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A FOURIER PSEUDO-SPECTRAL METHOD FOR THE HIGHER-ORDER
BOUSSINESQ EQUATION

SUMMARY

The higher-order Boussinesq equation (HBq) is given by

utt = uxx +η1uxxtt−η2uxxxxtt +( f (u))xx

where f (u) = up and p > 1 is an integer. Here η1 and η2 are real positive constants.
The HBq equation models the longitudinal vibrations of a dense lattice. In this thesis
study, we propose a Fourier pseudo-spectral method for the HBq equation.

The Thesis is organized as follows:

Chapter 1 is devoted to the preliminaries. We briefly review some basic definitions
related to linear algebra, some special function spaces and weak derivative. We also
introduce continuous and discrete Fourier transforms. We then consider three examples
to understand discrete and continuous Fourier expansions and differentiation.

In Chapter 2, we first give a brief introduction to the HBq equation and its properties
such as conserved quantities. We then derive solitary wave solutions of the HBq
equation by using the ansatz method which is one of the most effective direct methods
to construct the solitary wave solutions of the nonlinear evolution equation.

In Chapter 3, we introduce the Fourier pseudo-spectral method for the HBq equation.
We first prove the convergence of the semi-discrete scheme in the appropriate energy
space. We then define fully-discrete scheme for the HBq equation. Solution steps
are (i) constituting the grid points in space, (ii) transforming the equation into the
Fourier space and obtaining an ordinary differential equation in terms of Fourier
coefficients, (iii) solving the resulting ordinary differential equation by using the
fourth-order Runge-Kutta method (RK4), iv) forming the numerical solution from
Fourier coefficients by using the inverse Fourier transform. To see the validation of
the proposed scheme, we consider three test problems concerning the propagation of a
single solitary wave, the interaction of two solitary waves and a solution that blows up
in finite time. In these problems, we consider various power type nonlinearities. Our
numerical results show that the Fourier pseudo-spectral method exhibits fourth-order
convergence in time and provides spectral accuracy in space. As far as we know,
the present study is the first numerical study in the literature for the HBq equation.
Therefore, we could not compare our numerical results with the results in the literature.
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YÜKSEK MERTEBEDEN BOUSSINESQ DENKLEMİ İÇİN
FOURIER SPEKTRAL YÖNTEMİ

ÖZET

Yüksek mertebeden Boussinesq denklemi (HBq)

utt = uxx +η1uxxtt−η2uxxxxtt +( f (u))xx

ile verilmektedir. Burada doğrusal olmayan terim f (u) = up, p > 1 bir tamsayı
olup, η1 ve η2 pozitif gerçel değerli parametrelerdir. Denklemdeki x ve t sırasıyla
uzaysal ve zamansal değişkenleri temsil etmektedir. Yüksek mertebeden Boussinesq
denklemi ilk olarak Rosenau tarafından türetilmiştir. Daha sonra bu denklem Duruk ve
diğerleri tarafından sonsuz elastik bir ortamda doğrusal ve yerel olmayan özellikteki
boyuna dalgaların yayılımını modellemek için tekrar türetilmiştir. HBq denklemindeki
terimlere ek olarak uxxxx doğrusal terimini içeren bir denklem ise Schneider ve Wayne
tarafından yüzey gerilimli su dalgalarını modellemek üzere türetilmiştir. Yerel ve
doğrusal olmayan dalga denklemi

utt = (β ∗ (u+g(u)))xx

çekirdek fonksiyonunun Fourier transformunun

β̂ (ξ ) =
1

1+η1ξ 2 +η2ξ 4

seçilmesi halinde yüksek mertebe Boussinesq denklemine indirgenmektedir.

Eğer η2 = 0 seçilirse yüksek mertebeden Boussinesq denklemi,

utt = uxx +η1uxxtt +( f (u))xx

şeklinde literatürde çok iyi bilinen düzgünleştirilmiş (improved) Boussinesq denklem-
ine indirgenir. Son y genelleştirilmiş irmi yılda, genelleştirilmiş düzgünleştirilmiş
Boussinesq denklemi hem analitik hem de sayısal bir çok çalışmaya konu olmuştur.
Literatürdeki sayısal çalışmalar incelendiği zaman genelleştirilmiş düzgünleştirilmiş
Boussinesq denklemini çözmek için sonlu farklar, sonlu elemanlar ve spektral
yöntemlerin kullanıldığı gözlenmiştir. Yüksek mertebeden Boussinesq denklemi için
sadece analitik çalışmalar yapılmıştır. Duruk ve diğerleri tarafından yüksek mertebe
Boussinesq denklemi için tanımlanan Cauchy probleminin s > 1

2 iken Hs Sobolev
uzayında lokal ve global iyi tanımlılığı için gerekli koşullar verilmiştir. Yüksek
mertebeden dispersif terimlerin ve doğrusal olmayan farklı kuvvet tipindeki terimlerin
sayısal çözümü nasıl etkilediği üzerinde çalışılması gereken konulardan biridir.

Bu tezin amacı yüksek mertebe Boussinesq denklemi için yalnız (soliter) dalga
çözümlerini türetmek, denklem için bir sayısal şema önermek, sayısal deneyler
yapmak ve şemanın yakınsaklık analizini gerçekleştirmektir.
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Tez çalışmasının içeriği aşağıda sunulan şekildedir:

Bölüm 1’de bu tez çalışmasında kullanılacak temel bilgiler sunulmuştur. Bu bağlamda
ilk olarak, bazı temel doğrusal cebir kavramları hatırlatılmış, ayrıca önerilen sayısal
yöntemin yakınsaklık analizinde kullanılan özel fonksiyon uzayları ve zayıf türev
tanımı verilmiştir. Sürekli ve ayrık Fourier açılımları ve Fourier uzayında türev hesabı
da yine bu bölümde anlatılmış ve bunlar arasındaki ilişkinin gözlemlenmesi amacıyla
üç örnek sunulmuştur. İlk örnekte sıçrama süreksizliğine sahip bir fonksiyon ele
alınmış ve bu fonksiyona sürekli ve ayrık Fourier açılımları yardımıyla yaklaşılmaya
çalışılmıştır. İkinci örnekte aynı ilişki sürekli bir fonksiyon üzerinde gösterilmiştir.
Üçüncü örnekte ise Fourier uzayında türev hesabı gösterilmiştir.

Bölüm 2’de ilk olarak yüksek mertebe Boussinesq denklemi ve literatürde var
olan çalışmalar kısaca tanıtılmıştır. HBq denkleminin kütle, enerji ve momentum
korunumuna karşı gelen korunan büyüklükleri literatürde türetilmiş olup bu bölümde
bu büyüklükler sunulmuştur. Diferansiyel denklemlerin sayısal yöntemlerle çözülmesi
durumunda eğer gerçek çözüm bilinmiyorsa hata hesabı yapılamamaktadır. Bu
sebeple korunan büyüklüklerin zamanla değişimi sayısal şemanın doğruluğunu
test etmek için önemli olmaktadır. Bu nedenle sayısal deneyler kısmında
Fourier sözde-spektral (pseudo-spectral) şemanın doğruluğunu test etmek için kütle
korunumundan faydalanılacaktır. HBq denklemin yalnız dalga çözümleri de yine bu
bölümde türetilmiştir. Bunun için yalnız dalga çözümlerini elde etmede oldukça etkili
bir yöntem olan yerine koyma (ansatz) yöntemi kullanılmıştır.

