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PSEUDOSYMMETRIC LOCALLY CONFORMAL
KAEHLER MANIFOLDS

SUMMARY

Many particular classes of almost Hermitian manifolds have been intensively studied.
Among them, almost Hermitian manifolds whose metric is globally conformal to an
almost Kaehler metric have been also encountered. But, obviously, these manifolds
have the same topological properties like the almost Kaehler manifolds. Therefore, it
is interesting to study almost Hermitian manifolds which are only locally conformal
to an almost Kaehler manifold. The notion of a locally conformal Kaehler manifold
(I.c.K-manifold) in a Hermitian manifold has been introduced by I. Vaisman in 1976.

After that T. Kashiwada has determined a necessary and sufficient condition that a
Hermitian manifold is an l.c.K-manifold by using the tensor equation and introduced
the curvature tensor of an l.c.K-manifold with a constant holomorphic sectional
curvature (an l.c.K-space form). Furthermore, T. Kashiwada and K. Matsumoto gave
some properties about such a manifold. Then we can see a lot of papers about these
manifolds and its submanifolds.

Moreover, M. Prvanovi¢ found a tensor of Kaehler type for an almost Hermitian
manifold and proved that this tensor reduces to the Riemannian curvature tensor R
in an almost Kaehler manifold. In addition, the author determined the holomorphic
curvature tensor of an l.c.K-manifold and introduced Riemannian curvature tensor in
an l.c.K-manifold with a constant holomorphic sectional curvature such that the tensor
P is not hybrid.

A Hermitian manifold M with structure M(J,g) is called an l.c.K-manifold if each
point p € M has an open neighborhood U with a differentiable function p : U — R
such that g* = e~ %P g |y is a Kaehlerian metric on U.

An 2n-dimensional 1.c.K-manifold is a Hermitian manifold admitting a global closed
1-form o (Lee form) whose structure (J, g) satisfies

Vidij = —Bigkj+ Bjgki — 0tk + 0tjJi,
where V denotes the covariant differentiation with respect to the Hermitian metric g.

An lcK-manifold M(J,g, o) is called an l.c.K-space form if it has a constant
holomorphic sectional curvature.

A semi-Riemannian manifold (M,g) satisfying the condition VR = 0 is said to be
locally symmetric. These manifolds are first studied and classified by E. Cartan in the
late twenties.

A semi-Riemannian manifold (M,g) satisfying the condition R-R = 0 is said to
be semisymmetric. E. Cartan studied semi-symmetric manifolds which is a natural
generalization of symmetric spaces. R. Deszcz introduced the pseudo-symmetric
manifolds in semi-Riemannian manifolds.
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A semi-Riemannian manifold (M,g) is said to be pseudosymmetric in the sense of
Deszcz if at every point of M the condition

R-R=LgQ(g,R)

holds on the set g = {xe M |R — n(n—K—l)G # 0 at x}, where Lg is some function on
Ug.

A semi-Riemannian manifold (M, g), n > 3, satisfying the condition

R-S=Ls0(g.S)

on the set % = {x € M | S — Fg # 0 at x} are called Ricci-pseudosymmetric. Every
pseudosymmetric manifold is Ricci-pseudosymmetric. The converse statement is
not true. The class of Ricci-pseudosymmetric manifolds is an extension of the
class of Ricci-semisymmetric (R -S = 0) manifolds as well as of the class of
pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric manifolds are
Ricci-pseudosymmetric. There exist various examples of Ricci-pseudosymmetric
manifolds which are not pseudosymmetric.

In this thesis, some properties of 1.c.K-manifolds, 1.c.K-space forms and submanifolds
of an l.c.K-space form are presented. Furthermore, we state some results on
pseudosymmetric and Ricci-pseudosymmetric l.c.K-space forms.  Walker type
identities on l.c.K-space forms and Roter type l.c.K-space forms are studied. Finally
the Bochner curvature tensor on l.c.K-space forms are studied.

In the first chapter, it is mentioned about a review of literature. After that, results
obtained in this thesis are summarized.

In the second chapter, we give the fundamental concepts which we will use the next
chapters.

In the third chapter, we give a generalization about the results of an l.c.K-space form
such that the tensor field P is not hybrid. Moreover, the Sato’s form of the holomorphic
curvature tensor in almost Hermitian manifolds and l.c.K-manifolds are presented.
This chapter contains four sections.

In the first section, we gave the well-known results on l.c.K-manifolds. It is given that
the tensor field P is hybrid if and only if the Ricci tensor is hybrid. Then we state
that there exists the algebraic curvature tensor satisfying the condition of Kaehler type
manifold for any almost Hermitian manifold. This tensor is said to be the holomorphic
curvature tensor.

Furthermore, we state the holomorphic curvature tensor in an l.c.K-manifold and
the Riemannian curvature tensor in an l.c.K-manifold with a constant holomorphic
sectional curvature and the tensor field P is not hybrid.

In the second section, some results on l.c.K-space forms are presented. It is proved
that for a 2n-dimensional 1.c.K-space form M(c), if the tensor field P is proportional to
g and tr P is constant, then M(c) is Einstein.

