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REGULARIZED TRACES AND SPECTRAL PROPERTIES OF 
DIFFERENTIAL OPERATORS 

 
SUMMARY 

This thesis consists of five main chapters. In introduction, we give a general 
information about the theory of Sturm-liouville operators and  previous works in the 
literature which is realatively close to our studies. Also establishment of the 
problems is given in introduction.   
 
In the second chapter, we extend some spectral properties of regular Sturm-Liouville 
problems to those which consist of a Sturm-Liouville equation with discontinuous 
weight at two interior points together with spectral parameter-dependent boundary 
conditions. By modifying some techniques of [C. T. Fulton, Two-point boundary 
value problems with eigenvalue parameter contained in the boundary conditions, 
Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 293-308; O. Sh. Mukhtarov and M. 
Kadakal, Some spectral properties of one Sturm-Liouville type problem with 
discontinuous weight, Siberian Mathematical Journal, 46 (2005) 681-694], we give 
an operator-theoretic formulation for the considered problem and obtain asymptotic 
formulas for the eigenvalues and eigenfunctions. 
 
In the third chapter, we investigate discontinuous two-point boundary value problems 
with eigenparameter in the boundary conditions and with transmission conditions at 
the finitely many points of discontinuity. Namely we consider the discontinuous 
eigenvalue problem which consist of Sturm-Liouville equation  
 

: ( ) ( ) ( ) ( )u u x q x u x u xτ λ′′= − + =  
 

on [ ) ( ) ( ]1 1 21, , ... ,1 ,mh h h h− ∪ ∪ ∪  together with eigenparameter-dependent boundary 

conditions 
 

( )
( ) ( ) ( )

1 1 2

2 1 1 2 2

: 1 ( 1) 0,

: 1 (1) 0

u u u

u u u

τ α α

τ β λ β β λ β′ ′

′= − + − =

′= + − + =
 

 
and transmission conditions at the points of discontinuity ix h=  ( 1, ),i m=  

 
( ) ( )
( ) ( )

2 1

2 2

: 0 0 0,

: 0 0 0,

i i i i

i i i i

u u h u h

u u h u h

τ δ
τ δ

+

+

= − − + =
′ ′= − − + =
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where 1 21 ... 1,mh h h− < < < < <  ( )q x  is a given real-valued function continuous in  

[ ) ( )1 1 21, , , ,...,h h h− ( ],1mh  and has finite limits 0( 0) lim ( )
ii x hq h q x→ ±± = ( )1,i m= ; 

λ  is a complex eigenvalue parameter; iδ ( )1, ,i m= ,jα ,jα
′

,jβ jβ
′

 ( )1,2j =  are real 

numbers; 1 2 0α α+ ≠   and 0iδ ≠  ( )1, .i m=  This section organised as follows: 

Firstly we give operator formulation of the problem in a suitable Hilbert space (i.e., 
A self-adjoint linear operator A  is defined in a suitable Hilbert space H  such that 
the eigenvalues of the considered problem coincide with those of A ) and then 
asymptotic approximate formulas of characteristic function derived for four distinct 
cases. Asymptotic formulas for eigenvalues and eigenfunctions of the problem is 
given and finally we show that the eigenfunctions of A  are complete in H . 
 
In the fourth chapter, assuming H  is a separable Hilbert space, we consider the 
operators 0L  andL  generated by the differential expressions 

 
( )0 ( ) ( )l y y x Ay x′′= − +  

and 
 

( ) ( ) ( ) ( ) ( )l y y x Ay x Q x y x′′= − + +  

 
respectively, in the Hilbert space [ ]( )1 2 0,1 ,H L H= , with the same boundary 

conditions 
 

(0) 0,   (1) (1) 0,   0,y y by b′= + = >  
 

where A  is a positive definite self-adjoint operator in H  and ( )Q x  satisfies some 
additional conditions. 
Let the eigenvalues of the operators 0L  and L  be 1 2 ... ...nµ µ µ≤ ≤ ≤ ≤  and 

1 2 ... ...nλ λ λ≤ ≤ ≤ ≤  respectively. In this section, firstly we investigate the spectrum 

and resolvent of the operators 0L  and L . Finally, under the conditions (1)-(3) the 

following formula has been found for the regularized trace of L : 
 

( ) ( ) ( )
1

1
lim 1 0 .

4

pn

k k
p

k

trQ trQλ µ
→∞

=

− = −  ∑  

 

In the fifth chapter, we investigate the resolvent operator and completeness of 
eigenfunctions of a Sturm-Liouville problem with discontinuities at two points. The 
problem contains an eigenparameter in the one of boundary conditions. For operator-
theoretic formulation of the considered problem we define an equivalent inner 
product in the Hilbert space 2[ 1,1]L − ⊕ℂ  and suitable self-adjoint linear operator in 

it. 
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DİFERANSİYEL OPERATÖRLER İN DÜZENL İ İZLER İ VE SPEKTRAL 
ÖZELL İKLER İ 

 
ÖZET 

Matematiksel fiziğin bazı problemlerinde zaman değişkenine göre kısmi türev sadece 
diferansiyel denklemde değil aynı zamanda sınır koşularında da ortaya çıkmaktadır. 
Böyle problemlere uygun olan sınır-değer problemlerinde özdeğer parametresi 
sadece diferansiyel denklemde değil aynı zamanda sınır koşullarında da 
bulunmaktadır. Süreksiz sınır-değer problemleri ise farklı fiziksel ve mekanik 
özellikleri bulunan cisimler arasındaki ısı ve madde iletimi veya başka geçiş 
süreçlerinde ortaya çıkmaktadır. Literatürde süreksiz Sturm-Liouville problemleri 
hakkında çalışmalar mevcuttur, ama süreksizlik noktası sayısı birden fazla olduğunda 
özdeğer ve özfonksiyonların asimtotik davranışlarının ve bazı spektral özelliklerinin 
nasıl değiştiği bu tezde incelenen konular arasındadır. Yine literatürde diferansiyel 
ifadede süreksiz operatör içeren Sturm-Liouville operatörlerinin düzenli izleri birkaç 
çalışma dışında araştırılmamıştır. Bu tezde daha genel ve farklı sınır koşullarına 
sahip süreksiz operatör katsayılı bir diferansiyel operatör için düzenli iz formülü elde 
edilmiştir. 

Bu tezin esas kısmı 5 bölümden oluşmaktadır. Giriş bölümünde tezde incelenen 
problemler tanıtılmış, bunların uygulama alanlarından bahsedilmiş, teorik önemi 
belirtilmiş ve bunlarla ilgili olarak yapılan çalışmalar hakkında literatür özeti 
verilmiştir. 

İkinci bölümde ise[ ) ( ) ( ]1 1 2 21, , ,1h h h h− ∪ ∪  aralığında tanımlı; iki noktada 

süreksizliğe sahip  
 

[ )
( )
( ]

2
1 1

2
2 1 2

2
3 2

, 1, ,

( ) , , ,

, ,1

x h

x x h h

x h

ω

ω ω

ω

 ∈ −
= ∈
 ∈

 

 
ağırlık fonksiyonuna sahip 

 
( ) ( )u q x u x uλω′′− + =  

 
diferansiyel operatörü ve  
    

( ) ( )cos 1 sin 1 0,u uα α ′− + − =  

 

( ) ( )( ) ( ) ( )( )1 2 1 21 1 1 1 0,u u u uλ β β β β′ ′ ′ ′− + − =  
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şeklinde sınır koşullarının birinde özdeğer parametresinin yer aldığı 
 

( ) ( )1 1 1 10 0 0,u h u hγ δ− − + =  

( ) ( )2 1 2 10 0 0,u h u hγ δ′ ′− − + =  

( ) ( )3 2 3 20 0 0,u h u hγ δ− − + =  

( ) ( )4 2 4 20 0 0,u h u hγ δ′ ′− − + =  

 

geçiş (iletim) koşullarına sahip sınır-değer probleminin özdeğerleri ve 

özfonksiyonları için asimtotik formül bulunmuştur. ( ) 1xω ≡  ve ( 1,4)i i iγ δ= =  

olarak alındığında problem sürekli bir sınır-değer problemine dönüşür ve elde edilen 
sonuçlar [C. T. Fulton, Two-point boundary value problems with eigenvalue 
parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 
77 (1977) 293-308] çalışmasında elde edilen sonuçlarla çakışır. Sürekisizlik 
noktalarının sayısını tek bir nokta olarak almamız durumunda ise sonuçlar [O. Sh. 
Mukhtarov and M. Kadakal, Some spectral properties of one Sturm-Liouville type 
problem with discontinuous weight, Siberian Mathematical Journal, 46 (2005) 681-
694] çalışmasındaki sonuçlarla çakışır. Yani elde edilen sonuçlar literatürdeki 
sonuçların bir genelleştirilmesidir. 

Üçüncü bölümde ise sınır koşulunda özdeğer parametresi olan tanım aralığında sonlu 
sayıda süreksiz noktaya sahip olan sınır-değer problemi; yani 
[ ) ( ) ( ]1 1 21, , ... ,1mh h h h− ∪ ∪ ∪  aralığında tanımlı  

 
( ) ( ) ( ) ( )u x q x u x u xλ′′− + =  

 
diferansiyel operatörü; 
 

         ( )1 21 ( 1) 0,u uα α ′− + − =  

 
      ( ) ( ) ( )1 1 2 21 (1) 0u uβ λ β β λ β′ ′ ′+ − + =   

sınır koşulları ve  
 

       
( ) ( )
( ) ( )

0 0 0,

0 0 0,

i i i

i i i

u h u h

u h u h

δ
δ

− − + =
′ ′− − + =

 

 
geçiş koşulları ile oluşturulan sınır-değer problemi uygun bir Hilbert uzayı ve bu 
uzayda kendine eş bir lineer operatör tanımlanarak problem operatör denklem olarak 
ifade edilmiştir. Kökleri (sıfırları) sınır-değer probleminin özdeğerleri olacak şekilde 
bir polinom bulunmuş ve özdeğerlerin katlılığı incelenmiştir. Daha sonra özdeğer ve 
özfonksiyonlar için asimtotik formüller bulunmuş, spektrumunun sadece 
özdeğerlerden ibaret olduğu ispatlanmış, resolvent operatörü incelenmiş, 
özfonksiyonlar cinsinden seri açılımı elde edilmiş ve özfonksiyonların tamlığı 
incelenmiştir. 

H  sonsuz boyutlu ayrılabilir bir Hilbert uzayı olmak üzere ( )1 2 0,1;H L H=  

uzayında  
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                                                   0( ) ( ) ( ),l y y x Ay x′′= − +                                                      

( ) ( ) ( ) ( ) ( )l y y x Ay x Q x y x′′= − + +  

diferansiyel ifadeleri ve aynı  

(0) 0, y (1) y(1) 0, 0y b b′= + = >  

sınır koşulları ile oluşturulan operatörler sırasıyla 0L  ve L  olsun. Burada A ,  

( )D A H⊂  olmak üzere ( )D A  dan H  ye  

( )* 1,A A I A Hσ−
∞= ≥ ∈  

koşullarını sağlayan bir operatördür ve ( )Q x , operator fonksiyonu [ ]0,1  aralığında 

tanımlıdır ve aşağıdaki koşulları sağlar: 

a.) Her [ ]0,1x∈  için ( ) :Q x H H→  ikinci mertebeden zayıf türeve sahiptir. 

( )Q x′′  zayıf ölçülebilirdir ve her [ ]0,1x∈  için 

( ) ( )( ) : 0,1,2iQ x H H i→ =  kendine eş nükleer operatörlerdir. 

b.) ( ) ( )
1

( )

( )
0,1,2i

H
Q x i

σ
= fonksiyonları [ ]0,1   aralığında sınırlı ve 

ölçülebilirdir. Burada ( )1 ,Hσ  H  dan H  a nükleer operatörler uzayını 

göstermektedir. 

c.) Her f H∈  için ( )( )
1

0

, 0
H

Q x f f dx =∫  dır. 

0L  operatörünün özdeğerleri 1 2 ... ...mµ µ µ≤ ≤ ≤ ≤  ve L  operatörlerinin özdeğerleri 

1 2 ... ...mλ λ λ≤ ≤ ≤ ≤  olsun. Dördüncü bölümde 0L  ve L  operatörlerinin saf ayrık 

spektruma sahip olduğu gösterilmiş, resolvent operatörleri için bazı eşitlikler elde 
edilmiş ve L  operatörünün düzenli izi için 
 

( ) ( ) ( )
1

1
lim 1 0

4

pn

p k k
k

trQ trQλ µ→∞
=

− = −  ∑  

 

şeklinde bir formül bulunmuştur. Eğer diferansiyel ifadedeki sınırsız katsayılı 
operatörü yani A  operatörünü özdeş olarak sıfıra eşit alırsak elde edilen sonuçlar [K. 
Koklu, I. Albayrak, A. Bayramov, A regularized trace formula for second order 
differential operator equations, Mathematica Scandinavica, 107 (2010) 123-138] 
çalışmasındaki sonuçlar ile çakışır. 

Beşinci bölümde ise [-1,1] aralığının 1h  ve 2h  gibi iki iç noktasında süreksiz olan, 

katsayıları sonlu 

 

( ) ( )( ) ( ){ } [ ) ( ) ( ]1 1 2 2

1
:  p ,  1, , ,1  u x u q x u u x h h h h

r x
λ′′= − + = ∈ − ∪ ∪ℓ  

 

diferansiyel denkleminden, 
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( )1 0u − = , 

( ) ( ) ( ) ( )1 1 2 21 – ' 1 0 u uλα β λα β+ + =  

                                                 

sınır koşullarından ve x=1h , x= 2h  süreksizlik noktalarındaki  

 

1 1 1 1( 0) ( 0),u h u hγ δ− = +  

2 1 2 1( 0) ( 0),u h u hγ δ′ ′− = +  

3 2 3 2( 0) ( 0),u h u hγ δ− = +  

4 2 4 2( 0) ( 0),u h u hγ δ′ ′− = +  

 

geçiş koşullarından oluşan bir Sturm-Liouville probleminin özfonksiyonlarının 
tamlığı incelenmiştir. Sınır-değer-geçiş problemi önce uygun Hilbert uzayında 
kendine eş bir operatör yardımıyla özdeğer problemi olarak ifade edilmiştir. Daha 
sonra bu operatörün simetrik bir operatör olduğu ispatlanmış ve özfonksiyonlar 
sistemine açılım teoremi ispatlanmıştır.  
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1. INTRODUCTION 

Let L  be a linear operator defined on some set of elements. An element 0y ≠  is 

called an eigenfunction of L  if Ly yλ= ; the number λ  is called an eigenvalue of L  

One of the most important operators which is frequently encountered in applications 

is an operator of the form 

2

2
( )

d
L q x

dx
≡ − + , 

 

where the function ( )q x  will be assumed real and, to begin with, continuous on some 

interval [ ], .a b  For this operator the set of elements ( )y x  mentioned above is 

determined  by the obvious differentiability condition and also by certain conditions 

on the boundary of the interval [ , ]a b . 

 

The most important boundary conditions for the operator L  are the followings: 

 

( )
I.   ( ) cos '( )sin 0,

( ) cos ' sin 0,

II. ( ) ( ), '( ) '( ).

y a y a

y b y b

y a y b y a y b

α α
β β

+ =
+ =

= =
 

 

The boundary value problem  

( )

2

2
( ) ( ) ,

( )cos '( )sin 0,

( )cos ' sin 0

d y
Ly x q x y y

dx
y a y a

y b y b

λ

α α
β β

≡ − + =

+ =
+ =

  

 

is known in the literature as the Sturm-Liouville problem [30]. 

 

Sturmian theory is one of the most extensively developing fields in theoretical and 

applied mathematics [1-24. 29-46, 48, 50-52, 54-69]. Particularly, there has been an 
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increasing interest in the spectral analysis of boundary-value problems with 

eigenvalue-dependent boundary conditions [2, 3, 5, 10, 11, 16, 20-23, 33-42, 50-52, 

57-60, 63, 65, 66, 69].  Sturm-Liouville problems arise as a result of using the 

method of separation of variables to solve classical partial differential equations of 

physics, such as Laplace’s equation, the heat equation and the wave equation. A 

Sturm-Liouville problem with eigenparameter contained in the boundary condition 

arise upon separation of variables in the one-dimensional wave and heat equations 

for a varied assortment of physical problems, e.g. in the diffusion of water vapour 

through a porous membrane and several electric circuit problems involving long 

cables. (for example, see [16, 41]), vibrating string problems when the string loaded 

additionally with point masses (for example, see [54]). Also some problems with 

transmission conditions arise in thermal conduction problems for a thin laminated 

plate (i.e., a plate composed by materials with different characteristics piled in the 

thickness) [32, 56]. In this class of problems, transmission conditions across the 

interfaces should be added since the plate is laminated. The study of the structure of 

the solution in the matching region of the layer with the basis solution in the plate 

leads to consideration of an eigenvalue problem for a second order differential 

operator with piecewise continuous coefficients and transmission conditions [29, 32, 

45, 54, 56]. Sturm-Liouville problems with transmission conditions at one  interior 

point have been studied by many authors [2-7, 21, 33, 35, 36,  39-43, 50, 52, 57, 59, 

60, 66, 68].  In [22] and [65] Sturm-Liouville problem with transmission conditions 

at two  interior points studied. Li et al. [31] gave the complete descriptions of self-

adjoint boundary conditions of the Schrödinger operator with ( )xδ  and ( )xδ ′  

interaction. Adjoint and self-adjoint boundary value problems with interface 

conditions have been studied by Zettl [67]. 

 

In 1977, Fulton [16] considered the Sturm-Liouville eigenvalue problem 

 

( ) ( )1 2 1 2

,

cos ( ) sin ( ) 0,

( ) ( ) ( ) ( )

u qu u

u a u a

u b u b u b u b

λ
α α

β β λ β β

′′− + =
′+ =

′ ′′ ′− − = −
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and obtained asymptotic formulas for eigenvalues and eigenfunctions of this 

problem. 

 

In 2004, Altınisk et al. [3] investigated the asymptotics of eigenvalues and 

eigenfunctions for the differential equation 

 

( ) ( ) ( ) ( ) ( )a x u x q x u x u xλ′′− + =  

 

in the interval [ ]1,1−  except one inner point 0x =  together with the eigenvalue-

dependent boundary conditions 

( )

( ) ( )
1 2

1 1 2 2

( 1) 1 0,

(1) (1)

u u

u u

α α

β λ β β λ β

′− + − =

′ ′ ′+ = +
 

and transmission conditions at the point of discontinuity 

 

( ) ( )
( ) ( )

1 1

2 2

0 0 ,

0 0 .

u u

u u

γ δ
γ δ

− = +
′ ′− = +

 

 

where 2
1( )a x a=  for ( ]0,1x ∈   and 2

2( )a x a=  for [ )1,0x ∈ −  and obtained asymptotic 

expressions for eigenvalues and eigenfunctions. 

