





ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

FUNDAMENTAL SOLITONS FOR THE HIGHER-ORDER NONLINEAR
SCHRODINGER EQUATION WITH A .7 -SYMMETRIC POTENTIAL

M.Sc. THESIS

Burcu Ece ALP

Mathematical Engineering Department

Mathematical Engineering Programme

DECEMBER 2016






ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

FUNDAMENTAL SOLITONS FOR THE HIGHER-ORDER NONLINEAR
SCHRODINGER EQUATION WITH A .7 -SYMMETRIC POTENTIAL

M.Sc. THESIS

Burcu Ece ALP
(509131054)

Mathematical Engineering Department

Mathematical Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Ilkay BAKIRTAS

DECEMBER 2016






ISTANBUL TEKNIK UNIVERSITESI % FEN BILIMLERI ENSTITUSU

2 7-SIMETRIK BiR POTANSIYEL iCEREN DOGRUSAL OLMAYAN
YUKSEK MERTEBE SCHRODINGER DENKLEMININ TEMEL SOLITONLARI

YUKSEK LISANS TEZI

Burcu Ece ALP
(509131054)

Matematik Miihendisligi Anabilim Dah

Matematik Miihendisligi Yiiksek Lisans Programi

Tez Damismani: Assoc. Prof. Dr. Ilkay BAKIRTAS

ARALIK 2016






Burcu Ece ALP, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 509131054 successfully defended the thesis entitled “FUNDAMENTAL
SOLITONS FOR THE HIGHER-ORDER NONLINEAR SCHRODINGER EQUA-
TION WITH A .7 -SYMMETRIC POTENTIAL”, which he prepared after fulfilling
the requirements specified in the associated legislations, before the jury whose signa-
tures are below.

Thesis Advisor :  Assoc. Prof. Dr. Ilkay BAKIRTAS ...
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Ilkay BAKIRTAS ..o,
Istanbul Technical University

Prof. Dr. Nalan ANTAR
Istanbul Technical University

Assist. Prof. Dr. Giiler KAYGUSUZOGLU  ...o.ooovovoeo,
Namik Kemal University

Date of Submission : 25 November 2016
Date of Defense : 22 December 2016






vii

To my country and mother,






FOREWORD

I would like to express my deep appreciation to my advisor, Assoc. Prof. Dr.
Ilkay Bakirtas for standing behind me throughout this project. She provided me the
opportunity to work on one of the most modern and excellent subjects of applied
mathematics. I would also like to thank my colleague, [zzet Goksel, for his assistance
and fruitful discussions about numerical methods and solitons. Additionaly, I would
like to thank my colleague, Hiiseyin Tung, for his contributions and advices on the
Matlab programming. Last but not least, I would like to thank my family, especially
my mother for their unconditional support.

December 2016 Burcu Ece ALP

iX






TABLE OF CONTENTS

Page
FOREWORD v IX
TABLE OF CONTENTS v Xi
ABBREVIATIONS «o Xiii
LIST OF FIGURES we XV
SUMMARY . . . . . XVii
OZET - - - e XiX
1. INTRODUCTION ..... wo 1
1.1 PUIPOSE Of TRESIS .eevvieeiiieeiiieeiieeiteeeiee et eeieeesveeeiaeesbeeeeaeesnbeeeaeeeenseeennns 4
1.2 Literature REVIEW ......coooiiuiiiieiiiieeiiieeee ettt ettt ee e e e e e 4
1.3 HYPOUNESIS ettt ettt ettt e e ate e st e st e e snsee e 5

2. NUMERICAL METHODS.. . w7
2.1 Spectral Renormalization Method............cccoeviiiiiiiiniiiiniieiiceecceee 7
2.2 Nonlinear Stability ANalysSiS.....c.ccecvieriieeerieeriiieeriieeiieesiee e siee e eseee e 10

3. NLS 40D EQUATION WITHOUT AN EXTERNAL POTENTIAL............ 11
3.1 Exact and Numerical SOIUtiONS .......c..eeieeiiiiiiiiiiee et 11
RN B B 5 € 167 Ao ) 1 U (o) s SR PUUUR 11

3.2 Numerical IIUSLIAtioNS .........eeeiiieeiiiieiieeeeeeciiiieee e eeeeciree e e e e eeearreeeeeee e eannees 12
3.3 Nonlinear Stability........cccceecuieeriieriiiieniie ettt et sree e 14

4. NLS 40D EQUATION WITH AN EXTERNAL POTENTIAL......cccceceeeuneeee 19
4.1 Exact and Numerical SOIUtIONS ........cccuveieeiiiieeeiiiieeeiiee e 19
4.1.1 EXACt SOIULION ...eeiiiiiiiieiiiieeeciiee ettt e eae e e e e e e etaee e e eeaeeeenes 19
4.1.2 Numerical ilIUSITAtiONS ......cceeeeieiiiiiiiieeeeeeeiiieeeeeeeeeeireee e e e eeeeirrreeeeeeeeans 23

4.2 Nonlinear Stability.......cccveeriieeiiieeiiie ettt 27

5. CONCLUSION. . . . . w 31
REFERENCES.... w 33
APPENDICES....... . . . . v 37
APPENDIX AT oottt ettt e e e 39
CURRICULUM VITAE . . . 41

xi






ABBREVIATIONS

NLS : Nonlinear Schrodinger
CNLS : Cubic Nonlinear Schrodinger
30D : Third Order Dispersion

40D : Fourth Order Dispersion
PT : Parity - Time

SR : Spectral Renormalization

KdV : Korteweg-de Vries

xiil






LIST OF FIGURES

Figure 1.1
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10:

Figure 4.1

Figure 4.2

Page

: Real and imaginary parts of &.7 -symmetric potential plotted on

tOp Of €aCh OtheT......cooiiiiiiiie e 3
: Numerically obtained soliton on top of the real and imaginary

parts of 2.7 -symmetric potential...........ccceoveereireneirienieeeeeene. 10
: Exact and numerical solutions of 40D NLS equation on top of

each other for Y= —1, 10 = 0.160 ..ccccviiriiiieiiie e 12
¢ Numerically obtained higher order mode for y = —1, u = 1............ 13
: Numerically obtained higher order mode for y = —1, u =2............ 13
: Numerically obtained higher order mode for y = —0.1, u =0.16. . 14
: Numerically obtained higher order mode for y = —0.1, u =2. ....... 14

: Nonlinear stability of a higher order soliton for y = —1,u =

0.16;(a) Numerically produced higher order soliton (blue dashes)
on top of the solution after the evolution (red solid), (b) Nonlinear
evolution of the soliton, (c) The view from top and (d) Maximum
amplitude as a function of the propagation distance z..............c...c.... 15

: Nonlinear instability of a higher order soliton for y = —1,u =

1;(a) Numerically produced higher order soliton (blue dashes) on
top of the solution after the evolution (red solid), (b) Nonlinear
evolution of the soliton, (c) The view from top and (d) Maximum
amplitude as a function of the propagation distance z. ............cc..c...... 16

: Nonlinear instability of a higher order soliton y = —1,u = 2;(a)

Numerically produced higher order soliton (blue dashes) on top of
the solution after the evolution (red solid), (b) Nonlinear evolution
of the soliton, (c) The view from top and (d) Maximum amplitude
as a function of the propagation diStance z. ........cccceeveevvercversreenneennne. 16

: Nonlinear stability of a higher order soliton for y = —0.1,u =

0.16;(a) Numerically produced higher order soliton (blue dashes)

on top of the solution after the evolution (red solid), (b) Nonlinear
evolution of the soliton, (c) The view from top and (d) Maximum
amplitude as a function of the propagation distance z.............cccc..c.... 17
Nonlinear stability of a higher order soliton for y = —0.1,u = 2;

