymptotic Formulas for Eigenvalues and Eigenictions

Now we can obtain the asymptotic approximation faas for the eigenvalues of the
considered problem (1.8)-(1.12).

Since the eigenvalues coincide with the zeros ef ghtire functionw,,, (1), it

follows that they have no finite limit. Moreovergewknow from Corollaries 3.1 and
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3.4 that all eigenvalues are real and bounded bditmmce, we may renumber them

asA, <A, <A,<.., listed according to their multiplicity.

Theorem 3.6.The eigenvalued, =s?, n=0,1,2,.. of the problem (1.8)-(1.12) have
the following asymptotic formulas fam — oo

Case L If B,#0,a,% 0, then

s = 7(n-1) +o(1) (3.30)

s = m(n-3) +o(1j. (3.31)

s = m(n—3) +o(5). (3.32)

s, :@+o(1j. (3.33)

Proof. We shall only consider the first case. The otheses may be considered

similarly. Denoting « (s) and w,(s) the first andO-term of the right of (3.25)
repectively, we shall apply the well-known Rouch@&eorem, which asserts that if

f (s) and g(s) are analytic inside and on a closed contGyrand|g(s)| <|f (s)

on C, then f (s) and f (s)+g(s) have the same number zeros ins@eprovided
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that each zero is counted according to their mlidifp. It is readily shown that

()| > | (s)| on the contours

[N

c, ::{smcuq = (n+2)”}

2
for sufficiently largen.

Let AysA <A,<.. be zeros ofw(A) and A =<;. Since inside the contout,,

wi(s) has zeros at points=0 ands=%, k=+1, +2,...,+n.

+0 (3.34)

where J, :O(l) for sufficiently largen. By substituting this in (3.25), we derive

that 8, =O(2) , which completes the proof.

The next approximation for the eigenvalues may btined by the following

procedure. For this, we shall suppose tq@y) is of bounded variation ilﬁ—l,]].

Firstly we consider the casﬁz' #0 and a, #0. Putting x=h,x=h,,...x=h_ in

(3.21) and then substituting in the expressiongyf,.,, . we get that

h.
, ) moo1
By (1) =5 2-sin - cosB+ > —— [ cos( 2y))a(y)d., (v)dy

LT

whered,,,, =1.

Substituting (3.22) into the right side of the lagegral equality then gives
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B (1) = r2-sin =1

LI

: ”5 5 coss(1-9) cofsl 13))als)ar+of"")

On the other hand, from (3.22), it follows that

B (1) =5 (197¢*)

|:1|5i

Putting these formulas into (3.29), we have

- . .
cu(A)z%sinZﬁs2 ,810'+,82m cos3
o Ik

' h'+1

5 Lo [ cods( 1)) a(y) s (¥) [+O [l %)

j=0 oM
[

I

i=j+1

Putting (3.34) in the last equality we find that

sin(2d1)=—cos(%2§") /31+a jq I jCOS(%y)Q(y)dy
B, 2 2I_1|5 2”@‘1
*offsI")
(3.35)
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Recalling thatq(y) is of bounded variation iﬁ—l,]] , and applying the well-known

Riemann-Lebesque Lemma (see [70], p. 48, Theor&®) 4o the second integral on

the right in (3.35), this term i©(2) . As a result, from (3.34) it follows that

1 |8 a 1 ¢ 1
Jn:_— —%+—1_T g(y)dy +O(—j
n(n-1)| B, a, 5 _Il( ) n®

Substituting in (3.30), we have

m(n-1) 1 1
Sn = dy +0 —ZJ
2 m(n-1) ,82 az 2”5 (n
Similar formulas in the other cases are as follows:
In case 2:
%:ﬂ(n_%) :81+ 1 J‘q dy +O( J
2 )| 2 2”5
In case 3:
-1 1
s =L 28 fa(y)y o 3]
2 n(n-3)| B a, 2”5
In case 4:
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Recalling thatg(x,4,) is an eigenfunction according to the eigenvalljeand by

putting (3.30) into the (3.22) we obtain that

9, (X) =2 co{”(”_lz)(m)jm(i] j=Tm+

n

in the first case which holds uniformly ford[-1,h) O (h,,h,) O ..0(h, 3.

Similar formulas in the other cases are as follows:

In case 2

In case 3

In case 4
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6, (x)=- zﬁi sin[m(x+1)j+o(i2J i=1m+1
ml—ld 2 n

All these asymptotic formulas hold uniformly ferd[-1,h) O (h,,h,) O ..0(h, .3
3.4. Completeness of Eigenfunctions

Let A be the operator as defined in Section 3.1.

Theorem 3.7.The spectrum ofA consist only of eigenvalues, i.er(A) = o, (A).

Proof. Let 77 is not an eigenvalue. Consider the operator egudtA-71)U = F

f(x
for arbitrary F =[ ]E )jDH . This equation is equivalent to the inhomogeneous
1

differential equation
-u"+q(x)u=f(x), xO[-Lh)O(h h,) O ..0(h, .} (3.36)
subject to inhomogeneous boundary conditions
ru=0, ru="f; (3.37)
and transmission conditions
T, U=T,, =0, i=1m (3.38)

where
U :[_l;é)&)j OD(A).
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Making use of the definitions of the functiogs (x) and x;, () (i =1,_m) we find

that the general solution of the equation (3.38)tha following representation:

« h
1 10 () 1 ()23 [, () 1 ()

u(x) =1 +Cy@, (X)*+Cyx, (x), forxd(h_,.h), (3.39)
1=1,2,..m

where C;, C,, are arbitrary constants. Substituting (3.39) iB73(3.38) we see

that the unknown constantS; (j=1,2;i=12,...m) are uniquely solvable, i.e.

u(x
UZE—R{(L)} is uniquely solvable. Therefore the resolvent afmer

R(r7,A)=(A-n1)" is defined on wholeH . Moreover, by virtue of Theorem 3.2

and well-known Closed Graph Theorem we get tR@y, A) is bounded, i.eq is a

regular value ofA The proof is complete.