 

In 2005, Mukhtarov and Kadakal [39] considered the Sturm-Liouville equation  

 

( ) ( )u q x u x uλω′′− + =  

 

in the interval [ ) ( ]1,0 0,1− ∪ ; where  is a discontinuous weight function such 

that ( ) 2
1xω ω=  for [ )1,0x ∈ − ,  and ( ) 2

2xω ω=  for ( ]0,1x ∈ ,  together with the 

standart boundary condition at 1x = −   

 

( ) ( )cos 1 sin 1 0,u uα α ′− + − =  

 

 the spectral parameter dependent boundary condition at 1x =   

( )xω
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                      ( ) ( )( ) ( ) ( )( )1 2 1 21 1 1 1 0,u u u uλ β β β β′ ′ ′ ′− + − =  

 

 and the two transmission conditions at the point of discontinuity 0x =   

 

                                       ( ) ( )1 10 0 0,u uγ δ− − + =  

                                      ( ) ( )2 20 0 0.u uγ δ′ ′− − + =  

 

In the second chapter, following [39] we consider the boundary value problem for 

the differential equation 

 

      : ( ) ( )u u q x u x uτ λω′′= − + =                                                   (1.1) 

 

for [ ) ( ) ( ]1 1 2 21, , ,1x h h h h∈ − ∪ ∪  (i.e., x  belongs to [ ]1,1−  but the two inner points 

1x h=  and 2x h= ), where ( )q x  is a real valued function, continuous in [ )11,h− , 

( )1 2,h h  and ( ]2,1h  with the finite limits ( )
11 lim x hq h →±± = , ( )

22 lim x hq h →±± = ; ( )xω  

is a discontinuous weight function such that ( ) 2
1xω ω=  for [ )11,x h∈ − , ( ) 2

2xω ω=  

for ( )1 2,x h h∈  and ( ) 2
3xω ω=  for ( ]2,1x h∈ , 0ω >  together with the standart 

boundary condition at 1x = −   

 

                         ( ) ( )1 : cos 1 sin 1 0,L u u uα α ′= − + − =                                     (1.2) 

 

 the spectral parameter dependent boundary condition at 1x =   

 

               ( ) ( )( ) ( ) ( )( )2 1 2 1 2: 1 1 1 1 0,L u u u u uλ β β β β′ ′ ′ ′= − + − =                        (1.3)                                                                                         

 

 and the four transmission conditions at the points of discontinuity 1x h=  and 2x h=   

 

                           ( ) ( )3 1 1 1 1: 0 0 0,L u u h u hγ δ= − − + =                                       (1.4) 
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                           ( ) ( )4 2 1 2 1: 0 0 0,L u u h u hγ δ′ ′= − − + =                                      (1.5)  

 

                         ( ) ( )5 3 2 3 2: 0 0 0,L u u h u hγ δ= − − + =                                       (1.6)  

 

                           ( ) ( )6 4 2 4 2: 0 0 0,L u u h u hγ δ′ ′= − − + =                                     (1.7) 

 

in the Hilbert space ( ) ( ) ( )2 1 2 1 2 2 21, , ,1L h L h h L h− ⊕ ⊕  where Cλ ∈  is a complex 

spectral parameter; and all coefficients of the boundary and transmission conditions 

are real constants. We assume naturally that  1 2 0α α+ ≠ , 1 2 0β β′ ′+ ≠  and 

1 2 0β β+ ≠ . Moreover, we will assume that  1 2 1 2: 0ρ β β β β′ ′= − > . We find 

asymptotic formulas for eigenvalues and eigenfunctions of the problem (1.1)-(1.7). 

 

In the third chapter, we examine eigenvalues and eigenfunctions of one 

discontinuous eigenvalue problem which consist of Sturm-Liouville equation 

 

                           : ( ) ( ) ( ) ( )u u x q x u x u xτ λ′′= − + =                                          (1.8) 

 

on [ ) ( ) ( ]1 1 21, , ... ,1 ,mh h h h− ∪ ∪ ∪  together with eigenparameter-dependent boundary 

conditions 

 

                             ( )1 1 2: 1 ( 1) 0,u u uτ α α ′= − + − =                                            (1.9) 

 

                     ( ) ( ) ( )2 1 1 2 2: 1 (1) 0u u uτ β λ β β λ β′ ′ ′= + − + =                               (1.10) 

 

and transmission conditions at the points of discontinuity ix h=  ( 1, ),i m=  

 

                           ( ) ( )2 1 : 0 0 0,i i i iu u h u hτ δ+ = − − + =                                    (1.11) 

 

                             ( ) ( )2 2 : 0 0 0,i i i iu u h u hτ δ+ ′ ′= − − + =                                  (1.12) 

 



 

24 

where 1 21 ... 1,mh h h− < < < < <  ( )q x  is a given real-valued function continuous in  

[ ) ( )1 1 21, , , ,...,h h h− ( ],1mh  and has finite limits 0( 0) lim ( )
ii x hq h q x→ ±± = ( )1,i m= ; 

λ  is a complex eigenvalue parameter; iδ ( )1, ,i m= ,jα ,jα
′

,jβ jβ
′

 ( )1,2j =  are real 

numbers; 1 2 0α α+ ≠   and 0iδ ≠  ( )1, .i m=  As following [16] we assume 

everywhere that 1 2 1 2 0.ρ β β β β
′ ′

= − >  

 

Third chapter organised as follows: following the operator formulation of the 

problem (1)-(5) in a suitable Hilbert space in Sect. 3.2, asymptotic approximate 

formulas of characteristic function derived for four distinct cases in Sect. 3.3, 

asymptotic formulas for eigenvalues and eigenfunctions of the problem (1)-(5) is 

given in Sect. 3.4, and in the last section we examined the completeness of 

eigenfunctions of the problem (1.8)-(1.12). 

 

Let H  be a separable Hilbert space. We denote the inner product in H  by ( ),⋅ ⋅  and 

the norm in H  by ⋅ .  Let f  be a strongly measurable function defined on [ ]0,1  

with values in H  such that  

1.) The scalar function ( )( ),f x g  is Lebesgue measurable for every g H∈  in the 

interval [ ]0,1 ; 

2.) 
1

2

0

( ) .f x dx < ∞∫    

The set of all functions f  satisfying the above conditions is denoted by 

( )1 2 0,1;H L H= . If the inner product of two arbitrary elements  1f   and 2f  of the 

space 1H  is defined as  

 

( ) ( ) ( )
1

1

1 2 1 2 1 2 1

0

, ( ), ( ) ,
H

f f f x f x dx f f H= ∈∫ , 
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then 1H  becomes a separable Hilbert space [24]. The norm in the space  1H  is 

denoted by 
1H

⋅ . ( )Hσ ∞  denotes the set of compact operators from H  to H . If 

( )A Hσ∞∈  then *A A  is a nonnegative self-adjoint operator and ( ) ( )1/2*A A Hσ∞∈  

[13]. Let the nonzero eigenvalues of the operator  ( )1/2*A A  be 

( )1 2 ... 0ks s s k≥ ≥ ≥ ≤ ≤ ∞ . Here each eigenvalue is repeated according to its 

multiplicity. The numbers 1 2, ,..., ks s s  are called s-numbers of the operator A . If 

,k < ∞  then 0js =  where 1, 2,...j k k= + + . The s-numbers of the operator A  is also 

denoted by ( )ks A ( )1,2,...k = . If A  is a normal operator, that is * *A A AA=  then, 

( )( ) ( 1,2,...)k ks A A kλ= =  [13]. Here, 1 2( ), ( ),..., ( )kA A Aλ λ λ  are the non-zero 

eigenvalues of the operator A . We will denote the set of all operators ( )A Hσ∞∈  

such that the s-numbers of which satisfy the condition 
1

( )p
k

k

s A
∞

=

< ∞∑  by pσ  or 

( )p Hσ . The set pσ  is a separable Banach space with respect to the norm 

1

( )
1

( )
p

p
p
kH

k

A s Aσ

∞

=

 =  
 
∑ . 

 

(see [13]). 

For 1p =  the space 1( )Hσ  is called the space of kernel operators.  Thus an operator 

in ( )1 Hσ  is called a kernel operator. If ( )1A Hσ∈  then for any linear bounded 

operator :B H H→  we have ( )1,AB BA Hσ∈  and 

 

( ) ( )

( ) ( )

1 1

1 1

,

.

H H

H H

BA B A

AB B A

σ σ

σ σ

≤

≤
 

 

(see [13]). If ( )1A Hσ∈  and { }
1j j

e H
∞

=
⊂  is any orthonormal basis then the series 

( )
1

,j j
j

Ae e
∞

=
∑  
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is convergent and the sum of the series ( )
1

,j j
j

Ae e
∞

=
∑  does not depend on the choice of 

the basis  { }
1j j

e
∞

=
.  The sum of the series ( )

1

,j j
j

Ae e
∞

=
∑  is said to be matrix trace of A  

and is denoted by trA (see [13]). We have  

( )
( )

1

.
A

k
k

trA A
υ

λ
=

= ∑  

 

Here each eigenvalue is counted according to its own algebraic multiplicity number 

and ( )Aυ  denotes the sum of algebraic multiplicity of non-zero eigenvalues of A

(see [13]). A self-adjoint operator is said to have purely-discrete spectrum if its 

spectrum consist of eigenvalues { }
1j j

λ
∞

=
 of finite multiplicity and lim j jλ→∞ = ∞ .  

 

The first work about the theory of regularized traces of differential operators belongs 

to Gelfand and Levitan [17]. They considered the Sturm-Liouville operator 

 

[ ]( ) 0,y q x yλ′′− + − =  

 

with boundary conditions 

 

( )(0) 0,y y π′ ′= =  

 

where [ ]1( ) 0,q x C π∈ . Under the condition ( )0 0q x dxπ =∫  they obtained the formula 

 

( ) ( ) ( )( )
0

1
0 .

4n n
n

q qµ λ π
∞

=

− = +∑  

 

Here, nµ  are the eigenvalues of the operator ( )y q x y yλ′′− + =  and 2
n nλ =  are the 

eigenvalues of the same operator with ( ) 0q x = . The limit given in the form 

 

( )
1

lim
n

n k k
k

λ µ→∞
=

−∑  
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is called the regularized trace of operator L . 

 

First, the trace formulas for the Sturm-Liouville operator were obtained in [15, 17]. 

Afterwards these works have been followed by numerous studies. The bibliography 

on the subject is very extensive and we refer to the list of the works in [30, 48]. The 

trace formulas related to the Sturm-Liouville problem with bounded self-adjoint 

operator were considered in [1, 8, 9, 14, 25]. 

 

Köklü et al. [25] under some additional conditions obtained the formula  

 

( ) ( ) ( )
1

1 1 0

1 1
1 0

2 4mn
m n

m trQ x dx trQ trQλ
∞ ∞

= =

   − − − = −      
   

∑ ∑ ∫  

 

for the operator L  generated by the differential expression 

 

( ) ( ) ( )y x Q x y x′′− +  

 

with the boundary conditions  

 

(0) 0, (1) (1) 0, 0y y ay a= + = >             

 

in the Hilbert space [ ]( )1 2 0,1 ,H L H=  where ( ) : H HQ x →  self-adjoint nuclear 

operator and H  is a separable Hilbert space. 

 

Let 0L  and L  be operators which are formed by the differential expressions 

 

0(y) ( )l y x′′= −  

 

and  

( ) ( ) ( ) ( )l y y x Q x y x′′= − +  
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respectively, in the space ( )2 0, ;L Hπ  with the same boundary conditions  

 

( ) ( )(0) , (0)y y y yπ π′ ′= − = −  

 

where H  is a separable Hilbert space. Bayramov et al. [9] obtained the formula 

 

( )( ) ( ) ( )

( ) ( )

2
42

1 1 0

2

2
2

0 0

4 2 1
2 2 1

1 1
0

mn
m n

m
m trQ x dx

trQ x dx tr Q x dx

π

π π

λ
π

π π

∞ ∞

= =

 −
− − −



 
− − = 
  

∑ ∑ ∫

∫ ∫

 

 

for the regularized trace of operator .L   

 

Let H  be a separable Hilbert space. In the Hilbert space [ ]( )1 2 0,1 ,H L H=  we 

consider the self-adjoint operator L  generated by the expression 

 

( ) ( ) ( ) ( ) ( )l y y x Ay x Q x y x′′= − + +  

 

with the boundary conditions  

 

 (0) 0,   (1) (1) 0,   0,y y by b′= + = >                                (1.13) 

 

where A  is a positive definite self-adjoint operator in H , which is the inverse to a 

compact operator; we may assume that A I≥  where I  is the identity operator and 

suppose that the operator function ( )Q x  satisfies the following conditions: 

(1)  has a weak derivative of second order in interval [0,1]. The operator 

function ( )Q x′′  is weakly measurable and for every [ ]0,1 ,x ∈  ( ) ( ) :iQ x H H→  

( )0,1,2i =  are self-adjoint nuclear operators. 

( )Q x
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(2) The functions ( ) ( )
( )1

i

H
Q x

σ
  ( )0,1,2i =  are bounded and measurable in the 

interval [ ]0,1 .  Here ( )1 Hσ  denotes the space of the nuclear operators from H  to 

.H   

(3) ( )( )1
0 , 0

H
Q x f f dx =∫  for every .f H∈   

Let 0L  be the operator generated by the differential expression 

( )0 ( ) ( )l y y x Ay x′′= − +  and the boundary conditions (1.13). 

In the fourth chapter, we obtain a formula for the operators 0L  and 0 .L L Q= +   This 

formula is said to be regularized trace formula. 

 

In this work, the problem that we consider is different from [25] by appearence of 

unbounded operator coefficient. 

 

The trace formulas can be used for approximate calculation of the first eigenvalues of 

an operator [48], and in order to establish necessary and sufficient conditions for a 

set of complex numbers to be spectrum of an operator [49]. 

 

The operators  0L   and  L   have purely-discrete spectrum [19]. Let the eigenvalues 

of the operators  0L  and L  be 1 2 ... ...nµ µ µ≤ ≤ ≤ ≤  and 1 2 ... ...nλ λ λ≤ ≤ ≤ ≤  

respectively. 

 

Let 1 2 ... ...nγ γ γ≤ ≤ ≤ ≤  be the eigenvalues of the operator A  and 1 2, ,..., ,...nφ φ φ  be 

the orthonormal eigenfunctions corresponding to these eigenvalues. It is known [19] 

that, if  

 

( )  as    0, 2j aj j aαγ α∼ → ∞ > >  

 

then 

 

     
2
2,   as  ,n n dn n

α
αλ µ +∼ → ∞                                        (1.14) 
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here 0.d >  By using this asymptotic formula, it is easily seen that the sequence { }nµ  

has a subsequence 
1 2

... ...
pn n nµ µ µ< < < <  such that 

 

( ) ( )2 2
2 2

1 1, 2,... ,
pk n p p pd k n k n n

α α
α αµ µ + +− > − = + +                      (1.15) 

 

here  1 0.d >   

 

In this work, under the conditions (1)-(3) the following formula has been found for 

the regularized trace of L : 

 

( ) ( ) ( )
1

1
lim 1 0 .

4

pn

k k
p

k

trQ trQλ µ
→∞

=

− = −  ∑  

 

In 2010, Wang et al. [60] studied completeness of eigenfunctions of the following 

Sturm-Liouville problem with eigenvalue-dependent boundary conditions and 

transmission conditions at one interior point: 

 

( )( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 2 1 2

3 3

4 4

( ) ( ) ( ) ( ),

1 1 0,

1 1 1 (1) 0,

0 0 0 0,

0 0 0 0.

a x u x q x u x u x

u u

u u u u

u u u

u u u

λ

α α

λ β β β β

α β
α β

′′− + =

′− + − =

′ ′ ′ ′− + − =

′+ − − − − =
′+ − − − − =

 

 

In 2014, Aydemir and Mukhtarov [6] investigated the completeness of 

eigenfunctions of  the following boundary-value problem: 

 

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ,

cos ( ) sin 0,

cos sin 0

p x y x q x y x y x

y y

y y

λ
α π α π
β π β π

′′− + =
′− + − =

′+ =

 

 

where singularity of the solution ( , )y y x λ=  prescribed by transmission conditions 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 10 11 10

21 20 21 20

0 0 0 0 0,

0 0 0 0 0.

y y y y

y y y y

β β β β

β β β β

− − + +

− − + +

′ ′− + − + + + − =

′ ′− + − + + + − =
 

 

In chapter 5, we shall investigate the Sturm-Liouville equation  

 

( ) ( )( ) ( ){ }1
:  p , u x u q x u u

r x
λ′′= − + =ℓ                                         (1.16) 

 

on three disjoint intervals [ )11,h− , ( )1 2,h h  and ( ]2,1h  with the eigenparameter 

dependent boundary condition  

                                                ( )1 0u − = ,                                                             (1.17) 

 

                          ( ) ( ) ( ) ( )1 1 2 21 – ' 1 0 ,u uλα β λα β+ + =                                       (1.18) 

 

and the transmission conditions  

 

                                     1 1 1 1( 0) ( 0),u h u hδ γ+ = −                                                    (1.19) 

 

                                   2 1 2 1( 0) ( 0),u h u hδ γ′ ′+ = −                                                   (1.20)       

                 

                                       3 2 3 2( 0) ( 0),u h u hδ γ+ = −                                                        (1.21) 

 

             4 2 4 2( 0) ( 0).u h u hδ γ′ ′+ = −                                                  (1.22) 

 

Here  ( )p x , ( ), ( )q x r x  are continuous functions on [ ) ( ) ( ]1 1 2 21, , ,1  I h h h h= − ∪ ∪ ; 

and have finite limits 0( 0) lim p(x),
ii hp h →±± = ( ) 00 lim (x),

ii hq h q→±± =

0( 0) lim (x) (i 1,2);
ii hr h r→±± = = λ ∈ℂ  is eigenparameter; iα , iβ  ( i =1,2), jδ , jγ  ( j

=1,2,3,4) are real numbers and 0j jδ γ ≠  ( j =1,2,3,4). Also throughout this paper, we 

assume that ρ := 1α 2β − 2α 1β >0, (x) 0p >  and ( ) 0r x > .   
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We investigate the resolvent operator and completeness of eigenfunctions of the 

problem (1.16)-(1.22). For operator-theoretic formulation of the considered problem 

we define an equivalent inner product in the Hilbert space 2[ 1,1]L − ⊕ℂ  and suitable 

self-adjoint linear operator in it. We obtain the resolvent operator and prove 

compactness of it. Finally we prove the main theorem about expansion in series of 

eigenfunctions. In the special case that( ) ( ) 1p x q x= ≡  and the transmission 

coefficients ( 1,4)i i iδ γ= =  in the results obtained in this work coincide with 

corresponding results in the classical continuous Sturm-Liouville operator. 
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2. ASYMPTOTIC PROPERTIES OF EIGENVALUES AND 

EIGENFUNCTIONS OF A STURM-LIOUVILLE PROBLEM WITH 

DISCONTINUOUS WEIGHT FUNCTION 

The results of this chapter were the object of the article “Asymptotic properties of 

eigenvalues and eigenfunctions of a Sturm-Liouville problem with discontinuous 

weight function, Miskolc Mathematical Notes, Vol. 15, No. 1, pp. 197-209, 2014”. 

2.1 Operator-Theoretic Formulation of the Problem 

 

In this section, we introduce a special inner product in the Hilbert space  

( ) ( ) ( )( )2 1 2 1 2 2 21, , ,1 CL h L h h L h− ⊕ ⊕ ⊕  and define a linear operator A  in it so that 

the problem (1.1)-(1.7) can be interpreted as the eigenvalue problem for A . To this 

end, we define a new Hilbert space inner product on 

( ) ( ) ( )( )2 1 2 1 2 2 2: 1, , ,1 CH L h L h h L h= − ⊕ ⊕ ⊕  by  

 

1 2

1

2

2 2 1 2
1 21

1 2

12 1 2 3 4 1 2 3 4
3 1 1

1 2 3 4 1 2 3 4

, ( ) ( ) ( ) ( )

( ) ( )

h h

H h

h

F G f x g x dx f x g x dx

f x g x dx f g

δ δω ω
γ γ

δ δ δ δ δ δ δ δω
γ γ γ γ ργ γ γ γ

−
= +

+ +

∫ ∫

∫
 

 

 for  
1

( )f x
F

f

 
=  
 

 and 
1

( )g x
G H

g

 
= ∈ 
 

. For convenience we will use the notations  

 

( ) ( )1 1 2 1 1 2: (1) (1),   : (1) (1).R u u u R u u uβ β β β′ ′ ′′ ′= − = −  

 

 In this Hilbert space we construct the operator :A H H→  with domain 
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[ ] [ ]

[ ]
( ) ( ) ( )

}

1 1 2
1

2 1 2 1 2

2 1 2 1 2 2 2 1 3 4 5 6

1 1

( )
( ) | ( ), ( ) are absolutely continuous in 1, ,

,1 ; and has finite limits ( 0),  ( 0), ( 0), ( 0);

1, , ,1 ;  0,

( )

f x
D A F f x f x h h h

f

h f h f h f h f h

f L h L h h L h L f L f L f L f L f

f R f

τ
′

   ′= = ∪  
  

′ ′∪ ± ± ± ±

∈ − ⊕ ⊕ = = = = =

=

         

(2.1) 

 

 which acts by the rule 

 

( ) [ ]1

11

( ) ( )
with  ( ).