(a) Numerically produced higher order soliton (blue dashes) on

top of the solution after the evolution (red solid), (b) Nonlinear
evolution of the soliton, (c) The view from top and (d) Maximum
amplitude as a function of the propagation distance z.............cccc..c.... 17

: Real and imaginary part of the soliton and potential for fy = 1.5,

Q0=1, 0 =1a0d Y= —0.2. ceoooooooereeerreecereeeereereeeeeeecereeeeeeeeseeeseees 24

: Numerically obtained solitons for various values of f for g =1,

Y=—0.2and g0 = 1. coooriioie e 24

XV



Figure 4.3 :
Figure 4.4 :
Figure 4.5

Figure 4.6 :

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10:

Numerically obtained solitons for various values of fy for u =1,

Y=—-0.2and g0 = L. cceoierireie e 25
Numerically obtained solitons for various values of y for 4 =1,
fozlandg():l. ............................................................................... 25

: Numerically obtained solitons for various values of y for u =1,

Jo=1and g0 = L. .o 26
(a) Real and imaginary parts of numerical solution f with u =3,
(b) real and imaginary parts of numerical solution f with y =4,
(¢) |f| for u =3 and u = 4, (d) absolute values of &.7 -symmetric
potential for 4 =3 and u =4, by considering y = —0.2, fo =1
ANA G0 = Lt oo 26

: Nonlinear instability of a higher order soliton for y = —0.2,u =

1 fo=1 and go = 1 with a &7 -symmetric potential; (a)
Numerically produced higher order nonlinear soliton (blue dashes)
on top of the solution after the evolution (green solid), (b)
Nonlinear evolution of the soliton, (c)The view from top and (d)
Maximum amplitude as a function of the propagation distance z. ..... 28

: Nonlinear instability of a higher order soliton for v = 0,u =

I, fo=1 and gy = 1 with a .7 -symmetric potential; (a)
Numerically produced higher order soliton (blue dashes) on top
of the solution after the evolution (green solid), (b) Nonlinear
evolution of the soliton, (c) The view from top and (d) Maximum
amplitude as a function of the propagation distance z.............c.ccue.... 28

: Nonlinear instability of a higher order soliton for y = —0.2,u =

I, fo =0.5 and gp = 1 with a .7 -symmetric potential; (a)
Numerically produced higher order soliton (blue dashes) on top
of the solution after the evolution (green solid), (b) Nonlinear
evolution of the soliton, (¢) The view from top and (d) Maximum
amplitude as a function of the propagation distance z. ...........c.......... 29
Nonlinear instability of a higher order soliton for y = 0.15,u =
1 fo =05 and go = 1 with a &7 -symmetric potential; (a)
Numerically produced higher order nonlinear soliton (blue dashes)
on top of the solution after the evolution (green solid), (b)
Nonlinear evolution of the soliton, (c¢) The view from top and (d)
Maximum amplitude as a function of the propagation distance z. ..... 29

XVi



FUNDAMENTAL SOLITONS FOR THE HIGHER-ORDER NONLINEAR
SCHRODINGER EQUATION WITH A &2.7-SYMMETRIC POTENTIAL

SUMMARY

In nature, a soliton is described as a type of nonlinear wave structure; it exhibits
mathematical model for various field in science, such as fluid dynamics, biological
systems, nonlinear optics. The form of the nonlinear waves are maintained while
they spread at fixed velocity. The solutions of nonlinear wave-type partial differential
equations, including KDV, sine-Gordon and NLS are represented by solitons.

In this thesis, the theoretical and numerical analysis of optical solitons of nonlinear
Schrodinger equation with a fourth-order dispersion term and 2.7 -symmetric
potential is explored.

iuz+uxx+a|u|2u+}/uxxxx+VpTu:0 (1)

In Section 1, the historical background of studies on the optical solitons are
investigated. The application areas and the structure of the NLS 40D equation are
expressed. General information about &.7 -symmetric potentials are given. The
purpose of the thesis, required literature review and hypothesis of the thesis are given,
respectively.

In Section 2, the numerical method which is used to find a localized soliton solution
is explained and then modified in order to be applied to the NLS equation with a
fourth order dispersion term and an external potential. In order to compute localized
solutions, using the spectral renormalization method. This method used the ansatz
u(x,z) = f(x)e’** where f(x) is a complex-valued function and y is the propagation
constant. For stability analysis Split-step Fourier method is introduced.

In Section 3, (1+1)D 40D cubic NLS equation without an external potential is
considered. Exact solution of the equation is analysed and numerically produced
results are depicted. The cubic nonlinear Schrodinger equation with a fourth order
dispersion term (40D) is given as follows:

i, + Bty + Vitxrrr + \u|2u =0 2)

The analytical and the numerical solutions are shown be consistent with each other by
graphs. Finally, the nonlinear stability of the soliton solutions are investigated and the
produced results are discussed for various parameters of the considered equation.

In Section 4, the exact soliton solution of the (1+1)D 40D cubic NLS equation with
a &7 -symmetric potential is studied. This &7.7 -symmetric potential is introduced
and by the use of this potential, soliton solutions are obtained for various values of
parameters. To obtain non-zero stationary solitons, the following ansatz is used:

u(x,z) = f(x)e' &) 3)
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The &.7 -symmetric potential is obtained :
Vpr = [Visech?(x) 4 Vasech* (x)] + i[W,sech? (x) tanh(x)]. 4)

Exact and numerical results are compared, the maximum amplitude of the solitons are
compared in terms of the parameters of the equation and the effect of the eigenvalue of
the numerical solutions are figured out. The nonlinear stability of the produced solitons
are demonstrated and compared in terms of various parameters.

In Section 5, the results of the study are discussed. In this thesis all of the results
produced by MATLAB2016a computer programme.
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2 7-SIMETRIK BIiR POTANSIYEL iCEREN DOGRUSAL OLMAYAN
YUKSEK MERTEBE SCHRODINGER DENKLEMININ TEMEL SOLITONLARI

OZET

Soliton, akigkanlar dinamigi, biyolojik sistemler ve dogrusal olmayan optik
gibi cesitli alanlarda fiziksel problemlerin ¢oziimiinde ortaya konan matematiksel
modellerin ¢oziimlerinde elde edilen kararli bir yap1 olarak tanimlanir. Ortaya
ciktiklar1 sistemdeki nonlineerite ve dispersiyonun dengelenmesiyle olusan bu dalgalar
(solitonlar) ilerlerken kendi sekillerini korurlar. KDYV, sine-Gordon ve NLS gibi
dogrusal olmayan dalga tipindeki kismi diferansiyel denklemlerin ¢oziimleri solitonlar
tarafindan temsil edilir. Evrendeki biitiin fiziksel gozlemler reel biiyiikliikler ile
ifade edilmelidir. Kuantum mekaniginde gézlemler matematiksel olarak operatorlerin
Ozdegerlerine karsilik gelir. Bdylelikle operatorlerin 6zdegerlerinin reel olmalar
gerekir. Bunu garanti edebilmek icin biitiin gézlemlerin Hermityan operatorlerin
ozdegerlerine karsilik gelmesi gerekir. Fakat son yillarda yapilan bazi caligmalarda
bu gerekliligin zayiflatilabilecegi gozlenmis ve operatorlerin uzay-zaman simetrisini
(&7 -simetri) saglamasinin fiziksel sonuglari tartigilmistir.