Theorem 3.8.The resolvent operath(n, A) is compact in the Hilbert spadd .

Proof. Let A, <A, <... are eigenvalues oA and E,P,,... are orthogonal projections

onto corresponding eigen-spaces, respectively.eSfas self-adjoint operator with

discrete spectrum we can write the spectral reisolubf the resolvent operator
R, A) by

R(/],A):Z:M 5P (3.40)

By virtue of Theorem 3.6 we havg—;;l_—azo(n—lz) for n - . Therefore the series

(3.40) is strongly convergent. It is obvious thhe torthogonal projectiond,,

n=1,2,... are compact operators, since each of which arefirofe rank.
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Consequently the sum of the series (3.40) is atsopact in H. The proof is
complete.

Now we are ready to formulate the following propestby using the above results,
the well-known spectral theorems for self-adjoiperators with discrete spectrum
and the same techniques as used in [16].

u, (X)

Let U, =[—R1'(u

)] be a maximal set of orthogonal eigenelementa of

Theorem 3.9 (Parseval's equality)For U [1H

2

b =3 .v,)

Theorem 3.10 (Expansion in terms of eigenelement$jor D(A) OH

U=>(,u)u,

with the series being absolutely and uniformly cengent in the first component and
absolutely convergent in the second component.

j1

Denote by ELz(h. h, ) the direct sum of Hilbert spaced,(-1,h),
=0

Lo (hhy)nbo(hy )

Corollary 3.5 (Expansion in terms of eigenfunctions The eigenfunctionsi, (X),

1L

n=1,2,... of the problem (1.8)-(1.12) are complete ﬂan(h. h. ) i.e. for every
j=0

ij@oLz(h. h..),

jrjL
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f(x) Z[Z[ j ]f (y)un(y>dy}un(x>

in the sense of strong convergenC(-:Eilll2 (hj,hj+l).
j=0

73



74



4. THE REGULARIZED TRACE FORMULA FOR A DIFFERENTIAL
OPERATOR WITH UNBOUNDED OPERATOR COEFFICIENT

The results of this chapter are gathered in anlanyritten by “E.Sen, A. Bayramov
and K. Orucg@lu” and accepted for publication in the journal ‘Ahced Studies in
Contemporary Mathematics”.

4.1. The regularized trace of L

Let R} and R, be the resolvents of the operatdrs and L, respectively. From

(1.14) we get that the seriés;_ - and X ;_,—1- are convergent fod Z A, (4

Al [t~

(k=1,2,..) . In this caseR} and R, are nuclear operators and

r(R,-R)=>

[ 1 _ 1 j 4.1)
g\ A A 4 =4

Let |A|=b, :2‘1(,unp+l+,unp). It is easy to see that for large value pf the

inequalities My, < b, < J75 and )Inp <b, <A are satisfied. The seriegleﬁ

np+1

and ij:lTl_ﬂ are uniform convergent on the cirqlda| =b,. Therefore from (1.15)

and (4.1), we get

Mp

1
(A —t4) = o | L (R, -R})dA. (4.2)

k=1

On the other hand, from the formuRy = R} - R,QR;, the equality
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R, -R’= i(—l)j RO(QR)’ +(-1)"* R, (QRY)"" (4.3)

j=1

is obtained for every natural numbir From (4.2) and (4.3) we can get

Ny P )
Z(Ak_:uk): M, +M ., (4.4)
k=1 j=1
Here
Mizi)jj tr[(QRO)J}d)I =12 (4.5)
P 27ij b, ! LT '
and
M —ﬂj Atr[R (QRO)Nﬂ}d/i (4.6)
N o Jpes, AV ' :

Let {¢,(x)}. be the orthonormal eigenfunctions correspondinghto eigenvalues
{/Jq}:o respectively. Since the orthonormal eigenfunctiomscording to the

eigenvaluesy, +y,  (k=1,2,..;j = 1,2,.). of the operatorl, are a,sin\v, @

(k=1,2,...;j = 1,2,.) respectively then
v, (x)=a, sinfv, g, a=12,.. 4.7)

herev, <v, <...<y, <... are positive roots of the equatiod cosv +b sinfy = (

and

_ 2
a, = - :
\/1+b ‘cos v,
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Since QR; is a nuclear operator for everyOp(L,) and {wq(x)}f IS an
orthonormal basis of the spaég then from (4.5) and (4.7) we get
1_ 1 0 _ & (1
M; = EJ‘A‘prtr (QR?)dA = ;jO(Q(X)‘//q (x).4, (x))H dx
: (4.8)

= iaﬁq ﬁsinz \/Ex.(Q(x)w]q P, )H ax.
g=1

If the operator functior@Q(x) satisfies the conditions (1) and (2), the multgdeies

o

> (Qg,.@,). az sint o, xdx

k=1 j=1

is absolutely convergent. Therefore from (4.8) we g

0

lim M} :ZZJE(Q(X)%Q)H a,fsinz\/Zxdx. (4.9)

P k=1 j=1

Let

T, (x) :Zp:akz sin? \Jv, xdx. (4.10)
=1

k
The following equality is proved in [25]:

Tp(X)ZZKZ:SinZ(k_%jﬂXdX+Tpl(X), )(D[ 0,1_ (4.11)

where for large values of, the functionT (x) satisfies the equalities

‘Tl(x)‘ <const.p*™*, x0[ 0,1~ p'f) , (4.12)

p
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[T (x)| < const.p™, xO[1-p~,1] (4.13)

and £ is a constant number belonging to the intefal) .