( )( )

x
f q x f f x

AF F D A
R fR f

ω
′

′′ − +  
= = ∈    −   

                         (2.2)  

 

Thus we can pose the boundary-value-transmission problem (1.1)-(1.7) in H  as  

 

1

( )
,     : ( ).

( )

u x
AU U U D A

R u
λ ′

 
= = ∈ 

 
                                       (2.3) 

 

It is readily verified that the eigenvalues of A  coincide with those of the problem 

(1.1)-(1.7). 

 

Theorem 2.1. The operator A  is symmetric. 

Proof. Let  
1

( )

( )

f x
F

R f′

 
=  
 

  and  
1

( )

( )

g x
G

R g′

 
=  
 

  be arbitrary elements of ( )D A . Twice 

integrating by parts we find 

 

                      ( ) ( )1, , , ; 0 , ; 1
H H

AF G F AG W f g h W f g− = − − −  

    

( ) ( )( )
( ) ( )( )

( )

1 2
2 1

1 2

1 2 3 4
2

1 2 3 4

1 2 3 4
1 1 1 1

1 2 3 4

, ; 0 , ; 0

, ;1 , ; 0

( ) ( ) ( ) ( )

W f g h W f g h

W f g W f g h

R f R g R f R g

δ δ
γ γ
δ δ δ δ
γ γ γ γ
δ δ δ δ
ργ γ γ γ

′ ′

+ − − +

+ − +

+ −

                                 (2.4) 
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where, as usual, ( ), ;W f g x  denotes the Wronskian of f  and g ; i.e., 

 

                                  ( ), ; : ( ) ( ) ( ) ( ).W f g x f x g x f x g x′ ′= −  

 

Since  , ( ),F G D A∈   the first components of these elements, i.e. f  and g  satisfy 

the boundary condition (1.2). From this fact we easily see that 

 

( ), ; 1 0,W f g − =                                                     (2.5) 

 

since cosα  and sinα  are real. Further, as f  and g  also satisfy both transmission 

conditions, we obtain 

 

( ) ( )1 2
1 1

1 2

, ; 0 , ; 0 ,W f g h W f g h
δ δ
γ γ

− = +                               (2.6) 

 

( ) ( )1 2 3 4
2 2

1 2 3 4

, ; 0 , ; 0 .W f g h W f g h
δ δ δ δ
γ γ γ γ

− = +                            (2.7) 

 

Moreover, the direct calculations give 

 

( )1 1 1 1( ) ( ) ( ) ( ) , ;1 .R f R g R f R g W f gρ′ ′− = −                           (2.8) 

 

Now, inserting (2.5)-(2.8) in (2.4), we have 

 

( ), ,      , (
H H

AF G F AG F G D A= ∈  

 

and so A  is symmetric. 

 

Recalling that the eigenvalues of (1.1)-(1.7) coincide with the eigenvalues of A , we 

have the next corollary: 

 

Corollary 2.1. All eigenvalues of (1.1)-(1.7) are real. 
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Since all eigenvalues are real it is enough to study only the real-valued 

eigenfunctions. Therefore we can now assume that all eigenfunctions of (1.1)-(1.7) 

are real-valued. 

 

2.2. Asymptotic Formulas for Eigenvalues and Fundamental Solutions 

 

Let us define fundamental solutions 

 

( )
( ) [ )
( ) ( )
( ) ( ]

( )
( ) [ )
( ) ( )
( ) ( ]

1 1 1 1

2 1 2 2 1 2

3 2 3 2

, , 1, , , , 1, ,

, , , , ,  and , , , , ,

, , ,1 , , ,1

x x h x x h

x x x h h x x x h h

x x h x x h

ϕ λ χ λ
ϕ λ ϕ λ χ λ χ λ

ϕ λ χ λ

 ∈ − ∈ −
 = ∈ = ∈ 
 ∈ ∈ 

 

 

of (1.1) by the following procedure. We first consider the next initial-value problem: 

 

( ) [ ]2
1 1, 1,u q x u u x hλω′′− + = ∈ −                                               (2.9) 

 

( 1) sin ,u α− =                                                            (2.10) 

 

( 1) cos .u α′ − = −                                                           (2.11) 

 

By virtue of ([55], Theorem 1.5) the problem (2.9)-(2.11) has a unique solution  

( )1 ,u xϕ λ=  which is an entire function of Cλ ∈  for each fixed [ ]11,x h∈ − . 

Similarly, 

 

( ) [ ]2
2 1 2,   ,u q x u u x h hλω′′− + = ∈                                           (2.12) 

( )1
1 1 1

1

( ) , ,u h h
γ ϕ λ
δ

=                                                       (2.13) 

( )2
1 1 1

2

( ) , ,u h h
γ ϕ λ
δ

′′ =                                                      (2.14)  
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has a unique solution ( )2 ,u xϕ λ=  which is an entire function of Cλ ∈  for each 

fixed [ ]1 2,x h h∈ . Continuing in this manner 

 

( ) [ ]2
3 2,   ,1u q x u u x hλω′′− + = ∈                                            (2.15) 

 

   ( )3
2 2 2

3

( ) , ,u h h
γ ϕ λ
δ

=                                                   (2.16) 

( )4
2 2 2

4

( ) , ,u h h
γ ϕ λ
δ

′′ =                                                    (2.17) 

 

has a unique solution ( )3 ,u xϕ λ=  which is an entire function of Cλ ∈  for each 

fixed [ ]2,1x h∈ . Slightly  modifying the method of  ([55], Theorem 1.5) we can 

prove that the initial-value problem 

 

( ) [ ]2
3 2, ,1u q x u u x hλω′′− + = ∈                                          (2.18) 

 

2 2(1) ,u β λ β′= +                                                         (2.19)  

 

1 1(1)u β λ β′′ = +                                                           (2.20) 

 

(2.18)-(2.20) has a unique solution ( )3 ,u xχ λ=  which is an entire function of 

spectral parameter  Cλ ∈   for each fixed [ ]2,1x h∈ . Similarly, 

 

( ) [ ]2
2 1 2,   ,u q x u u x h hλω′′− + = ∈                                         (2.21) 

 

( )3
2 3 2

3

( ) , ,u h h
δ χ λ
γ

=                                                   (2.22) 

 

( )4
2 3 2

4

( ) , ,u h h
δ χ λ
γ

′′ =                                                  (2.23) 
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has a unique solution ( )2 ,u xχ λ=  which is an entire function of Cλ ∈  for each 

fixed [ ]1 2,x h h∈ . Continuing in this manner 

 

  ( ) [ ]2
3 1,   1,u q x u u x hλω′′− + = ∈ −                                       (2.24) 

 

( )1
1 2 1

1

( ) , ,u h h
δ χ λ
γ

=                                             (2.25) 

 

  ( )2
1 2 1

2

( ) , ,u h h
δ χ λ
γ

′′ =                                              (2.26)       

 

has a unique solution ( )1 ,u xχ λ=  which is an entire function of Cλ ∈  for each 

fixed  [ ]11,x h∈ − . 

 

By virtue of (2.10) and (2.11) the solution ( ),xϕ λ  satisfies the first boundary 

condition (1.2). Moreover, by (2.13), (2.14), (2.16) and (2.17),  ( ),xϕ λ   satisfies 

also transmission conditions (1.4)-(1.7). Similarly, by (2.19), (2.20), (2.22), (2.23), 

(2.25) and (2.26) the other solution  ( ),xχ λ   satisfies the second boundary condition 

(1.3) and transmission conditions (1.4)-(1.7). It is well-known from the theory of 

ordinary differential equations that each of the Wronskians  

( ) ( ) ( )( )1 1 1, , , ,W x xλ ϕ λ χ λ∆ = ( ) ( ) ( )( )2 2 2, , ,W x xλ ϕ λ χ λ∆ = and 

( ) ( ) ( )( )3 3 3, , ,W x xλ ϕ λ χ λ∆ =  are independent of x  in [ ]11, ,h−   [ ]1 2,h h  and [ ]2,1h  

respectively. 

 

Lemma 2.1. The equality  ( ) ( ) ( )1 2 3 41 2

1 2 1 2 3 41 2 3
δ δ δ δδ δ

γ γ γ γ γ γλ λ λ∆ = ∆ = ∆  holds for each Cλ ∈ . 

Proof. Since the above Wronskians are independent of x , using (2.16), (2.17), 

(2.19), (2.20), (2.22), (2.23), (2.25) and (2.26) we find 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1 1 1

1 2 2 1
2 1 2 1 2 1 2 1

1 2 2 1

1 31 2 2 4
2 3 2 3 2

1 2 1 3 2 4

, , , ,

, , , ,

, ,

h h h h

h h h h

h h

λ ϕ λ χ λ ϕ λ χ λ

δ δ δ δϕ λ χ λ ϕ λ χ λ
γ γ γ γ

δ δδ δ δ δλ ϕ λ χ λ
γ γ γ γ γ γ

′ ′

′ ′

′

∆ = −

     
= −     
     

  
= ∆ =   

  

 

                        ( ) ( ) ( )1 3 1 2 3 42 4
3 2 3 2 3

2 4 1 3 1 2 3 4

, , .h h
δ δ δ δ δ δδ δ ϕ λ χ λ λ

γ γ γ γ γ γ γ γ
′   

− = ∆  
  

 

 

Corollary 2.2. The zeros of ( )1 ,λ∆  ( )2 λ∆  and ( )3 λ∆  coincide. 

 

In view of Lemma 2.1 we denote ( )1 ,λ∆  ( )1 2

1 2 2
δ δ
γ γ λ∆  and ( )1 2 3 4

1 2 3 4 3
δ δ δ δ
γ γ γ γ λ∆  by ( )λ∆ . 

Recalling the definitions of ( ),i xϕ λ  and ( ),i xχ λ , we can state the next corollary. 

 

Corollary 2.3. The function ( )λ∆  is an entire function. 

 

Theorem 2.2. The eigenvalues of (1.1)-(1.7) are the roots of ( ) 0λ∆ = . 

Proof. Let ( )0 0.λ∆ =   Then ( ) ( )( )1 0 1 0, , , 0W x xϕ λ χ λ =  for all [ ]11, .x h∈ −   

Consequently, the functions ( )1 0,xϕ λ  and ( )1 0,xχ λ  are linearly dependent, i.e., 

( ) ( )1 0 1 0, ,x k xχ λ ϕ λ= ,  [ ]11,x h∈ − , for some  0.k ≠   By (2.10) and (2.11), from this 

equality, we have 

 

( ) ( ) ( ) ( )0 0 1 0 1 0cos 1, sin 1, cos 1, sin 1,αχ λ αχ λ αχ λ αχ λ′′− + − = − + −  

( ) ( )( ) ( )( )1 0 1 0cos 1, sin 1, cos sin sin cos 0,k kαϕ λ αϕ λ α α α α′= − + − = + − =  

 

and so  ( )0,xχ λ   satisfies the first boundary condition (1.2). Recalling that the 

solution  ( )0,xχ λ   also satisfies the other boundary condition (1.3) and transmission 

conditions (1.4)-(1.7). We conclude that ( )0,xχ λ  is an eigenfunction of (1.1)-(1.7); 

i.e., 0λ  is an eigenvalue. Thus, each zero of ( )λ∆  is an eigenvalue. Now let 0λ  be 

an eigenvalue and let ( )0u x  be an eigenfunction with this eigenvalue. Suppose that 
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( )0 0λ∆ ≠ . Whence ( ) ( )( )1 0 1 0, , , 0W x xϕ λ χ λ ≠ ,  ( ) ( )( )2 0 2 0, , , 0W x xϕ λ χ λ ≠  and 

( ) ( )( )3 0 3 0, , , 0W x xϕ λ χ λ ≠ . From this, by virtue of the well-known properties of 

Wronskians, it follows that each of the pairs ( )1 0, ,xϕ λ  ( )1 0,xχ λ ; ( )2 0, ,xϕ λ

( )2 0,xχ λ  and ( )3 0, ,xϕ λ ( )3 0,xχ λ  is linearly independent. Therefore, the solution  

0( )u x  of (1.1) may be represented as  

 

                      ( )
( ) ( ) [ )
( ) ( ) ( )
( ) ( ) ( ]

1 1 0 2 1 0 1

0 3 2 0 4 2 0 1 2

5 3 0 6 3 0 2

, , ,   1, ,

, , ,   , ,

, , ,   ,1 ,

c x c x x h

u x c x c x x h h

c x c x x h

ϕ λ χ λ
ϕ λ χ λ
ϕ λ χ λ

 + ∈ −
= + ∈
 + ∈

 

 

where at least one of the coefficients ic  ( )1,6i =  is not zero. Considering the true 

equalities 

 

( )( )0 0,    1,6,L u xυ υ= =                                        (2.27) 

 

as the homogenous system of linear equations in the variables ic  ( )1,6i =  and taking 

(2.13), (2.14), (2.16), (2.17), (2.22), (2.23), (2.25) and (2.26) into account, we see 

that the determinant of this system is equal to ( ) ( )
2

1 2 3 4

1 2 3 4

4
0

δ δ δ δ
γ γ γ γ λ− ∆  and so it does not 

vanish by assumption. Consequently the system (2.27) has the only trivial solution 

0ic =  ( )1,6 .i =  This is a contradiction. And the proof is complete. 

 

Theorem 2.3. Let  2λ µ=   and  Im tµ =  . Then the following asymptotic equalities 

hold as  :λ → ∞   

(1) In case sin 0α ≠   

 

 ( ) ( ) ( ) ( )( )1 1 11

1
, sin cos 1 exp 1 ,

k
k

kk

d
x x O t x

dx
ϕ λ α µω ω

µ −

 
= + +  +     

 
     (2.28) 
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( ) ( ) ( )

( )( )

1
2 2 1 1 1

1

2 1 1 11

, sin cos

1
exp ,

k
k

k

k

d
x x h

dx

O t x h

γϕ λ α µ ω ω ω
δ

ω ω ω
µ −

= + +  

 
+  + + 

 
 

                        (2.29)     

 

                     

( ) ( ) ( )

( )( )

1 3
3 3 2 2 1

1 3

3 2 2 11

, sin cos

1
exp .

k
k

k

k

d
x x h

dx

O t x h

γ γϕ λ α µ ω ω ω
δ δ

ω ω ω
µ −

= + +  

 
+  + + 

 
 

                    (2.30) 

 

 (2) In case sin 0α =   

 

( ) ( ) ( ) ( )( )1 1 12
1

1 1
, cos sin 1 exp 1 ,

k
k

kk

d
x x O t x

dx
ϕ λ α µω ω

µω µ −

 −= + +  +     
 

    (2.31) 

 

( ) ( ) ( )

( )( )

1
2 2 1 1 1

1

2 1 1 12

, cos sin

1
exp ,

k
k

k

k

d
x x h

dx

O t x h

γϕ λ α µ ω ω ω
µδ

ω ω ω
µ −

= − + +  

 
+  + + 

 
 

                       (2.32) 

 

( ) ( ) ( )

( )( )

1 3
3 3 2 2 1

1 3

3 2 2 12

, cos sin

1
exp .

k
k

k

k

d
x x h

dx

O t x h

γ γϕ λ α µ ω ω ω
µδ δ

ω ω ω
µ −

= − + +  

 
+  + + 

 
 

                     (2.33)  

 

for 0k =  and 1k = . Moreover, each of these asymptotic equalities holds uniformly 

for x . 

Proof. Asymptotic formulas for ( )1 ,xϕ λ  and ( )2 ,xϕ λ  are found in ([55], Lemma 

1.7) and ([39], Theorem 3.2) respectively. But the formulas for ( )3 ,xϕ λ  need 

individual considerations, since this solution is defined by the initial condition with 

some special nonstandart form. The initial-value problem (2.15)-(2.17) can be 

transformed into the equivalent integral equation 
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( ) ( )

( ) ( ) ( )
2

3 4
2 2 3 2 2 3

3 3 4

3
3

( ) , cos , sin

sin .
x

h

u x h x h x

x y q y u y dy

γ γϕ λ µω ϕ λ µω
δ µω δ

ω µω
µ

′= +

+ −  ∫
                      (2.34) 

 

Let sin 0α ≠ . Inserting (2.29) in (2.34) we have 

 

( ) ( )

( ) ( ) ( )

( )( )

2

1 3
3 3 2 2 1

1 3

3
3 3

3 2 2 1

, sin cos

sin ,

1
exp .

x

h

x x h

x y q y y dy

O t x h

γ γϕ λ α µ ω ω ω
δ δ

ω µω ϕ λ
µ

ω ω ω
µ

= + +  

+ −  

 
+ + +  

 

∫                                (2.35) 

 

Multiplying this by ( )( )3 2 2 1exp t x hω ω ω− + +  and denoting  

 

( )( ) ( )3 2 2 1 3( , ) exp , ,F x t x h xλ ω ω ω ϕ λ= − + +  

 

we have the following integral equation 

 

( )( ) ( )

( ) ( )( ) ( )
2

1 3
3 2 2 1 3 2 2 1

1 3

3
3 3

( , ) sin exp cos

1
sin exp ( , ) .

x

h

F x t x h x h

x y t x y q y F y dy O

γ γλ α ω ω ω µ ω ω ω
δ δ

ω µω ω λ
µ µ

= − + + + +  

 + − − − +    
 

∫
 

 

Putting [ ]2 ,1( ) max ( , )x hM F xλ λ∈= , from the last equation we derive that 

 

1 3
0

1 3

1
( )M M

γ γλ
δ δ µ

 
≤ +  

 
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for some  0 0M > . Consequently, ( )( ) 1M Oλ =  as λ → ∞ , and so

( ) ( )( )( )3 3 2 2 1, expx O t x hϕ λ ω ω ω= + +  as λ → ∞ . Inserting the integral term of 

(2.35) yields (2.30) for  0k =  . The case  1k =   of (2.30) follows at once on 

differentiating (2.29) and making the same procedure as in the case  0k =  . The 

proof of (2.33) is similar to that of (2.30). 

Theorem 2.4. Let 2λ µ= , itµ σ= + . Then the following asymptotic formulas hold 

for the eigenvalues of the boundary-value-transmission problem (1.1)-(1.7): 

Case 1:  2 0β ′ ≠ , sin 0α ≠   

 

( )
3 2 2 1

1 1
,n

n
O

h n

π
µ

ω ω ω
−  = +  + +  

                                       (2.36) 

 

 Case 2:  2 0β ′ ≠ , sin 0α =   

 

( )1
2

3 2 2 1

1
,n

n
O

h n

π
µ

ω ω ω
−  = +  + +  

                                      (2.37) 

 

 Case 3:  2 0β ′ = , sin 0α ≠   

 

( )1
2

3 2 2 1

1
,n

n
O

h n

π
µ

ω ω ω
−  = +  + +  

                                      (2.38) 

 

 Case 4:  2 0β ′ = , sin 0α =   

 

3 2 2 1

1
,n

n
O

h n

πµ
ω ω ω

 = +  + +  
                                     (2.39) 

 

 Proof. Let us consider only the case 1. Putting 1x =  in   

 

( ) ( ) ( ) ( ) ( )3 3 3 3 3, , , ,x x x xλ ϕ λ χ λ ϕ λ χ λ′ ′∆ = −  
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and inserting ( )3 2 21, ,χ λ β λ β′= + ( )3 1 11,χ λ β λ β′ ′= +  we have the following 

representation for ( )3 λ∆ : 

 

( ) ( ) ( ) ( ) ( )3 1 1 3 2 2 31, 1, .λ β λ β ϕ λ β λ β ϕ λ′ ′ ′∆ = + − +                           (2.40)           

 

Putting 1x =  in (2.30) and inserting the result in (2.40), we derive now that 

 

 
( ) ( ) ( )

( )( )( )

32 4
3 3 2 3 2 2 1

2 4

2

2 2 1

sin sin

exp 2 .

h

O t h

δ δλ ω β α µ µ ω ω ω
γ γ

µ ω ω ω

′∆ = + +  

+ + +
                     (2.41) 

 

By applying the Rouché Theorem, it follows that ( )3 λ∆  has the same number of 

zeros inside the contour as the leading term in (2.41). Hence, if 0 1 2...λ λ λ< <  are the 

zeros of ( )3 λ∆  and  2 ,n nµ λ=  we have  

 

 
( )

3 2 2 1

1
n

n

h

π
δ

ω ω ω
−

+
+ +

                                                   (2.42) 

 

for sufficiently large ,n  where  ( )3 2 2 14n h
π

ω ω ωδ + +<  for sufficiently large .n  By putting 

in (2.41) we have  ( )1
n nOδ =  , and the proof is completed in Case 1. The proofs for 

the other cases are similar. 