Burada potansiyel &?.7 -simetrik Hamiltoniyen 6zelligi tagir, yani V(x) = V*(—x)
iligkisini saglayan karmagik bir potansiyele sahip tek boyutlu bir Schrodinger
operatorii icerir. Bu tiir problemlerin bir kismi sayisal ve analitik tekniklerle
tanimlanmigtir. &?.7 -simetrik potansiyeli asagidaki gibi tanimlanmugtir:

Vpr =V (x) +iW (x) &)

Burada V (x) ve W (x), sirasiyla, &2 .7 -simetrik kompleks potansiyelin reel ve imajiner
bilesenleridir. Potansiyelin reel bileseni ¢ift fonksiyon 6zelligine sahipken, imajiner
bileseni tek bir fonksiyondur.

Bu calismada, asagida ifade edilen, dordiincii mertebeden ve bir dis potansiyel iceren
dogrusal olmayan Schrédinger denklemlerinin optik soliton ¢oziimlerinin sayisal
olarak varlig1 ve kararlilik (stabilite) analizleri bu ¢alismada incelenmistir.

iuZ—Htxx—i—Oc]u|2u+}/uxxxx+VpTu =0 (6)

Verilen denklemde u kompleks degerli tiirevlenebilir fonksiyonu, wuy, kirtlimi
modelleyen terimi, « tligiincii mertebeden dogrusal olmayan terimin katsayisini, y
terimi dordiincii mertebeden dispersiyon teriminin katsayisini ve Vpr &7 -simetrisi
ozelligi saglayan potansiyeli temsil eder. Bu tezin amaci, dordiincii mertebe
dispersiyon teriminin (i) Ve Vpr 2.7 -simetrisi 6zelligi saglayan potansiyelin,
soliton ¢oziimiinde ve bu ¢oziimlerin kararliliginda yarattid1 etkiyi gozlemlemektir.

Bolim 1°de, optik solitonlarla ilgili ¢alismalarin tarihsel gelisimleri anlatilmistir.
Dordiincii mertebeden dispersiyon terimi ve .7 -simetrik potansiyel igeren,
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dogrusal olmayan Schrodinger denkleminin yapisi ve uygulama alanlar1 anlatilmistir.
Denklemin ¢oziimiinde kullanilmig olan sayisal analiz metotlar1 ve bunlarin tarihsel
geligsimleri irdelenmistir. Ayrica, dordiincli mertebe dispersiyon terimi igeren NLS
denkleminin soliton c¢oziimlerini analitik ve sayisal olarak inceleyen calismalar
analiz edilmigtir. 2?7 -simetrik potansiyelin fiziksel anlami ve saglamasi gereken
ozellikler belirtilmistir. Bu bdliimde, spektral renormalizasyon (SR) metodunun
temel yaklasimi ve gelisimi agiklanip, literatirde bu metodun kullanildig:i diger
problemlerden bahsedilmistir. Tezin amaci, gerekli literatiir taramasi ve tezin hipotezi
sirastyla verilmisgtir.

Boliim 2°de dis potansiyel iceren ve dordiincii mertebeden dispersiyon terimi bulunan
NLS denkleminin soliton ¢oziimii elde etmek i¢cin Ablowitz ve Musslimani’nin ortaya
koydugu Spektral Renormalizasyon (SR) yontemi uygulanmis ve denklemin sayisal
¢oziimleri bu yontemin bir modifikasyonu ile elde edilmistir. Bu yontem, u(x,z) =
f(x)e™* yaklagtmim kullanir ve f(x) kompleks degerli fonksiyonunu Fourier uzayinda
iteratif olarak cozer. Daha sonra, Ayrik adimli Fourier metodu (Split-step Fourier
Method) kullanilarak, elde edilen solitonlarin kararhilik analizi arastirmasi yapilmistir.

Boliim 3’de potansiyelsiz halde, (1+1) boyutlu dordiincii mertebeden bir dispersiyon
terimi igeren, kiibik NLS denklemi ele alinmigtir. Bu denklem asagidaki gibi verilir:

it + Bitr + Viteree + [ul*u =0 (7)

Literatiirde, bu denklemin analitik ¢oziimleri

= ﬁsec o ex iﬁ
ue2) =4 gy tech (\/207/[3) p(zsvz) ®

formunda elde edilmis ve belli parametreler i¢in bu soliton tipi ¢oziimler incelenmistir.
Uyguladigimiz sayisal algoritmanin dogrulugunu test etmek ve bu c¢oziimleri
daha derinlemesine inceleyebilmek icin, Spektral renormalizasyon (SR) metodu
ile bu denklem c¢oziilmiis ve literatirde var olan analitik c¢oziimler ile, SR
algoritmasindan elde edilen ¢oziimler karsilastirilarak, bu iki ¢Oziimiiniin {ist iiste
distigii gosterilmistir.  Bu ¢oziimlerin soliton yapilarinin dordiincii mertebeden
dispersiyon teriminin biiyiikliigii ile olan degisimi analiz edilmis ve daha sonra bu
solitonlarin kararliliklar1 incelenmistir.

Boliim 4’de (1+1) boyutlu dordiincti mertebeden dispersiyon terimi ve &2.7 -simetrik
potansiyel iceren kiibik NLS denklemi ele alinmistir. Analitik ¢coziimleri iiretebilmek
icin u(x,z) = f(x)e!#+8() coziim Gnerisi yapilmugtir. Burada f(x) ve g(x) heniiz
yapisi belli olmayan reel degerli fonksiyonlar olarak kabul edilmistir. Bu c¢oziim
onerisi denklemde yerine konarak, 2.7 -simetrik potansiyelin yapisi asagidaki sekilde
elde edilmistir

Vpr = [Visech?(x) 4 Vasech® (x)] + i[Wasech® (x) tanh(x)]. )

Potansiyelin yapisindaki katsayilarin soliton ¢oziimiine olan etkisi sayisal olarak
incelenmis ve etkileri tartistlmistir.  Maksimum genlik ile dispersiyon teriminin
katsayisi olan () ve 6zde8er (1) arasindaki degisimler yine sayisal olarak incelenmis
ve cesitli grafiklerle elde edilen sonuclar gosterilmistir. Spektral renormalizasyon
metodu ile iiretilen soliton ¢oziimleri, iiretilen analitik ¢oziim ile farkli parametreler

XX



icin kargilastirllmis ve bu ¢oziimlerin ustiiste diigtiigli gosterilmistir. Daha sonra, elde
edilen bu soliton ¢oziimlerinin kararlilik analizleri yapilmis ve elde edilen sonuclar
grafikler iizerinde gosterilmis ve tartisilmistir. Dispersiyon teriminin katsayisi (%)
ve Ozdegerinin(it) solitonun kararliligi tizerindeki etkisi incelenip, kararli olan ve
olmayan solitonlar gosterilip nedenleri tartigilmistir.

Boliim 5°de tezde elde edilen tiim sonuglar ayrintili olarak aciklanmigtir. Potansiyelsiz
denklemde ve bir dig potansiyel iceren denklemdeki sonuglar Ozetlenip, sisteme
eklenen dis potansiyelin etkisi tartisilmigtir.

Bu tezde sunulan biitiin ¢oziimler MATLAB2016a bilgisayar programi kullanilarak
tiretilmisgtir.
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1. INTRODUCTION

In the field of optics, a soliton denote to any optical field that does not change its
shape during propagation because of the sensitive balance between linear and nonlinear
effects in the medium [1]. Optical solitons have become the main area for studying

solitons’ interactions in the last few years.

Study of the solitary wave solution of the nonlinear Schrodinger (NLS) equation is
one of the important works in nonlinear science [2]. There have been many studies
attempting to find out the analytical solution of the NLS equation. These results
have important scientific values and application prospects. The nonlinear evolution
of short pulses in an optical fiber is usually described by the NLS equation. It is well
known that the NLS equation properly describes the nonlinear dynamics of pulses on a
picosecond time-scale Mathematical and numerical analysis of the considered equation

with application areas can be found in the reference [3].