From (4.12) and (4.13) we have

lim

p—o

J trQ(x)T, (x) dx‘

=Ilim

p-o

j trQ() dx+j rQ(x)T,(x) dx (4.14)

<lim =0.

paoo

Iz_ p~¢ pg_ldx + Ii_ . pl—edx

Theorem 4.1.1f the operator functionQ(x) satisfies the conditions (1), (2) and

y; Daj” (a>0 a>2}”1—2) asj — o then

lim MJ =0, =2, (4.15)
p—oo
1 Sa-2
imM =0, N>30"=3—_. (4.16)
p-oo a+2

Proof. For j =2 from (4.5), we write

2_ 1 0)2
el I (QR?) dA

1 jw bp:l( (X).wk(x)) d.

Hy

(4.17)

Moreover, we know that
0 -1
QR = (,Uk1 _/]) 07/
and
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(QR) v, =(u, -1)" R ()

00

= ('ukl _A)_lz(ﬂkz _/])_1(Q¢lk1’wk2)|-|1 kaz'

k=1

From (4.17) and (4.18), we have

o_ 1 &% dA
I I CRSNCRAR

It is easy to see thatfd¢ <n_, k,<n, and k,>n_, k, >n,

dA =0.
Ji (A-m)(A-m.)

Then, from (4.19) and (4.20), we have

2| 1
‘M p‘ - Eklj%ﬂ!jA by (/] P )(/] Iuj)](Q‘//k l//J)H (Q‘/IJ ‘/lk)H
N o N 2
:éj:nzﬂ(’uj _/Jk) (l/’k,Qll/,-)Hl
< j§+l(ﬂj _:unp) kz.:; (l//, ’Ql//k)Hl
= 3 (s Touil, <Iok, 3 (1)
Let =22. Then by (1.15) we get
k=np+1 M ~ Hn, k; (kl Y- )
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(4.19)
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(4.21)



1 N +i+1 dX

- LD
)

dl((np+1)l‘y nt T (ny +i+1)”

)
1+0
_n+

n +i+l

+ d_lzj.n +i X ];-6 (4'22)
TR | R S dx Al o 1 -2
=d, {np +Inp+iw}<dl [np +on, J
p
From (4.21) and (4.22) we get
lim M? =0. (4.23)
pA.OO
In a similar form it can be proved that the inegyal
M| <4]ql, d1‘25“2(n;1 54 Zn)
is true. From here, we get
im M2 =0, &> (4.24)
2
From (4.5) we get
1
‘ij‘sz_jj/] =b, tr (QRO) |d/1| _L/ﬂ =b, HQ al(H1)|d/]|
J-W =b, HQ 0y(Hy) QRO (4.25)
IW =b, ||Q||H1 Ul(Hl) /(1) . d/1|
We shall now estimat#;Rj’ .., and HR;) . on the circle]A|=b,. For A0{ 4}, ,

1

since R} is normal operator then
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> 1 .
R} =y —— 13,p.121
H A 0,(Hy) ;|,Uk _/1| [ p ]
since|A|=b, =2*( 4, +4, ..) then
H a1 (Hy) ; | | ‘
, ) ) 5 (4.26)
< + >
k=1 ﬂnp - /'[k k=n /'[k /'[n
By using (1.15), we obtain
i n, n, s
< - <d,n; . (4.27)
Zl /'ln +1 /'lk /'lnp+1_/'lnp dl[(np +1)1 ) _ nt+5j| 1''p
From (4.22), (4.26) and (4.27), we get
IR <8 pro (4.28)
Moy =g P '
Since the eigenvalues of the nuclear operﬁiplare{(/lk —/l)_l}j then
IR, =max{[A -7} 113, p.a6
From here and (1.15) we can get
s -2
IR, ||Hl <const.n’ , 5=9 et (4.29)

SinceR, =R} for Q=0 according to (4.29)
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0
R
Hy

< const.n;’ . (4.30)

By (1.14) we have

b, < const.n’”. (4.31)

From (4.5), (4.28), (4.30) and (4.31) we get

HE const_[ nt?n 20 |dA| < const.n2?07Y,
|AI=by Mo
As seen, ifj >1+ 25" then
Ipi[rl M) =0. (4.32)

If J> = then from (4.23), (4.24) and (4.32) we get form{4al5) for j=2. We

now prove formula (4.16). From (4.6), (4.28), (4,42.30) and (4.31) we have

1
Mol ], |/1|‘tr (R)""]
<byf,., |R(QR)"™ |
prJ-W"b ”R/1 H, (H1)|d/1|
< const.n} ™.

From here, we get

limM , =0, N >30".

pﬂoo

Theorem is proved.

The main result of this article is given by thddaling theorem.
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Theorem 4.2. If the operator functionQ(x) satisfies the conditions (1)-(3) and

y; Daj” (a>Oa>2j_Nf) asj - o then

im (4 - ) =5rQ) -1Q(0)].