Bölüm 3’te HBq denkleminin sayısal çözümü incelenmiştir. Bunun için bir Fourier
sözde-spektral şema önerilmiştir. İlk olarak, sadece uzay değişkeninin ayrıklaştırılması
ile elde edilen yarı-ayrık şema ele alınmış ve yarı-ayrık şemanın uygun uzaylarda
tanımlanmış başlangıç koşulları altında yakınsaklığı gösterilmiştir. Daha sonra zaman
değişkeninin de ayrıklaştırılmasıyla elde edilen tam-ayrık şema sunulmuştur. HBq
denkleminin sayısal çözümleri bu tam-ayrık şema yardımıyla hesaplanmıştır. Çözüm
adımları şu şekildedir: i) uzay değişkeni için grid noktalarını oluşturulması, ii)
denklemin Fourier uzayına taşınması ve burada Fourier katsayıları cinsinden bir adi
türevli diferansiyel denklem elde edilmesi, iii) elde edilen denklemin 4. mertebeden
Runge-Kutta yöntemi kullanılarak çözülmesi, iv) ters Fourier dönüşümü yardımıyla
sayısal çözümün bulunması. Önerilen şema üç faklı problemin çözülmesi için
kullanılmıştır: yalnız dalganın yayılımı problemi, iki yalnız dalganın çarpışması
problemi ve sonlu zamanda patlayan çözümler. İlk problem olan tek yalnız
dalganın yayılımı durumunda HBq denkleminin analitik çözümleri Bölüm 2’de
hesaplanmış olduğundan bu problemde gerçek çözüm ile sayısal çözüm arasındaki
hata hesaplanabilmiştir. Bu çalışmada farklı kuvvet tipinde doğrusal olmayan terimler
göz önüne alınmıştır. Buradan elde ettiğimiz sonuçlar, sunulan sayısal şemanın çok
etkili olduğunu göstermektedir. Ayrıca yine bu problemde, kullanılan sayısal şemanın
uzayda eksponansiyel yakınsaklığa, zamanda ise 4. mertebe yakınsaklığa sahip olduğu
gözlemlenmiştir. Bu sonuçlar beklentilerle uyumludur. Ele alınan diğer problem
iki yalnız dalganın çarpışması problemidir. Genel olarak, doğrusal olmayan dalga
denklemlerinde verilen parametre değerlerine karşılık farklı hızlarda yayılan yalnız
dalgalar elde edilebiliyorken, HBq denklemi için verilen η1 ve η2 parametre değerleri
için tek bir yalnız dalga çözümü elde edilmektedir. Bu sebeple iki yalnız dalganın
çarpışması probleminde eşit hız ve genlikte olan dalgaların çarpışması problemi
göz önüne alınmış ve iki örnek sunulmuştur. Burada çarpışmanın elastik olmadığı,
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çarpışmadan sonra ortamda çok küçük genlikli ikincil dalgaların varlığı gözlenmiş ve
çarpışan dalgaların genlikleri büyüdükçe çarpışmadan sonra oluşan ikincil dalgaların
daha belirgin hale geldiği görülmüştür. HBq denklemi ters saçılım yöntemiyle integre
edilebilir bir denklem olmadığından bu durum beklentilerimizle uyumludur. Ayrıca iki
yalnız dalganın çarpışması probleminde gerçek çözüm elde edilemediğinden sunulan
sayısal şemanın doğruluğunu test etmek için kütle korunan büyüklüğünün zamanla
değişimi sunulmuştur. Son sayısal örnekte ise sonlu zamanda patlayan çözümler
incelenmiştir. Bunun için literatürde analitik olarak verilmiş olan patlama koşullarını
sağlayacak başlangıç koşulları seçilmiş ve sayısal çözümün L∞ normunun zamanla
değişimi sunulmuştur.

Bildiğimiz kadarıyla Boussinesq tipi denklemlerle ilgili birçok sayısal çalışma
olmasına rağmen literatürde yüksek mertebeden Boussinesq denklemi ile ilgili
herhangi bir sayısal çalışmaya rastlanmamıştır. Bu sebeple bu tez çalışmasında sunulan
sayısal sonuçlar için bir karşılaştırma yapılamamıştır.
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1. THE FOURIER SYSTEM

1.1 Introduction

Fourier series are widely used for many applications in science, engineering and

mathematics, such as aircraft and spacecraft guidance, digital signal processing, oil and

gas exploration and solution of differential equations. In this chapter some properties

of Fourier system, continuous and discrete Fourier expansions will be given. We first

recall some basic definitions that will be used in this thesis study. We then review some

properties of continuous and discrete Fourier expansions given in [1].

1.2 Preliminaries

Norm: Let V be a complex vector space. A norm is a function ‖ . ‖: V →R+ such that

satisfies the following three conditions

1. ‖ v ‖≥ 0; ‖ v ‖= 0⇔ v = 0,

2. ‖ cv ‖= |c| ‖ v ‖,

3. ‖ u+ v ‖ ≤ ‖u‖+‖v‖ (Triangle Inequality)

for all u,v ∈V and c ∈ C.

Normed Vector Space: A vector space equipped with a norm is called a normed

vector space.

Cauchy Sequence: Let V be a normed vector space. A sequence {uk}∞
k=1 is called a

Cauchy sequence if for any given ε > 0 there is N > 0 such that for n,m≥ N

‖ un−um ‖< ε.

Banach Space: A normed vector space V is said to be complete if every Cauchy

sequence is convergent. A complete normed vector space is called as a Banach space.

1



Inner Product: Let V be a complex vector space. An inner product is a function

(., .) : V ×V → C that satisfies the following four conditions

1. (u,u)≥ 0; (u,u) = 0⇔ u = 0,

2. (u,v) = (v,u),

3. (αu,v) = α(u,v),

4. (u+ v,w) = (u,w)+(v,w)

for all u,v,w ∈V and α ∈ C.

Inner Product Space: A complex vector space V with an inner product is called an

inner product space. The norm of any vector u in V is defined as

‖ u ‖=
√

(u,u).

Hilbert Space: If every Cauchy sequence in an inner product space V is convergent,

then the vector space V is called as a Hilbert space.

Cauchy-Schwarz Inequality: Let V be an inner product space. If u and v ∈V then,

|(u,v)| ≤ ‖ u ‖‖ v ‖ .

Orthogonal Vectors: Let V be an inner product space. Any vectors u and v ∈ V are

orthogonal if (u,v) = 0.

Orthogonal Set: Let V be an inner product space. A nonempty set S ⊂V is called an

orthogonal set if all vectors in S are mutually orthogonal.

Orthonormal Set: An orthogonal set S is called orthonormal if each vector in S is of

unit length.