In the third section, we gave the basic definitions of submanifolds of I.c.K-manifolds.
The invariant submanifolds of l.c.K-space forms are studied. In the last section, we
give the Sato’s form of the holomorphic curvature tensor in an almost Hermitian
manifold and we determine the Sato’s form of the holomorphic curvature tensor in
an l.c.K-manifold.
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In the fourth chapter, we state some results on pseudosymmetric and
Ricci-pseudosymmetric l.c.K-space forms. This chapter contains two sections.

In the first section, we introduced some results of Pseudosymmetric 1.c.K-space forms.
Moreover, we investigate generalized Einstein metric conditions in an l.c.K-space
form. It is proved that for 4-dimensional 1.c.K-space forms such that the tensor field P
is hybrid and #r P is constant,

R-C—C-R= [}1 (2 +1r P)] O(g,R)

and for m-dimensional (m > 4) with the tensor P is proportional to g in l.c.K-space
forms

6(m—2)tr P

R-C—C-R = m-+2)c+ 0(g,R).

mk

In addition, we get the results under the assumption R-R— Q(S,R) = L, Q(g,C).

In the second section, under the assumption that R-R— Q(S,R) =L, Q(g,C) andR-C =
L,Q(S,C) are satisfied, we obtain the results of Ricci-pseudosymmetric 1.c.K-space
forms.

In the fifth chapter, Walker type identities on l.c.K-space forms and Roter type
l.c.K-space forms are investigated. Moreover Bochner curvature tensor are studied.
This chapter contains three sections.

In the first section, we present results on l.c.K-space forms satisfying curvature
identities called Walker type identities. It is proved that a 4-dimensional 1.c.K-space
form such that the tensor field P is hybrid and ¢r P is constant satisfies Walker type
identities. For m-dimensional (m > 4) 1.c.K-space forms, under the assumption of P is
proportional to g, the Walker type identities hold.

In the second section, we introduced the Roter type 1.c.K-space forms. If P is hybrid, it
is proved R-R = Q(S,R) +L,Q(g,C) in m-dimensional (m > 4) Roter type 1.c.K-space
forms.

In the last section, firstly, the Bochner curvature tensor in an l.c.K-manifold such that
the tensor field P is hybrid is given. Then we present a generalization of the Bochner
curvature tensor in an l.c.K-manifold with the tensor field P is not hybrid. Moreover,
we state the Bochner curvature tensor in an l.c.K-space form. Furthermore, Walker
type identities for Bochner curvature tensor are studied. Next if the condition BB =
LpQ(g,B) is fulfilled, we proved that pseudosymmetric 1.c.K-space forms (m > 4) are
Einstein.

Xvil
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PSEUDO SIMETRIK LOKAL OLARAK KONFORM
KAEHLER MANIFOLDLARI

OZET

Hemen hemen Hermitian manifoldlarinin belirli siniflar1 iizerine yogun c¢alismalar
yapilmistir. Bu, hemen hemen Hermitian manifoldlarin arasinda metrigi hemen hemen
Kaehler metrige global olarak konform olanlar daha ¢ok ¢alisilmigtir. Fakat aciktir ki
bu manifoldlar, Kaehler manifoldlarla ayn1 topolojik 6zelliklere sahiptirler. Bundan
dolay1 bir hemen hemen Kaehler manifolduna lokal olarak konform olan hemen hemen
Hermitian manifoldlar hakkinda ¢alismak ilginctir. Bir Hermitian manifoldda bir lokal
olarak konform Kaehler manifold (I.c.K-manifold) kavrami1 1976 yilinda 1. Vaisman
tarafindan ortaya atilmistir.

Daha sonra T. Kashiwada tensér denklemini kullanarak bir Hermitian manifoldun
l.c.K-manifoldu olmasi i¢in gerek ve yeter kosulu ispat etmis ve holomorfik kesitsel
egriligi sabit olan bir l.c.K-manifoldunun (l.c.K-uzay formu) egrilik tensoriinii
tanimlamistir.  Ayrica T. Kashiwada ve K. Matsumoto bdyle bir manifoldun bazi
ozelliklerini vermiglerdir. Dolayisiyla, 1.c.K-manifoldlar ve l.c.K-manifoldlarin alt
manifoldlari ile ilgili bir cok yayin bulunmaktadir.

Ilave olarak, M. Prvanovi¢ bir hemen hemen Hermitian manifoldu icin Kaehler tipe
sahip olan bir tensor tanimlamis ve bir hemen hemen Kaehler manifoldunda bu
tensoriin Riemann egrilik tensoriine indirgendigini ispatlamistir. Ayrica, bir l.c.K-ma-
nifoldunda holomorfik egrilik tensoriinii vermis ve P tensorii hibrid olmayacak sekilde
bir sabit holomorfik kesitsel egrilikli 1.c.K-manifoldunda Riemann egrilik tensoriinii
tantmlamisgtir.

Eger bir Hermitian manifoldunun her p € M noktasimin, g* = e~2g |y metrigi, U
kiimesinde bir Kaehler metrik olacak sekilde tiirevlenebilir bir p : U — R fonksiyona
sahip olan agik U komsulugu mevcut ise M(J,g) yapili Hermitian manifolduna bir
l.c.K-manifoldu denir.

2n-boyutlu bir l.c.K-manifold, kompleks yapisi J nin

Vidij = —Bigkj + Bjgki — Ctiij + 0jJii
esitligini saglayan bir Hermitian manifolddur. Burada V, Hermitian metrik g "ye gore
kovaryant tiirevdir.