The limit on the left side of this equality is @althe regularized trace of the operator
L.

Proof. From (4.4), (4.9), (4.10), (4.11), (4.14), (4.18y44.16) we obtain

im 3 (3 =14 =-1m 3 Q)% 7¢)
=——Z“OtrQ( ) cos{kmx) ax—(- 9 [‘rQ(x coﬁkﬂx)dx}
—z{[j 1Q(x) V2 cosm) ax [V 2 cor
U trQ(x) 2 cos(knx)dx}/_Zcoékﬂ)%

= —Z[trQ(O) -trQ(1)].

This proves theorem.
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5. COMPLETENESS OF EIGENFUNCTIONS OF DISCONTINUOUS
STURM-LIOUVILLE PROBLEMS

The results of this chapter were objected to theclarwritten by E.Sen, O.
Mukhtarov and K. Orugglu that was accepted for publication in the jourthanian
Journal of Science and Technology Transaction Aerge”. Also, the results
obtained in this chapter were presented at theecente “XVIII. Ulusal Mekanik
Kongresi, 26-30 August 2013, Celal Bayar Universilanisa” and were published
in the conference proceedings under the title t8turouville probleminin rezolvent
operatort ve 6zfonksiyonlar1” (pp. 560-569, withMukhtarov and K. Oruggu).

5.1. Statement of the Boundary-Value Problem as agigenvalue Problem in a
Suitable Hilbert Space

If we use the following representations

{(u)1 =Bu(l) -Bu(Y), (5.1)
W', =au@)-au'@l)

it is easy to see that far, v OC'[-1,1], we have

AU@QV'@)-u' Qv @)= ) )= U)i(v),. (5.2)

Now we shall define the inner product of two comgainelements

T = Gl(x)j  T(YOL[-11,T,0C:
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G::[Gm
G

2

], G (X UL,[-1,1],G,0C;
in the linear spacé,[-1,1] OC by the formula
2

(1.G), j T, (X)G, (X)r (x)dx + j T,(X)G,(X)r (xX)dx + j T,(X)G ,(r (X)dx + p/())

Then it can be easily shown that the inner prodpate

Ho = (LI-LYOC(o0) )
is a Hilbert space. In this space, let us defieegperatorK H =~ - H_ = bythe
equality
T,(X [T,
K ( i ,)j::[ . j (5.3)
(Tl)l _(Tl)l

on the domain of definitiorD(K) consisting of allOH , ,  whisatisfies the

following conditions:

(1) T, andT,' are absolutely continuous functions in therirgtls [-1h ),
(h,h,) and (, ,1].

(i) There exists finite limit valued;(h,+0) T,'(h£0), T(h,+0) and
T,'(h, £0).

(i)  T,(-1)=0.

(iv)  aT(h+0)=yT,(h,-0),4,T'(h+0)= T, '(h-0),
;T (h,+0) = y;ly(h,=0),
,T,'(h,+0)=y,T,'(h,—0) and T, =(T)); . (5.4)
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Then we can write the boundary value problem (2(1&)2) as an operator-equation:

KU KU( ((())}DD(K)) (5.5)

Thus we stated the boundary-value problem (1.1@R2{las an eigenvalue problem
for a linear operator which is defined in a Hilbgpace.

Lemma 5.1.1f §0,p(h,—0)=yy,p(h,+0) and J,9,p(h,—0)=yy,p(h,+0) then
the operatolK is symmetric.
Proof. Let T,GO D(K) . If we use the well-known Lagrange formuld][4ve find

the following equality

(KT,G), j(ﬂ)(x)e 0o g V(T )e) J T00(1G) (r (e

+JZT1(X)(£Gl) (X)r (X)dx + le(x)(fGl) (X)r (x)dx
hy h,

+p(h —OW(T,G;h - 0)-pCIW [T,.G, - 1)
+p(h, —OW(T,,G;;h, = 0) —p(h, +OW(T,,Gy;hy + 0)+ pAW [T, G131

Bl +OW (T, G, + 0)- 2V 1), 6,

{<T,G>p,r,p —@@T)ATT)J}
yoj
[ p(h, =0\ (T,,G,;h, = 0)= p(h,+ OW (T, G, h,+ 0]

[P, ~OW(T, 8, 0)- plo,+ OW 1, G+ 0] =2 (1) (G);-(Ty'() )

hlTl(x) (G, (x)r(x)dx+h2Tl(x) (G,) (X)r (x)dx + l'I'l(x) 2G,) ()r (x)dx)+
(1G) ]
_l I«h

ﬂcrl)a((—el)l)}
o
~p(-W (T,,G,;=1)+ p(y, - OW (T, G, h,— O p b, + OW T, G h+ O
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+p(h, ~OW(T,,G,;h,— 0)- p(h,+ OW [T, G, h,+ 0)

+p() {W(r1 ,51;1)—%((1)1 (gl)'l _ (Tl)'l (E)lﬂ _ (5.6)

Here by

W(Tl’ Gl; X) = Tl(X)Gll(X) _Tl(x) IGl(x) (5.7)

we denote the Wronskians of the functiohs  &Bd T, .) afd G,(x) satisfy the

boundary condition (1.17). Thus we have the folloywequality
W(T,,G,;-1) =0. (5.8)