The propagation of an optical pulse in optical materials is described by the nonlinear
Schrodinger equation:

itz + tee + o) ?u = 0. (1.1)

In optics, u corresponds to the differentiable complex valued, slowly varying amplitude
of the electric field; z is a scaled propagation distance; u,, corresponds to diffraction;

the coefficients o represents the cubic nonlinearities of the medium.

It is known that, NLS equation Eq. (1.1), does not give correct prediction for
pulse widths smaller than 1 picosecond. For example, in solid state solitary lasers,
where pulses are short as 10 femtoseconds are generated, the approximation breaks
down. Thus, quasimonochromaticity is no longer valid and consequently higher
order dispersion terms are needed. If the group velocity dispersion is close to zero,
one needs to consider the third order dispersion for performance enhancement along
trans-oceanic and trans-continental distances. Also, for short pulse widths where the

group velocity dispersion changes, within the spectral bandwidth of the signal, can



no longer be neglected. This reasoning leads to the inclusion of the fourth dispersion

terms to the model equation.

In this thesis, we consider the model equation, which includes the higher-order
dispersion terms, is called fourth-order dispersion (40OD) nonlinear Schrédinger

equation with a & .7 -symmetric optical potential:
iuz+uxx+a|u|2u+yuxxxx+VpTu =0. (1.2)

Here 7 is a fourth-order diffraction coupling constant taken to be negative and Vpr is a

P T -symmetric external potential.

Aim of this thesis is to explore the effect of fourth order dispersion term 7u,., on the
soliton properties and their stabilities. Assuming the case of 40D cubic nonlinear
Schrodinger equation without a &2.7 -symmetric potential, as it is stated [4], this
equation represent the mathematical model of the evolution of the ultrashort optical
pulses in fibers. In [4], detailed explanations of the effects of the both second and
negative fourth order dispersion terms are given. Additionally, the properties of the
soliton solutions, Hamiltonian forms and stability analysis of considered case are
studied in [5] and [6]. Note that the sign of the parameter y has importance in existence

and stability sense and it will be discussed in Chapter 4.

Any measurement of a physical observable in our universe obviously yields a real
quantity. In quantum mechanics, observables correspond to eigenvalues of operators.
Hence, the reality requires all the eigenvalues of operators to be real. To guarantee
a real spectrum, it was postulated that all observables corresponded to eigenvalues of
Hermitian (i.e. self adjoint) operators. In fact, a Hermitian Hamiltonian ensures a real
energy spectrum. However, in the past decade there has seen considerable attention
[7-10] in a weaker version of Hermicity axiom which requires that the Hamiltonian
instead only space time reflection symmetry or &.7 -symmetry. Furthermore, they
showed in many cases a threshold value above which the spectrum becomes complex.
This threshold is the boundary between the &?.7 -symmetric and broken symmetry
phases and in literature, the transition is referred to as spontaneous &2.7 -symmetry
breaking. &2.7 -symmetric is defined by means parity operator P and the time operator
T whose actions are given by P : p — —p, £ — £,i — —i , where p is the momentum

operator, X is the position operator and i is the imaginary unit [11]. A Hamiltonian

2



H = p> 4+ V(x) is said to be &2.7-symmetric if it has the same eigenfunctions, as the
PT operator and satisfies the commutativity PTH = HPT, namely V(x) = V*(—x)
[12]. One speaks of broken &2.7-symmetry if the latter is satisfied but the same
eigenfunctions are not shared. 4.7 symmetric structures have been realized in optical
models governed by NLS type equations in which the propagation distance z replaces
time in quantum mechanics [8].

Assuming the case of 40D cubic nonlinear Schrodinger equation with a .9 -

symmetric potential, we will consider the following &.7 -symmetric potential
Vpr = V(x)+iW (x) (1.3)

where V(x) and W(x) are the real and imaginary components of the complex
P T -symmetric potential, respectively. Evidently, the real part of a 7.7 potential
must be a symmetric function of a position whereas the imaginary component should
be anti-symmetric. In Figure 1.1, we plotted the real and the imaginary parts of the

P 7 -symmetric potential that is derived in Chapter 4.
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Figure 1.1 : Real and imaginary parts of &?.7 -symmetric potential plotted on top of
each other.

In this thesis, we will use spectral renormalization scheme with which we can
compute localized solutions in nonlinear waveguides [13]. The main idea of this
method is to transform the considered equation into Fourier space and find out a
nonlinear integral equation coupled to an algebraic equation. The main advantages

and detailed explanation of the spectral renormalization method can be found in



[13]. Implementation procedure of this method to the nonlinear Schrodinger equation

explained in Chapter 2.

1.1 Purpose of Thesis

In this thesis, we aim to investigate the effect of the external potential on the soliton
solutions of the 40D cubic nonlinear Schrodinger equation. The cases of 40D
cubic nonlinear Schrodinger equation without a potential and with a special type of

P T -symmetric potential are compared to understand this effect.

1.2 Literature Review

Optical solitons have been the objects of extensive theoretical and experimental studies
in recent years because of their applications to telecommunication and ultrafast signal
routing systems [14]. They evolve from a nonlinear change in the refracive index of a
material induced by the light intensity distribution [15]. In the picosecond regime, the
main nonlinear equation governing the pulse evolution is the nonlinear Schrédinger

equation (NLS) [16].

The NLS equation represents the mathematical models of various physical problems.
The nonlinear evolution of short pulses in an optical fiber is usually denoted by the
nonlinear Schrodinger (NLS) equation [17]. The equation appears in the studies
of the propagation of plane-diffracted wave beams in the focusing regions of the
ionosphere [18], decay problem of the ps degenerate soliton and the effect of the
frequency downshift [19,20]. Additionally, wave propagation in nonlinear media [21],
surface waves on deep waters [22] and signal propagation in optical fibers [14,23-26]

are denoted by NLS equation [1].

Mainly, cubic nonlinear Schrédinger equation with fourth order dispersion term
considered in this study. NLS 40D equation represent the mathematical model of
the optical pulses in fibers [4]. There have been many studies to find out analytical and
numerical solutions of the considered equation. In the study of the [27], the method
of solitary wave ansatze is used to produce exact solution of the NLS 40D equation.
The method of sine — cosine and the method of tanh are analyzed mathematically and

applied to the considered 40D NLS equation to obtain exact solutions [28]. Also



in [29], the NLS equation including both third and fourth order dispersion terms

investigated and analytical results are figured out.

Spectral renormalization method is a numerical approach for constructing localized
solutions of a nonlinear system based on transforming to Fourier space, first introduced
by [30]. The method is used to produce numerical results of the various nonlinear
systems and partial differential equations. In order to find out localized solution of
KDV equation [31], dispersion-managed systems [32], discrete diffraction-managed
systems [33,34] and NLS equation [35] the spectral renormalization method is used.
(2+1)D and (1+1)D NLS equation with an external potential was solved using spectral
renormalization method and the produced results are shown in [36, 37] and [38],

respectively.

1.3 Hypothesis

The effect of the external potential and its type on the existence and stability of
fundamental solitons is crucial. The maximum amplitude and the change in solitons
are affected by the dispersion coefficient y. The selection of this parameter has great

importance in terms of existence and stability of the soliton solutions.






2. NUMERICAL METHODS

2.1 Spectral Renormalization Method

In order to compute localized solutions (i.e., soliton solutions) to nonlinear evolution
equations, various techniques have been used. Numerical solutions to Eq. (1.1) are the
sought by means of the Spectral renormalization method which is essentially a Fourier

iteration method. The idea of this method was proposed by Petviashvili in [30].