Eger bir 1.c.K-manifold M(J, g, o), bir sabit holomorfik kesitsel egrilige sahip ise M
ye l.c.K-uzay formu denir.

VR = 0 kosulunu saglayan bir (M, g) yar1 Riemann manifolduna lokal olarak simetrik
denir. Bu manifoldlar ilk kez 1920 li yillarda E. Cartan tarafindan calisgilmis ve
siiflandirilmagtir.
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R -R = 0 kosulunu saglayan bir yar1 Riemann manifolduna yar1 simetrik denir.
Simetrik uzaylarm bir dogal genellestirilmisi olan yar1 Riemann manifoldlar, E. Cartan
tarafindan calisilmistir.

Yar1 Rieman manifoldlarda pseudo simetrik manifoldlar R. Deszcz tarafindan ortaya
atilmagtir.

M’nin her noktasinda

R-R=LgrQ(g,R)
kosulu % = {x e M | R — n(n—’il)G # 0 ar x} kiimesinde gecerli ise bir (M, g) yar
Riemann manifolduna Deszcz anlaminda pseudo simetrik denir. Burada Lg, % ’da
bir fonksiyondur.

Us ={xeM|S—Tg#0at x} kiimesinde

kosulunu saglayan bir yar1 Riemann manifolduna, n > 3, Ricci-pseudo simetrik denir.
Her pseudd simetrik manifold bir Ricci-pseud6 simetriktir. Ancak bunun tersi dogru
degildir. Ricci-pseudo simetrik manifoldlar, pseudo simetrik manifold sinif1 gibi Ricci
yar1 simetrik (R-S = 0) manifold simifinin genisletilmigidir. Her Ricci yari simetrik
manifoldlar Ricci-pseudo simetriktir. Pseudo simetrik olmayan, Ricci-pseudd simetrik
manifoldlarla ilgili bir ¢cok ornek bulunmaktadir.

Bu tez calismasinda, l.c.K-manifoldlarinin, l.c.K-uzay formlarinin ve l.c.K-uzay
formlarinin alt manifoldlarinin bazi 6zellikleri sunulmugtur. Ayrica pseudd simetrik
ve Ricci-pseudd simetrik l.c.K-uzay formlarla ilgili sonuglar elde edilmistir. Buna
ilaveten, 1.c.K-uzay formlarda Walker tip 6zdeslikler ve Roter tip 1.c.K-uzay formlari
calisilmistir. Son olarak 1.c.K-uzay formlarda Bochner egrilik tensorii incelenmigtir.

Birinci boliimde, literatiir arastirmasina yer verilmistir. Ayrica tez ¢alismasinda elde
edilen sonuclar 6zetlenmistir.

Ikinci boliimde, tez calismasinda kullanilan bazi temel kavramlar verilmistir.

Uciincii boliimde ilk olarak, P tensorii hibrid olmayacak sekilde, 1.c.K-uzay formlarla
ilgili genellestirilmis bazi sonuglar verilmigtir.  Ayrica hemen hemen Hermitian
manifoldlarda ve l.c.K-manifoldlarda holomorfik egrilik tensoriiniin Sato formu
sunulmugtur. Bu boliim dort kissmdan meydana gelmigtir.

Ik kisimda, 1.c.K-manifoldlarda bilinen sonuglara yer verilmistir. P tensoriiniin hibrid
olmasi icin gerek ve yeter kosulun Ricci tensoriiniin hibrid olmasi gerektigi verilmistir.
Ayrica, bir hemen hemen Hermitian manifold i¢in Kaehler tip 6zelligini saglayan bir
egrilik tensoriiniin varlig1 ifade edilmistir. Bu tensor holomorfik egrilik tensorii olarak
adlandirilir.

Buna ilaveten, P tensorii hibrid olmamak {izere holomorfik egrilik tensorii ve sabit
holomorfik kesitsel egrilikli bir l.c.K-manifoldda Riemann egrilik tensorii sunulmustur.

Ikinci kisimda, l.c.K-uzay formlarla ilgili sonuclar verilmistir. Eger P tensorii g
metrigiyle orantili ve tr P sabit ise 2n-boyutlu l.c.K-uzay formunun Einstein oldugu
ispatlanmistir.

Ugiincii kistmda, l.c.K-uzay formlarimin alt manifoldlart ile ilgili temel tamimlar
verilmigtir. L.c.K-uzay formlarinin invaryant alt manifoldlari ¢aligilmigtir.  Son
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kisimda ise, bir hemen hemen Hermitian manifoldunun holomorfik egrilik tensoriiniin
Sato formu verilmis ve ayrica bir l.c.K-manifoldda holomorfik egrilik tensoriiniin Sato
formu elde edilmistir.

Dordiincii boliimde, pseudo simetrik ve Ricci-pseudo simetrik 1.c.K-uzay formlarla
ilgili sonuclar ifade edilmistir. Bu boliim iki kistmdan meydana gelmistir.