 

Theorem 2.5. The following asymptotic formulas hold for the eigenfunctions 

  

                               ( )
( ) [ )
( ) ( )
( ) ( ]

1 1

2 1 2

3 2

, , 1, ,

, , , ,

, , ,1
n

n

n

n

x x h

x x x h h

x x h
λ

ϕ λ
ϕ ϕ λ

ϕ λ

 ∈ −
= ∈
 ∈

 

 

 of (1.1)-(1.7): 

Case 1: 2 0β ′ ≠ , sin 0α ≠   
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( )

( )( ) ( ) [ )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ]

1

2 1

2 1 1 11

1 2 1 1 1

3 2 2 11 3

1 3 3 2 2 1

1 1 1
1

1 1
1 2

1 1
2

sin cos ,  1, ,

sin cos ,  , ,

sin cos ,  ,1 .

n

n x

n

x h n

h n

x h n

h n

O x h

x O x h h

O x h

ω π
ω ω

ω ω ω πγ
λ δ ω ω ω

ω ω ω πγ γ
δ δ ω ω ω

α

ϕ α

α

− +
+

+ + −
+ +

+ + −
+ +

   + ∈ − 
  = + ∈  


  + ∈ 

 

 

 Case 2: 2 0β ′ ≠ , sin 0α =   

 

( )
( )

( )( ) ( ) [ )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

1
1 21 2

211 2 12

1
2 1 1 1 21 1 2

211 1 2 1 1 12

1
3 2 2 1 21 3 1 2

211 3 1 3 2 2 12

1cos 1
1

cos 1
1 2

cos 1

sin ,  1, ,

sin ,  , ,

sin ,  

n

n x

n n

x h n

hn n

x h n

hn n

O x h

x O x h h

O x

ω πω ω α
ω ω ωπ

ω ω ω πγ ω ω α
λ δ ω ω ω ωπ

ω ω ω πγ γ ω ω α
δ δ ω ω ω ωπ

ϕ

− ++
+−

+ + −− +
+ +−

+ + −− +
+ +−

 − + ∈ −  

 = + ∈  

  +  
( ]2,1 .h






 ∈

 

 

 Case 3: 2 0β ′ = , sin 0α ≠   

 

( )

( )( ) ( ) [ )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ]

1
1 2

2 1

1
2 1 1 1 21

1 2 1 1 1

1
3 2 2 1 21 3

1 3 3 2 2 1

1 1
1

1
1 2

1
2

sin cos ,  1, ,

sin cos ,  , ,

sin cos ,  ,1 .

n

n x

n

x h n

h n

x h n

h n

O x h

x O x h h

O x h

ω π
ω ω

ω ω ω πγ
λ δ ω ω ω

ω ω ω πγ γ
δ δ ω ω ω

α

ϕ α

α

− +
+

+ + −
+ +

+ + −
+ +

   + ∈ −   
  = + ∈   
   + ∈   

 

 

 Case 4: 2 0β ′ = , sin 0α =   

 

( )

( ) ( ) [ )
( ) ( ) ( )

( ) ( ) ( ]

11 2
2

1 2 1

2 1 1 11 1 2
2

1 1 2 1 1 1

3 2 2 11 3 1 2
2

1 3 1 3 2 2 1

1cos 1
1

cos 1
1 2

cos 1
2

sin ,  1, ,

sin ,  , ,

sin ,  ,1 .

n

n x

n n

x h n

n h n

x h n

n h n

O x h

x O x h h

O x h

ω πω ω α
ω π ω ω

ω ω ω πγ ω ω α
λ δ ω π ω ω ω

ω ω ω πγ γ ω ω α
δ δ ω π ω ω ω

ϕ

++
+

+ +− +
+ +

+ +− +
+ +

  − + ∈ − 
  = + ∈  


  + ∈ 

 

 

All these asymptotic formulas hold uniformly for .x   

Proof. Let us consider only the Case 1. Inserting (2.30) in the integral term of (2.35), 

we easily see that 
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( ) ( ) ( ) ( )( )( )
2

3 3 3 2 2 1sin , exp .
x

h
x y q y y dy O t x hµω ϕ λ ω ω ω− = + +  ∫  

 

 Inserting in (2.28) yields 

 

( ) ( )

( )

1 3
3 3 2 2 1

1 3

3 2 2 1

, sin cos

1
exp .

x x h

O t x h

γ γϕ λ α µ ω ω ω
δ δ

ω ω ω
µ

= + +  

 
+ + +  

 

                     (2.43) 

 

We already know that all eigenvalues are real. Furthermore, putting ,Hλ = −   0H >  

in (2.41) we infer that ( )Hω − → ∞  as H → +∞ , and so ( ) 0Hω − ≠  for sufficiently 

large 0R > . Consequently, the set of eigenvalues is bounded below. Letting  

n nλ µ=  in (2.43) we now obtain 

 

            ( ) ( )1 3
3 3 2 2 1

1 3

1
, sin cosn n

n

x x h O
γ γϕ λ α µ ω ω ω
δ δ µ

 
= + + +    

 
 

 

 since n nt lmµ=  for sufficiently large n . After some calculation, we easily see that 

 

          ( ) ( ) ( )3 2 2 1
3 2 2 1

3 2 2 1

1 1
cos cos .n

x h n
x h O

h n

ω ω ω π
µ ω ω ω

ω ω ω
+ + −   + + = +       + +   

 

 

 Consequently, 

 

( ) ( ) ( )3 2 2 11 3
3

1 3 3 2 2 1

1 1
, sin cos .n

x h n
x O

h n

ω ω ω πγ γϕ λ α
δ δ ω ω ω

+ + −   = +   + +   
 

 

 In a similar method, we can deduce that 

 

( ) ( ) ( )2 1 1 11
2

1 2 1 1 1

1 1
, sin cos ,n

x h n
x O

h n

ω ω ω πγϕ λ α
δ ω ω ω

+ + −   = +   + +   
 



 

47 

 

 and 

 

( ) ( ) ( )1
1

2 1

1 1 1
, sin cos .n

n x
x O

n

ω π
ϕ λ α

ω ω
− +   = +   +   

 

 

 Thus the proof of the theorem completed in Case 1. The proofs for the other cases 

are similar. 
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3. SPECTRAL PROPERTIES OF DISCONTINUOUS STURM-LIOUV ILLE 

PROBLEMS WITH A FINITE NUMBER OF TRANSMISSION 

CONDITIONS 

 

The results of this chapter are gathered in the article “Spectral properties of 

discontinuous Sturm–Liouville problems with a finite number of transmission 

conditions, Mediterranean Journal of Mathematics, DOI 10.1007/s00009-014-0487-

x, in press (with O. Sh. Mukhtarov)”. 

 

3.1. Operator Formulation 

 

By using the method introduced in [40] we shall define direct sum of Hilbert spaces 

but with the usual inner product replaced by appropriate multiples. Namely, in the 

Hilbert space  ( )2 1,1 CH L= − ⊕  we define an inner product by 

 

( ) ( )
1

2

2 1
1 1

0 0

, : ,
j

j

m

h ijm
i

i
j i h

F G f x g x dx f g
δ

δ
ρ

+

=

= =

 
= + 

 

∏
∑ ∏ ∫  

 

 where 0 1,h = −   1 1,mh + =   0 1δ = , for 

F :�
f�x�

f1

, G :�
g�x�

g1

� H.

 

 For convenience we put 

 

( ) ( ) ( )
( ) ( ) ( )

1 1 2

1 1 2

: 1 1 ,

: 1 1 .

R u u u

R u u u

β β

β β

′

′ ′ ′ ′

= −

= −
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 The function ( )f x  is defined on [ ) ( ) ( ]1 1 21, , ... ,1mh h h h− ∪ ∪ ∪  and has finite limits  

( ) ( )00 : lim
ii x hf h f x→ ±± =   ( )1,i m= . By ( )if x  ( )1, 1i m= +  we denote the 

functions 

 

( ) ( ) ( )

( ) ( ) ( )

1

1

2

1

0 1

1

1 2 1 2
0 1

0 2

0 1
0

1 1

0

lim ( ), ,
( ), [ 1, ),

:   : ( ), , ,...
lim ( ), ,

lim ( ), ,

lim ( ), ,
lim ( ),

: ( ), , ,   :

lim ( ), ,

m

m

m

x h

x h

x h

x h m

x h

m m m m

x h m

f x x h
f x x h

f x f x f x x h h
f x x h

f x x h

f x x h
f x x

f x f x x h h f x

f x x h

−

→ +

→ −
→ −

→ + −
→ +

− +

→ −

=
∈ − = = ∈ =  =

=
== ∈ =

 =
( ]

,

( ), ,1

m

m

h

f x x h


 ∈

 

 

which are defined on [ ]1 1: 1, ,hΩ = −  [ ] [ ]2 1 2 1: , ,..., : , ,m m mh h h h−Ω = Ω =   

[ ]1 : ,1m mh+Ω =   respectively. 

 

In the Hilbert space H  we introduce a linear operator A  on the domain 

 

( ) ( ) ( ) ( ){
[ ] ( ) ( ) ( ) ( )

( ) ( )

2
2 1 2 2

1 1

: ,   are absolutely continuous in  1, 1 , 

1,1 ,  : 0 0 0,  : 0 0 0

1, 1  and 

i i i

i i i i i i i i

D A F H f x f x i m f

L u u h u h u u h u h

i m f R f

τ

τ δ τ δ

′

′

+ +

= ∈ Ω = + ∈

′ ′ − = − − + = = − − + = 
= + = 

 

 

 by action low 

AF �
�f

�R1�f�
.

 

 

Then we can rewrite the considered problem (1.8)-(1.12) in the operator formulation 

as 

 

AF Fλ=  

 

 where 
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( )
( )

( )
1

: .
f x

F D A
R f

′

 
= ∈  − 

 

 

Consequently, the problem (1.8)-(1.12) can be considered as the eigenvalue problem 

for the operator A . Obviously, we have 

 

Lemma 3.1. The eigenvalues of the boundary value problem (1.8)-(1.12) coincide 

with those of A , and its eigenfunctions are the first components of the corresponding 

eigenelements of .A   

 

Lemma 3.2. The domain ( )D A  is dense in H . 

Proof. Let 
1

( )

 

f x
F H

f

 
= ∈ 
 

,  ( )F D A⊥   and let  C0

�

  be the set of all functions 

��x� �

�1�x�,x � ��1,h1 �,

�2�x�,x � �h1,h2�,

�

�m�1�x�,x � �hm , 1�
 

for 
⌢

[ )01 1( ) 1,x C hϕ
∞

∈ − ,  
⌢

( )02 1 2( ) ,x C h hϕ
∞

∈ ,...,
⌢

( ]01( ) ,1 .m mx C hϕ
∞

+ ∈  Since 

⌢
0 0 ( )C D A
∞

⊕ ⊂  ( )0 C∈   and  
⌢

0
( )

0
0

u x
U C

∞ 
= ∈ ⊕ 
 

 is orthogonal to  F , we have 

 

( ) ( )
1

2

0 0

, .
j

j

hjm

i
j i h

F U f x u x dxδ
+

= =

 
=  

 
∑ ∏ ∫  

 

 We can learn that ( )f x  is orthogonal to 
⌢

0C
∞

 in [ ]2 1,1L − , this implies ( ) 0f x = . So 

for all  
1

( )
( ),

g x
G D A

g

 
= ∈ 
 

 

2

1

1 1, 0

m

i

iF G f g
δ

ρ
== =

∏
. Thus 1 0f =   since ( )1 1g R g′=  

can be chosen arbitrarily. So 
0

0
F

 
=  
 

, which proves the assertation. 
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Theorem 3.1. The linear operator A   is symmetric in H . 

Proof. Let ,F ( )G D A∈ . By two partial integrations, we get 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )

1

2
1 2 1

2 2
1 2 3 2

2

1

2

1
1 1 1 1

, , , ; 0 , ; 1

, ; 0 , ; 0

, ; 0 , ; 0 ...

, ;1 , ; 0
m

i m
i

m

i
i

AF G F AG W f g h W f g

W f g h W f g h

W f g h W f g h

W f g W f g h

R f R g R f R g

δ

δ δ

δ

δ

ρ
′ ′

=

=

= + − − −

+ − − +

+ − − + +

+ − +

+ −

∏

∏

                     (3.1) 

where 

 

W�f,g;x � � f�x�g
�

�x� � f
�

�x�g�x�  

 

denotes the Wronskian of the functions f  and g . Since f  and  g   satisfy the 

boundary condition (1.9), it follows that 

 

   ( ), ; 1 0.W f g − =                                                 (3.2) 

 

 From the transmission conditions (1.11)-(1.12) we get 

 

( ) ( )2, ; 0 , ; 0 ,  1, .i i iW f g h W f g h i mδ− = + =                         (3.3) 

 

 Furthermore, 
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( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 , ;1 .

R f R g R f R g

f f g g f f g g

f g f g

f g f g W f g

β β β β β β β β

β β β β β β β β

ρ ρ

′ ′

′′ ′ ′ ′ ′ ′

′′ ′ ′ ′ ′

′′

−

 = − − − − − 
 

= − + −

 = − = − 
 

      

(3.4) 

 

 Finally, substituting (3.2)-(3.4) in (3.1) then we get  

 

 ( )( ), ,  , .AF G F AG F G D A= ∈                                      (3.5) 

 

Now we can write the following theorem with the helps of Theorem 3.1, Naimark's 

Patching Lemma [44] and using the similar way as in [40]. 

 

Theorem 3.2. The linear operator A  is self-adjoint in H . 

 

Corollary 3.1. All eigenvalues of the problem (1.8)-(1.12) are real. 

 

We can now assume that all eigenfunctions are real-valued. 

 

Corollary 3.2. If 1λ  and 2λ  are two different eigenvalues of the problem (1.8)-

(1.12), then the corresponding eigenfunctions 1u  and 2u  of this problem are 

orthogonal in the sense of the following equality: 

 

( ) ( ) ( )
1

2

2 1
1 2 1 1 1 2

0 0

( ) 0.
j

j

m

h ijm
i

i
j i h

u x u x dx R u R u
δ

δ
ρ

+
′ ′=

= =

 
+ = 

 

∏
∑ ∏ ∫  

 

We need the following lemma, which can be proved by the same technique as in 

[ ]57 .  
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Lemma 3.3. Let the real-valued function ( )q x  be continuous in [ ]1,1−  and 

( ) ( ),f gλ λ  are given entire functions. Then for any Cλ ∈  initial value problem  

 

� u �� � q�x�u � �u, x � ��1,1�,
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , 1 or 1 , 1u f u g u f u gλ λ λ λ
′ ′

− = − = = =  

 

has a unique solution ( ),u u x λ=  which is an entire function of λ  for each fixed 

[ ]1,1 .x ∈ −   

 

We shall define two solutions 

 

( )

( ) [ )
( ) ( )

( ) ( ) ( ]
( )

( ) [ )
( ) ( )

( ) ( ) ( ]

1 1 1 1

2 1 2 2 1 2

1 1

,  1, , ,  1, ,

,  , , ,  , ,
 and  

,  ,1 , ,  ,1 ,m mm m

x x h x x h

x x h h x x h h
x x

x x h x x h

λ λ

λ λ
λ λ

λ λ

ϕ χ
ϕ χ

ϕ χ

ϕ χ+ +

 ∈ − ∈ −
 ∈ ∈ = = 
 
 ∈ ∈ 

⋮ ⋮
 

 

of the equation (1.8) as follows: Let ( ) ( )1 1: ,x xλϕ ϕ λ=  be the solution of equation 

(1.8) on [ ]11,h− , which satisfies the initial conditions 

 

( ) ( )2 11 ,  1 .u uα α′− = − = −                                       (3.6) 

 

By virtue of Lemma 3.1, after defining this solution, we may define the solution  

( ) ( )2 2, :x xλϕ λ ϕ=   of equation (1.8) on  [ ]1 2,h h   by means of the solution  ( )1 ,xϕ λ   

by the initial conditions 

 

( ) ( ) ( ) ( )1 1
1 1 1 1 1 1 1 1, ,  , .u h h u h hδ ϕ λ δ ϕ λ− − ′′= =                          (3.7) 

 

After defining this solution, we may define the solution  ( ) ( )3 3, :x xλϕ λ ϕ=   of 

equation (1.8) on [ ]2 3,h h  by means of the solution ( )2 ,xϕ λ  by the initial conditions 
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  ( ) ( ) ( ) ( )1 1
2 2 2 2 2 2 2 2, ,  , .u h h u h hδ ϕ λ δ ϕ λ− − ′′= =                                    (3.8) 

 

Continuing in this manner, we may define the solution ( ) ( ) ( ) ( )1 1, :m mx xλϕ λ ϕ+ +=  of 

equation (1.8) on  [ ],1mh   by means of the solution ( ),m xϕ λ  by the initial conditions 

 

( ) ( ) ( ) ( )1 1, ,  , .m m m m m m m mu h h u h hδ ϕ λ δ ϕ λ− − ′′= =                                (3.9) 

 

Therefore, ( ),xϕ λ  satisfies the equation (1.8) on [ ) ( ) ( ]1 1 21, , ... ,1mh h h h− ∪ ∪ ∪ , the 

boundary condition (1.9), and the transmission conditions (1.11)-(1.12). 

Analogically, first we define the solution ( ) ( ) ( ) ( )1 1: ,m mx xλχ χ λ+ +=  on [ ],1mh  by the 

initial conditions 

 

( ) ( )2 2 1 11 ,  1 .u uβ λ β β λ β′ ′′= + = +                                            (3.10) 

 

Again, after defining this solution, we may define the solution ( ) ( ): ,m mx xλχ χ λ=  

of the equation (1.8) on  [ ]1,m mh h−   by the initial conditions 

 

( ) ( ) ( ) ( )1 1, ,  , .m m m m m m m mu h h u h hδ χ λ δ χ λ′
+ +′= =                                (3.11) 

 

Continuing in this manner, we may define the solution ( ) ( )1 1: ,x xλχ χ λ=  of the 

equation (1.8) on  [ ]11,h−   by the initial conditions 

 

( ) ( ) ( ) ( )1 1 2 1 1 1 2 1, ,  , .u h h u h hδ χ λ δ χ λ
′ ′

= =                                    (3.12) 

 

Therefore, ( ),xχ λ  satisfies the equation (1.8) on [ ) ( ) ( ]1 1 21, , ... ,1mh h h h− ∪ ∪ ∪ , the 

boundary condition (1.10), and the transmission conditions (1.11)-(1.12). It is 

obvious that the Wronskians 
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( ) ( ) ( ) ( ) ( ) ( ) ( ): , ; : , , , , ,    1, 1i i i i i i i iW x x x x x x i mλω λ ϕ χ ϕ λ χ λ ϕ λ χ λ
′ ′

= = − ∈Ω = + . 

 

are independent of ix∈Ω  and are entire functions of  λ . 

 

Lemma 3.4. For each  Cλ ∈ ,   

 

( ) ( ) ( ) ( )2 2 2 2
1 1 2 1 2 3 1

1

... .
m

i m
i

ω λ δ ω λ δ δ ω λ δ ω λ+
=

 = = = =  
 
∏  

Proof. By using (3.7), (3.8), (3.9), (3.11) and (3.12), it is easy to show that 

 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
1 1 1 1 2 2 1 1 3 3 2 1 2 3 3 2

2 2 2
1 2 4 4 3 1 1

1

, ; , ; , ; , ;

, ; ... , ; ,
m

i m m m
i

W h W h W h W h

W h W h

λ λ λ λ

λ λ

ϕ χ δ ϕ χ δ ϕ χ δ δ ϕ χ

δ δ ϕ χ δ ϕ χ+ +
=

= = =

 = = =  
 
∏

 

 

so  ( ) ( ) ( ) ( )2 2 2 2
1 1 2 1 2 3 1

1

... .
m

i m
i

ω λ δ ω λ δ δ ω λ δ ω λ+
=

 = = = =  
 
∏   

 

Now we may introduce the characteristic function of the considered problem as  

 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 2 1 2 3 1

1

: ... .
m

i m
i

ω λ ω λ δ ω λ δ δ ω λ δ ω λ+
=

 = = = = =  
 
∏  

 

Theorem 3.3. The eigenvalues of the problem (1.8)-(1.12) are the zeros of the 

function ( ).ω λ   

Proof. Let ( )0 0ω λ = . Then ( )
0 1 1, ; 0W xλ ϕ χ =  and therefore the functions ( )

01 xλϕ  

and ( )
01 xλχ   are linearly dependent, i.e. 