Lp(Ω) Space: Let Lp(Ω) denote the set of p-times Lebesque integrable functions

u : Ω→ C. The Lp(Ω) norm of u ∈ Lp(Ω) is defined by

‖u‖Lp(Ω) = (
∫

Ω

|u|pdx)
1
p < ∞, 1 < p < ∞.

L∞(Ω) Space: Let L∞(Ω) be the space of essentially bounded measurable functions

u : Ω → C with norm

‖u‖∞ = ess sup | u | .

2



Test Function [2]: Let C∞
c (Ω) denote the space of infinitely differentiable functions

ϕ : Ω ⊂ (Rn)→ C, with compact support in Ω, an open subset of Rn. A function f

belonging to C∞
c (Ω) is called a test function.

Compactly Contained Set [2]: Let Ω and V denote open subsets of Rn. We write

V ⊂⊂Ω

and say V is compactly contained in Ω if V ⊂ K ⊂Ω for some compact set K.

Locally Integrable Functions [2]: Let 1 ≤ p ≤ ∞. Lp
loc(Ω) is the set of locally

integrable functions, Lp
loc(Ω) = {u : Ω → C|u ∈ Lp(V ) for each V ⊂⊂ Ω}, i.e

u ∈ Lp
loc(Ω) if u : Ω→C satisfies u ∈ Lp(V ) for all V ⊂⊂Ω.

Weak Derivative [2]: Suppose u,v ∈ L1
loc(U) and α is multiindex. If the equality∫

U
uDα

φdx = (−1)|α|
∫

U
vφdx

is satisfied for all test functions φ ∈C∞
c , then v is called the weak derivative of order

| α | of the function u in the domain U and is denoted by Dαu i.e. v = Dαu.

Sobolev Space [2]: The Sobolev space W k,p(U) consists of all integrable functions

u : U→ R such that for each multiindex α with | α |≤ k, Dαu exists in the weak sense

and belongs to Lp(U). Similarly we define the space W k,p
loc (U) using locally integrable

functions instead of integrable ones. We introduce a natural norm on the Sobolev

space:

‖ u ‖W k,p= ∑
|α|≤k

‖ Dαu ‖Lp .

1.3 Continuous Fourier Expansion

We use (., .) and ‖.‖ to denote the inner product and the norm of L2(Ω) defined by

(u,v) =
∫ L

−L
u(x)v(x)dx, ‖u‖=

√
(u,u) (1.1)

for Ω = (−L,L), respectively. The set of functions φk(x) = eikπx/L, k ∈ Z construct an

orthogonal system over the interval (−L,L) :∫ L

−L
φk(x)φl(x)dx = 2Lδkl =

{
0 if k 6= l
2L if k = l. (1.2)

Let u be a piecewise smooth function on [−L,L]. The Fourier series of the function u

can be written as

u(x) =
∞

∑
k=−∞

ûkeikπx/L

3



where

ûk =
1

2L

∫ L

−L
u(x)e−ikπx/Ldx , k ∈ Z (1.3)

are called Fourier coefficients of u. The Fourier series converges to u(x) at all points

where u is continuous, and to u(x+)+u(x−)
2 at all points where u is discontinuous.

u(x+)+u(x−)
2 is the mean value of the right- and left-hand limits at the point x.

Let SN be the space of trigonometric polynomials of degree up to N/2 defined as:

SN = span{eikπx/L| −N/2≤ k ≤ N/2−1}.

where N is a positive even integer. PN : L2(Ω) → SN is the orthogonal projection

operator given by

PNu(x) =
N/2−1

∑
k=−N/2

ûkeikπx/L.

Then by using the orthogonality relation we have

(u,ϕ) = (PNu,ϕ) for all ϕ ∈ SN . (1.4)

To measure how well the Nth partial sum PNu approximate to u, the mean square error

defined by

EN(u) =
1

2L

∫ L

−L
|u(x)−PNu(x)|2dx. (1.5)

Note that |u−PNu| denotes the complex modulus. Expanding the right hand side of

the equation (1.5), we have

EN(u) =
1

2L

∫ L

−L
(u(x)−PNu(x))(u(x)−PNu(x))dx

=
1

2L

∫ L

−L
|u(x)|2 + |PNu(x)|2−2Re{u(x)PNu(x)}dx. (1.6)

Note that

1
2L

∫ L

−L
|PNu(x)|2dx =

1
2L

∫ L

−L
PNu(x)PNu(x)dx

=
1

2L

∫ L

−L

N/2−1

∑
k=−N/2

ûkeikπx/L
N/2−1

∑
l=−N/2

ûleilπx/Ldx

=
1

2L

∫ L

−L

N/2−1

∑
k=−N/2

N/2−1

∑
l=−N/2

ûkûleikπx/Le−ilπx/Ldx

=
1

2L

N/2−1

∑
k=−N/2

N/2−1

∑
l=−N/2

ûkûl

∫ L

−L
eikπx/Le−ilπx/Ldx

=
N/2−1

∑
k=−N/2

|ûk|2
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where we have taken advantage of orthogonal system (1.2). On the other hand,

1
2L

∫ L

−L
u(x)|PNu(x)|dx =

1
2L

∫ L

−L
u(x)

N/2−1

∑
k=−N/2

ûkeikπx/Ldx

=
1

2L

∫ L

−L

N/2−1

∑
k=−N/2

ûku(x)e−ikπx/Ldx

=
N/2−1

∑
k=−N/2

ûk

2L

∫ L

−L
u(x)e−ikπx/Ldx

=
N/2−1

∑
k=−N/2

|ûk|2.

Theorem 1: Let u ∈ L2[−L,L] with complex Fourier coefficients ûk given by (1.3).

Then

EN(u) =
1

2L

∫ L

−L
|u(x)|2dx−

N/2−1

∑
k=−N/2

|ûk|2.

It can be shown that

lim
N→∞

EN(u) = 0

for any square integrable function on [−L,L], from which it follows the following

statement.

Parseval Identity: If u ∈ L2(−L,L), then its Fourier series converges to u ,

1
2L

∫ L

−L
|u(x)|2dx =

∞

∑
k=−∞

|ûk|2.

Now the question arises as to what the rate of convergence for the Fourier series is. For

convenience, we set

∑
|k|&N/2

≡ ∑
k<−N/2
k≥N/2

.

From the Parseval identity one has

‖ u−PNu ‖= (2L ∑
|k|&N/2

|ûk|2)1/2.

If u is sufficiently smooth,

max
−L≤x≤L

| u(x)−PNu(x) | ≤ ∑
|k|&N/2

|ûk|

5



This inequality shows that the size of the error created by replacing u with PNu

depends upon how fast the Fourier coefficients of u decay to zero. For continuously

differentiable u

2Lûk =
∫ L

−L
u(x)e−ikπx/Ldx =− 1

ik
(u(L−)−u(−L+))+

1
ik

∫ L

−L
u′(x)e−ikπx/Ldx.

Thus, we observe the behaviour of the Fourier coefficient ûk as k−1 so

ûk = O(k−1).

Let u be m times continuously differentiable in [−L,L] (m≥ 1) and u( j) be periodic for

all j ≤ m−2. If we iterate the above argument, then we have

ûk = O(k−m), k =±1,±2,±3... .