From the fact that the functionls a@ satisfytthasmission conditions (1.19)-

(1.22), we obtain the equality

p(h, —OW (T,,G,;h,— 0)= p(h,- m[nmz— 0B, 6,- 0T, b, 0B b+~ 0}

:M p(h2 +O){(§T1(h2 + O)j[ﬂall (h2+ 0)j
|7 y

5354 3 4
(5.9)
—(%T;(hz +0)](%€1<h2+ mj} = p(h,+ OW (T, G,h,+ 0)
and similarly we have
p(h, ~OW(T,,G,;h,~ 0)= p(h,+ OW [T, G, h,+ 0). (5.10)

Consequently, we get

(KT,G)W =(T,KG)

pr.po’
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Thus we obtain that the operatisr  is symmetritienHilbert spaced | |

5.2. Resolvent Operator

In this section we show that each numbédnC whichoisan eigenvalue of the
operator K is a regular value of the operator . Alg® will investigate the

resolvent operator

R(A,K)=(K=A1)".

Here | is the unit operator. For an arbitrary elemenlH  let us write the

operator equation

(K=A1u =T (5.11)

as a non-homogenous boundary-value problem

?%5{%pﬂﬂh741K@UJ—AU1=T49,xDP&hQD(mﬁyﬂ]mzﬂ,(51@
U,(-1)=0, (5.13)

(BU,)-BU, @)+ A(al,D)-aV, Q) =T,, (5.14)
yU,(h,—0)-3U ,(h,+0)=0, (5.15)

y U, (h,-0)-3dU, (h,+0)= 0, (5.16)

yJ,(h,—0)-3U ,(h,+0)=0, (5.17)

yJ, (h,-0)-dMJ, (h,+0)=0, (5.18)

which is equivalent to (5.11firstly, we will state the following lemma:
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Lemma 5.2.Let f(A) andg(A) be entire functions. Then the equation

1 nt —
m{—( p(x)u’)'+q(x)u} = Au, xO[d,,d,] (5.19)

has a unique solution(x,A)  which satisfy the boundanddions
u(d)=f(),u'd)=g() (i=1or 2) . (5.20)
This solution is an entire function df  for eagil[d,,d,]

The proof of this lemma is similar to the Theorerd ih the book of [55]. Now,

using this lemma let us define two solutiopéx, A) a(x,A) of the differential
equation (1.16).

Let us denote the solution of the differential eepra(1.16) by ¢,(x,A) satisfying

the initial conditions
u-1)=0, u'(-y=1

in the interval [-1,h) . After defining the functiog,(x,A)  weart define the

solution of differential equation (1.16) in theental [h,h,) satisfying the initial

conditions
—_ y]_ - 1 —_ yz 1 _
u(h,) =5 ¢,(h,—0,14),u (hl)——5 ¢,'h,—0A). (5.21)

Let us denote this solution bg,(x,A) . Similarly let usndte the solution of
differential equation (1.16) by,(x,A) in the interv@,,1] atisfying the initial

conditions
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u(h,) =§¢2(h2—o,A), u '<h2>:§¢2 h,-04) (5.22)

Similarly, let us denote the solution of the diffetial equation (1.16) by,(X,A) in

the interval(h,,1] satisfying the initial conditions
u=a,A+G6,u'Q=aA+p (5.23)

After defining this solution let us denote the s$mn of the differential equation

(1.16) by x,(x,1) intheintervalh,h,] satisfying the init@dnditions
—_— 53 1 —_ 54 1
u(h2)_7X3(h2+01/])1u (hz)_7/Y3 (h2+ 0,/] ) (524)
3 4

Similarly, let us denote the solution of the diffetial equation (1.16) by, (x,4) in

the interval[-1,h] satisfying the initial conditions
—_ Jl 1 — 52 1
u(h) —7X2(h1+0,/1), u't, -7)(2 (h,+01). (5.25)
1 2

Lemma 5.2 implies that the functiomgs(x, 1), x; (x,A) 1=,2,3) are entire functions

of A. Now, we can define the functiogs and y as follows:

¢ (x,A),x0[-1h),
#(x,A) =1 ¢,(x,4),x0 (h,h,),
@,(x,A),x (h,, 1.

X(xA),xO[-1hy),
X(%A) =1 X, (%,A), x0T (h,hy),
Xs(X,A),x0 (h,,1].
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It is obvious that these functions satisfy the ¢igna(1.16) and transmission

conditions. Moreover the solutiop(x, A1) satisfies the boundary condition (1.17) and
X(x,A) satisfies the boundary condition (1.18). We shaé the following notations

in the rest of the paper:

@ =W,(4,, % %) (=1,2,3),

@ (x,A),x0[-1,h,),
(X, A) ::\NA(¢!X;X): a)Z(X,/]),XD (hl1h2)'
ay(x,4),x0(h,,1].

Lemma 5.3.For all AOC which is not an eigenvalue of the problem (1.1622)
and for allxU[-1,h )0 (h,,h,)0 (,,1] we haveaw(x,A) # 0.

Proof. This lemma can be proven similarly using the samthod as in [36].

Corollary 5.1. Let us assume thatJC is not an eigenvalue of the problem (1.16)-

(1.22). Then the functiong, (x,1), x,(x,4) are linearly independent in the interval
[-1h), the functionsg,(x,1), x,(x,4) are linearly independent in the interval

(h,h,) and the functiong,(x,4), x;(x,4) are linearly independent in the interval

(h,,1].