 

( ) ( ) [ ]
0 01 1 1 1,   1,x k x x hλ λχ ϕ= ∈ −  
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for some 1 0k ≠ . From this, it follows that ( )0,xχ λ  satisfies also the first boundary 

condition (1.9), so ( )0,xχ λ  is an eigenfunction of the problem (1.8)-(1.12) 

corresponding to this eigenvalue 0λ . 

 

Now we let  ( )0u x   be any eigenfunction corresponding to eigenvalue  0λ , but  

( )0 0ω λ ≠ . Then the functions  1 1, ,ϕ χ 2 2 1 1, ,..., ,m mϕ χ ϕ χ+ +  would be linearly 

independent on [ ]11, ,h−   [ ]1 2,h h  and  [ ],1mh  respectively. Therefore ( )0u x  may be 

represented in the following form  

 

( )

( ) ( ) [ )
( ) ( ) ( )

( ) ( ) ( ]

1 1 0 2 1 0 1

3 2 0 4 2 0 1 2
0

2 1 1 0 2 2 1 0

, , ,   1, ,

, , ,   , ,

, , ,   ,1 .m m m m m

c x c x x h

c x c x x h h
u x

c x c x x h

ϕ λ χ λ
ϕ λ χ λ

ϕ λ χ λ+ + + +

 + ∈ −
 + ∈= 

 + ∈

⋮
 

 

where at least one of the constants  1,c 2 2 2,..., mc c +   is not zero. Considering the 

equations 

 

    ( )( )0 0,   1,2 2u x mυτ υ= = +                                     (3.13) 

 

as the homogenous system of linear equations of the variables 1,c 2,c 2 2nc +  and taking 

(3.7), (3.8), (3.9), (3.11) and (3.12) into account, it follows that the determinant of 

this system is equal to 

 

( ) ( )2
0 1 0

1

0.
m

m
i i m

i

δ ω λ ω λ+
=

 − ≠ 
 
∏  

 

Therefore, the system (3.13) has only the trivial solution 0ic = ( )1,2 2i m= + . Thus 

we get a contradiction, which completes the proof. 
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Lemma 3.5. If 0λ λ=  is an eigenvalue, then ( )0,xϕ λ  and ( )0,xχ λ  are linearly 

dependent. 

Proof. Let 0λ λ=  be an eigenvalue. Then by virtue of Theorem 3.3  

 

( ) ( )
0 0 0, ; 0i i iW xλ λϕ χ ω λ= =  

 and hence 

 

   ( ) ( ) ( )
0 0

   1, 1i i ix k x i mλ λχ ϕ= = +                               (3.14) 

 

for some 1 0,k ≠ 2 10,..., 0.mk k +≠ ≠  We must show that  1 2 1... mk k k += = = . Suppose, 

if possible, that  1m mk k +≠ .Taking into account the definitions of the solutions 

( ),i xϕ λ  and ( ),i xχ λ  from the equalities (3.14), we have 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0 0 0 0 02 1 1

1 1 1 1 1

1 1

0 0

0.

m m m m m m m mm

m m m m m m m m m m m m m m m

m m m m m

h h h h

k h k h k h k h

k k h

λ λ λ λ λτ χ χ δ χ χ δ χ

ϕ δ ϕ δ ϕ δ ϕ
δ ϕ

+ +

+ + + + +

+ +

= − − + = −

= − = −

= − =

 

 

since  ( )
02 1 0m λτ χ+ =   and  ( )1 0,m m mk kδ +− ≠   it follows that 

 

( ) ( )
01 0.mm hλϕ + =                                                   (3.15)     

 

By the same procedure from ( )
02 2 0n λτ χ+ =  we can derive that 

 

( ) ( )
01 0.mm hλϕ +′ =                                                   (3.16) 

 

From the fact that ( ) ( )
01m xλϕ +  is a solution of the differential equation (1.8) on [ ],1mh  

and satisfies the initial conditions (3.15) and (3.16), it follows that ( ) ( )
01 0m xλϕ + =   

identically on  [ ],1mh   because of the well-known existence and uniqueness theorem 
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for the initial value problems of the ordinary linear differential equations. Making 

use of (3.9), (3.14) and (3.15), we may also derive that 

 

( ) ( )
0 0

0.m m m mh hλ λϕ ϕ ′= =                                                 (3.17) 

 

Continuing in this matter, we may also find that 

 

( ) ( ) ( ) ( )

( ) ( )

0 0

0 0

1 11 1

1 1 1 1

0.

0.

m mm mh h

h h

λ λ

λ λ

ϕ ϕ

ϕ ϕ

′

′

− −− −
 = =


 = =

⋮                                          (3.18) 

 

identically on [ ] [ ]1 1, ,..., 1,m mh h h− −  respectively. Hence ( )0, 0xϕ λ =  identically on  

[ ) ( ) ( ]1 1 21, , ... ,1mh h h h− ∪ ∪ ∪ . But this contradicts with (3.6). Hence  1.m mk k +=   

Analogically we can prove that 1 ,m mk k− = ..., 2 3k k=  and 1 2.k k=   

 

Corollary 3.3. If  0λ λ=  is an eigenvalue, then both ( )0,xϕ λ  and ( )0,xχ λ  are 

eigenfunctions corresponding to this eigenvalue. 

 

Lemma 3.6. All eigenvalues nλ  are simple zeros of ( ).ω λ   

Proof. Using the Lagrange's formula (cf. [44]), it can be shown that 

 

 ( ) ( ) ( )
1

2 2

0 0 1

( ) , ;1
j

n n

j

hjm m

n i i
j i ih

x x dx Wλ λ λ λλ λ δ ϕ ϕ δ ϕ ϕ
+

= = =

    
 − =   
     
∑ ∏ ∏∫          (3.19) 

 

for any .λ  Recall that 

 

( ) ( ) [ ) ( ) ( ]1 1 2,   1, , ... ,1
n nn mx k x x h h h hλ λχ ϕ= ∈ − ∪ ∪ ∪ . 

 

for some 0,nk ≠  1,2,...n = . Using this equality for the right side of (3.19), we have 
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( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1

1

1 1
, ;1 , ;1

1

1
.

n n n
n n

n
n

n
n n

W W R R
k k

R
k

R
k

λ λ λ λ λ λ

λ

λ

ϕ ϕ ϕ χ λ ϕ ϕ

ω λ λ λ ϕ

ω λ
λ λ ϕ

λ λ

′

′

′

= = +

 = − − 

 
= − − − 

 

 

Substituting this formula in (3.19) and letting  nλ λ→ , we get 

 

  ( ) ( ) ( )( )
1

2

2

2 1
1

0 0

.
j

n n

j

m

h ijm
i

i n
j i nh

x dx R
kλ λ

δ
δ ϕ ω λ ϕ

+
′ ′=

= =

 
= − 

 

∏
∑ ∏ ∫                   (3.20) 

 

Now putting 

( ) ( )1 1

1
n n

n n

R R
k kλ λ

ρϕ χ
′ ′

= =  

 

 in (3.20) we get ( ) 0.nω λ′ ≠   

 

Definition 3.1. The geometric multiplicity of an eigenvalue λ  of the problem (1.8)-

(1.12) is the dimension of its eigenspace, i.e. the number of its linearly independent 

eigenfunctions. 

 

Theorem 3.4. All eigenvalues of the problem (1.8)-(1.12) are geometrically simple. 

Proof. If  f  and g  are two eigenfunctions for an eigenvalue 0λ  of (1.8)-(1.12) then 

(1.9) implies that  ( 1) ( 1)f cg− = −  and ( 1) ( 1)f cg′ ′− = −  for some constant Cc∈ . By 

the uniqueness theorem for solutions of ordinary differential equation and the 

transmission conditions (1.11)-(1.12), we have that  f cg=  on [ ]11, ,h−   [ ]1 2,h h  and  

[ ],1mh . Thus the geometric multiplicity of 0λ  is one. 
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3.2 Asymptotic Approximate Formulas of  �(�) for Four Distinct Cases 

 

We start by proving some lemmas. 

 

Lemma 3.7. Let ( ),xϕ λ  be the solutions of equation (1.8) defined in Section 3.1, 

and let 2sλ = . Then the following integral equations hold for  0,1 :k =   

 

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( ) ( )

1
1 2 1

1
1

1

cos 1 sin 1

sin ,

k k k

s

x
k

s

x s x s x

s x y q y y dy

λ

λ

ϕ α α

ϕ
−

= + − +

+ −∫
 

 

( )
( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )

( )( )( ) ( ) ( ) ( )

1 1 1
1

1
1

cos sin

sin ,  1, ,

k

i i

i

k k

i i i i i isi

x
k

s i
h

x h s x h h s x h

s x y q y y dy i m

λ λδ δλ

λ

ϕ ϕ ϕ

ϕ

′

+

+

= − + −

+ − =∫
       (3.21) 

 

 where ( )( ) ( )k

k

k d
dx

⋅ = ⋅ . 

Proof. It is enough to substitute ( ) ( )2
1 1 ,s y yλ λϕ ϕ

′′

+  ( ) ( )2
2 2 ,...,s y yλ λϕ ϕ

′′

+   

( ) ( ) ( ) ( )2
1 1m ms y yλ λϕ ϕ

′′

+ ++  instead of ( ) ( )1 ,q y yλϕ  ( ) ( )2 ,q y yλϕ  ( ) ( ) ( )1mq y yλϕ +  in 

the integral terms of the (3.21), respectively, and integrate by parts twice. 

 

Lemma 3.8. Let 2sλ = , Im .s t=  Then the functions ( )i xλϕ  have the following 

asymptotic formulas for ,λ → ∞  which hold uniformly for ix∈Ω  

( ) 1, 1 and 0,1. :for i m k= + =   

 

( ) ( ) ( )( )( ) ( )( )1 12
1

0

cos 1
k k k t x

j j

i
i

x s x O s eλ
αϕ

δ

− +
−

=

= + +

∏
                              (3.22) 

 

 if   2 0,α ≠   
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( ) ( ) ( )( )( ) ( )( )2 11

1

0

sin 1
k k k t x

j j

i
i

x s x O s e

s
λ

αϕ
δ

− +
−

=

= − + +

∏
              (3.23) 

 

 if   2 0.α =   

Proof. Since the proof of the formulas for ( )1 xλϕ  is identical to Titchmarsh's proof 

to similar results for ( )xλϕ  (see [55], Lemma 1.7 p. 9-10), we may formulate them 

without proving them here. 

Since the proof of the formulas for ( )2 xλϕ  and ( )3 xλϕ  are identical to Kadakal's and 

Mukhtarov's proof to similar results for ( )xλϕ  (see [22], Lemma 3.2 p. 1373-1375), 

we may formulate them without proving them here. But the similar formulas for 

( ) ( )4 1,..., ( )mx xλ λϕ ϕ +  need individual consideration, since the last solutions are 

defined by the initial conditions of these special nonstandart forms. We shall only 

prove the formula (3.22) for 0k =  and 3m = . 

Let 2 0α ≠ . Then according to (3.22) for 2m =   

 

( ) ( ) ( )( )3
1 12 3

3 3
1 2

cos 1 t hs h
h O s eλ

α
ϕ

δ δ
− ++

= +  

 

and 

 

( ) ( ) ( )( )3 12 3
3 3

1 2

sin 1
.t hs h

h O eλ
α

ϕ
δ δ

′ ++
= − +  

 

Substituting these asymptotic expressions into (3.21), we get 

 

( ) ( ) ( ) ( ) ( ) ( )( )
3

1 12
4 4

1 2 3

cos 1 1
sin .

x
t x

h

s x
x s x y q y y dy O s e

sλ λ
α

ϕ ϕ
δ δ δ

− ++
= + − +∫   (3.24) 

 

Multiplying through by ( )1t xe− + , and denoting 

 



 

63 

( ) ( ) ( )1
4 4: t xF x e xλ λϕ− +=  

 

 we have 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3

11 12
4 4

1 2 3

cos 1 1
: sin .

x
t x t x

h

s x
F x e s x y q y e F y dy O s

sλ λ
α

δ δ δ
−− + − ++

= + − +∫  

 

 Denoting [ ] ( )
3 4,1: maxx hM F xλ∈=  from the last formula, it follows that 

 

( ) ( ) ( )
3

1
2 0

1 2 3

8

h

M M
M q y dy

s s

α λ
λ

δ δ δ
≤ + +∫  

 

for some  0 0M > . From this, it follows that ( ) ( )1M Oλ =  as λ → ∞ , so 

 

( ) ( ) ( ) ( ) ( )( )3 3 2 2 1 1 1

4 .t x h h h h h h
x O eλϕ  − + − + − + + =  

 

Substituting this back into the integral on the right side of (3.24) yields (3.22) for 

0k =  and 3m = . The other cases may be considered analogically. 

 

Theorem 3.5. Let 2sλ = , Imt s= . Then the characteristic function ( )ω λ  has the 

following asymptotic formulas :   

Case 1 :  If 2 0β ′ ≠ , 2 0α ≠ , then 

 

( ) ( )2 23
2 2

1

sin 2 .
m

t
i

i

s s O s eω λ β α δ′

=

 = + 
 
∏                           (3.25) 

 

 Case 2 :  If 2 0β ′ ≠ , 2 0α = , then 

 

 ( ) ( )2 22
2 1

1

cos 2 .
m

t
i

i

s s O s eω λ β α δ′

=

 = + 
 
∏                            (3.26) 
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 Case 3 :  If 2 0β ′ = , 2 0α ≠ , then 

 

( ) ( )2 22
1 2

1

cos 2 .
m

t
i

i

s s O s eω λ β α δ′

=

 = + 
 
∏                              (3.27) 

 

 Case 4 :  If 2 0β ′ = , 2 0α = , then 

 

( ) ( )2 2
1 1

1

sin 2 .
m

t
i

i

s s O s eω λ β α δ′

=

 = − + 
 
∏                              (3.28) 

 

Proof. The proof is completed by substituting (3.22) and (3.23) into the 

representation 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 1 1 1

1 1

2
1 1 2 21 1

1

1 1 1 1

1 1 .

m m

i m i m m m m
i i

m

i m m
i

λ λ λ λ

λ λ

ω λ δ ω λ δ ϕ χ ϕ χ

δ λβ β ϕ λβ β ϕ

′ ′

′ ′ ′

+ + + + +
= =

+ +
=

     = = − =        

   = + − +    

∏ ∏

∏
      

(3.29) 

 

Corollary 3.4. The eigenvalues of the problem (1.8)-(1.12) are bounded below. 

Proof. Putting s it=   ( )0t >  in the above formulas, it follows that ( )2tω − → ∞  as 

t → ∞  . Therefore, ( ) 0ω λ ≠  for λ  negative and sufficiently large. 

 

3.3. Asymptotic Formulas for Eigenvalues and Eigenfunctions 

 

Now we can obtain the asymptotic approximation formulas for the eigenvalues of the 

considered problem (1.8)-(1.12). 

 

Since the eigenvalues coincide with the zeros of the entire function ( )1mω λ+ , it 

follows that they have no finite limit. Moreover, we know from Corollaries 3.1 and 
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3.4 that all eigenvalues are real and bounded below. Hence, we may renumber them 

as 0 1 2 ...λ λ λ≤ ≤ ≤ , listed according to their multiplicity. 

 

Theorem 3.6. The eigenvalues 2
n nsλ = , 0,1,2,...n =  of the problem (1.8)-(1.12) have 

the following asymptotic formulas for :n → ∞   

Case 1 :  If 2 20, 0,β α
′

≠ ≠  then 

 

( )1 1
.

2n

n
s O

n

π −  = +  
 

                                                    (3.30) 

 

Case 2 :  If 2 20, 0,β α
′

≠ =  then 

 

                 
( )1

2 1
.

2n

n
s O

n

π −  = +  
 

                                                  (3.31) 

 

Case 3 :  If  2 20, 0,β α
′

= ≠   then 

 

( )1
2 1

.
2n

n
s O

n

π −  = +  
 

                                                   (3.32) 

 

Case 4 :  If 2 20, 0,β α
′

= =  then 

 

1
.

2n

n
s O

n

π  = +  
 

                                                         (3.33) 

 

Proof. We shall only consider the first case. The other cases may be considered 

similarly. Denoting  ( )1 sω  and  ( )2 sω  the first and O -term of the right of (3.25) 

repectively, we shall apply the well-known Rouché's theorem, which asserts that if 

( )f s  and ( )g s  are analytic inside and on a closed contour C , and ( ) ( )g s f s<  

on C , then ( )f s  and ( ) ( )f s g s+  have the same number zeros inside C , provided 
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that each zero is counted according to their multiplicity. It is readily shown that  

( ) ( )1 2s sω ω>  on the contours 

 

( )1
2: C

2n

n
C s s

π +
= ∈ = 
 

 

 

for sufficiently large n . 

 

Let 0 1 2 ...λ λ λ≤ ≤ ≤  be zeros of ( )ω λ  and 2
n nsλ = . Since inside the contour nC , 

( )1 sω  has zeros at points 0s =  and 2 ,ks π=  1,k = ± 2,...,± n± . 

 

( )1

2n n

n
s

π
δ

−
= +                                             (3.34) 

 

where ( )1n Oδ =  for sufficiently large n . By substituting this in (3.25), we derive 

that ( )1
n nOδ = , which completes the proof. 

 

The next approximation for the eigenvalues may be obtained by the following 

procedure. For this, we shall suppose that ( )q y  is of bounded variation in [ ]1,1 .−

Firstly we consider the case 2 0β
′

≠  and 2 0α ≠ . Putting 1 2, ,..., mx h x h x h= = =  in 

(3.21) and then substituting in the expression of  ( )1m λϕ +′ , we get that 

 

( ) ( ) ( )( ) ( ) ( ) ( )
1

2 1
1 11

0

1 1 1

1
1 sin 2 cos 2 cos 1

j

j

hm

m jm m m
j h

i i i
i i i j

s s s s y q y y dyλ λ
α αϕ ϕ

δ δ δ

+

+ ++
=

= = = +

′ = − + −∑ ∫
∏ ∏ ∏

 

 

where 1 1.mδ + =   

 

Substituting (3.22) into the right side of the last integral equality then gives 
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( ) ( )

( )( ) ( )( ) ( ) ( )
1

2 1
1

1 1

1 22

0

1

1 sin 2 cos2

cos 1 cos 1 .
j

j

m m m

i i
i i

hm
t

m
j h

i
i

s
s s

s y s y q y dy O s e

λ
α αϕ
δ δ

α

δ

+

+

= =

−

=

=

′ = −

+ − + +

∏ ∏

∑ ∫
∏

 

 

 On the other hand, from (3.22), it follows that 

 

( ) ( ) ( )1 22
1

1

1 cos2 .t

m m

i
i

s O s eλ
αϕ

δ

−
+

=

= +
∏

 

 

 Putting these formulas into (3.29), we have 

 

( )

( )( ) ( ) ( ) ( ) ( )
1

3
22 2 1 2 2 1

1 1

1 22
11

0

1

sin 2 cos 2

cos 1 .
j

j

m m

i i
i i

hm
t

jm
j h

i
i j

s
s s s

s y q y y dy O s eλ

β α β α β αω λ
δ δ

β ϕ
δ

′ ′ ′

′ +

= =

−
++

=

= +

 
 + = +
 
 
 



− − +




∏ ∏

∑ ∫
∏

 

 

Putting (3.34) in the last equality we find that 

 

( ) ( ) ( ) ( ) ( )

( )

1 1
1 1

2 1 12

1 1

2

cos 2 1 1
sin 2 cos 2

2 2

n
n nm m

n
i i

i i

n

q y dy s y q y dy
s

O s

δ β αδ
αβ δ δ

′

′

− −

= =

−

 
 
 = − + − −
 
  

+

∫ ∫
∏ ∏      

(3.35) 
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Recalling that ( )q y  is of bounded variation in [ ]1,1− , and applying the well-known 

Riemann-Lebesque Lemma (see [70], p. 48, Theorem 4.12) to the second integral on 

the right in (3.35), this term is ( )1
nO . As a result, from (3.34) it follows that 

 

( ) ( )
1

1 1
2

2 2 1

1

1 1 1
.