Ik kistmda, pseud simetrik 1.c.K-uzay formlarda sonuglar elde edilmis tir. Ayrica, bir
l.c.K-uzay formda genellestirilmis Einstein metrik kosullar1 incelenmistir. P tensorii
hibrid ve ¢r P sabit olmak {izere, 4-boyutlu 1.c.K-uzay formlarda

R-C—C-R= [i (2c+1tr P)] Q(g,R)

ve P tensorii g metrigiyle orantili olmak tizere, m-boyutlu (m > 4) 1.c.K-uzay formlarda

1 —2)trP
R-C—C-R = —[(m+2)c+u

Xom—1) 0(g,R)

denklemleri ispatlanmistir. Ayrica R-R — Q(S,R) = L1 Q(g,C) kosulu altinda bazi
sonuglar bulunmustur.

Ikinci kistmda ise, R- R — Q(S,R) = L1Q(g,C) ve R-C = L,Q(S,C) kosullari altinda
Ricci-pseudo simetrik l.c.K-uzay formlarda sonuglar elde edilmistir.

Besinci boliimde, 1.c.K-uzay formlarda Walker tip 6zdeslikler ve Roter tip l.c.K-uzay
formlar1 incelenmistir. Ayrica Bochner egrilik tensorii iizerinde ¢alisilmigtir. Bu boliim
ic kisitmdan meydana gelmistir.

Birinci kissmda Walker tip 6zdeglikler olarak adlandirilan egrilik 6zdesliklerini
saglayan bir l.c.K-uzay formuyla ilgili sonuglar sunulmustur. P tensorii hibrid ve tr P
sabit olmak iizere 4-boyutlu bir 1.c.K-uzay formunun Walker tip 6zdeslikleri sagladigi
ispatlanmigtir. Ayrica, P tensorii g metrigiyle orantili olmasi sart1 altinda, m-boyutlu
(m > 4) l.c.K-uzay formlarinin Walker tip 6zdeslikleri sagladid1 gosterilmistir.

Ikinci kisimda, Roter tip 1.c.K-uzay formlar1 hakkinda calisilmistir. Eger P tensorii
hibrid ise m-boyutlu (m > 4) Roter tip l.c.K-uzay formlarda R-R = Q(S,R) +
L10(g,C) oldugu ispatlanmustir.

Son kisimda ise, P tensorii hibrid olacak sekilde bir l.c.K-manifoldda Bochner
egrilik tensorii verilmistir. Ayrica P tensoriiniin hibrid olmamasi durumunda, bir
l.c.K-manifoldda Bochner egrilik tensoriiniin genellestirilmisi ispatlanmistir. Daha
sonra, bir l.c.K-uzay formunda Bochner egrilik tensorii verilmistir. Ilave olarak,
Bochner egrilik tensorii icin Walker tip 6zdeslikler caligilmistir. Son olarak B- B =
LpQ(g,B) sart1 altinda pseudo simetrik 1.c.K-uzay formlarinin (m > 4) Einstein oldgu
ispatlanmustir.
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1. INTRODUCTION

1.1 Purpose of Thesis

Let M be a real 2n-dimensional Hermitian manifold with structure (J, g), where J is
the almost complex structure and g is the Hermitian metric. The manifold M is called
a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has an

open neighborhood U with a positive differentiable function p : U — R such that
g =ePgly

is a Kaehlerian metric on U. Especially, if we can take U = M, then the manifold M is

said to be globally conformal Kaehler [1].
The following is essential in 1.c.K-manifolds [2].

An 2n-dimensional 1.c.K-manifold is a Hermitian manifold admitting a global closed

1-form o (Lee form) whose structure (J, g) satisfies
Vidij = —Bigkj + Bjgki — %iJij + Qi

where B; = a’J,; and V denotes the covariant differentiation with respect to the

Hermitian metric g.

In an l.c.K-manifold,we have

Rukrs T3 ;= Rugji+ Peignj — Prj&ni + Phj8ki — Phigkj
+ PurdiInj — Pird 3 Ini + Purd i ki — Purdi Jij-

where

2
o
Pij=—Vioj — 040+ %&j-

We note that P; = Pj; and ||at||*> = a0t

A 2-plane 7 in T,M, p € M, is said to be holomorphic if J&T = 7. The manifold M has
constant holomorphic sectional curvature if the sectional curvature relative to 7 does
not depend on the holomorphic 2-plane 7 in 7,M.

1



An l.c.K-manifold M(J,g,a) is called an Lc.K-space form if it has a constant
holomorphic sectional curvature. Let M(c) be an l.c.K-space form with constant
holomorphic sectional curvature c, then the Riemannian curvature tensor R with

respect to g can be expressed in the form [2]

C
Rijne = Z(gikgjh — 8in& jkc +Jid jn — Jind jk — 2Ji k)
3
+ Z(g Pjn+ & inPix — &inPjk — & jiPin)

1 - ~
— Z(Pik-]jh“‘P ik — Pund ik — Pidin — 2Ps i — 2P,

where the tensor field P is hybrid, i.e. P,-ri’. +PjJ; =0 and 13,, = —P,-ri’. .

A semi-Riemannian manifold is said to be locally symmetric if the condition VR =0 is
satisfied on that manifold. These manifolds are first studied and classified by E. Cartan
in the late twenties. A semi-Riemannian manifold is said to be semi-symmetric if the

condition R - R = 0 is satisfied on that manifold.

A semi-Riemannian manifold is said to be pseudosymmetric if at every point of M the

following condition is satisfied:

The tensor R- R and Q(g, R) are linearly dependent. This condition is equivalent to
the relation R - R = LrQ(g,R) where Lg is a function on the set Zz = {x e M | R —

(n 1 G # 0 at x}. Pseudosymmetric manifolds are a generalization of semisymmetric
manifolds.