Corollary 5.1 implies that for ald JC which is not an eigenvalue of the problem

(1.16)-(1.22) we can write the general solutiothef differential equation (1.16) as

C#.(x,4) + Doxi(x,4),xU[-Lhy),
Uu(X,A) =1 C,,(x, A1)+ D,x,(x,A),x0 (h,,h,),
Cof3(X,A) + Doxo(x,4),xU (h,, 1,

where C, D, (i=1,2,3) are arbitrary constants. Then applying thethod of
variation of constants [44] we can write the gehsodution of the non-homogenous

equation (5.12) foxx[[-1,h) as
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U,(4) = ), (x,4) j LA )y

/1 @(y.A) (5.26)
+h(x ) Xlgy’ )0y +C,064)+ Dox ().
forx(h,h,) as
$,(y, 1) (A
U,(x,A) = Xz(x/l)j oy /])T(y)dy ¢(X/‘)_[ w,(y /];Tl(y)dy (5.27)
+C,8,(X,A) + DZ,YZ(X,/I),
and for x((h,,1] as
L ?,(y, 1) Xs y/])
§] ’/] = Xs ,/] T dy + A 1
(% A) = X5(x )h[%w) (y)dy +g5(x, )j Y

+Cyf5 (X, A) + DoX5(%,4).

Using the equalities (5.26)-(5.28) and writing teneral solution of (5.12) in the
conditions (5.13)-(5.18) then we can find the canst C, D.. If we write the

expression (5.26) in the boundary condition (5.18n we obtain the equality
D x(-1A)=0. Since A is not an eigenvalue we hayg—-1,4)# 0. Therefore we
get D, =0. If we write the expression (5.28) in the boundeoydition (5.14) we

T
w(LA)

the expressions (5.26)-(5.28) in the transmissarditions (5.15)-(5.18) we can find

find C,= . Let us consider the values of constabtsand C,. If we write

the constant€,,C,,D,,D, by using the following system of linear equations:

¥, (h,, A)C =0 (h,A)D ,=

V() j ¢1§y' Tdy+3p on, A)j X

(. 4) ¢

@) T(y)dy+3C ¢ (h,1),
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Vo, '(h, A)C, -5?)(2'(h A)D,

=y, (h, A)j ¢1§y DTy, A)j X,

(y)

@ (y.A) T ,(y)dy

+3,C,9,'(hy, A),

o AIC,= 8 (D o= =y i 0 o) ¢2( T )y

(y A) 1(Y)dy+ 53T2¢3(h2’/‘)

D, x,(h,,A),
( /1) %(1’/1) +y3 2/Y2( 2 )

a4, A)jXS

y4¢2l(h A)C _54X3I(h A)D

=yt ] ¢2(§”§T(y)dy +3.4,(0, )] Xsiyj; )y

+ 54T2¢3 (hZ’A)

D, x,'(n,A).
aé(l,A) +y4 2)(2( 2 )

The determinant of this system equals-99,0,0 w,(h,A)w{h,A)# 0. Hence we
have a unique solution for the above system oflimguations. Using the definitions

of the functionsg. (x, 1), x; (X,A) and from the above system of linear equations we

obtain

_J‘/Yz(y )1(y)y I)(g(y )1( y)dy+

(Y, A) wy(y,A) 3( A)’
_ (2 v s T2
: r{ag(w) R ATOR)

h hy
D, = I%Tl(y)dy, D, = Iijy) (Y)dy.

By putting these values of constars, D, in the expressions (5.26)-(5.28) we find
the following formula for the solution of the preboh (5.12)-(5.18) in the whole

[-1,h) O(h, hy) O (hy, 1:

_ t Py A) X(y.A) L Lo(xA)
Ul—x(x,A)_jlw(y,A)Tl(y)dw(x,A)jw( LAy
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Theorem 5.1.Each A JC which is not an eigenvalue of the problem (1.1622) is
a regular value of the operatd¢ that defined by equalities (5.3), (5.4), and the

resolvent operatoR(4,K):H  , - H_  , isacompact operator.

Proof. Using the following representation

XX NDp(y,A) —lsysx<l
oy,A) T xy#h(i=12),

p(xA)x(y.A) —Isxsysl
ay,A) xy#h(i=12),

G(x,y;A) =

we can rewrite the last formula as

U, (%, 4) = [ G0, y: )Ty (y)dy + w(I 90

Therefore we obtain the following formula for thesolvent operatoR(A,K) :

1 . T2
_jl GO0 VAT () + s px,A)
R(AK)T =| - ,
_jl (G ) Ty + s (96.A)),
If we define the operatorsB,:L,[-1,1] - L,[-1,1], fB::Hpm -H, , and

S,:H,,, - H,, , bythe equalities

BT, = [G(xy: T (y)dy,

B B/ITl
B,T:= A
CANA
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-
NCY)
ST:= wd,A) ,

T, Ly
N AL

we can write the resolvent operat@(A1,K) as R(A,K) = BNA +S,. The operatoiB,

is compact in the Hilbert spadg[-1,1] [28]. Hence the operatdB, is compact in
the Hilbert spaceH , . It is clear that the operatds, is compact in the Hilbert
spaceH , ,. Therefore for eactd JC which is not an eigenvalue of the problem

(1.16)-(1.22) the operatoR(A,K) is also a compact operator in the Hilbert space
H

pr.o”

5.3. Expansion in Series of System of Eigenfunctien

Theorem 5.2.The operatoK which is defined by the equalities (5.3)-(5.4aiself-

adjoint operator in the Hilbert spate,, .
Proof. It is clear that the operatdk is densely defined in the Hilbert spakk , .
Also, for all AOC which satisfyImA #0 Theorem 5.1 implies that the ranges of

the operatorK —Al and K - Al coincide with whole Hilbert space . ,. Namely,

the equalities(K —Al1)D(K)=H and (K—ﬁI)D(K): H,. , hold true. Also

p.r.o P
Lemma 5.1 implies that the operatér is symmetric. Therefore, the well-known
theorem about extension of symmetric operatorsigaghat the operatoK is self-

adjoint [28].
Corollary 5.2. All eigenvalues of the boundary-value problem ()-(1622) are real.