Later, this method was improved by Ablowitz and Musslimani [13] a generalized
numerical scheme for computing solitons in nonlinear wave guides (SR). The essence
of the method is to transform the governing equation Fourier space and find a nonlinear
nonlocal integral equation coupled to an algebraic equation. The coupling prevents the

numerical scheme from diverging.

The optical mode is then obtained from an iteration scheme, which converges rapidly.
This method can efficiently be applied to a large class of problems including higher

order nonlinear terms with different homogenetic.

In this section, numerical solution to the NLS 40D cubic equation with an external

potential given in Eq. (1.2) will be obtained by the spectral renormalization method.

The method is configured so that it can be applied mainly to the (1+1)D NLS 40D

cubic equation with &2.7 -symmetric potential as follows:

itz + e + Ot 21t + Vit + Vpru = 0. 2.1)



Using the ansatz u(x,z) = f(x)e’** where f(x) is a complex-valued function and u is

the propagation constant (or eigenvalue) leads one to the following expressions:
u; =ipLf et

Upy = [ xxel“Z

Uxxxx = fxxxxeilJZ (2.2)
u* = fe iz
Jul® = [ f]*.

Substituting the set of the terms in Eq. (2.2) into Eq. (2.1), the following nonlinear

equation for f is obtained
_ufeiﬂz ‘*"fxx‘emZ + (x‘ﬂzfeiﬂz + ’yfxxxxei“Z + VPTfei“Z =0. (2-3)

simplifying these equations we obtain

W f + fee+ fPf + Voo + Vor f = 0. (2.4)

After applying Fourier transformation to Eq. (2.4)

F{-uf}+ F{fot + FLalfP 1Y+ F Y foat + F{Vorf} = F{0}.  (25)

where .# denotes Fourier transformation and considering the properties of this

transformation, following equation is obtained
—pf + (—ik)2f+ aF {2} + V(i) F + FV +iW) f} =0 (2.6)

where 7 (f) = f and k; are Fourier variables. Solving Eq. (2.6) for the f yields

o aZ{|fPf}+ F{(V+iW)f}
[,Ll + kxz - ka4]

(2.7)

This equation could be indexed and utilized as an iteration to find f(x), but the scheme
does not converge. However, introducing a new field variable f(x) = Aw(x) with A €

R where A is a parameter to be determined. The system with the new variable can be

written as o
F Al"wA + (V+iW)A
o= CF (WP IR+ (V -+ W)} 08)
W+ k™ — Yy
simplifying this equation, we get
FWPAPwh+ F{(V +iW
o aZ (WAL} + FLV +iWw) 00

1+ ke* — vkt
8



Eq. (2.9) can be utilized in an iterative method in order to find out w. For this purpose,

W can be calculated using the following iteration approach:

|2 F {|wal*wn} + F LV +iW)wn}

Wpil = neN (2.10)
n+ L+ kx2 _ '}’kx4
with the initial condition taken as a Gaussian type function
2
wo=¢e (2.11)

where our convergence criterions are w1 — wy| < 10~'2 . Multiplying both sides of

Eq. (2.9) by (1 + k> — yk*) yields to
(14 k2 — YW = AP Z {|w/*wy + Z{(V +iW)w}. (2.12)
Taking all terms of Eq. (2.12) to the left side lead to following equation
(1 + ke — vl |7L| aj{|w| w4+ Z{(V+iW)w} =0. (2.13)
Multiplying Eq. (2.13) by the conjugate of w, i.e. by w* yields
(U + k2 — v H W) — AP Z {wPwhw* + Z{(V+iW)whd* =0.  (2.14)

Hence, integrating Eq. (2.14) leads to

/ (1 + ke — k) w2k — |z|/ @ T {|w2w i dk

(2.15)
+/ {(V+iW)whi*dk =0
or in a more compact form
= [ [TV W (2 = el
- (2.16)

+|/1|2/ o T {|wPwhidk = 0.

Eq. (2.16) is a second order polynomial of A in the form P(1) = aA? + b then A can

be calculated exactly by the imposing following formula:
b
ll;zzi\/j (2.17)
a

a= a/ F{|w)*whw*dk (2.18)

where

b—— / TIFV W)+ (ke — v wdk. (2.19)

9
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Figure 2.1 : Numerically obtained solitori on top of the real and imaginary parts of
P T -symmetric potential.

When the iteration convergence, the required soliton is f(x) = A (wx) = .7 ~1(W).

In Fig. 2.1, the soliton obtained by the method described above is plotted on top of the
real and the imaginary parts of the specific &7 -symmetric potential which is derived

in Chapter 4.

2.2 Nonlinear Stability Analysis

A soliton should preserve its shape, location and maximum amplitude during direct
simulations, in order to be considered as nonlinearity stable. In order to investigate the
nonlinear stability of solitons, we directly compute Eq. (1.2) over a long distance. For

this purpose, split-step Fourier method is employed to advance in z [39].

10



3. NLS 40D EQUATION WITHOUT AN EXTERNAL POTENTIAL

3.1 Exact and Numerical Solutions

3.1.1 Exact solution

Modern fiber manufacturing techniques provide experimentalists with fibers having
an extensive range of dispersive behaviour. When studying ultrashort pulses in such
fibers we realize that not only the second order dispersion is important, but also
its slope (third order dispersion, 30D) and curvature (fourth order dispersion, 40D)
become significant. Specifically, at the frequency of @y of minimum/maximum group
velocity dispersion, the third order dispersion (30D) vanishes and 40D becomes the
next higher-order dispersion. This situation was studied by Karlsson and Ho6k [4] for
positive fourth order dispersion and it was found that pulses in such media will always
loose power by radiation. However, the case of negative 40D dispersion leads one to
new solitary wave structures. In above mentioned work, the exact stationary solution

of 40D NLS with negative fourth order dispersion is also given.

In this section, we will use solve 40D NLS equation without an external potential
by the use of spectral renormalization method and investigate the soliton properties
in order to compare the analytical solution given in [4] with the numerical solution.
We also investigate the effect of the fourth order dispersion term by the use of the

numerical method (SR).

The cubic nonlinear Schrodinger equation with a fourth order dispersion term (40D)
is given as follows:

iuz+ﬁuxx+'}’uxxxx+|u|2u:0 3.1)

where x,z € R and u = u(x,z) is a complex-valued function. Eq. (3.1) was introduced

in [4] and stationary solution of this equation is given as

= 1ﬂsec o) ex iﬁ
u(x,z)-“loy h (W) p(zsyz> (3.2)

11



When we compared to the general NLS-soliton, this solution has no free parameter,
and it cannot be given a relative velocity. It should be noted that, this type of
“fixed parameter’ solutions have been found earlier [40, 41]. Additionally, the
particular solution Eq. (3.2) could very well belong to a class of solutions with an
amplitude-width relation similar to that of the NLS soliton [4]. These solutions should

have the same sec #%-shape as the pulse in Eq. (3.2).

Eq. (3.1) is also investigated in [42] and [43] in connection with the nonlinear fiber

optics and the theory of optical solitons in gyrotropic media.

3.2 Numerical Hlustrations

In this subsection we will numerically demonstrate the soliton solution of Eq. (3.1) for

various values of y (40D term’s coefficient) and the propagation constant L.

First we show the exact soliton solution and the numerically obtained soliton solution
of Eq. (3.1) in Fig. 3.1. As can be seen from this figure, our numerical algorithm

converges to the exact solution for the parameters y = —1, u = 0.16.

0.67

0.5¢

0.4r

0.31

0.27

0.1r

-20 -10 0 10 20
X

Figure 3.1 : Exact and numerical solutions of 40D NLS equation on top of each
other for y=—1,u =0.16

In order to investigate the effect of the fourth order dispersion and the eigenvalue on

the soliton properties, we plotted solitons for various values of y and u.