1
2

n m

i
i

q y dy O
n n

β αδ
π β α δ

′

′
−

=

 
    = − + − +  −    
  

∫
∏

 

 

Substituting in (3.30), we have 

 

( )
( ) ( )

1
1 1

2
2 2 1

1

1 1 1 1
.

2 1
2

n m

i
i

n
s q y dy O

n n

π β α
π β α δ

′

′
−

=

 
 −   = − + − +  −    
  

∫
∏

 

 

Similar formulas in the other cases are as follows: 

In case 2: 

 

( )
( ) ( )

11
2 1

21
22 1

1

1 1 1
.

2
2

n m

i
i

n
s q y dy O

n n

π β
π β δ

′

′
−

=

 
 −   = − + +  −    
  

∫
∏

 

 

In case 3: 

 

( )
( ) ( )

11
2 2 1

21
1 22 1

1

1 1 1
.

2
2

n m

i
i

n
s q y dy O

n n

π β α
π β α δ

′
−

=

 
 −   = + − + +  −    
  

∫
∏

 

 

In case 4: 
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( )
1

2
2

1 1

1

1 1 1
.

2
2

n m

i
i

n
s q y dy O

n n

βπ
π β δ

′
−

=

 
    = + + +  
   
  

∫
∏

 

 

Recalling that ( ), nxϕ λ  is an eigenfunction according to the eigenvalue nλ  and by 

putting (3.30) into the (3.22) we obtain that 

 

( ) ( )( )2
1

0

1 1 1
cos ,  1, 1

2nj j

i
i

n x
x O j m

nλ
παϕ

δ
−

=

− +   = + = +   
  ∏

 

 

in the first case which holds uniformly for [ ) ( ) ( ]1 1 21, , ... ,1mx h h h h∈ − ∪ ∪ ∪ . 

Similar formulas in the other cases are as follows: 

 

In case 2 

 

 

( )
( )

( )( )1
21

1 2
1
2

0

12 1
sin ,  1, 1.

2nj j

i
i

n x
x O j m

n
n

λ
παϕ

π δ
−

=

 − +  = − + = +   
  − ∏

 

 

 

In case 3 

 

( ) ( )( )1
22

1

0

1 1
cos ,  1, 1

2nj j

i
i

n x
x O j m

nλ
παϕ

δ
−

=

 − +  = + = +   
  ∏

 

 

 

In case 4 
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( ) ( )1
1 2

0

12 1
sin ,  1, 1.

2nj j

i
i

n x
x O j m

n
n

λ
παϕ

π δ
−

=

+   = − + = +   
  ∏

 

 

All these asymptotic formulas hold uniformly for [ ) ( ) ( ]1 1 21, , ... ,1mx h h h h∈ − ∪ ∪ ∪ . 

 

3.4. Completeness of Eigenfunctions 

 

Let A  be the operator as defined in Section 3.1. 

 

Theorem 3.7. The spectrum of A  consist only of eigenvalues, i.e., ( ) ( ).A Aρσ σ=   

Proof. Let η  is not an eigenvalue. Consider the operator equation ( )A I U Fη− =  

for arbitrary  
( )
1

f x
F H

f

 
= ∈ 
 

. This equation is equivalent to the inhomogeneous 

differential equation 

 

( ) [ ) ( ) ( ]1 1 2( ),  1, , ... ,1mu q x u f x x h h h h′′− + = ∈ − ∪ ∪ ∪          (3.36) 

 

 subject to inhomogeneous boundary conditions 

 

1 2 10,  u u fτ τ= =                                                    (3.37) 

 

 and transmission conditions 

 

2 1 2 2 0,  1,i iu u i mτ τ+ += = =                                         (3.38) 

 

 where 

 

                                               ( ) ( )
1

( )
.

u x
U D A

R u′

 
= ∈ − 
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Making use of the definitions of the functions ( )i xλϕ  and ( )i xλχ  ( )1,i m=  we find 

that the general solution of the equation (3.36) has the following representation: 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1

1 2 1( ) ,  for , ,

1,2,...,

i

i i

i i

i

hx
x x

i i

h x

i i i i i i

y f y dy y f y dy

u x C x C x x h h

i m

λ λχ ϕ
η ηω η ω η

η η

ϕ χ

ϕ χ
−

−


+


= + + ∈
 =




∫ ∫

                    (3.39) 

 

where 1iC , 2iC  are arbitrary constants. Substituting (3.39) in (3.37)-(3.38) we see 

that the unknown constants jiC  ( 1,2;j = 1,2,..., )i m=  are uniquely solvable, i.e. 

( )1

( )u x
U

R u′

 
=  − 

 is uniquely solvable. Therefore the resolvent operator 

( ) ( ) 1
,R A A Iη η −= −  is defined on whole H . Moreover, by virtue of Theorem 3.2 

and well-known Closed Graph Theorem we get that ( ),R Aη  is bounded, i.e. η  is a 

regular value of .A  The proof is complete. 

 

Theorem 3.8. The resolvent operator ( ),R Aη  is compact in the Hilbert space H . 

Proof. Let 1 2 ...λ λ≤ ≤  are eigenvalues of A  and 1 2, ,...P P  are orthogonal projections 

onto corresponding eigen-spaces, respectively. Since A  is self-adjoint operator with 

discrete spectrum we can write the spectral resolution of the resolvent operator 

( , )R Aη  by 

 

( )
1

1
, .n

n n

R A Pη
λ δ

∞

=

=
−∑                                          (3.40) 

 

By virtue of Theorem 3.6 we have ( )2
1 1

n n
Oλ δ− =  for n → ∞ . Therefore the series 

(3.40) is strongly convergent. It is obvious that the orthogonal projections nP , 

1,2,...n =  are compact operators, since each of which are of finite rank. 
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Consequently the sum of the series (3.40) is also compact in .H  The proof is 

complete. 

 

Now we are ready to formulate the following properties by using the above results, 

the well-known spectral theorems for self-adjoint operators with discrete spectrum 

and the same techniques as used in [16]. 

 

Let  ( )1

( )n
n

u x
U

R u′

 
=  − 

  be a maximal set of orthogonal eigenelements of A . 

 

Theorem 3.9 (Parseval's equality). For U H∈   

 

22

1

, .n
n

U U U
∞

=

=∑  

 

Theorem 3.10 (Expansion in terms of eigenelements). For ( )D A H⊂   

 

1

, n n
n

U U U U
∞

=

=∑  

 

with the series being absolutely and uniformly convergent in the first component and 

absolutely convergent in the second component. 

 

Denote by ( )2 1
0

,
m

j j
j

L h h +
=
⊕  the direct sum of Hilbert spaces ( )2 11, ,L h−

( ) ( )2 1 2 2, ,..., ,1 .mL h h L h   

 

Corollary 3.5 (Expansion in terms of eigenfunctions). The eigenfunctions ( )nu x , 

1,2,...n =  of the problem (1.8)-(1.12) are complete in ( )2 1
0

, ,
m

j j
j

L h h +
=
⊕  i.e. for every 

( )2 1
0

, ,
m

j j
j

f L h h +
=

∈ ⊕   
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( ) ( )
1

2

1 0 0

( ) ( )
j

j

hjm

i n n
n j i h

f x f y u y dy u xδ
+∞

= = =

  
 =     

∑ ∑ ∏ ∫  

 

 in the sense of strong convergence in ( )2 1
0

, .
m

j j
j

L h h +
=
⊕   
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4. THE REGULARIZED TRACE FORMULA FOR A DIFFERENTIAL  

OPERATOR WITH UNBOUNDED OPERATOR COEFFICIENT 

 

The results of this chapter are gathered in an article written by “E. Şen, A. Bayramov 

and K. Oruçoğlu” and accepted for publication in the journal “Advanced Studies in 

Contemporary Mathematics”. 

 

4.1. The regularized trace of  L   

 

Let 0Rλ  and Rλ  be the resolvents of the operators 0L  and ,L  respectively. From 

(1.14) we get that the series 1
1

k
k λ λ
∞

= −∑  and 1
1

k
k µ λ
∞

= −∑  are convergent for ,kλ λ≠  kµ   

( )1,2,... .k =  In this case 0Rλ  and Rλ  are nuclear operators and  

 

( )0

1

1 1
.

k k k

tr R Rλ λ λ λ µ λ

∞

=

 
− = − − − 

∑                                           (4.1) 

 

Let  ( )1
12 .

p pp n nbλ µ µ−
+= = +  It is easy to see that for large value of p  the 

inequalities 1p pn p nbµ µ +< <  and 1p pn p nbλ λ +< <  are satisfied. The series 1
1 kk λ λ

∞
= −∑  

and 1
1 kk µ λ

∞
= −∑  are uniform convergent on the circle .pbλ =  Therefore from (1.15) 

and (4.1), we get 

 

( ) ( )0

1

1
.

2

p

p

n

k k b
k

tr R R d
i λ λλ

λ µ λ λ
π =

=

− = − −∑ ∫                                   (4.2) 

 

On the other hand, from the formula 0 0,R R R QRλ λ λ λ= −  the equality  
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( ) ( ) ( ) ( ) 110 0 0 0

1

1 1
N j Nj N

j

R R R QR R QRλ λ λ λ λ λ
++

=

− = − + −∑                            (4.3) 

 

is obtained for every natural number .N  From (4.2) and (4.3) we can get 

 

 ( )
1 1

,
pn p

j
k k p pN

k j

M Mλ µ
= =

− = +∑ ∑                                                   (4.4) 

 

Here 

 

( ) ( )01
,   1,2,...

2 p

j
jj

p b
M tr QR d j

ij λλ
λ

π =

−  = =  ∫                                     (4.5) 

 

and 

 

( ) ( ) 101
.

2 p

N
N

pN b
M tr R QR d

i λ λλ
λ λ

π
+

=

−  =   ∫                                       (4.6) 

 

Let { }
1

( )q xψ
∞

 be the orthonormal eigenfunctions corresponding to the eigenvalues 

{ }
1qµ
∞

 respectively. Since the orthonormal eigenfunctions according to the 

eigenvalues k jν γ+    ( )1,2,...; 1,2,...k j= =  of the operator 0L  are sink k jα ν φ   

( )1,2,...; 1,2,...k j= =  respectively then 

 

( ) sin ,   1,2,...
q q qq k k jx qψ α ν φ= =                                            (4.7) 

 

here 1 2 ... ...kν ν ν< < < <  are positive roots of the equation  cos sin 0bν ν ν+ =  

and  

 

                                      
1 2

2
.

1 cos
k

kb
α

ν−
=

+
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Since 0QRλ  is a nuclear operator for every ( )0Lλ ρ∈  and { }
1

( )q xψ
∞

 is an 

orthonormal basis of the space 1H  then from (4.5) and (4.7) we get 

( ) ( ) ( )( )

( )2

11 0

0
1

1 2

0
1

1
( ) ,

2

sin . ( ) , .

p

p

p

q q q q

n

p q q Hb
q

n

k k j j
H

q

M tr QR d Q x x x dx
i

x Q x dx

λλ
λ ψ ψ

π

α ν φ φ

=
=

=

= − =

=

∑∫ ∫

∑ ∫
            (4.8) 

 

If the operator function ( )Q x  satisfies the conditions (1) and (2), the multiple series 

 

( ) 2
1 2

0
1 1

( ) , sin
q q q qj j k k

H
k j

Q x xdxφ φ α ν
∞ ∞

= =
∑∑∫  

 

is absolutely convergent. Therefore from (4.8) we get 

 

( )( )11 2 2

0
1 1

lim , sin .p j j k kHp
k j

M Q x xdxφ φ α ν
∞ ∞

→∞
= =

=∑∑∫                       (4.9) 

 

Let  

 

  ( ) 2 2

1

sin .
p

p k k
k

T x xdxα ν
=

=∑                                    (4.10) 

 

The following equality is proved in [25]: 

 

( ) [ ]2 1

1

1
2 sin ( ),   0,1

2

p

p p
k

T x k xdx T x xπ
=

 = − + ∈ 
 

∑                  (4.11) 

 

where for large values of ,p  the function ( )1
pT x  satisfies the equalities 

 

( ) )1 1. ,   0,1 ,pT x const p x pε ε− −< ∈ −                           (4.12) 
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( )1 1. ,   1 ,1 ,pT x const p x pε ε− − < ∈ −                                       (4.13) 

 

and ε  is a constant number belonging to the interval ( )1
2 ,1 .  

From (4.12) and (4.13) we have    

 

( ) ( )

( ) ( ) ( ) ( )

1 1

0

1 11 1

0 1

1 11 1

0 1

lim

lim

lim 0.

p
p

p

p ppp

p

pp

trQ x T x dx

trQ x T x dx trQ x T x dx

p dx p dx

ε

ε

ε

ε

ε ε

−

−

−

−

→∞

−

−→∞

− − −

−→∞

= +

≤ + =

∫

∫ ∫

∫ ∫

                         (4.14) 

 

Theorem 4.1. If the operator function ( )Q x  satisfies the conditions (1), (2) and 

j ajαγ ∼    ( )2 2 2
2 1

0,a α +
−

> >   as j → ∞  then  

 

lim 0,   2,j
p

p
M j

→∞
= ≥                                                 (4.15) 

 

1 2
lim 0,   3 3 .

2pN
p

M N
αδ
α

−

→∞

−= > =
+

                                    (4.16) 

 

Proof. For 2j =  from (4.5), we write 

 

( )

( ) ( ) ( )( )
1

22 0

20

1

1

4
1

, .
4

p

p

p b

k kb Hk

M tr QR d
i

QR x x d
i

λλ

λλ

λ
π

ψ ψ λ
π

=

∞

=
=

=

=

∫

∑∫
                       (4.17) 

 

Moreover, we know that 

 

                                         ( )
1 1 1

10
k k kQR Qλψ µ λ ψ

−
= −  

 

and 
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( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 2 1 2 2
1

2

120 0

1 1

1

, .

k k k

k k k k kH
k

QR QR Q

Q Q

λ λψ µ λ ψ

µ λ µ λ ψ ψ ψ

−

∞− −

=

= −

= − −∑
           (4.18) 

 

From (4.17) and (4.18), we have 

 

( )( ) ( ) ( )
1 2 2 1

1 1
1 2 1 2

2

1 1

1
, , .

4 p
p k k k kb H H

k k k k

d
M Q Q

i λ

λ ψ ψ ψ ψ
π λ µ λ µ

∞ ∞

=
= =

 
 =

− −  
∑∑ ∫           (4.19) 

 

It is easy to see that for 1 ,pk n≤  2 pk n≤  and  1 ,pk n>  2 pk n>   

 

( )( )
1 2

0.
pb

k k

d
λ

λ
λ µ λ µ=

=
− −∫                                             (4.20) 

 

Then, from (4.19) and (4.20), we have  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1

1

2 2

11

2

1 1

21

1 1

21

1 1

1 1

1 1

1
, ,

2

,

,

.

p

p
p

p

p

p

p

p p

p p

n

p k j j kH Hb
k j n k j

n

j k k j H
k j n

j n j k H
j n k

j n j j nHH
j n j n

d
M Q Q

i

Q

Q

Q Q

λ

λ ψ ψ ψ ψ
π λ µ λ µ

µ µ ψ ψ

µ µ ψ ψ

µ µ ψ µ µ

∞

=
= = +

∞ −

= = +

∞ ∞−

= + =

∞ ∞− −

= + = +

 
=  

− −  

= −

≤ −

= − ≤ −

∑ ∑ ∫

∑ ∑

∑ ∑

∑ ∑

           (4.21) 

 

Let 2
2 .α

αδ −
+=  Then by (1.15) we get  

 

( )1 1
1 1 1

1 1

p ppk n k nk n pd k nδ δµ µ

∞ ∞

+ +
= + = +

<
− −∑ ∑  
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( )( ) ( )

2

1

11
1 11 11 1

1

11 1
1 1 1 1

1

1 1 1
1 11 1

1

11

.

p

p

p

p

p

n i

n i
i

p pp p

n i

p n i
i p

p p pn i
p

dx
d

n i nd n n

dx
d n d

x n

dx
d n d n n

x n

δ
δ

δδ δδ

δ
δ δ

δ δ
δ δ δ +

∞ + +−
++ + ++ =

∞ + +− − −
+ ++

=

∞ −− − − − −
+ ++

= +
+ + −+ −

≤ +
−

   = + < +    −  

∑∫

∑∫

∫

                 (4.22) 

 

From (4.21) and (4.22) we get 

 

             
2lim 0.p

p
M

→∞
=                                                    (4.23) 

 

In a similar form it can be proved that the inequality 

 

( )2 22 1 23
1 1

1

3 2 2
14 2p p pH

M Q d n n
δ δ
δ δδ

−
+ +−− −≤ +  

 

is true. From here, we get 

 

3 1
lim 0,   .

2
p

p
M δ

→∞
= >                                           (4.24) 

 

From (4.5) we get 

 

( )
1 1

1

1 1 1

1

1 1 1 1

0 0

( )

0 0

( )

0 0

( )

1 1

2 2

.

p p

j

p

jj

p

j j

pj Hb b

H Hb

H H Hb

M tr QR d QR d
j j

QR QR d

Q R R d

λ λ σλ λ

λ λσλ

λ λσλ

λ λ
π π

λ

λ

−

−

= =

=

=

≤ ≤

≤

≤

∫ ∫

∫

∫

             (4.25) 

 

We shall now estimate 
1 1

0

( )H
Rλ σ

 and 
1

0

H
Rλ  on the circle .pbλ =   For { }1

,kλ µ ∞∉   

since 0Rλ  is normal operator then 
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1 1

0

( )
1

1
       [13, p.121].

H
k k

Rλ σ µ λ

∞

=

=
−∑                            

 

Since ( )1
12

p pp n nbλ µ µ−
+= = +  then  

 

1 1

0

( )
1

1 1

1

2 2
.

p

pp p

H
k k

n

k k nn k k n

Rλ σ λ µ

µ µ µ µ

∞

=

∞

= = +

≤
−

≤ +
− −

∑

∑ ∑
                              (4.26) 

 

By using (1.15), we obtain 

 

( )
1

11 11 1 1
1

1
.

1

p

p p p

n
p p

p
k n k n n

p p

n n
d n

d n n

δ
δ δµ µ µ µ

−
+ += + +

< < <
− −  + −  

∑            (4.27) 

 

From (4.22), (4.26) and (4.27), we get 

 

1 1

0 1

( )
1

6
.pH

R n
d

δ
λ σ δ

−≤                                             (4.28) 

 

Since the eigenvalues of the nuclear operator Rλ  are ( ){ }1

1
kλ λ

∞−−  then 

 

{ }
1

1

1
max       [13, p.46].kH k

Rλ λ λ
∞−= −  

 

From here and (1.15) we can get 

 

1

2
.  ,    .

2pH
R const n δ

λ
αδ
α

− −≤ =
+

                                   (4.29) 

 

Since 0R Rλ λ=  for 0Q ≡  according to (4.29) 
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1

0 .  .pH
R const n δ

λ
−≤                                             (4.30) 

 

By (1.14) we have  

 

1. .p pb const n δ+<                                                 (4.31) 

 

From (4.5), (4.28), (4.30) and (4.31) we get 

 

( ) ( )1 2 11. . .
p

j jj
p p p pb

M const n n d const nδ δδ

λ
λ− − − −−

=
≤ ≤∫  

 

As seen, if 11 2j δ −> +  then 

lim 0.j
p

p
M

→∞
=                                                     (4.32) 

 

If 1
2

δ >  then from (4.23), (4.24) and (4.32) we get formula (4.15) for 2.j ≥  We 

now prove formula (4.16). From (4.6), (4.28), (4.29), (4.30) and (4.31) we have  

 

( )
( )

( )

( )

1 1

1

1 1 1 1 1

10

10

0 0

3

1

2

. .

p

p

NN

p

N

pN b

N

p b H

p H H H Hb

N
p

M tr R QR d

b R QR d

b R Q R R d

const n

λ λλ

λ λλ σ

λ λ λ σλ

δ

λ λ
π

λ

λ+

+

=

+

=

=

−

 ≤   

≤

≤

≤

∫

∫

∫

 

 

From here, we get 

 

                                               
1lim 0,  3 .pN

p
M N δ −

→∞
= >  

 

Theorem is proved. 