Note: Since p(x), q(x) and r(x) are real valued functions, the coefficients of the

conditions (1.17)-(1.22) are real numbers andigBrevalues are real we may assume

that the all eigenfunctions of the problem (1.1B6)2@) are real valued functions.
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Corollary 5.3. If A, and A, are two different eigenvalues of the problem (}.16

(1.22) and y(X), u,(x)are eigenfunctions corresponding to these eigeesalu

respectively then:

(0,0 (e = P, (5.29)

Proof. Since the operatorK is self-adjoint the appropriate eigenelements
X u,(x
(corresponding to different eigenvaluds and A,) U, =[u1( ,)j andU, :[ o ,)j
(W), (U,);
are orthogonal in the spa¢¢, . ,. Namely the equality (5.29) holds.

In the Hilbert spaceH the operatorK which is defined by the equalities (5.3),

p.r.p?
(5.4) has countable number of real eigenvalues.athebraic multiplicity of each
eigenvalue is finite, the sequence of eigenvalassahlower bound and doesn’'t have

a finite accumulation point. Regarding to each evgdue is counted according to its

algebraic multiplicity, we can write the sequenéeigenvalues asl <A, <.... Let

us denote the appropriate-normed eigenelements as

()
R [?;))Z j (1¢, 1, ,=1n=12,.).

Then Theorem 5.1, Theorem 5.2 and the well-knowlbdi-Schmidt Theorem

implies the following theorem [53].

Theorem 53. For each element TOH , the Fourier series
> c.#,.c,=(T.¢,), wil be converge to
n=1 pre

00

T=2(T.4.)

n=1

@, (5.30)

Hp,r,p

in the Hilbert spaceH , .
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Corollary 5.4. Each functionf OL,[-1,1] can be written as a series expansion of
the eigenfunction syster{nqan}, n=1,2,... of the boundary-value problem (1.16)-
(1.22) as

f(9) :i[ | f(y)%(y)r(y)dyjcza(x)

n=1\ -1

in the Hilbert spacé-,([-1,1],r).
. f(x)) .
Proof. It is enough to get the elemeift[] H, ., aT= 0 in the formula

(5.30).

Corollary 5.5. For eachf [JL,[-1,1] the following equalities hold:

i[(f/%)i]2 =ﬁ, (5.31)
i(%)m(X) =0. (5.32)

Proof. Let us rewrite the formula (5.30) as

"0 . (5.33)

> (T, @

T.(%)
.

j i<T'¢n>prryp¢A(X)

. 0) .
Now, puttingT =(1j in the formula (5.33) we get
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00

[Oj Z 441)'1(41()()

n=0

i p(l) (@)’

1

Namely, we obtain the equalities (5.31) and (5.32).

Corollary 5.6. For eachf UL,[-1,1] the equality

z[ | f(y)cza(y)dyj(ml

n=0

holds.

f (X
Proof. It is enough to rewrite formula (5.33) for theemlent T:(O( )j.
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6. CONCLUSIONS AND RECOMMENDATIONS

It is little known about asymptotic behaviour okthigenvalues and eigenfunctions
of the Sturm-Liouvillle problems with eigenvaluepgmdent boundary conditions if
the number of points of discontinuity is more thame. In the second and third
chapters we sought an answer to this questionthiSaim, we investigated spectral
properties of Sturm-Liouville problems with eigeiw& dependent boundary
conditions at two or finitely many points of dis¢mity. If we take all transmission

coefficients equal to each other and weight fumcgquals identically to one we get

the continuous case.

In the fourth chapter we investigated spectrum #ral resolvent operator of a
boundary-value problem which includes an unboundgérator coefficient in
differential equation. Lastly, we obtained a reguakd trace formula for differential

operator equation.

For future works, we plan to obtain trace formufas n-th order differential
operators with unbounded operator coefficient witikxed type and/or periodic

boundary conditions.

In the fifth chapter we studied the completenessigenfunctions of a Sturm-
Liouville problem with eigenvalue-dependent bouydeonditions and transmission
conditions at two interior points. As a main resw# showed that each square
integrable function can be written as a series esipa of the eigenfunctions of the
related boundary-value problem. In the special taagethe transmission coefficients

equal to each other amgx) = p(x) =1 in the results obtained in this work coincide

with corresponding results in the classical cordumiSturm-Liouville operator.
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APPENDIX A: Some basic definitions and theorems in functiamallysis

Definition (Normed space, norm).A normed spaceX is a vector space with a

norm defined on it. Here a norm on a (real or caxplector spaceX is a real-

valued function onX whose value at an X is denoted by{x| and which has the

properties

)[4 =0

i) [X]=0 = x=0
i) x| =|al]]
iv.) [x+ v < x| +[y]

herex andy are arbitrary vectors itX anda is any scalar [27].