In Fig. 3.2, now we fixed the coefficient of the 40D dispersion as ¥ = —1 and then
increased the eigenvalue to u = 1. In this case, we observe a larger increment in

the maximum amplitude of the soliton comparing to ¥ = —1,u = 0.16 case, namely

12



max|f| = 1.33 and the soliton becomes more steep. One interesting observation about
this soliton is the difference in its tails. This phenomenon was also observed by
Karpman in [42] and he called these higher order solitons as "solitons with oscillating

tails".

1.4r

1.2

l,

0.8r
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0.4r

0.2F

0

-20 ~10 0 10 20
X
Figure 3.2 : Numerically obtained higher order mode for y= —1, u = 1.

In Fig. 3.3, we increased the eigenvalue to 4 = 2 and this figure reveals that, the tails

become more pronounced and the maximum amplitude increases to max|f| = 1.86.

2,

859528
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1.67

1.4r
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0
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Figure 3.3 : Numerically obtained higher order mode for y = —1, u = 2.

In order to observe the effect of the increasing eigenvalue i, in the next figures, we
decreased the effect of the 40D dispersion by setting Yy = —0.1 and gradually increased

the eigenvalue p to 4 = 0.16 and u = 2 respectively.
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In Fig. 3.4, we observe a small increment in the maximum amplitude of the soliton
comparing to larger 40D effect case shown in In Fig. 3.1 but the shape of the soliton

is more or less the same with that figure.
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0.2F
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Figure 3.4 : Numerically obtained higher order mode for y= —0.1, u = 0.16.
In Fig. 3.5, we observe an increment in the maximum amplitude of the soliton

comparing to larger 40D effect case shown in Fig. 3.3 and oscillating tails seem to

disappear.
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Figure 3.5 : Numerically obtained higher order mode for y = —0.1, u = 2.

3.3 Nonlinear Stability

In this section, we will numerically demonstrate how the shape and the maximum

amplitude of a higher order soliton effect its nonlinear stability properties. In order

14



to investigate this, obtained solitons are computed over a long distance and changes in
the shape, their maximum amplitudes and locations during the evolution are monitored.

We investigated the previously obtained solitons in the same order.

First we took the soliton solution shown in Fig. 3.1 and evolved it for z = 50. The
results are shown in Fig. 3.6. This figure reveals that, this soliton is nonlinearly stable

as it preserves its shape and maximum amplitude during the evolution.

(a) (b)
0.8
0.6
09 5.4
0.2
9 0 20 z 0 0
X
(d)
50
0.58
375 o5
. i
0.54
125 0.52
0 0.5
20 -10 0 10 20 0 20 40
X Z

Figure 3.6 : Nonlinear stability of a higher order soliton for y = —1,u = 0.16;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Fig. 3.7, we show a nonlinear unstable higher order soliton obtained for y= —1,u =
1. Itis seen that, around z = 36, the maximum amplitude starts to decrease dramatically

as a result of the deterioration in the shape of the soliton.

In Fig. 3.8, we show a nonlinear unstable higher order soliton obtained for y=—1,u =
2. It is seen from the figure that, around z = 40, the maximum amplitude starts to

decrease dramatically as a result of the deterioration in the shape of the soliton.
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X 4
Figure 3.7 : Nonlinear instability of a higher order soliton for y= —1,u = 1;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

0 10 20 “0 20 40
X z
Figure 3.8 : Nonlinear instability of a higher order soliton y = —1, u = 2;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.
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Figure 3.9 : Nonlinear stability of a higher order soliton for y = —0.1,u = 0.16;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.
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X Z

Figure 3.10 : Nonlinear stability of a higher order soliton for y = —0.1,u = 2; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.
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In Fig. 3.9, we investigated the case given in Fig. 3.4. It can be seen from the figure
that, this soliton is nonlinearly stable as well since it preserves its shape and maximum
amplitude during the evolution.

To observe the effect of the higher eigenvalue in this law-effect 40D case, now we
plotted the evolution of the soliton given in Fig. 3.5 and in Fig. 3.10 it is shown
that, even for a higher eigenvalue of u = 2, the stability properties of the soliton is
conserved.

As a result of the numerical observations we made in this section, we conclude that: (7)
The higher order solitons obtained for 40D NLS equation may have oscillating tails
and these solitons are found to be nonlinearly unstable (cases obtained for both large
40D effect and large eigenvalue u); (ii) The higher order solitons obtained for 40D
cubic NLS equation are found to be nonlinearly stable for the cases when the effect of
the 40D effect is either small or the eigenvalue is u is small (even if the 40D effect is

large).

18



4. NLS 40D EQUATION WITH AN EXTERNAL POTENTIAL

4.1 Exact and Numerical Solutions

4.1.1 Exact solution

Exact solutions are useful to understand the mechanism of the complicated nonlinear
physical phenomena which are related to wave propagation in a higher-order CNLS

equation with &7 -symmetric potential.
Consider the following (1+1)D 40D cubic NLS equation with a &7 -symmetric
potential:

iuZ+uxx+a|u]2u+}/uxxxx+VpTu:O. 4.1)

Here u = 0 is an trivial solution of Eq. (4.1). To get non-zero solutions, set u # 0.

Dividing Eq. (4.1) by u and by use of Eq. (1.3) yields

i 2 a4y Y W =0, (4.2)

To obtain non-zero stationary solitons, the following ansatz is used:
u(x,2) = f(x)e ) (4.3)

where u is a function of x and z to be determined, f(x) and g(x) are real-valued
functions different than zero and u is the propagation constant. Taking derivatives

of Eq. (4.3) with respect to z and x, leads to following equations,

u; = f(x) ipe Hets)) 4.4)
e = [ () + 20 (x)g' (x) +if (0)g" (x) — F(x) (& (x))*]e = F5) (4.5)
u? = e 80 p ) 4250 — (7)) “6)

toeee = [ (x) + 4if" (x)g (x) + 6if" (0)g" (x) + 4if' (x)g" (x) + i f (x)g"" (x)
—6f”(x) (g/(x))2 — 12f/(x)g'(x)g”(x) ~37(x) (g”(x))2 . 4f(x)g'(x)g’”(x) 4.7

—4if'(x)(g'(x))* = 6if (x)(g'(x))*8" (x) + F(x)(g' ())*].
19



Substituting Eq. (4.4)-Eq. (4.7) into Eq. (4.2) yields

Vi (x) Yk (x) &
o T 70

S3p(e" () — 127 ¢ (00" () — g (¥)" () + V()]

o
ril-arl S ) +ark By + 2L

< 7
LS00+~ 6 ()% )+

To obtain soliton solutions, the following ansatz is used

—(g'(x)? =677 (g'(x)* + ¥(g'(x))*

[—u+af(x)

4.8
), 9

f) ¢
+W(x)] =0.