The kth Fourier coefficient of a function decays faster than its negative powers which

is an indication of spectral or exponential accuracy.

1.4 Discrete Fourier Expansion

For N > 0 , consider the set of points (nodes or grid points)

x j =−L+
2L
N

j, j = 0,1, ...N−1 .

Let also consider to know u(x j) the value of complex function u at the grid point x j.

The discrete Fourier coefficients are given by

ũk = Fk[u(x j)] =
1
N

N−1

∑
j=0

u(x j)e−ikπx j/L, k =−N/2, ...,N/2−1.

Conversely, by using orthogonality the inversion formula gives

u(x j) = F−1
j [ũk] =

N/2−1

∑
k=−N/2

ũkeikπx j/L, j = 0,1,2, ...,N−1.

Hence,

INu(x) =
N/2−1

∑
k=−N/2

ũkeikπx/L

is the N
2−degree trigonometric interpolation of u at the grid points and satisfies

INu(x j) = u(x j), j = 0,1, ...N−1 .
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which is known as the discrete Fourier series of u. The discrete Fourier coefficients

ũk, k = N/2, ...N/2− 1 depend on the values of u at the grid points. The discrete

Fourier transform (DFT) is the mapping between u(x j) and ũk. If the Fourier series of

a function u converges to itself at every point then discrete Fourier coefficients can be

written in terms of continuous Fourier coefficients as

ũk = ûk +
∞

∑
m=−∞
m 6=0

ûk+Nm, k =−N/2, ...,N/2−1

An equivalent formulation is

INu(x) = PNu(x)+RNu(x),

with

RNu(x) =
N/2−1

∑
k=−N/2

(
∞

∑
m=−∞
m6=0

ûk+Nm)φk.

RNu(x) is called the aliasing error and it is orthogonal to the truncation error [1], u−

PNu , so that

‖u− INu‖2 = ‖u−PNu‖2 +‖RNu(x)‖2.

This shows that the error due to the interpolation is always larger than the error due

to truncation. The influence of the aliasing on the accuracy of the spectral methods is

asymptotically of the same order as the truncation error [1].

Example 1: Consider the function

u(x) =


1 if −π/2 < x≤ π/2

0 if −π ≤ x≤−π/2, π/2 < x≤ π.

Its continous Fourier coefficients are computed as

ûk =



1
2 if k = 0

0 if k 6= 0 , k even

1
π

(−1)
k−1

2

k if k 6= 0 , k odd
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In Figure 1.1 and 1.2, we compare trigonometric approximations PNu and INu with the

exact function u(x) for N = 16, 32, respectively.

Figure 1.1: Comparison PNu, INu and exact solution u(x) for N = 16

Figure 1.2: Comparison PNu, INu and exact solution u(x) for N = 32
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Example 2: Consider the function

u(x) = cos(
x
2
)

is infinitely differentiable in [−π,π], but u′(−π+) 6= u′(π−). Its Fourier coefficients

are

ûk =
2
π

(−1)k

1−4k2 .

In Figure 1.3, 1.4 and 1.5 we again compare trigonometric approximations PNu and

INu with the exact function u(x) for N = 8, 16, 32, respectively. For this example we

say the convergence of the truncated series is quadratic except at the end points since

the coefficients ûk decay quadratically.

Figure 1.3: Comparison PNu, INu and exact solution u(x) for N = 8

Figure 1.4: Comparison PNu, INu and exact solution u(x) for N = 16
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Figure 1.5: Comparison PNu, INu and exact solution u(x) for N = 32

1.5 Differentiation in Spectral Methods

If the Fourier series of u is given by

u =
∞

∑
k=−∞

ûkφk,

then the Fourier series of u′ is

u′ =
∞

∑
k=−∞

ikπ

L
ûkφk.

Therefore,

(PNu)′ = PNu′

i.e. truncation and differentiation commute. Now the question arises whether the

interpolation and differentiation operators commute or not. The approximate derivative

at the grid points are given by

(INu)′(x j) =
N/2−1

∑
k=−N/2

akeikπx j/L

where

ak =
ikπ

L
ũk, k =−N/2, ...,N/2−1 .

The function (INu)′ is called the Fourier collocation derivative of u. From discussion

above we generally get

(INu)′ 6= PNu′. (1.7)
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The function INu′ is called the Fourier interpolation derivative of u. Interpolation and

differentiation do not commute, i.e

(INu)′ 6= IN(u′) unless u ∈ SN . (1.8)

It has been proved in [3] that the error (INu)′−IN(u′) is the same order as the truncation

error for the derivative u′− PN(u′). This shows that interpolation differentiation is

spectrally accurate. In order to see the relation (1.7) and (1.8) we consider following

example.

Example 3: Consider the function

u(x) = cos(
x
2
).

This function is infinitely differentiable in [−π,π], but u′(−π+) 6= u′(π−). In Figure

1.6, 1.7 and 1.8, PNu′, (INu)′, INu′ and u′(x) are compared for N = 8, 16, 32,

respectively.

Figure 1.6: PNu′, (INu)′, INu′ and u′(x) for N = 8
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Figure 1.7: PNu′, (INu)′, INu′ and u′(x) for N = 16

Figure 1.8: PNu′, (INu)′, INu′ and u′(x) for N = 32
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2. THE HIGHER-ORDER BOUSSINESQ EQUATION

2.1 Introduction

In this chapter, we introduce the higher-order Boussinesq equation. In Section 2.2,

we present some brief information about the literature and the conserved quantities.

In Section 2.3 we use the ansatz method to derive the solitary wave solutions of the

higher-order Boussinesq equation.

2.2 The Higher-Order Boussinesq Equation

In this thesis study, we consider the higher order Boussinesq (HBq) equation with the

following initial conditions

utt = uxx +η1uxxtt−η2uxxxxtt +( f (u))xx (2.1)

u(x,0) = φ(x), ut(x,0) = ψ(x). (2.2)

where f (u) = up and p > 1 is integer. Here η1 and η2 are real positive constants. The

independent variables x and t denote spatial coordinate and time, respectively. The

HBq equation was first derived by Rosenau [4] for the continuum limit of a dense

chain of particles with elastic couplings. The same equation was used to model water

waves with surface tension by Schneider & Wayne [5]. The HBq equation has also

been derived to model the propagation of longitudinal waves in an infinite elastic

medium with nonlinear and nonlocal properties by Duruk et al in [6]. Three conserved

quantities for the HBq equation are derived in [4, 7] in terms of U where u =Ux. The

conserved quantities corresponding to mass, momentum and energy are respectively:

M (t) =
∫

∞

−∞

Ut dx, (2.3)

P(t) =
∫

∞

−∞

Ux[Ut−η1Uxxt +η2Uxxxxt ] dx (2.4)
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E (t) =
∫

∞

−∞

(Ut)
2 +2F(Ux)+η1(Uxt)

2 +η2(Uxxt)
2 dx (2.5)

where f (s) = F ′(s).