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric if at every

point of M the condition

holds on the set % = {x € M | S — £¢ # Oarx}, where Lg is some function
on %s [3]. Every pseudosymmetric manifold is Ricci-pseudosymmetric. ~The
converse statement is not true. The class of Ricci-pseudosymmetric manifolds is an
extension of the class of Ricci-semisymmetric (R-S = 0) manifolds as well as of
the class of pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric is

Ricci-pseudosymmetric.



A semi-Riemannian manifold (M,g) is said to be Weyl-pseudosymmetric if at every

point of M the condition

holds on the set % = {x € M | C # 0 at x}, where L¢ is some function on %¢. Every
pseudosymmetric manifold is Weyl-pseudosymmetric. The converse statement not

true. Every Weyl-semisymmetric manifold (R - C = 0) is Weyl-pseudosymmetric.
This thesis is divided into 6 chapters:
Chapter 2 gives the fundamental concepts which we will use the next chapters.

In chapter 3, we gave the well-known results on l.c.K-manifolds. It is given that the
tensor field P is hybrid if and only if the Ricci tensor is hybrid. Then we state that there
exists the algebraic curvature tensor satisfying the condition of Kaehler type manifold
for any almost Hermitian manifold. This tensor is said to be the holomorphic curvature
tensor. Furthermore, we state the holomorphic curvature tensor in an l.c.K-manifold
and the Riemannian curvature tensor in an l.c.K-manifold with a constant holomorphic
sectional curvature and the tensor field P is not hybrid. It is proved that for a
2n-dimensional l.c.K-space form M(c), if the tensor field P is proportional to g and
tr P is constant, then M(c) is Einstein. Moreover we gave the basic definitions of
submanifolds of 1.c.K-manifolds. The invariant submanifolds of 1.c.K-space forms are
studied. We give The Sato’s form of the holomorphic curvature tensor in an almost
Hermitian manifold and we determine the Sato’s form of the holomorphic curvature

tensor in an l.c.K-manifold.

In chapter 4, we introduced some results of Pseudosymmetric l.c.K-space forms.
Moreover, we investigate generalized Einstein metric conditions in an l.c.K-space
form. Furthermore, under the assumption that R-R— Q(S,R) = L1Q(g,C) and R-C =
L,Q(S,C) are satisfied, we obtain the results of Ricci-pseudosymmetric 1.c.K-space

forms.

In chapter 5, we present results on l.c.K-space forms satisfying curvature identities
called Walker type identities. It is proved that a 4-dimensional l.c.K-space form such
that the tensor field P is hybrid and ¢r P is constant satisfies Walker type identities. For
m-dimensional (m > 4) l.c.K-space forms, under the assumption of P is proportional to

g, the Walker type identities hold. Moreover we introduced the Roter type l.c.K-space
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forms. If Pis hybrid, itis proved R- R = Q(S,R) + L1 Q(g,C) in m-dimensional (m > 4)

Roter type l.c.K-space forms.

The Bochner curvature tensor in an l.c.K-manifold such that the tensor field P is hybrid
is given. Then we present a generalization about the Bochner curvature tensor in
an l.c.K-manifold such that the tensor field P is not hybrid. Moreover, we state the
Bochner curvature tensor in an l.c.K-space form. Furthermore some properties of the

Bochner curvature tensor in an 1.c.K-space form are obtained.

Finally, in chapter 6, we give conclusion and recommendations.

1.2 Literature Review

The notion of an l.c.K-manifold in a Hermitian manifold has introduced by I
Vaisman on 1976 [1]. The author gives characterizations of locally conformal almost
Kaehler manifolds and some relations between locally conformal Kaehler and globally
conformal Kaehler metrics. After that he wrote a series of such manifolds [4] [5] etc.
T. Kashiwada has determined a necessary and sufficient condition that a Hermitian
manifold is an l.c.K-manifold by using the tensor equation and determined the
curvature tensor of an l.c.K-manifold with a constant holomorphic sectional curvature

(an l.c.K-space form).

Moreover K. Matsumoto studied some different questions concerning the geometry of
l.c.K-manifolds. The author gave some properties about l.c.K-manifolds, 1.c.K-space
forms and their submanifolds. T. Kashiwada [2] [6] and K. Matsumoto [7] gave some

properties about such a manifold.

Furthermore, M. Prvanovi¢ found a tensor of Kaehler type for an almost Hermitian
manifold and proved that this tensor reduces to the Riemannian curvature tensor R
in an almost Kaehler manifold. In addition, the author determined the holomorphic
curvature tensor of an l.c.K-manifold and introduced Riemannian curvature tensor in
an l.c.K-manifold with a constant holomorphic sectional curvature and the tensor P is

not hybrid [8] [9].

E. Cartan studied the semi-symmetric manifolds which is a natural generalization of
the symmetric spaces. A fundamental study on Riemannian semisymmetric manifolds

has been given by Z. I. Szab6 [10] [11] [12].
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R. Deszcz introduced the pseudo-symmetric manifolds which is called the
pseudosymmetry in the sense of Deszcz which is characterized by the condition

R-R=LgrQ(g,R), where Lg is some function and Q(g, R) is the Tachibana tensor [13].