8" (x) + 67— 8" (x)

+4y

f(x) = fosech?(x), g'(x) = gosech?(x) (4.9)

where fy and go are non-zero real constants and p € N. We need to evaluate the
derivatives of the functions f and g to construct simple form of Eq. (4.8). By using

Eq. (4.9) we obtain

f'(x) = —fptanh(x) 4.10)
f"(x) = fIp* — (p*+ p)sech®(x)] @.11)
"(x) = fl=p* + (p* + 3p* + 2p)sec h*(x)] tanh(x) (4.12)
"(x) = flp* — (2p* + 6p* +8p* +4p) sec h*(x) wis
+(p*+6p* +11p* +6p) sech* (x)] .
g'(x) = gosech?(x) (4.14)
g" (x) = gogsec h(x) tanh(x) (4.15)
g"” (x) = goqzsec he(x) — go(q2 +q)sec hat2 (x) (4.16)

g"(x) = —gog’sech?(x) tanh(x) + go(q°> + 3¢*> +2p)sec ¥ (x)tanh(x).  (4.17)
Substituting Eq. (4.10)-Eq. (4.17) into Eq. (4.8) we obtain
—u+ p* +yp* -+ sech® (x)[—p® — p—2yp* +6p° +8p” +4p]
+sech* (x)[y(p* +6p)] +sec kP (x) (yafo?) + sech*” (x)[vfo']
+sech™ (x)[—go” — 6780 p* — T¥g0°q" — 12780” pq] + sech™ (x)[ygo*]
+sech* 2 (x)[6Y80° P + 6Y80° P+ T¥80°q" + 4780 q + 12780 pg] +V (4.18)
+i[sech?(x) tanh (x) [—2pgo — qg0 — 4Yp> g0 — 6YP*q80 — P’ 80
+sech??(x) tanh(x)[4y(p* + 3p” +2p) g0 + 6Y(p” + p)ago +4Yp(¢> + 9)go

+}/(p3 +3p>+ 2p)go] + sec 34 (x) tanh(x) [4}/ng3 + 6ngo3] +W]=0.
20



If we partition Eq. (4.18) into real and imaginary parts, we obtain the following

expressions for the real and imaginary parts of the &2 .7 -symmetric potential as:

Real Part
The real part of the Eq. (4.18) can be written as,
(=t +p* +7p*) +sech?(x)[-p? — p— 1(2p* +6p° +8p” +4p)]
+sech*(x)[y(p* +6p°)] + sech™ (x) (afo?)
+sech®(x)[—go” — 680" p” — T¥80°¢” — 12720 pq] (4.19)
+sech™ (x)[yg0"] +sech® 2 (x) (670" p” + 6780°p
+7780°¢% +4Y20°q + 127807 pg] +V = 0.
The real part of the &2.7 -symmetric potential is obtained as

V (x) = Vo + Visech? (x) 4 Vasech® (x) 4 Vssech? (x) + Vysech? (x)

(4.20)
+Vssech* (x) + Vgsech?? ™ (x)
where
Vo = —p + p*+yp* (4.21)
_ 2 4 3 2

Vi=—p —p—y2p*+6p°+8p~+4p) (4.22)
Vo = y(p*+6p> +11p* +6p) (4.23)
V3 = ot fp? (4.24)
Vi = —g0” — 6v80°p* — TY20°¢* — 12780° Pq (4.25)
Vs = vgo* (4.26)
Ve = 6Y80°p* +6Y80° P + T¥80%q* +4v20>q + 12780% pq (4.27)

For the sake of simplicity, set 4 = p? + yp* to get rid of coefficient Vj. V(x) is indeed

an even function given in the following form,

V(—x) = Vysech?(—x) + Vasech*(—x) + Vasech?” (—x)
+Vysech??(—x) 4 Vssech*® (—x) + Vgsech?d+2(—x)
= Vysech?(x) + Vasech*(x) 4 V3sech?” (x) (4.28)
+Vysech?d(x) 4 Vssech® (x) 4- Vgsech?4+2 (x)

=V(x).
21



Now, V (x) can be simplified by equating the powers of sech(x). By assuming the case

of p =g =1, then Eq. (4.20) can be rewritten as,

V(x) = [24 20y — afo® +25yg0° + go*]sech?(x)
(4.29)
— (2474 35yg0% + ygo*)sech* (x)

In order to find out even function V (x), assuming y = —0.2 leads one to

V(x) = —(2+ otfp® +4g0%)sech? (x) + (0.2g0* + 7g0> +4.8)sech*(x).  (4.30)

where

Vi=—2—afy® —4g’ (4.31)
Vo =0.2g0"* +7g0> +4.8. (4.32)

Considering the case of fp =1, go=1 we get
V(x) = —(a + 6)sech?(x) + 12sech*(x). (4.33)

Imaginary Part

The complex part of the Eq. (4.18) can be written as
sech?(x) tanh(x) [~2pgo — 480 — 4P’ g0 — 6YP* 480 — 4YP4* 80 — Y4 0]
+sech? 2 (x) tanh (x) [47(p’ +3p” +2p)go + 6Y(p* + p)ago +41p(a* + q)go0 (4.34)
+y(p° +3¢” +2q)go0] + sech™ (x) tanh (x) [47pgo” + 67q80%] + W (x) = 0
Then the imaginary part of the &7.7 -symmetric potential is obtained as
W (x) = Wpsech? (x) tanh(x) + Wysech?"? (x) tanh(x) + Wasec % (x) tanh(x)  (4.35)
where
Wo = go[2p+q + Y(4p +6p’q +4pg* + )] (4.36)

W) = —ygo[4p® + 12p* + 8p + 6p°q+ 10pg + 4pg® + ¢° + 3¢° + 24] (4.37)
W, = —vg0> [4p + 64]. (4.38)

W(x) is indeed an odd function which can be expressed as follows

W (—x) = Wysech?(—x) tanh(—x) 4+ W;sech?"?(—x) tanh(—x)
+Wssech(—x) tanh(—x)

— Wosech? (x)(— tanh(x)) 4 Wisech? "2 (x)(— tanh(x)) (4.39)
+Wssech®?(x)(— tanh(x))
=—W(x).
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By assuming the case of p = g = 1, Eq. (4.34) can be rewritten as,
W (x) = 3g0(57+ 1) sech(x) tanh(x) — 7g0(10g0> + 50) sech’(x) tanh(x)  (4.40)
by taking y = —0.2 we get
W (x) = 2g0(go> + 5)sech? (x) tanh(x). (4.41)

where

W, = 2g0(g0”> +5). (4.42)

Taking go = 1 into Eq. (4.41) leads one to
W (x) = 12sech®(x) tanh(x). (4.43)

Note that in case of p = g = 1, by considering Eq. (4.29) and Eq. (4.40) the analytical

solution of the problem can be stated as
M(X,Z) — fO Sech(x)ei[/.tergo arctan h(x) sinh(x)]. (4.44)

In conclusion, the Z.7-symmetric potential in Eq. (1.2) with the real and the

imaginary parts in Eq. (4.30) and Eq. (4.41) can be given as
Vpr = [Visech?(x) 4 Vasech* (x)] + i[W,sech? (x) tanh(x)]. (4.45)

Eq. (4.45) can be seen as an extension of the so-called complexified Scarf II potential

[Vosech? (x) 4 iWpsech(x) tanh(x)] for Kerr media with cubic nonlinearity.

4.1.2 Numerical illustrations

In this section, we demonstrate the produced results under the dependence of u, v, fo
and go respectively. As it will be seen Fig. 4.1 and Fig. 4.2, the selection of f affects
the maximum amplitude of the soliton. We plot the real and imaginary parts of the
functions f and V in Fig. 4.1 with the parameters fo = 1.5, go =1, Yy = —0.2 and
u = 1. In Fig. 4.2 and Fig. 4.3, we demonstrate the effect of the fy on the maximum
amplitude of the soliton with the same parameters as in the Fig. 4.1, for 0 < fy < 1.55.

As it is seen in Fig. 4.2 the relation between the considered quantities is almost linear.

23



1
12 Reslt) Max= 1.4909 | === mag(n
0.5
i
0.5 o
0 05
05 A
20 -10 0 10 20 20 -10 0 10 20
4 | m—Real(V) Max= 3.9485 4 | m—mag (V)
2
2
0
o 2
5 4
20 10 0 10 20 20 10 0 10 20

Figure 4.1 : Real and imaginary part of the soliton and potential for fy = 1.5, gg = 1,
u=1andy=-0.2.
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Figure 4.2 : Numerically obtained solitons for various values of fy for g =1,
Y=—-0.2and go = 1.
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Figure 4.3 : Numerically obtained solitons for various values of fy for u =1,
Y= —0.2and go = 1.
In Fig. 4.4 and Fig. 4.5, we demonstrate the effect of the 40D constant y to the shape

and to the maximum amplitude of the &7.7 -symmetric potential.
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Figure 4.4 : Numerically obtained solitons for various values of yfor u =1, fo =1
and go = 1.
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Figure 4.5 : Numerically obtained solitons for various values of y for u =1, fo =1
and go = 1.