2.3 Solitary Wave Solution

We will use the ansatz method which is the most effective direct method to construct

the solitary wave solutions of the nonlinear evolution equations. We look for the

solutions of the form u = u(ξ ) where ξ = x− ct − x0. Assume that u and all their

derivatives converge to zero sufficiently rapidly as ξ →±∞ . Substituting the solution

u = u(ξ ) into eq. (2.1) yields a sixth order ordinary differential equation

(c2−1)u′′−η1c2 d4u
dξ 4 +η2c2 d6u

dξ 6 = (up)′′ (2.6)

and then integrating twice with respect to ξ , we have

(c2−1)u−η1c2 d2u
dξ 2 +η2c2 d4u

dξ 4 = up + c1ξ + c2 (2.7)

where c1 and c2 are arbitrary integration constants. Setting c1 = c2 = 0 from the

boundary conditions, the equation (2.7) becomes

(c2−1)u−η1c2 d2u
dξ 2 +η2c2 d4u

dξ 4 = up. (2.8)

We now look for the solution of the form

u(ξ ) = Asechγ(Bξ ). (2.9)

To use the above ansatz on the equation (2.7) we need the following derivatives

u
′
(ξ ) = ABγsechγ(Bξ ) tanh(Bξ ),

u
′′
(ξ ) = AB2

γsechγ(Bξ )[γ− (γ +1)sech2(Bξ )],

u(IV )(ξ ) = AB4
γsechγ(Bξ )[γ3−2(2+4γ +3γ

2 + γ
3)sech2(Bξ )

+(6+11γ +6γ
2 + γ

3)sech4(Bξ )].

Substituting these derivatives into the equation (2.8),

(c2−1)Asechγ(Bξ )−η1c2AB2
γsechγ(Bξ )[γ− (γ +1)sech2(Bξ )]

+η2c2AB4
γsechγ(Bξ )[γ3−2(2+4γ +3γ

2 + γ
3)sech2(Bξ )

+(6+11γ +6γ
2 + γ

3)sech4(Bξ )]−Apsechγ p(Bξ ) = 0. (2.10)
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Equating the exponents γ +4 and γ p in (2.10), we have

γ =
4

p−1
.

Note that sechγ+4(Bξ ) , sechγ+2(Bξ ) and sechγ(Bξ ) are linearly independent

functions. By setting their respective coefficients in (2.10) to zero, we obtain the

following equations:

η2c2AB4
γ(γ3 +6γ

2 +11γ +6) = Ap (2.11)

η1c2AB2
γ(γ +1)−2η2c2AB4

γ(γ3 +3γ
2 +4γ +2) = 0 (2.12)

(c2−1)A−η1c2AB2
γ

2 +η2c2AB4
γ

4 = 0. (2.13)

Finally, the HBq equation admits the solitary wave solution as

u(x, t) = A
{

sech4 (B(x− ct− x0))
} 1

p−1 ,

A =

[
η2

1 c2(p+1) (p+3) (3p+1)
2η2 (p2 +2p+5)2

] 1
p−1

, B =

[
η1(p−1)2

4η2(p2 +2p+5)

] 1
2

,

c2 =

{
1−
[

4η2
1 (p+1) 2

η2 (p2 +2p+5)2

]}−1

.

where A is amplitude, B is the inverse width of the solitary wave and c represents

velocity of the solitary wave at x0 with c2 > 1.
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3. THE PSEUDO-SPECTRAL METHOD FOR THE HIGHER-ORDER
BOUSSINESQ EQUATION

3.1 Introduction

In this chapter, we propose a Fourier pseudo-spectral method for solving the

higher-order Boussinesq equation with various power type nonlinear terms. In Section

3.2, we prove the convergence of the semi-discrete scheme in the appropriate energy

space. In Section 3.3, we propose the fully-discrete scheme for solving the HBq

equation. In Section 3.4, we present some numerical experiments to verify the accuracy

of the proposed scheme.

3.2 The Semi-Discrete Scheme

Let Hs
p(Ω) denote the periodic Sobolev space equipped with the norm

‖u‖2
s =

∞

∑
k=−∞

(1+ |k|2s)|ûk|2

where ûk =
1

2L

∫
Ω

u(x)e−ikπx/Ldx. The Banach space Xs = C1([0,T ];Hs
p(Ω)) is the

space of all continuous functions in Hs
p(Ω) whose distributional derivative is also in

Hs
p(Ω), with the norm ‖u‖2

Xs
= max

t∈[0,T ]
(‖u(t)‖2

s +‖ut(t)‖2
s ). Throughout this section, C

denotes a generic constant. In order to obtain the convergence of semi-discrete scheme,

we need following lemmas.

Lemma 1 [8, 9]: For any real 0≤ µ ≤ s, there exists a constant C such that

‖u−PNu‖µ ≤CNµ−s‖u‖s ∀u ∈ Hs
p(Ω).

Lemma 2 [10]: Assume that f ∈Ck(R), u,v ∈ Hs(Ω)∩L∞(Ω) and k = [s]+1, where

s≥ 0. Then we have

‖ f (u)− f (v)‖s ≤C(M)‖u− v‖s

if ‖u‖∞ ≤M,‖v‖∞ ≤M,‖u‖s ≤M and ‖v‖s ≤M, where C(M) is a constant dependent

on M and s.
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Corollary 1: Assume that f ∈C3(R) and u,v ∈ H2(Ω)∩L∞(Ω) then

‖ f (u)− f (v)‖2 ≤C‖u− v‖2

where C is a constant dependent on ‖u‖∞,‖v‖∞ and ‖u‖2,‖v‖2.

Gronwall Lemma: Suppose nonnegative x(t) satisfies the following differential

inequality
dx(t)

dt
≤ g(t)x(t)+h(t)

where g(t) is a continuous and h(t) is a locally integrable functions. Then, x(t) satisfies

x(t)≤ x(0)eG(t)+
∫ t

0
eG(t)−G(s)h(s)ds

where

G(t) =
∫ t

0
g(r)dr.

3.2.1 Convergence of the semi-discrete scheme

The semi-discrete Fourier pseudo-spectral scheme for (2.1)-(2.2) is

uN
tt = uN

xx +η1uN
xxtt−η2uN

xxxxtt +PN f (uN)xx, (3.1)

uN(x,0) = PNφ(x), uN
t (x,0) = PNψ(x) (3.2)

where uN(x, t) ∈ SN for 0≤ t ≤ T . We now state our main result.

Theorem 2: Let s≥ 2 and u(x, t) be the solution of the periodic initial value problem

(2.1)-(2.2) satisfying u(x, t) ∈ C1([0,T ];Hs
p(Ω)) for any T > 0 and uN(x, t) be the

solution of the semi-discrete scheme (3.1)-(3.2). There exists a constant C, independent

of N, such that

‖u−uN‖X2 ≤C(T,η1,η2)N2−s‖u‖Xs

for the initial data φ ,ψ ∈ Hs
p(Ω).