1.3 Hypothesis

In this thesis, some properties of 1.c.K-manifolds, 1.c.K-space forms and submanifolds
of an l.c.K-space form are presented. Furthermore, we state some results on
pseudosymmetric and Ricci-pseudosymmetric l.c.K-space forms.  Walker type
identities on l.c.K-space forms and Roter type l.c.K-space forms are studied. Finally

the Bochner curvature tensor on l.c.K-manifolds and l.c.K-space forms are studied.






2. PRELIMINARIES

2.1 Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a (0,2)-tensor field g on M that is
symmetric (i.e.,g(X,Y) = g(¥,X)) and positive definite (i.e., g(X,X) > 0 if X # 0).
A Riemannian metric thus determines an inner product on each tangent space T,M,

which is typically written by
(X,Yy=g(X,Y) forX,Y e T,M.

A manifold together with a given Riemannian metric is called a Riemannian manifold.

A semi-Riemannian metric on a smooth manifold M is a symmetric (0,2)-tensor field g
that is nondegenerate at each point p € M. This means that g(X,Y) =0forallY € T,M
if and only if X = 0. A smooth manifold with a semi-Riemannian metric is called a

semi-Riemannian manifold.

The local components of g on an open set U C M are given by
gij = 8(d;,9;) = (9;,9)) ,
where 0d; = % are basis vectors on U.

A connection V on a smooth Riemannian manifold M is a function
ViX(M)xX(M)— X(M)
such that
@) Vixitenl =fVxY +¢Vx,Y .
(ii) Vx(aY; +bY,) = aVxY; +DbVxYs ,
(i) Vx(fY) = fVxY +(Xf)Y

where f,g € C*(M) , ab € R, X,Y € T,M. VxY is called the covariant derivative of

Y in the direction of X.



A Riemannian connection (Levi-Civita connection) V on a Riemannian manifold M is

a connection such that

(iv) X(Y,Z) = (VxY,Z) + (Y,VxZ),

(V) [X,Y] =VxY —VyX
and it is characterized by the Koszul formula

2(VxY,Z)y = XY, 2)+Y(Z,X)—-Z(X,Y)—(X,[Y,Z])
+ (Y,[Z,X])—(Z,[X,Y]).

Let T be an r-tensor. The covariant derivative VT of T is a tensor of order (r+1) given
by

(VT)(X1, X0, X3 X) = (VT)(X1,....X,)

-
= Vx(T(X1,... X)) = Y. T(X1,....,VxXi, ... X,) -

~.

If X,Y € T,M , then linear operator
R(X.,Y):TyM — T,M

is called the curvature operator. The Riemannian curvature tensor R of M is the tensor

field of type (0,4) defined by
R(X,Y,Z,W)=(R(X,Y)Z,W)=g(R(X,Y)Z,W),
where
RX,Y)Z=VxVyZ—-VyVxZ—-Vixy/Z. (2.1)
In terms of local coordinates
Rijnk = Rijn&rk »
where
Ry, = O, — ;T + LT, —T5 T, .

The curvature tensor satisfies the following symmetries :

(i) R(X,Y)Z+R(Y,X)Z=0,

(i) R(X,Y)Z+R(Y,Z)X +R(Z,X)Y =0, (First Bianchi identity)

(i) R(X,Y,Z,W) = —R(Y,X,Z,W),



(iv) R(X,Y,Z,W)=—R(X,Y,W,Z),
(V) R(X,Y,Z,W)=R(Z,W,X,Y) .
The total covariant derivative of the curvature tensor satisfies the following identity:
(VxR)(Y,Z)+ (VyR)(Z,X)+ (VzR)(X,Y) = 0. (2.2)

The equation (2.2) is called the second Bianchi identity.

If ey, en,...,e, are local orthonormal vector field, then

-

N
Il
—

S(Y,Z) = g(R(ei,Y)Z,ei)

defines a (0,2) tensor field with local components

S =R’ =g A‘Rrijs .

rl_]

The tensor field S(Y,Z) is called a Ricci tensor. It is clear that S;; = S'g,; and
S/ = gI"S;,.

The scalar curvature is the function k defined as the trace of the Ricci tensor:

n
ZSel, )=trS=Si=4g"s;. (2.3)

The curvature tensor appears also in the Ricci identities:

ViV;T" =V, V.T" =R}, T" (2.4)
ViVl —VVili = —R,T, (2.5)
ViV Ty =V Vil = Rij T — Rijp T — Ri g Ty - (2.6)

A Riemannian manifold is called an Einstein manifold if
Sij = Agij
where A is constant.

Let M be a Riemannian manifold and p € M. A two dimensional subspace 7 of the
tangent space T,M is called a tangent plane to M at p. 7 is determined by linearly
independent vectors X and Y at p. We define the sectional curvature K (m) of 7 spanned
by X and Y at p is given by

R(X,Y,Y,X)
g(X,X)g(Y,Y) _g(X7Y)2

9

K(X,Y) =K(n) =

2.7)



In particular, if 7 is spanned by an orthonormal basis u and v at p , the sectional
curvature is given by
K(m) = R(u,v,v,u).
In local components,
Rijm XYY Xk
(gikgjn — 8ingjx) XY Y XK~

The sectional curvature K of M is a real-valued function on the set of all nondegenerate

K(m) =

(2.8)

tangent planes to M.
The famous Theorem of Green can now be stated as follows:

Green’s Theorem. In a compact orientable Riemannian manifold M, we have

/ (Vv)do =0 2.9)
M
for any arbitrary vector field v, where do is the volume element

do = \/gdv' NdV* A .. Ndv".