 

The main result of this article is given by the following theorem. 
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Theorem 4.2. If the operator function ( )Q x  satisfies the conditions (1)-(3) and 

j ajαγ ∼   ( )2 2 2
2 1

0,a α +
−

> >   as j → ∞  then 

( ) ( ) ( )
1

1
lim 1 0 .

4

pn

k k
p

k

trQ trQλ µ
→∞

=

− = −  ∑  

 

The limit on the left side of this equality is called the regularized trace of the operator 

.L   

Proof. From (4.4), (4.9), (4.10), (4.11), (4.14), (4.15) and (4.16) we obtain 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){
( ) ( ) ( )}
( ) ( )

1 1

1 1

0 0
1

1

0
1

1

0

lim lim cos 2 1

1
cos 1 cos

2

1
2 cos 2 cos .0

4

2 cos 2 cos .1

1
0 1 .

4

pn p

k k
p p

k k

k

k

k

trQ x k x dx

trQ x k x dx trQ x k x dx

trQ x k x dx k

trQ x k x dx k

trQ trQ

λ µ π

π π

π π

π π

→∞ →∞
= =

∞

=
∞

=

− = − −

 = − − −  

 = −   

 −   

= − −  

∑ ∑

∑ ∫ ∫

∑ ∫

∫

 

 

This proves theorem. 
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5. COMPLETENESS OF EIGENFUNCTIONS OF DISCONTINUOUS  

STURM-LIOUVILLE PROBLEMS 

The results of this chapter were objected to the article written by E. Şen, O. 

Mukhtarov and K. Oruçoğlu that was accepted for publication in the journal “Iranian 

Journal of Science and Technology Transaction A: Science”. Also, the results 

obtained in this chapter were presented at the conference “XVIII. Ulusal Mekanik 

Kongresi, 26-30 August 2013, Celal Bayar University, Manisa” and were published 

in the conference proceedings under the title “Sturm-Liouville probleminin rezolvent 

operatörü ve özfonksiyonları” (pp. 560-569, with O. Mukhtarov and K. Oruçoğlu). 

 

5.1. Statement of the Boundary-Value Problem as an Eigenvalue Problem in a 

Suitable Hilbert Space 

If we use the following representations  

 

                               
( ) ( ) ( )1 21

1 1 2

: 1  ' 1 ,

( ) ' : (1) '(1)

u u u

u u u

β β
α α

= −


= −
                                      (5.1) 

 

it is easy to see that for ,u v  1[ 1,1],C∈ −  we have 

 

                        ( )1 1 1 1
[ (1) '(1) '(1) (1)] ( ) ( ) ' ( ) 'u v u v u v u vρ − = − .                        (5.2) 

 

Now we shall define the inner product of two component elements   

 

1

2

( )
:

T x
T

T

 
=  
 

 , 1 2 2( ) [ 1,1], ;T x L T∈ − ∈ℂ  
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1

2

( )
:

G x
G

G

 
=  
 

, 1 2 2( ) [ 1,1], ;G x L G∈ − ∈ℂ  

 

in the linear space 2[ 1,1]L − ⊕ℂ  by the formula 

 

1 2

1 2

1

1 1 1 1 1 1 2 2, ,
1

(1)
, : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

h h

p r
h h

p
T G T x G x r x dx T x G x r x dx T x G x r x dx T Gρ ρ−

= + + +∫ ∫ ∫
 

 

Then it can be easily shown that the inner product space 

 

 

 

is a Hilbert space. In this space, let us define the operator :  by the 

equality 

 

                                                    K                                           (5.3) 

 

on the domain of definition  consisting of all  which satisfies the 

following conditions: 

 

(i)  and are absolutely continuous functions in the intervals [-1, ),  

( , ) and ( ,1]. 

(ii)   There exists finite limit values ,   and 

. 

(iii)  . 

(iv) 

 

 and .                                           (5.4) 

                                                                                                                               

, , 2 , ,
: ( [ 1,1] , , )p r p r

H Lρ ρ= − ⊕ • •ℂ

K , ,p r pH , ,p r pH→

1 1

1 1 1 1

( )
:

( ) ( )

T x T

T T

   
=   ′ −   

ℓ

( )D K , ,p rT H ρ∈

1T 1 'T 1h

1h 2h 2h

1 1( 0)T h ± 1 1'( 0),T h ± 1 2( 0)T h ±

2 2'( 0)T h ±

1( 1) 0T − =

1 1 1 1 1 1( 0) ( 0),T h T hδ γ+ = − 2 1 1 2 1 1'( 0) '( 0),T h T hδ γ+ = −

3 1 2 3 1 2( 0) ( 0),T h T hδ γ+ = −

4 1 2 4 1 2'( 0) '( 0)T h T hδ γ+ = − 2 1 1( )T T ′=
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Then we can write the boundary value problem (1.16)-(1.22) as an operator-equation: 

 

                                               =λ .                            (5.5) 

 

Thus we stated the boundary-value problem (1.16)-(1.22) as an eigenvalue problem 

for a linear operator which is defined in a Hilbert space. 

 

Lemma 5.1. If  and  then 

the operator  is symmetric. 

Proof. Let . If we use the well-known Lagrange formula [44] we find 

the following equality 

 

 

 

 

 

=

 

= 

+ )+

( )1 1 1 1

(1)
( ) ( )

p
T G

ρ
′ − 


 

 

KU U
1

( )
: ( )

( ) '

u x
U D K

u

  
= ∈  
  

1 2 1 1 2 1( 0) ( 0)p h p hδ δ γ γ− = + 3 4 2 3 4 2( 0) ( 0)p h p hδ δ γ γ− = +

K

( ),T G D K∈

( )
11

1 1 1 1 1 1 1 1, ,
1 1

(1)
, : ( )( ) ( ) ( ) (( ) )( ) ' ( ) ( ) ( )

h

p r

p
KT G T x G x r x dx T G T x G x r x dxρ ρ− −

= + − =∫ ∫ℓ ℓ

( ) ( )
2

1 2

1

1 1 1 1

1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( 0) ( , ; 0) ( 1) ( , ; 1)

h

h h

T x G x r x dx T x G x r x dx

p h W T G h p W T G

+ +

+ − − − − −

∫ ∫ℓ ℓ

2 1 1 2( 0) ( , ; 0)p h W T G h+ − − 1 1 1 1 1 1( 0) ( , ; 0) (1) ( , ;1)p h W T G h p W T G− + + +

2 1 1 2 1 1 1 1

(1)
( 0) ( , ; 0) ( ) ( )

p
p h W T G h T G

ρ
′− + + −

, , 1 11 1

(1)
, ( ) ( )p r

p
T G G Tρ ρ

 ′〈 〉 − + 
 

[ ]1 1 1 1 1 1 1 1( 0) ( , ; 0) ( 0) ( , ; 0)p h W T G h p h W T G h− − − + +

[ 2 1 1 2 2 1 1 2( 0) ( , ; 0) ( 0) ( , ; 0)p h W T G h p h W T G h + − − − + +  1 1 1 1 1 1 1 1

(1)
[( ) ( ) ( ) ( ) ]

p
T G T G

ρ
′ ′− −

( ) ( )
1 2

1

1 1 1 1

1

( ) ( ) ( ) ( ) ( ) ( )
h h

h

T x G x r x dx T x G x r x dx
−


+


∫ ∫ℓ ℓ ( ) ( )

2

1

1 1( ) ( )
h

T x G x r x dx∫ ℓ

1 1 1 1 1 1 1 1 1 1( 1) ( , ; 1) ( 0) ( , ; 0) ( 0) ( , ; 0)p W T G p h W T G h p h W T G h− − − + − − − + +
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                                            (5.6)

                     

Here by 

  

                                                                 (5.7) 

 

we denote the Wronskians of the functions  and . (x) and  satisfy the 

boundary condition (1.17). Thus we have the following equality 

 

                                                           =0.                                           (5.8) 

 

From the fact that the functions  and  satisfy the transmission conditions (1.19)-

(1.22), we obtain the equality 

 

 

                                (5.9) 

              

and similarly we have 

 

                                            (5.10)                         

 

Consequently, we get 

 

       . 

 

( ) ( ) ( ) ( )
2 1 1 2 2 1 1 2

1 1 1 1 1 11 11 1

( 0) ( , ; 0) ( 0) ( , ; 0)

1
(1) ( , ;1) .

p h W T G h p h W T G h

p W T G T G T G
ρ

+ − − − + +

  ′ ′+ − −  
  

1 1 1 1 1 1( , ; ) : ( ) '( ) ( ) ' ( )W T G x T x G x T x G x= −

1T 1G 1T 1( )G x

1 1( , ; 1)W T G −

1T 1G

2 1 1 2 2 1 2 1 2 1 2 1 2( 0) ( , ; 0) ( 0) ( 0) ( 0) ( 0) ( 0)p h W T G h p h T h G h T h G h ′ ′− − = − − − − − −  

3 4 3 4
2 1 2 1 2

3 4 3 4

3 4
1 2 1 2 2 1 1 2

3 4

( 0) ( 0) ( 0)

( 0) ( 0) ( 0) ( , ; 0)

p h T h G h

T h G h p h W T G h

γ γ δ δ
δ δ γ γ

δ δ
γ γ

   ′= + + +  
   

  ′− + + = + +  
   

1 1 1 1 1 1 1 1( 0) ( , ; 0) ( 0) ( , ; 0).p h W T G h p h W T G h− − = + +

, , , ,
, ,

p r p r
KT G T KGρ ρ=
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Thus we obtain that the operator  is symmetric in the Hilbert space .  

 

5.2. Resolvent Operator 

 

In this section we show that each number  which is not an eigenvalue of the 

operator  is a regular value of the operator . Also we will investigate the 

resolvent operator 

. 

 

Here  is the unit operator. For an arbitrary element  let us write the 

operator equation 

                                                                                                     (5.11) 

 

as a non-homogenous boundary-value problem  

 

             (5.12) 

 

                                                                                                            (5.13) 

 

                                                 (5.14)  

              

                                                                               (5.15) 

 

                                                                             (5.16) 

 

                                                                              (5.17) 

 

                                                                            (5.18) 

 

which is equivalent to (5.11). Firstly, we will state the following lemma: 

K , ,p r pH

λ ∈ℂ

K K

( ) ( ) 1
, :R K K Iλ λ −= −

I T , ,p rH ρ∈

( )K I U Tλ− =

{ }1 1 1 1 1 1 2 2

1
( ( ) ') ' ( ) ( ), [ 1, ) ( , ) ( ,1],

( )
p x U q x U U T x x h h h h

r x
λ− + − = ∈ − ∪ ∪

1( 1) 0,U − =

( ) ( )1 1 2 1 1 1 2 1 2(1) '(1) (1) '(1) ,U U U U Tβ β λ α α− + − =

1 1 1 1 1 1( 0) ( 0) 0,U h U hγ δ− − + =

2 1 1 2 1 1( 0) ( 0) 0,U h U hγ δ′ ′− − + =

3 1 2 3 1 2( 0) ( 0) 0,U h U hγ δ− − + =

4 1 2 4 1 2( 0) ( 0) 0,U h U hγ δ′ ′− − + =
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Lemma 5.2. Let  and  be entire functions. Then the equation 

 

                                                          (5.19) 

                                                    

has a unique solution  which satisfy the boundary conditions  

 

                                      .                         (5.20) 

 

This solution is an entire function of  for each .  

 

The proof of this lemma is similar to the Theorem 1.5 in the book of [55].  Now, 

using this lemma let us define two solutions  and  of the differential 

equation (1.16).  

 

Let us denote the solution of the differential equation (1.16) by  satisfying 

the initial conditions  

 

,    

                      

in the interval . After defining the function  we can define the 

solution of differential equation (1.16) in the interval   satisfying the initial 

conditions 

 

                                                   (5.21)                         

                     

Let us denote this solution by . Similarly let us denote the solution of 

differential equation (1.16) by  in the interval  satisfying the initial 

conditions  

 

( )f λ ( )g λ

{ } [ ]1 2

1
( ( ) ') ' ( ) , ,

( )
p x u q x u u x d d

r x
λ− + = ∈

( , )u x λ

( ) ( ), '( ) ( ) ( 1 2)i iu d f u d g i orλ λ= = =

λ [ ]1 2,x d d∈

( , )xϕ λ ( , )xχ λ

1( , )xϕ λ

( 1) 0u − = '( 1) 1u − =

1[ 1, )h− 1( , )xϕ λ

1 2[ , )h h

1 2
1 1 1 1 1 1

1 2

( ) ( 0, ), '( ) '( 0, ).u h h u h h
γ γϕ λ ϕ λ
δ δ

= − = −

2( , )xϕ λ

3( , )xϕ λ 2[ ,1]h
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                                         (5.22)      

                                                         

Similarly, let us denote the solution of the differential equation (1.16) by  in 

the interval  satisfying the initial conditions  

 

                                                                        (5.23) 

 

After defining this solution let us denote the solution of the differential equation 

(1.16) by  in the interval  satisfying the initial conditions 

 

                                                (5.24) 

 

Similarly, let us denote the solution of the differential equation (1.16) by  in 

the interval  satisfying the initial conditions  

 

                                                 (5.25) 

                                                                                                                                          

Lemma 5.2 implies that the functions (i =1,2,3) are entire functions 

of .λ  Now,  we can define the functions ϕ  and χ  as follows: 

 

1 1

2 1 2

3 2

( , ), [ 1, ),

( , ) ( , ), ( , ),

( , ), ( ,1].

x x h

x x x h h

x x h

ϕ λ
ϕ λ ϕ λ

ϕ λ

∈ −
= ∈
 ∈

 

 

1 1

2 1 2

3 2

( , ), [ 1, ),

( , ) ( , ), ( , ),

( , ), ( ,1].

x x h

x x x h h

x x h

χ λ
χ λ χ λ

χ λ

∈ −
= ∈
 ∈

 

 

3 4
2 2 2 2 2 2

3 4

( ) ( 0, ), '( ) '( 0, ).u h h u h h
γ γϕ λ ϕ λ
δ δ

= − = −

3( , )xχ λ

2( ,1]h

2 2 1 1(1) , '(1)u uα λ β α λ β= + = +

2( , )xχ λ 1 2( , ]h h

3 4
2 3 2 2 3 2

3 4

( ) ( 0, ), '( ) '( 0, ).u h h u h h
δ δχ λ χ λ
γ γ

= + = +

1( , )xχ λ

1[ 1, ]h−

1 2
1 2 1 1 2 1

1 2

( ) ( 0, ), '( ) '( 0, ).u h h u h h
δ δχ λ χ λ
γ γ

= + = +

( , ), ( , )i ix xϕ λ χ λ
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It is obvious that these functions satisfy the equation (1.16) and transmission 

conditions. Moreover the solution ( , )xϕ λ  satisfies the boundary condition (1.17) and

( , )xχ λ  satisfies the boundary condition (1.18). We shall use the following notations 

in the rest of the paper: 

 

: ( , ; )i i iW xλω ϕ χ=  (i=1,2,3), 

 

1 1

2 1 2

3 2

( , ), [ 1, ),

( , ) : ( , ; ) ( , ), ( , ),

( , ), ( ,1].

x x h

x W x x x h h

x x h
λ

ω λ
ω λ ϕ χ ω λ

ω λ

∈ −
= = ∈
 ∈

 

 

Lemma 5.3. For all λ ∈ℂ  which is not an eigenvalue of the problem (1.16)-(1.22) 

and for all x∈[ 1 1 2 21, ) ( , ) ( ,1h h h h− ∪ ∪ ] we have ( , ) 0xω λ ≠ . 

Proof. This lemma can be proven similarly using the same method as in [36].  

 

Corollary 5.1. Let us assume that λ ∈ℂ  is not an eigenvalue of the problem (1.16)-

(1.22). Then the functions ( ) ( )1 1, , ,x xϕ λ χ λ  are linearly independent in the interval 

[ )11,h− , the functions ( ) ( )2 2, , ,x xϕ λ χ λ  are linearly independent in the interval 

( )1 2,h h  and the functions ( ) ( )3 3, , ,x xϕ λ χ λ  are linearly independent in the interval 

2( ,1]h . 

 

Corollary 5.1 implies that for all λ ∈ℂ  which is not an eigenvalue of the problem 

(1.16)-(1.22) we can write the general solution of the differential equation (1.16) as 

 

1 1 1 1 1

2 2 2 2 1 2

3 3 3 3 2

( , ) ( , ), [ 1, ),

( , ) ( , ) ( , ), ( , ),

( , ) ( , ), ( ,1],

C x D x x h

u x C x D x x h h

C x D x x h

ϕ λ χ λ
λ ϕ λ χ λ

ϕ λ χ λ

+ ∈ −
= + ∈
 + ∈

 

 

where iC , iD  ( i =1,2,3) are arbitrary constants. Then applying the method of 

variation of constants [44] we can write the general solution of the non-homogenous 

equation (5.12) for 1[ 1, )x h∈ −  as 
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1

1
1 1 1

11

1
1 1 1 1 1 1

1

( , )
( , ) ( , ) ( )

( , )

( , )
( , ) ( ) ( , ) ( , ),

( , )

x

h

x

y
U x x T y dy

y

y
x T y dy C x D x

y

ϕ λλ χ λ
ω λ

χ λϕ λ ϕ λ χ λ
ω λ

−

=

+ + +

∫

∫
                   (5.26)  

                                                             

for 1 2( , )x h h∈  as 

 

            

1

1

2 2
1 2 1 2 1

2 2

2 2 2 2

( , ) ( , )
( , ) ( , ) ( ) ( , ) ( )

( , ) ( , )

( , ) ( , ),

hx

h x

y y
U x x T y dy x T y dy

y y

C x D x

ϕ λ χ λλ χ λ ϕ λ
ω λ ω λ

ϕ λ χ λ

= +

+ +

∫ ∫             (5.27)  

                                                                     

and for 2( ,1]x h∈  as  

 

              
2

1
3 3

1 3 1 3 1
3 3

3 3 3 3

( , ) ( , )
( , ) ( , ) ( ) ( , ) ( )

( , ) ( , )

( , ) ( , ).

x

h x

y y
U x x T y dy x T y dy

y y

C x D x

ϕ λ χ λλ χ λ ϕ λ
ω λ ω λ

ϕ λ χ λ

= +

+ +

∫ ∫           (5.28)

   

Using the equalities (5.26)-(5.28) and writing the general solution of (5.12) in the 

conditions (5.13)-(5.18) then we can find the constants iC , iD . If we write the 

expression (5.26) in the boundary condition (5.13) then we obtain the equality 

1 ( 1, ) 0D χ λ− = . Since λ  is not an eigenvalue we have ( 1, ) 0χ λ− ≠ . Therefore we 

get  1 0D = . If we write the expression (5.28) in the boundary condition (5.14) we 

find  2
3

3(1, )

T
C

ω λ
= . Let us consider the values of constants 1D  and 3C . If we write 

the expressions (5.26)-(5.28) in the transmission conditions (5.15)-(5.18) we can find 

the constants 1 2 2 3, , ,C C D D  by using the following system of linear equations: 

 

    1 2

1

1 1 1 1 1 2 1 2

1 2
1 1 1 1 1 2 1 1 1 2 2 1

1 21

( , ) ( , )

( , ) ( , )
( , ) ( ) ( , ) ( ) ( , ),

( , ) ( , )

h h

h

h C h D

y y
h T y dy h T y dy C h

y y

γ ϕ λ δ χ λ

ϕ λ χ λγ χ λ δ ϕ λ δ ϕ λ
ω λ ω λ−

− =

+ +∫ ∫
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1 2

1

2 1 1 1 2 2 1 2

1 2
2 1 1 1 2 2 1 1

1 21

2 2 2 1

'( , ) '( , )

( , ) ( , )
'( , ) ( ) '( , ) ( )

( , ) ( , )

'( , ),

h h

h

h C h D

y y
h T y dy h T y dy

y y

C h

γ ϕ λ δ χ λ

ϕ λ χ λγ χ λ δ ϕ λ
ω λ ω λ

δ ϕ λ
−

−

= − +

+

∫ ∫  

2

1

2

2
3 2 2 2 3 3 2 3 3 2 2 1

2

1
3 3 2 3 2

3 3 2 1 3 2 2 2
3 3

( , )
( , ) ( , ) ( , ) ( )

( , )

( , ) ( , )
( , ) ( ) ( , ),

( , ) (1, )

h

h

h

y
h C h D h T y dy

y

y T h
h T y dy D h

y

ϕ λγ ϕ λ δ χ λ γ χ λ
ω λ

χ λ δ ϕ λδ ϕ λ γ χ λ
ω λ ω λ

− = − +

+ +

∫

∫
 

2

1 2

4 2 2 2 4 3 2 3

1
32

4 2 2 1 4 3 2 1
2 3

4 2 3 2
4 2 2 2

3

'( , ) '( , )

( , )( , )
'( , ) ( ) '( , ) ( )

( , ) ( , )

'( , )
'( , ).