Definition (Inner product space, Hilbert space).An inner product space (or pre-
Hilbert space)s a vector space X with an inner product definad>. A Hilbert
space is a complete inner product space. Hereyraar product onX is a mapping

of Xx X into the scalar fieldK of X; that is, with every pair of vectors and y
there is associated a scalar which is writ¢gry> and called the inner product af

and y, such that for all vectorg, y,z and scalar we have
i) (x+y,2)=(x,2)+(y,2)

i) (ax,y)=a(x,y)

An inner product onX defines a norm orX given by x| =./(x,x) . Hence inner
product spaces are normed spaces [27].

Definition (Dense set, separable spacé). subsetM of a metric spaceX is said to

be dense inX if M = X .

X is said to be separable if it has a countable swisieh is dense inX [27].
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Definition (Self-adjoint, normal operators). A bounded linear operatdr:H - H

on a Hilbert spaceH is said to be self-adjoint T =T and normal ifTT =T T.

The Hilbert-adjoint operatoF " of T is defined by the equalit{Tx, y) = <x,T*y>.
If Tis self-adjoint the formula becomésx, y) = (x,Ty).

If T is self-adjoint thenT is normal.

Every self-adjoint linear operator is symmetric][27

Definition (Symmetric operators). A densely defined linear operat®r in a Hilbert
spaceH is symmetric if and only it OT" [27].

Definition (Resolvent operator). Let X ¢{O} be a complex normed space and
T:D(T) - X a linear operator with domaiB®(T) O X. With T we associate the
operatorT, =T - Al , where A is a complex number anldis the identity operator on
D(T). If T, has an inverse, we denote it By(T), that is,R,(T) =T,*=(T - A1)
and call it resolvent operator @f or simply resolvent off. R,(T) helps to solve

the equationT,x=y. Thusx=T,'y =R, (T)y provided R, (T) exists [27].

Definition (Regular value, resolvent set, spectrum)Let X #{0} be a complex
normed space and :D(T) - X a linear operator with domai®(T) O X. A
regular valueAd of Tis a complex number such th&,(T) exists, bounded and
defined on a set which is densexn.

The resolvent sep(T) of T is the set of all regular values of T . Its complement
o(T)=C-p(T) in the complex plan€ is called the spectrum &f . The discrete
spectrum or point spectrura (T) is the set such thaR,(T) does not exist. A
Ao, (T) is called an eigenvalue df [27].

Theorem (Compactness).In a finite dimensional normed spacé, any subset

M 0O X is compact if and only iM is closed and bounded.

Definition (Compact linear operator). Let X and Y be normed spaces. An

operatorT: X - Y is called a compact linear operator (or completsgtinuous

105



linear operator) ifT is linear and if for every bounded subdét of X, the image

T (M ) is relatively compact, that is the closuréM ) is compact [27].

Theorem (Compactness criterion). Let X and Y be normed spaces and
T:X =Y a linear operator. The is compact if and only if it maps every

bounded sequendex,} in X onto a sequencfTx } in Y which has a convergent

subsequence [27].

Definition (Uniform convergence).A sequencq f,} of functionsdefined on a set

E is said to converge uniformly ok if given £ >0, there is anN such that for all
XxOE and alln= N, we have| f (x) - f,(x)| < & [47].

Definition (Positive operator). A bounded self-adjoint linear operator H - H is

said to be positive, writteft = 0 if and only if (Tx,x) = 0 for all xOH [27].

Definition (Identity operator). Given aHilbert spaceH. Let Ix=x for all x[1H.

Then | is called the identity operator [27].

Theorem (Completeness of eigenfunctionslet {@} be any complete sequence of
orthonormal vectors in a Hilbert spadd, and let{y,} be any sequence of

orthonormal vectors irH that satisfies the inequality
c 2
>l -aff <o

then they, are complete irH [26].

Definition ( L,[a b] space).The space of square integrable functions on ttesvial

b
[ab] (ie., [T dx<e).
Definition ( L[a b] space).The space of integrable functions on the inte[\adb]
b
(i.e., [|f (0] dx<eo).

Definition (Cl[a, b] space).The space of continuously differentiable functiars

the interval[a,b].
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Definition (Weak derivative). A generalization of the concept of the derivative o

a function for functions not assumed differentialidat only integrable, i.e. to lie in

the L, space.

Definition (Weakly measurable function). Let H be a Hilbert space with

countable base. A functiorf : X - H is called weakly measurable if for every

functionalh on H the compositého f is measurable [28].

Theorem (Closed graph).The graph of the functiorf is closed if and only iff is

continuous.
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APPENDIX B: Big—O notation

Fort >0 and a real numbep
f(t)=O(t") ast —~ 0 = t™°|f ()| is bounded a$ - O.
In addition we define
f(t)=9(t) +O(t") = f(t)-g(t) =0(t").

Similarly we may replaceé — 0 by t — . For example,f (t) =vt*+1=0(t) as

t - oo or f(t)-t=0(@") ast - .

The symbol O(1). The symbolO(1) signifies a functionf (x,4) of x and A,

defined for all sufficiently largel , which is bounded foa< x<b asA - o. The
symbol O(1) / A is also written aD(A™").

The following important properties of the symla(1) can be easily verified:
b
o+0(@M)=0(@); O@W@M=0®); IO Wx=0 (1

for any finite a,b. Again, if @ and £ are real numbers wittr < S, then

oo o(2)

Finally, if g(x) is any bounded function of, then by Taylor's formula we have, as

Ao

[/] _q(x)]a =AH|:1_3(X):| :AH —O’q(X)/]"_l+O(/]"_2).
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