2.2 Submanifolds of Riemannian Manifolds

Let N be an m-dimensional manifold isometrically immersed in a 2n-dimensional
manifold M. If the manifold M is covered by a system of coordinate neighborhoods
{V,v} and N is covered by a system of coordinate neighborhoods {U,u*}, where here
and in the sequel the indices i, j,h,k, ... run over the range 1,2,....,2n and v,u, A, ...

run over the range 1, 2, ..., m, then the submanifold N can be locally represented by
V= vi(ut) . (2.10)

In the following, we shall identify vector fields in N and their image under the
differential mapping, that is, if i denotes the immersion of N in M and X is a vector
field in N, we identify X and i, (X) .

9_

Thus, if X is a vector field in N and has the local expression X = ut dy, where d; = 57

then X also has the local expression
X =B u o,

where 0; = % and B} = dyV' = §7V/11'
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Suppose that the manifold M is a Riemannian manifold with Riemannian metric g,
then the submanifold N is also a Riemannian manifold with Riemannian metric g is
given by

gX,Y) =g(X.Y) 2.11)

for any vector fields X and Y in N. The Riemannian metric g on N is called the induced

metric on N.

In local coordinates, it is given by
gun = &jiBlL B} 2.12)

with g = gu;ta’u“du’l and g = g;idv/dv'.

If a vector £, of M at a point p € N satisfies

g(Xpa gp) =0

for any vector X, of N at p, then &, is called a normal vector of N in M at p.

Let TN denote the vector bundle of all normal vectors of N in M. The tangent bundle
of M , restricted to N, is the direct sum of the tangent bundle TN of N and the normal
bundle T+N of N in M, that is

TM|N=TN+T*N. (2.13)
From (2.13), we see that VxY can be expressed in the form
VxY = VxY +h(X,Y) (2.14)

where V is the covariant differentiation defined on the submanifold N with respect to
g and h(X,Y) is a normal vector field on N and is symmetric and bilinear in X and Y.
We call h the second fundamental form of the submanifold N. The equation (2.14) is

called the Gauss formula.

Let X and & be a vector field and normal vector field on N, respectively. We can
decompose Vx& as

Vx& = —As(X)+V'x&, (2.15)

where Ag(X) and V1 x& are the tangential component and the normal component of

Vx &, respectively. The equation (2.15) is called the Weingarten’s formula.
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A submanifold N is said to be fotally geodesic if the second fundamental form h

vanishes identically, that is, 7 = 0.

Let &1, ..., &2, m be an orthonormal basis of the normal space TpL (N) at a point p € N
and let A* = Aéx , then
1
H=—(tr A%)E, (2.16)
m

is a normal vector at p which is independent of the choice of the orthonormal basis &,.

The vector H is called the mean curvature vector at p.

A submanifold N is called a minimal submanifold if the mean curvature vector vanishes

identically.

The equation of Gauss and Codazzi are respectively given by

(R(X,Y)Z,W> = (R(X,Y)Z,W>—|—(h(X,Z),h(Y,W)>
— (h(X,W),h(Y,Z)) (2.17)
and
(R(X,Y)2)* = (Vxh)(¥.Z) - (Vyh)(X.2). (2.18)
where

(Vxh)(Y,Z) = V5h(Y,Z) —h(VxY,Z) — h(Y,VxZ).

2.3 Complex Manifolds

Consider a real 2n-dimensional manifold M of class C* covered by a system
of coordinate neighborhoods Vi, where the indices i,j,k,... run over the range
1,2,...,n,1,2,....,7. In each coordinate neighborhoods (') we introduce complex
coordinates z* defined by

=V —107 (2.19)
where v* and v are real variables and the indices a, b, ... run over the range 1,2, ...,n.

We call V' real coordinates and z% complex coordinates of a point with respect to these

system of coordinates respectively.

M?" is said to admit a complex structure and is called a complex manifold if there exist
a system of complex coordinate neighborhoods (z%) covering the whole manifold M>"
such that in the intersection of two coordinate neighborhoods (z%) and (z%) we have
=1, [ #0,
12



where f9(z%) are analytic functions of complex variables z!,z%,....z" and | d,z% |

denotes the Jacobian determinant, where d,z% = g—iz and

0 _1(3 B )
dz¢ 2 v ova’’
o 10,
aze 2 v

where 7 is the conjugate of z defined by

F=vt— /=11, (2.20)

Let M be a real differentiable 2n-dimensional manifold. An almost complex structure
on M is a tensor field J of type (1,1) on M such that at every point p € M we have J?> =
—I, where I denotes the identity transformation of 7,M. A manifold with an almost
complex structure J is called an almost complex manifold. Every almost complex

manifold is of even dimension and orientable.
We suppose M is an almost complex manifold. Then we define the torsion tensor of J
or the Nijenhuis tensor of J by

N(X,Y)=[JX,JY]—[X,Y]|-J[X,JY]—-J[JX,Y]
for any vector fields X and Y. If N vanishes identically, then an almost complex
structure is called a complex structure and M is called a complex manifold.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g such
that
gUX,JY) =g(X,Y)

for any vector fields X and Y.