Proof: Using the triangle inequality it is possible to write

‖u−uN‖X2 ≤ ‖u−PNu‖X2 +‖PNu−uN‖X2. (3.3)

Using Lemma 1, we have the following estimates

‖(u−PNu)(t)‖2 ≤CN2−s‖u(t)‖s

and

‖(u−PNu)t(t)‖2 ≤CN2−s‖ut(t)‖s
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for s≥ 2. Taking the maximum values of both sides gives

max
t∈[0,T ]

(‖(u−PNu)(t)‖2 +‖(u−PNu)t(t)‖2)≤C N2−s max
t∈[0,T ]

(‖u(t)‖s +‖ut(t)‖s).

Thus, the estimation of the first term at the right-hand side of the inequality (3.3)

becomes

‖u−PNu‖X2 ≤CN2−s‖u‖Xs. (3.4)

Now, we need to estimate the second term ‖PNu−uN‖X2 at the right-hand side of the

inequality (3.3). Subtracting the equation (3.1) from (2.1) and taking the inner product

with ϕ ∈ SN we have

(
(u−uN)tt− (u−uN)xx−η1(u−uN)xxtt +η2(u−uN)xxxxtt− ( f (u)−PN f (uN))xx, ϕ

)
= 0.

(3.5)

Since

((u−PNu)tt ,ϕ) = ((u−PNu)xx,ϕ) = ((u−PNu)xxtt ,ϕ) = ((u−PNu)xxxxtt ,ϕ) = 0

for all ϕ ∈ SN and by Dn
xPNu = PNDn

xu and Dn
t PNu = PNDn

t u the equation (3.5) becomes

(
(PNu−uN)tt− (PNu−uN)xx−η1(PNu−uN)xxtt +η2(PNu−uN)xxxxtt

−( f (u)−PN f (uN))xx, ϕ
)
= 0 (3.6)

for all ϕ ∈ SN . Setting ϕ = (PNu−uN)t in (3.6), using the integration by parts and the

spatial periodicity, a simple calculation shows that

(
(PNu−uN)tt , (PNu−uN)t

)
=

1
2

d
dt
‖(PNu−uN)t(t)‖2, (3.7)

(
(PNu−uN)xx, (PNu−uN)t

)
=−1

2
d
dt
‖(PNu−uN)x(t)‖2, (3.8)

(
(PNu−uN)xxtt , (PNu−uN)t

)
=−1

2
d
dt
‖(PNu−uN)xt(t)‖2, (3.9)

(
(PNu−uN)xxxxtt , (PNu−uN)t

)
=

1
2

d
dt
‖(PNu−uN)xxt(t)‖2. (3.10)

Substituting (3.7) - (3.10) in (3.6), we have

1
2

d
dt
(‖(PNu−uN)t(t)‖2 +‖(PNu−uN)x(t)‖2 +η1‖(PNu−uN)xt(t)‖2

+η2‖(PNu−uN)xxt(t)‖2) =
(
( f (u)− f (uN))xx,(PNu−uN)t

)
. (3.11)
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In the following, we will estimate the right-hand side of the above equation. Using the

Cauchy-Schwarz inequality and the Corollary 1, we have

|(( f (u)− f (uN))xx, (PNu−uN)t)| ≤ ‖( f (u)− f (uN))xx‖ ‖(PNu−uN)t(t)‖

≤ 1
2
(
‖ f (u)− f (uN)xx‖2 +‖(PNu−uN)t(t)‖2)

≤ 1
2
(
‖ f (u)− f (uN)‖2

2 +‖(PNu−uN)t(t)‖2)
≤ C

(
‖(u−uN)(t)‖2

2 +‖(PNu−uN)t(t)‖2) .
(3.12)

Substituting (3.12) in (3.11) we have

1
2

d
dt
(‖(PNu−uN)t(t)‖2 +‖(PNu−uN)x(t)‖2 +η1‖(PNu−uN)xt(t)‖2

+η2‖(PNu−uN)xxt(t)‖2)

≤C
(
‖(u−uN)(t)‖2

2 +‖(PNu−uN)t(t)‖2)
≤C

(
‖(u−PNu)(t)‖2

2 +‖(PNu−uN)(t)‖2
2 +‖(PNu−uN)t(t)‖2) .

(3.13)

Adding the terms
(
PNu−uN , (PNu−uN)t

)
and

(
(PNu−uN)xx, (PNu−uN)xxt

)
to both

sides, the equation (3.13) becomes

1
2

d
dt

(
‖(PNu−uN)t(t)‖2 +‖(PNu−uN)x(t)‖2 +η1‖(PNu−uN)xt(t)‖2

+η2‖(PNu−uN)xxt(t)‖2 +‖(PNu−uN)(t)‖2 +‖(PNu−uN)xx(t)‖2
)

≤C
(
‖(u−PNu)(t)‖2

2 +‖(PNu−uN)(t)‖2
2 +‖(PNu−uN)t(t)‖2

+
1
2
‖(PNu−uN)(t)‖2 +

1
2
‖(PNu−uN)t(t)‖2

+
1
2
‖(PNu−uN)xx(t)‖2 +

1
2
‖(PNu−uN)xxt(t)‖2

)
≤C

(
‖(u−PNu)(t)‖2

2 +‖(PNu−uN)(t)‖2
2 +‖(PNu−uN)t(t)‖2

2
)
. (3.14)

Therefore,

1
2

min{1,η1,η2}
d
dt

[
‖(PNu−uN)(t)‖2

2 +‖(PNu−uN)t(t)‖2
2

]
≤C

(
‖(u−PNu)(t)‖2

2 +‖(PNu−uN)(t)‖2
2 +‖(PNu−uN)t(t)‖2

2
)
.
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Note that ‖(PNu− uN)(0)‖2 = 0 and ‖(PNu− uN)t(0)‖2 = 0. The Gronwall Lemma

and Lemma 1 imply that

‖(PNu−uN)(t)‖2
2 +‖(PNu−uN)t(t)‖2

2 ≤
∫ t

0
‖u(τ)−PNu(τ)‖2

2 eC1(t−τ)dτ

≤ C2N4−2s
∫ t

0
‖u(τ)‖2

s eC1(t−τ)dτ

≤ C2N4−2s‖u‖2
Xs

∫ t

0
eC1(t−τ)dτ

≤ C2N4−2s‖u‖2
Xs

eC1t−1
C1

≤ C2N4−2s‖u‖2
Xs

eC1T −1
C1

≤ C2(T,η1,η2)N4−2s‖u‖2
Xs (3.15)

for s≥ 2. Finally, we have

‖PNu−uN‖X2 ≤C(T,η1,η2) N2−s‖u‖2
Xs. (3.16)

Using (3.4) and (3.16) in (3.3), we complete the proof of Theorem 2.

Corollary 2: Let s≥ 2 and u(x, t) be the solution of the periodic initial value problem

(2.1)-(2.2) satisfying u(x, t) ∈ C1([0,T ];Hs
p(Ω)) for any T > 0 and uN(x, t) be the

solution of the semi-discrete scheme (3.1)-(3.2). There exists a constant C, independent

of N, such that

‖u−uN‖2 ≤C(T,η1,η2)N2−s‖u‖Xs.

for the initial data φ ,ψ ∈ Hs
p(Ω).