In Fig. 4.6, the effect of the eigenvalue g on the numerical solution f and

& 7 -symmetric potential are figured out.
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Figure 4.6 : (a) Real and imaginary parts of numerical solution f with u = 3, (b) real
and imaginary parts of numerical solution f with 4 =4, (c) |f| foru =3
and p = 4, (d) absolute values of &.7 -symmetric potential for u = 3
and u = 4, by considering Y= —0.2, fo =1 and go = 1.
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4.2 Nonlinear Stability

In order to be nonlinearly stable, solitons must maintain their shape, position and
maximum amplitude during direct simulations. To understand their nonlinear stability,
solitons are evolved over a long distance. To do this, split-step Fourier method is
implemented to advance in z. In Fig. 4.7 we plotted that numerically produced
soliton of the (1+1)D 40D NLS equation with a &7 -symmetric potential, nonlinear
evolution of the soliton, the view from top to |u(x, z)| and maximum values of |u| along
with the z, respectively. It can be easily seen that the soliton maintain its shape but the
maximum amplitude decays with variable z. We used the parameters 4 =1, y = —0.2,
fo=1and go =1 to plot Fig. 4.7. In Fig. 4.7 the maximum amplitude of soliton decays
up to |umax| = 0.75. The dispersion coefficient y is an another important parameter
for the stability of the obtained results. It is obvious that the decaying constant and
amplitude of the |u,,,| depends strongly on dispersion coefficient y. In Fig. 4.8 we
demonstrate the case of ¥ = 0 and we assumed that the other parameters are as in the
Fig. 4.7. We also deal with the effect of potential depth on the maximum amplitude.
As it is seen in Fig. 4.9 the maximum amplitude of the soliton less than the case of
Fig. 4.7. The results in Fig. 4.9 obtained by considering 4 =1, y = —0.2, fo = 0.5
and go = 1. In Fig. 4.10, we demonstrate the effects of positive dispersion coefficient
Y =0.15. As it is stated in Fig. 4.10-d the change in the maximum amplitude is less
than or equal to 102, then one can conclude that the soliton more conservative than
the case of Fig. 4.9 in maximum amplitude sense.

As a result of the numerical observations we made in this section, we conclude that:
(i) increasing dispersion coefficient term 7y decreases the maximum amplitude of the
& T -symmetric potential

(i) If eigenvalue u decreases or increases, then the maximum amplitude of the soliton
is not affected but the shape of the real and imaginary parts of the solitons are changed;

(7if) The maximum amplitude of the solitons are direct proportional with the parameter

fo-
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Figure 4.7 : Nonlinear instability of a higher order soliton for y=—-02,u =1 fy =1
and go = 1 with a &.7 -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after
the evolution (green solid), (b) Nonlinear evolution of the soliton, (¢c)The
view from top and (d) Maximum amplitude as a function of the
propagation distance z.
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Figure 4.8 : Nonlinear instability of a higher order soliton for y=0,u =1, fo =1
and go = 1 with a &7 -symmetric potential; (a) Numerically produced
higher order soliton (blue dashes) on top of the solution after the
evolution (green solid), (b) Nonlinear evolution of the soliton, (c) The
view from top and
(d) Maximum amplitude as a function of the propagation distance z.
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Figure 4.9 : Nonlinear instability of a higher order soliton for y = —0.2,u =1,
fo=0.5and gop = 1 with a &.7 -symmetric potential; (a) Numerically
produced higher order soliton (blue dashes) on top of the solution after

the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)
The view from top and
(d) Maximum amplitude as a function of the propagation distance z.
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Figure 4.10 : Nonlinear instability of a higher order soliton for y=0.15,u =1
fo=0.5and go = 1 with a &7 -symmetric potential; (a) Numerically
produced higher order nonlinear soliton (blue dashes) on top of the
solution after the evolution (green solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.
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S. CONCLUSION

The purpose of this study is to investigate the existence and nonlinear stability of the
(1+1)D 40D cubic NLS equation with and without an external potential. Firstly, the
numerical methods, which are spectral renormalization method and split-step Fourier
method, are introduced to find out numerical solutions of the considered equations
and to analyze stability of the fundamental solitons, respectively. The considered
numerical approach implemented to the (1+1)D 40D cubic NLS equations with and
without &7 -symmetric potential. After that, we numerically illustrate the soliton
solution of (1+1)D 40D cubic NLS equation without an external potential for various
values of ¥ (40D term’s coefficient) and the propagation constant . The stability
of the soliton solutions is analyzed by considering the effects of the parameters on
the stability. Produced stable and unstable cases are depicted for various values of the
dispersion coefficient v and the eigenvalue (. As a result of the numerical observations,
we conclude that:

(7) The higher order solitons obtained for 40D NLS equation may have oscillating tails
and these solitons are found to be nonlinearly unstable (cases obtained for both large
40D effect and large eigenvalue 1);

(77) The higher order solitons obtained for 40D cubic NLS equation are found to be
nonlinearly stable for the cases when the effect of the 40D effect is either small or the
eigenvalue is t is small (even if the 40D effect is large).

Finally, the obtained numerical results are compared with exact solutions for the case
with a .7 -symmetric potential. Numerical illustrations of the obtained solitons by
SR method and stability of the produced results are shown for various values of the
problem parameters. By considering various values solitons parameters the maximum
amplitudes of the obtained solitons are explored and illustrated. In each case, the
shape of the produced solitons, the change in maximum amplitude of the solitons
are investigated and the results depicted. The effect of fj, the eigenvalue u and the
dispersion coefficient term Y on the maximum amplitude of the solitons are depicted

and following concluding remarks can be expressed:
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(i) increasing dispersion coefficient term 7y decreases the maximum amplitude of the
& T -symmetric potential

(if) increasing fj increases the maximum amplitude of the soliton

(iii) the change in the eigenvalue u does not effect the maximum amplitude but effects
the shape of the real and imaginary parts of the solitons.

As it is seen in illustrations, numerical results are satisfactory in terms of accuracy
and stability. That means considered numerical method is suitable for the solution
of (1+1)D 40D cubic NLS equation to obtain physically acceptable solutions. In
future, by considering different potential parameters Vi, V> and W, one may try to
find stable soliton solutions and inclusion of third order dispersion to the problem can

be discussed.
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APPENDIX A.1
Fourier Transform

For a continuous, smooth and absolutely integrable function f(x) , the integral
transform

F( ¢! kx gy (A.1)

xm/f

is called the Fourier transform of f (x) and conversely, the transform

F( e~ i(ke)x (A.2)

xm/f

is called the inverse Fourier transform of F(ky).

The Fourier transform of f is denoted by .% (f) = £ , the inverse Fourier transform of
f is denoted by .Z ! (f) and clearly .Z ! (f) = .F = (Z (f)).

Integral transform methods are very useful for solving partial differential equations
because of their properties such as linearity, shifting, scaling, etc.

Suppose that f(x) tends to zero as x tends to infinity. Then,

F (1) == [0t as = —— e it [ ek
=ik, (/) (A3)

This result can be extended to obtain the differentiation property of the Fourier
transform:

Z(f(x)) = (—ike)"(f(x)) = (—ike)"f,  n€N (A.4)
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