(1, )

h

h h

h C h D

yy
h T y dy h T y dy

y y

T h
D h

γ ϕ λ δ χ λ

χ λϕ λγ χ λ δ ϕ λ
ω λ ω λ

δ ϕ λ γ χ λ
ω λ

−

= − +

+ +

∫ ∫  

 

The determinant of this system equals to 1 2 3 4 2 1 3 2( , ) ( , ) 0h hδ δ δ δ ω λ ω λ− ≠ . Hence we 

have a unique solution for the above system of linear equations. Using the definitions 

of the functions ( , ), ( , )i ix xϕ λ χ λ  and from the above system of linear equations we 

obtain 

 

2

1 2

2

1
32 2

1 1 1
2 3 3

1
3 2

2 1
3 3

( , )( , )
( ) ( ) ,

( , ) ( , ) ( , )

( , )
( ) ,

( , ) ( , )

h

h h

h

yy T
C T y dy T y dy

y y y

y T
C T y dy

y y

χ λχ λ
ω λ ω λ ω λ

χ λ
ω λ ω λ

= + +

= +

∫ ∫

∫
 

                         
1 2

1

1 2
2 1 3 1

1 21

( , ) ( , )
( ) , ( ) .

( , ) ( , )

h h

h

y y
D T y dy D T y dy

y y

ϕ λ ϕ λ
ω λ ω λ−

= =∫ ∫  

 

By putting these values of constants iC , iD  in the expressions (5.26)-(5.28) we find 

the following formula for the solution of the problem (5.12)-(5.18) in the whole  

1[ 1, )h− 1 2 2( , ) ( ,1h h h∪ ∪ ]: 

 

2
1 1 1

31 1

( , )( , ) ( , )
( , ) ( ) ( , ) ( ) .

( , ) ( , ) (1, )

x x T xy y
U x T y dy x T y dy

y y

ϕ λϕ λ χ λχ λ ϕ λ
ω λ ω λ ω λ− −

= + +∫ ∫  
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Theorem 5.1. Each λ ∈ℂ  which is not an eigenvalue of the problem (1.16)-(1.22) is 

a regular value of the operator K  that defined by equalities (5.3), (5.4), and the 

resolvent operator , , , ,( , ) : p r p rR K H Hρ ρλ →   is a compact operator.  

Proof. Using the following representation 

 

1

1 1;( , ) ( , )
,

, ( 1,2),( , )
( , ; )

1 1;( , ) ( , )
, ( 1,2),( , )

i

i

y xx y

x y h iy
G x y

x yx y
x y h iy

χ λ ϕ λ
ω λ

λ
ϕ λ χ λ

ω λ

− ≤ ≤ ≤
 ≠ ==  − ≤ ≤ ≤
 ≠ =

 

 

 we can rewrite the last formula as 

 

1
2

1 1 1

1

( , ) ( , ; ) ( ) ( , ).
(1, )

T
U x G x y T y dy xλ λ ϕ λ

ω λ−

= +∫  

 

Therefore we obtain the following formula for the resolvent operator ( , )R Kλ :  

 

( ) ( )

1
2

1 1

1

1
2

1 11 1
1

( , ; ) ( ) ( , )
(1, )

( , )

( , ; ) ( ) ( , )
(1, )

T
G x y T y dy x

R K T
T

G y T y dy

λ ϕ λ
ω λ

λ
λ ϕ λ

ω λ

−

−

 
+ 

 =  
′ ′ • + • 

 

∫

∫
. 

 

If we define the operators 2 2: [ 1,1] [ 1,1],B L Lλ − → −  � , , , ,: p r p rB H Hλ ρ ρ→  and 

, , , ,: p r p rS H Hλ ρ ρ→  by the equalities   

 

1 :B Tλ =  
1

1 1

1

( , ; ) ( )G x y T y dyλ
−
∫ , 

 

� 1

1 1

:
( )

B T
B T

B T
λ

λ
λ

 
=  ′ 

, 
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( )

2

2
1

( , )
(1, )

:

( , )
(1, )

T
x

S T
Tλ

ϕ λ
ω λ

ϕ λ
ω λ

 
 
 =
 ′• 
 

, 

 

we can write the resolvent operator ( , )R Kλ  as ( , )R Kλ = �Bλ + Sλ . The operator Bλ  

is compact in the Hilbert space 2[ 1,1]L −  [28]. Hence the operator �Bλ  is compact in 

the Hilbert space , ,p rH ρ . It is clear that the operator Sλ  is compact in the Hilbert 

space , ,p rH ρ . Therefore for each λ ∈ℂ  which is not an eigenvalue of the problem 

(1.16)-(1.22) the operator ( , )R Kλ  is also a compact operator in the Hilbert space  

, ,p rH ρ .  

 

5.3. Expansion in Series of System of Eigenfunctions 

 

Theorem 5.2. The operator K  which is defined by the equalities (5.3)-(5.4) is a self-

adjoint operator in the Hilbert space , ,p rH ρ . 

Proof. It is clear that the operator K  is densely defined in the Hilbert space , ,p rH ρ . 

Also, for all λ ∈ℂ  which satisfy Im 0λ ≠  Theorem 5.1 implies that the ranges of 

the operators K Iλ−  and K Iλ−  coincide with whole Hilbert space , ,p rH ρ . Namely, 

the equalities , ,( ) ( ) p rK I D K H ρλ− =  and �
, ,( ) ( ) p rK I D K H ρλ− =  hold true. Also 

Lemma 5.1 implies that the operator K  is symmetric. Therefore, the well-known 

theorem about extension of symmetric operators implies that the operator K  is self-

adjoint [28].  

 

Corollary 5.2. All eigenvalues of the boundary-value problem (1.16)-(1.22) are real.  

 

Note: Since ( ), ( )p x q x  and ( )r x  are real valued functions, the coefficients of the 

conditions (1.17)-(1.22) are real numbers and all eigenvalues are real we may assume 

that the all eigenfunctions of the problem (1.16)-(1.22) are real valued functions. 
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Corollary 5.3. If 1λ  and 2λ  are two different eigenvalues of the problem (1.16)-

(1.22) and 1( )u x , 2( )u x are eigenfunctions corresponding to these eigenvalues 

respectively then: 

 

                                   
1

1 2 1 1 2 1

1

(1)
( ) ( ) ( ) ( ) ( )

p
u x u x r x dx u u

ρ−

− ′ ′=∫ .                            (5.29) 

 

Proof. Since the operator K  is self-adjoint the appropriate eigenelements 

(corresponding to different eigenvalues 1λ  and 2λ ) 1
1

1 1

( )

( )

u x
U

u

 
=  ′ 

 and 2
2

2 1

( )

( )

u x
U

u

 
=  ′ 

 

are orthogonal in the space , ,p rH ρ . Namely the equality (5.29) holds.  

 

In the Hilbert space , , ,p rH ρ  the operator K  which is defined by the equalities (5.3), 

(5.4) has countable number of real eigenvalues, the algebraic multiplicity of each 

eigenvalue is finite, the sequence of eigenvalues has a lower bound and doesn’t have 

a finite accumulation point. Regarding to each eigenvalue is counted according to its 

algebraic multiplicity, we can write the sequence of eigenvalues as 1 2 ...λ λ≤ ≤ . Let 

us denote the appropriate-normed eigenelements as 

 

( ), ,

1

( )
: , 1, 1,2,...

( ) p r

n
n n H

n

x
n

ρ

φ
ϕ ϕ

φ
 

= = = ′ 
� � . 

 

Then Theorem 5.1, Theorem 5.2 and the well-known Hilbert-Schmidt Theorem 

implies the following theorem [53]. 

 

Theorem 5.3. For each element T ∈ , ,p rH ρ  the Fourier series 

, ,
1

, ,
p r

n n n n H
n

c c T
ρ

ϕ ϕ
∞

=

=∑  will be converge to  

                                                  
, ,

1

,
p r

n nH
n

T T
ρ

ϕ ϕ
∞

=

=∑                                     (5.30) 

 

in the Hilbert space , ,p rH ρ . 
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Corollary 5.4. Each function 2[ 1,1]f L∈ −  can be written as a series expansion of 

the eigenfunction system { } , 1, 2,...n nφ =  of the boundary-value problem (1.16)-

(1.22) as 

 

1

1 1

( ) ( ) ( ) ( ) ( )n n
n

f x f y y r y dy xφ φ
∞

= −

 
=  

 
∑ ∫  

 

in the Hilbert space 2([ 1,1], )L r− . 

Proof. It is enough to get the element T ∈ , ,p rH ρ  as 
( )

0

f x
T

 
=  
 

 in the formula 

(5.30).  

 

Corollary 5.5. For each 2[ 1,1]f L∈ −  the following equalities hold: 

 

                                                 [ ]2

1
1

( )
(1)n

n p

ρφ
∞

=

′ =∑ ,                               (5.31) 

 

                                                   1
1

( ) ( ) 0.n n
n

xφ φ
∞

=

′ =∑                                                (5.32) 

 

Proof. Let us rewrite the formula (5.30) as 

 

                                         
, ,

, ,

01

2
1

0

, ( )
( )

, ( )

p r

p r

n H n
n

n H n
n

T x
T x

T
T

ρ

ρ

ϕ φ

ϕ φ

∞

=

∞

=

 
〈 〉    =     ′〈 〉 

 

∑

∑
 .                                (5.33)    

     

Now, putting 
0

1
T

 
=  
 

 in the formula (5.33) we get 
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0

2
1

0

(1)
( ) ( )

0

1 (1)
[( ) ]

n n
n

n
n

p
x

p

φ φ
ρ

φ
ρ

∞

=

∞

=

 ′    =     ′ 
 

∑

∑
 . 

 

Namely, we obtain the equalities (5.31) and (5.32).  

 

Corollary 5.6. For each 2[ 1,1]f L∈ −  the equality 

 

1

1
0 1

( ) ( ) ( ) 0n n
n

f y y dyφ φ
∞

= −

 
′ = 

 
∑ ∫  

 

holds. 

Proof. It is enough to rewrite formula (5.33) for the element 
( )

0

f x
T

 
=  
 

.
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6. CONCLUSIONS AND RECOMMENDATIONS  

 

It is little known about asymptotic behaviour of the eigenvalues and eigenfunctions 

of the Sturm-Liouvillle problems with eigenvalue dependent boundary conditions if 

the number of points of discontinuity is more than one. In the second and third 

chapters we sought an answer to this question.  To this aim, we investigated spectral 

properties of Sturm-Liouville problems with eigenvalue dependent boundary 

conditions at two or finitely many points of discontinuity. If we take all  transmission 

coefficients equal to each other and weight function equals identically to one we get 

the continuous case.  

In the fourth chapter we investigated spectrum and the resolvent operator of a 

boundary-value problem which includes an unbounded operator coefficient in 

differential equation. Lastly, we obtained a regularized trace formula for differential 

operator equation.  

For future works, we plan to obtain trace formulas for n-th order differential 

operators with unbounded operator coefficient with mixed type and/or periodic 

boundary conditions.  

In the fifth chapter we studied the completeness of eigenfunctions of a Sturm-

Liouville problem with eigenvalue-dependent boundary conditions and transmission 

conditions at two interior points. As a main result we showed that each square 

integrable function can be written as a series expansion of the eigenfunctions of the 

related boundary-value problem. In the special case that the transmission coefficients 

equal to each other and ( ) ( ) 1r x p x= ≡  in the results obtained in this work coincide 

with corresponding results in the classical continuous Sturm-Liouville operator. 
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APPENDIX A: Some basic definitions and theorems in functional analysis 
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APPENDIX A:  Some basic definitions and theorems in functional analysis 

Definition (Normed space, norm). A normed space X  is a vector space with a 

norm defined on it. Here a norm on a (real or complex) vector space X  is a real-

valued function on X  whose value at an x X∈  is denoted by x  and which has the 

properties  

i.) 0x ≥   

ii.) 0 0x x= ⇔ =   

iii.) x xα α=   

iv.) x y x y+ ≤ +   

here x  and y  are arbitrary vectors in X  and α  is any scalar [27]. 

Definition (Inner product space, Hilbert space). An inner product space (or pre-

Hilbert space) is a vector space X with an inner product defined on .X  A Hilbert 

space is a complete inner product space. Here, an inner product on X  is a mapping 

of X X×  into the scalar field K  of ;X  that is, with every pair of vectors x  and y  

there is associated a scalar which is written ,x y  and called the inner product of x  

and ,y  such that for all vectors , ,x y z  and scalar α  we have  

i.) , , ,x y z x z y z+ = +   

ii.) , y ,x x yα α=   

iii.) , ,x y y x=   

iv.) 
, 0

, 0 0.

x x

x x x

≥

= ⇔ =
  

An inner product on X  defines a norm on X  given by ,x x x= . Hence inner 

product spaces are normed spaces [27]. 

Definition (Dense set, separable space). A subset M of a metric space X is said to 

be dense in X  if M X= .  

X is said to be separable if it has a countable subset which is dense in X  [27]. 
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Definition (Self-adjoint, normal operators). A bounded linear operator :T H H→

on a Hilbert space H is said to be self-adjoint if *T T=  and normal if * *TT T T= . 

The Hilbert-adjoint operator *T of T is defined by the equality *, , .Tx y x T y=   

If T is self-adjoint the formula becomes , , .Tx y x Ty=   

If T is self-adjoint then T is normal.  

Every self-adjoint linear operator is symmetric [27]. 

Definition (Symmetric operators). A densely defined linear operator T  in a Hilbert 

space H  is symmetric if and only if *T T⊂  [27]. 

Definition (Resolvent operator). Let { }0X ≠  be a complex normed space and 

: ( )T D T X→  a linear operator with domain ( ) .D T X⊂  With T  we associate the 

operator T T Iλ λ= − , where λ is a complex number and I is the identity operator on 

( )D T . If Tλ  has an inverse, we denote it by ( ),R Tλ  that is, ( ) 11( )R T T T Iλ λ λ −−= = −  

and call it resolvent operator of T  or simply resolvent of .T   ( )R Tλ  helps to solve 

the equation .T x yλ =  Thus 1 ( )x T y R T yλ λ
−= = provided ( )R Tλ exists [27]. 

Definition (Regular value, resolvent set, spectrum). Let { }0X ≠  be a complex 

normed space and : ( )T D T X→  a linear operator with domain ( ) .D T X⊂  A 

regular value λ  of T is a complex number such that ( )R Tλ  exists, bounded and 

defined on a set which is dense in X .  

The resolvent set ( )Tρ  of T is the set of all regular values λ  of T . Its complement 

( ) ( )T Tσ ρ= −ℂ  in the complex plane ℂ  is called the spectrum of T . The discrete 

spectrum or point spectrum ( )p Tσ  is the set such that ( )R Tλ  does not exist. A 

( )p Tλ σ∈  is called an eigenvalue of T  [27]. 

Theorem (Compactness). In a finite dimensional normed space X , any subset 

M X⊂  is compact if and only if M  is closed and bounded. 

Definition (Compact linear operator). Let X  and Y  be normed spaces. An 

operator :T X Y→  is called a compact linear operator (or completely continuous 
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linear operator) if T  is linear and if for every bounded subset M  of X , the image 

( )T M  is relatively compact, that is the closure ( )T M  is compact [27]. 

Theorem (Compactness criterion).  Let X  and Y  be normed spaces and 

:T X Y→  a linear operator. Then T  is compact if and only if it maps every 

bounded sequence { }nx  in X  onto a sequence { }nTx  in Y  which has a convergent 

subsequence [27]. 

Definition (Uniform convergence). A sequence { }nf  of functions defined on a set 

E  is said to converge uniformly on E  if given 0ε > , there is an N  such that for all 

x E∈  and all ,n N≥  we have ( ) ( )nf x f x ε− <  [47]. 

Definition (Positive operator). A bounded self-adjoint linear operator :T H H→  is 

said to be positive, written 0T ≥  if and only if ( ), 0Tx x ≥  for all x H∈  [27]. 

Definition (Identity operator). Given a Hilbert space .H  Let Ix x=  for all .x H∈  

Then I is called the identity operator [27]. 

Theorem (Completeness of eigenfunctions). Let { }nφ  be any complete sequence of 

orthonormal vectors in a Hilbert space ,H  and let { }nψ  be any sequence of 

orthonormal vectors in H  that satisfies the inequality 

2

1
n n

n

ψ φ
∞

=

− < ∞∑  

then the nψ  are complete in H  [26]. 

Definition ( 2[ , ]L a b  space). The space of square integrable functions on the interval 

[ ],a b   ( i.e., 
2

( )
b

a

f x dx < ∞∫ ). 

Definition ( 1[ , ]L a b  space). The space of integrable functions on the interval [ ],a b   

( i.e., ( )
b

a

f x dx < ∞∫ ). 

Definition ( [ ]1 ,C a b  space). The space of continuously differentiable functions on 

the interval [ ], .a b   
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Definition (Weak derivative). A generalization of the concept of the derivative of 

a function for functions not assumed differentiable, but only integrable, i.e. to lie in 

the 1L  space. 

Definition (Weakly measurable function). Let H  be a Hilbert space with 

countable base. A function :f X H→  is called weakly measurable if for every 

functional h  on H  the composite h f�  is measurable [28]. 

Theorem (Closed graph). The graph of the function f  is closed if and only if f  is 

continuous. 
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APPENDIX B:  Big O−  notation 

 

For 0t >  and a real number p  

 

( ) ( )pf t O t=  as 0 ( )pt t f t−→ ⇔  is bounded as 0.t →  

 

In addition we define 

 

( ) ( ) ( ) ( ) ( ) ( ).p pf t g t O t f t g t O t= + ⇔ − =  

 

Similarly we may replace 0t →  by t → ∞ . For example, ( ) 2 1 ( )f t t O t= + =  as 

t → ∞  or 1( ) O( )f t t t−− =  as .t → ∞   

 

The symbol (1).O  The symbol (1)O  signifies a function ( ),f x λ  of x  and λ , 

defined for all sufficiently large λ , which is bounded for a x b≤ ≤  as .λ → ∞   The 

symbol (1) / pO λ  is also written as ( ).pO λ−   

The following important properties of the symbol (1)O can be easily verified: 

(1) (1) (1); (1) (1) (1); (1) (1)
b

a

O O O O O O O dx O+ = = =∫  

for any finite , .a b  Again, if α  and β  are real numbers with ,α β≤  then  

 

1 1 1
.O O Oα β αλ λ λ

     + =     
     

 

 

Finally, if ( )q x  is any bounded function of ,x  then by Taylor’s formula we have, as 

λ → ∞     

[ ] ( ) 1 21
( ) ( ) ( ).

q x
q x q x O

α
α α α α αλ λ λ α λ λ

λ
− −− 

− = = − + 
 
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