3.3 The Fully-Discrete Scheme

We solve the HBq equation by combining a Fourier pseudo-spectral method for the

space component and a fourth-order Runge Kutta scheme (RK4) for time. The

MATLAB functions "fft" and "ifft" compute the discrete Fourier transform and its

inverse for a function f (x) by using an efficient Fast Fourier Transform at N equally

spaced discrete points on x∈ [0,2π]. If the spatial period is normalized from x∈ [−L,L]

to X ∈ [0,2π] using the transformation X = π(x+L)/L, the equation (3.1) becomes

uN
tt −

(
π

L

)2
uN

XX −η1

(
π

L

)2
uN

XX t t +η2

(
π

L

)4
uN

XXXX t t =
(

π

L

)2
(uN)

p

XX . (3.17)

The interval [0,2π] is divided into N equal subintervals with grid spacing ∆X = 2π/N,

where the integer N is even. The spatial grid points are given by X j = 2π j/N,
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j = 0,1,2, ...,N. The approximate solutions to uN(X j, t) is denoted by U j(t). The

discrete Fourier transform of the sequence {U j}, i.e.

Ũk = Fk[U j] =
1
N

N−1

∑
j=0

U je−ikX j , −N/2≤ k ≤ N/2−1 (3.18)

gives the corresponding Fourier coefficients. Likewise, {U j} can be recovered from the

Fourier coefficients by the inversion formula for the discrete Fourier transform (3.18),

as follows:

U j = F−1
j [Ũk] =

N
2−1

∑
k=−N

2

ŨkeikX j , j = 0,1,2, ...,N−1 . (3.19)

Here F denotes the discrete Fourier transform and F−1 its inverse. Applying the

discrete Fourier transform to the equation (3.17) we get

(Ũk)tt +

(
πk
L

)2

(Ũk)+η1

(
πk
L

)2

(Ũk) t t +η2

(
πk
L

)4

(Ũk) t t =−
(

πk
L

)2

(Ũk)
p.

(3.20)

This equation can be written as the following system

(Ũk)t = Ṽk, (3.21)

(Ṽk)t = κ[Ũk +(Ũ p)k ] (3.22)

where

κ =− (πk/L)2

1+η1(πk/L)2 +η2(πk/L)4 .

In order to handle the nonlinear term we use a pseudo-spectral approximation. That is,

we use the formula Fk[(U j)
p] to compute the kth Fourier component of up. We use the

fourth order Runge-Kutta method to solve the resulting ODE system (3.21)-(3.22) in

time. The time interval [0,T ] is divided into M equal subintervals with temporal grid

points tm = mT
M . The value of the Fourier components at tm is then denoted by Ũm

k .

Using the RK4 method the solution of the ODE system (3.21)-(3.22) at time tm+1 is

Ũm+1
k = Ũm

k +
∆t
6
(gm

1,k +2gm
2,k +2gm

3,k +gm
4,k), (3.23)

Ṽ m+1
k = Ṽ m

k +
∆t
6
(hm

1,k +2hm
2,k +2hm

3,k +hm
4,k), (3.24)
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where

gm
1,k = Ṽ m

k ,

hm
1,k = κ[Ũm

k +(Ũ p)m
k ],

gm
2,k = Ṽ m

k +
hm

1,k

2
,

hm
2,k = κ{Fk[(Um

j +F−1
j [

gm
1,k

2
])p]+Ũm

k +
gm

1,k

2
},

gm
3,k = Ṽ m

k +
hm

2,k

2
,

hm
3,k = κ{Fk[(Um

j +F−1
j [

gm
2,k

2
])p]+Ũm

k +
gm

2,k

2
},

gm
4,k = Ṽ m

k +hm
3,k,

hm
4,k = κ{Fk[(Um

j +F−1
j [

gm
3,k

2
])p]+Ũm

k +gm
3,k}.

(3.25)

Finally, we find the approximate solution by using the inverse Fourier transform.

3.4 Numerical Experiments

The purpose of the present numerical experiments is to verify numerically that (i) the

proposed Fourier pseudo-spectral scheme is highly accurate, (ii) the scheme exhibits

the fourth-order convergence in time and (iii) the scheme has spectral accuracy in

space. We will consider three test problems; propagation of a single solitary wave,

collision of two solitary waves and blow-up of the solutions of higher-order Boussinesq

equation. L∞-error norm is defined as

L∞-error = max
i
| ui−Ui | (3.26)

where ui denotes the exact solution at u(Xi, t). As mentioned in the previous section

we use fast Fourier transform (FFT) routines in Matlab (i.e. fft and ifft) to calculate

Fourier transform and the inverse Fourier transform. As far as we know, there is no

existing numerical study in the literature for the HBq equation. Therefore, we could

not compare our numerical results with the results in the literature.
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3.4.1 Propagation of a Single Solitary Wave

We study the single solitary wave solution of the HBq equation for η1 = η2 = 1.

Therefore the initial conditions corresponding to the solitary wave solution (2.3)

become as follows:

u(x,0) = Asech4(B x), (3.27)

v(x,0) = 4ABcsech4 (B x) tanh(B x) . (3.28)

For η1 = η2 = 1 the solution represents a solitary wave initially at x0 = 0 moving to

the right with the amplitude A≈ 0.39, speed c≈ 1.13 and inverse width B≈ 0.14 .

The problem is solved on the space interval −100 ≤ x ≤ 100 for times up to T = 5.

We show the variation of L∞-errors with N for the HBq equation for various power

type nonlinearity, namely, f (u) = up for p = 2,3,4,5 in Figure 3.1. The value of M is

chosen to satisfy ν = ∆t/∆x = 2.56×10−3. We observe that the L∞-errors decay as the

number of grid points increases for various degrees of nonlinearity. Even in the case of

the quintic nonlinearity, the L∞-errors are about 10−12. This experiment shows that the

proposed method provides highly accurate numerical results even for the higher-order

nonlinearities.

Figure 3.1: L∞-errors for the increasing values of N
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To validate whether the Fourier pseudo-spectral method exhibits the expected

convergence rates in time we perform some numerical experiments for various values

of M and a fixed value of N. In these experiments we take N = 512 to ensure

that the error due to the spatial discretization is negligible. The convergence rates

calculated from the L∞-errors for the terminating time T = 5 are shown in Table 3.1.

The computed convergence rates agree well with the fact that Fourier pseudo-spectral

method exhibits the fourth order convergence in time.

Table 3.1: The convergence rates in time calculated from the L∞-errors in the case of
single solitary wave (A≈ 0.39, N = 512)

M L∞-error Order
2 8.662E-3 -
5 2.530E-4 3.8561

10 1.614E-5 3.9704
50 2.623E-8 3.9903

100 1.637E-9 4.0021

To validate whether the Fourier pseudo-spectral method exhibits the expected

convergence rate in space we now perform some further numerical experiments for

various values of N and a fixed value of M. In these experiments we take M = 1000 to

minimize the temporal errors. We present the L∞-errors for the terminating time T = 5

together with the observed rates of convergence in Table 3.2.

Table 3.2: The convergence rates in space calculated from the L∞-errors in the case of
the single solitary wave (A≈ 0.39, M = 1000)

N L∞-error Order
10 0.211E-1 -
50 1.747E-3 1.5480
100 4.431E-7 11.9450
150 6.500E-10 16.0916
200 3.884E-13 25.8017
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These results show that the numerical solution obtained using the Fourier

pseudo-spectral scheme converges rapidly to the accurate solution in space, which

indicates exponential convergence.

3.4.2 Head-on Collision of Two Solitary Waves

In the second numerical experiment we study the collision of two solitary waves for

the HBq equation with quadratic nonlinearity and various values of η1 and η2. The

initial conditions are given by

u(x,0) = A [sech4(B (x−40))+ sech4(B (x+40))],

v(x,0) = 4A B c[sech4 (B (x−40)) tanh(B (x−40))

−sech4 (B (x+40)) tanh(B (x+40))].

We consider two solitary waves, one initially located at −40 and moving to the right

with amplitude A (c1 > 0) and one initially located at 40 and moving to the left with

amplitude A (c2 = −c1). The magnitudes of the speed of two solitary waves are

equal. The problem is solved again on the interval − 100 ≤ x ≤ 100 for times up

to T = 72 using the Fourier pseudo-spectral method. The experiments in this section

are performed for ∆x = 0.4 and ∆t = 10−2. Since the amplitude of the solitary waves

depends on the choice of the parameters η1 and η2, we only consider the interaction of

two solitary waves with the same amplitude.

Since an analytical solution is not available for the collision of two solitary waves,

we cannot present the L∞-errors for this experiment. But, as a numerical check of the

proposed Fourier pseudo-spectral scheme, we present the evolution of the change in

the conserved quantity M (mass) in the experiments.

In the first collision problem we consider the HBq equation for η1 = η2 = 1. The

amplitude, the inverse width of both waves and the corresponding speed are A≈ 0.39,

B ≈ 0.14 and | c |≈ 1.13, respectively. We illustrate the surface plot of head-on

collision of two solitary waves in Figure 3.2 and evolution of the change in the

conserved quantity M (mass) in Figure 3.3.

26



Figure 3.2: Head-on collision of two solitary waves with amplitude A≈ 0.39

Figure 3.3: Evolution of the change in the conserved quantity mass

As can be seen from the Figure 3.3, the conserved quantity M (mass) remains constant

in time and this behavior provides a valuable check on the numerical results.

In the second collision problem we consider the HBq equation for η1 = η2 = 2. The

amplitude, the inverse width of both waves and the corresponding speed are A≈ 1.08,

B ≈ 0.14 and | c |≈ 1.31, respectively. We illustrate the surface plot of head-on

collision of two solitary waves in Figure 3.4 and evolution of the numerical errors

in the conserved quantity M (mass) in Figure 3.5.
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Figure 3.4: Head-on collision of two solitary waves with amplitude A≈ 1.08

Figure 3.5: Evolution of the change in the conserved quantity mass

As we see our scheme conserves mass very well.

We see oscillating secondary waves in the Figure 3.4 unlike the Figure 3.2. Since

the HBq equation cannot be solved by the inverse scattering method, the interaction

of solitary waves are inelastic. Actually secondary waves exist in all nonlinear

interactions, however they become more visible as we increase the amplitudes of the

interacting waves. A general observation is that, as the degree of the nonlinearity

increases, the waves become increasingly distorted after the interaction.
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3.4.3 Blow-up

In this subsection, we test the ability of Fourier pseudo-spectral method to detect

blow-up solutions of the HBq equation comparing the analytical blow-up results given

in [11]. Throughout this section, we set the parameters η1 = η2 = 1 in (2.1). The HBq

equation is one of the class of nonlocal equation studied in [11] with specific choice of

the kernel function β (x) with Fourier transform is

β̂ (ξ ) =
1

1+η1ξ 2 +η2ξ 4 .

We refer to Theorem 5.2 in [11] as the blow-up criteria. This theorem can be restated

for the HBq equation as:

Theorem 3 [11] : Suppose φ = Φx,ψ = Ψx for some Φ,Ψ ∈ H2(Ω) . If there is some

µ > 0 such that

p f (p)≤ 2(1+2µ)F (p) for all p ∈ R, (3.29)

and E (0) < 0 , then the solution u of the Cauchy problem for HBq equation with the

initial condition u(x,0) = φ(x) , ut(x,0) = ψ(x) blows up in finite time.

In our experiments, we generalized the blow-up results in [12], where the author

discusses the blow-up solutions for the generalized improved Boussinesq equation.

We consider the blow-up solutions for both the quadratic and cubic nonlinearities.

In the first experiment, we study the HBq equation with quadratic nonlinearity. The

initial conditions are given by

φ(x) = a(
2x2

3
−1)e−

x2
3 ,

ψ(x) =
(
x2−1

)
e−

x2
3 . (3.30)

To satisfy the blow-up conditions E (0)< 0 we choose a = 4, then the condition (3.29)

is also satisfied for µ = 1
4 . The problem is solved on the interval −10 ≤ x ≤ 10 for

times up to T = 4. We present the variation of the L∞ norm of the approximate solution

obtained using the Fourier pseudo-spectral scheme for N = 64 and M = 400 in Figure

3.6. We point out that the initial amplitude is 4 in the initial condition given by equation

(3.30). However, the amplitude of the numerical solution increases as time increases
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and it becomes approximately 1094 near the numerical blow-up time. The numerical

results strongly indicate that a blow-up is well underway by time t∗ = 3.8.

Figure 3.6: The variation of ‖U ‖∞ with time

In order to see increasing ‖U ‖∞ with time clearly, we focus on the smaller interval in

Figure 3.7.

Figure 3.7: The variation of ‖U ‖∞ with time
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In the second experiment, we consider the HBq equation with cubic nonlinearity. We

consider the following initial conditions

φ(x) = a(
x2

2
−1)e−

x2
4 ,

ψ(x) =
(
1− x2)e−

x2
2 . (3.31)

To satisfy the blow-up condition E (0)< 0 we choose a = 13, then the condition (3.29)

is also satisfied for µ = 1
2 . The problem is solved on the interval − 10 ≤ x ≤ 10

for times up to T = 0.4. We present the variation of the L∞ norm of the approximate

solution for N = 64 and M = 40 in Figure 3.8. The amplitude of the numerical solution

increases as time increases. The numerical results strongly indicate that a blow-up is

well underway by the time t∗ = 0.36.

Figure 3.8: The variation of ‖U ‖∞ with time

In order to see increasing of the ‖ U ‖∞ with time clearly, we focus on the smaller

interval in Figure 3.9.
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Figure 3.9: The variation of ‖U ‖∞ with time

3.4.4 Conclusion

As a conclusion, we sum up that i) the Fourier pseudo-spectral method has

been presented for the HBq equation, ii) proposed scheme provides fourth order

convergence in time and exponential convergence in space, iii) the Fourier

pseudo-spectral method provides highly accurate results for various type of

nonlinearities, iv) the method is very successful to simulate the propagation of the

single solitary wave and the collision of solitary waves, v) the method does not miss

the blow-up phenomena.
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