An almost complex manifold (resp. a complex manifold) endowed with a Hermitian

metric is called an almost Hermitian manifold (resp. a Hermitian manifold).

Every almost complex manifold with a Riemannian metric ¢ admits a Hermitian

metric. In fact, if we take
g(X,Y) =g(X,Y)+4(JX,JY),
it is easily seen that g is a Hermitian metric on M.

13



A Hermitian manifold M is called a Kaehler manifold if the almost complex structure

J on M is parallel, that is, VJ = 0.

The curvature tensor R of Kaehlerian manifold M satisfies
Rjjnk = J{Jershk. (2.21)

Let M be an almost Hermitian 2n-dimensional manifold with a Hermitian metric g;;
and an almost Hermitian structure J whose components are Jij . Since any tangent
vector u' of M and its transform J(u') at a point p are mutually orthogonal, they are
linearly independent and therefore determine a 2-plane in the tangent space of M at p
which is called a holomorphic plane. The sectional curvature of M at p with respect
to a holomorphic plane is called the holomorphic sectional curvature of M at p. If the
holomorphic sectional curvature of M at a point p is independent of the holomorphic
plane through p, the M is said to have a constant holomorphic sectional curvature at p.
If the holomorphic sectional curvature of M is constant for all holomorphic planes and
all points p, then M is called a manifold of constant holomorphic sectional curvature

or a complex space form.

The holomorphic sectional curvature ¢ of M at p with respect to the holomorphic plane

m(U) is given by
Riime Jiu wd Jhus uk
¢ = — kIt s —. (2.22)
grju" ul g’ u

The Riemannian curvature tensor R;j of a Kaehler manifold with the constant

holomorphic sectional curvature c is given by
c
Rijn = 1 (gikgjn — &in& jk +Jud jn — Jind jx — 2JijInk) - (2.23)
2.4 Pseudosymmetrically Related Tensors

In this section, we give the basic definitions, properties and results related with the

pseudosymmetric curvature conditions which will be used in the following sections.

Let (M, g) be an n—dimensional, n > 3, semi-Riemannian connected manifold of class
C*= with Levi-Civita connection V. The Ricci operator .¥ is defined by g(.7X,Y) =
S(X,Y), where XY € E(M), E(M) being the Lie algebra of vector fields on M.

14



We define the endomorphisms X Ay Y, Z(X,Y)Z and €' (X,Y) of E(M) by

(XMY)Z = A(Y,Z)X—AX,2)Y, (2.24)
R(X,Y)Z = VxVyZ—VyVxZ-VixyZ, (2.25)

CX,Y)Z = R(X,Y)Z

1
S(XNg SV + XN Y = le NY)Z,  (2.26)
n_

n—

—

respectively, where X,Y,Z € E(M), A is a symmetric (0,2)-tensor, k the scalar
curvature and [X,Y] is the Lie bracket of vector fields X and Y. In particular we have
(XNgY)=XAY.

The Riemannian-Christoffel curvature tensor R, the Weyl conformal curvature tensor

C and the (0,4)-tensor G of (M, g) are defined by

R(X1,X2,X3,Xs) = g(Z(X1,X2)X3,X4) ,

C(X1,X2,X3,Xy) = g(€(X1,X2)X3,Xy4) ,

G(X1,X2,X3,X4) = g((X1N\gX2)X3,X4) , (2.27)
respectively, where X1,X,X3,Xy € E(M).

Let #(X,Y) be a skew-symmetric endomorphism of E(M). We define the (0,4)-tensor
B by B(X1,X2,X3,X4) = g(#(X1,X2)X3,X4). The tensor B is said to be a generalized
curvature tensor if

B(X1,X>,X3,X4) = B(X3,X4,X1,X2),
B(X1,X2,X3,X4) + B(X2,X3,X1,X4) + B(X3,X1,X2,X4) = 0.

For a (0,k)-tensor field T, k > 1, a symmetric (0,2)-tensor field A and a generalized
curvature tensor B on (M, g), we define the (0,k+2)-tensor fields B- T and Q(A,T) by

(B.T)(Xla"'axk;an) = _T(‘%(Xay)XhXZ?'"an)
— ...—T(X],Xz,...,Xk,l,%(X,Y)Xk), (2.28)
Q(A7T)(X17“'7Xk;x7y> = _T((X/\AY>X17X27-"7X/<)
— ...—T(Xl,Xz,...,Xk,l,(X NA Y)Xk), (2.29)
respectively, where X, Y, Z, X1, X;,.... Xy € E(M).
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Putting in the above formulas Z=Ror Z=%¢,T =RorT=CorT =S,A=gor
A =S, we obtain the tensors R- R, R-C,R-S5,C-S,Q (g, R), Q(S,R), Q (g, ©), Q (g,
S) and Q (S, C) respectively.

For symmetric (0,2)-tensor E and F we define their Kulkarni-Nomizu product E A F
by

(EAF)(X1,X2,X3,X4) = E(X1,X3)F(X2,X3) +E(X2,X3)F (X1, X3)

— E(X1,X3)F(X2,Xs) — E(X2,X4)F (X1,X3). (2.30)

For a symmetric (0,2)-tensor E and (0,k)-tensor T, k > 2, we define their
Kulkarni-Nomizu product E AT by [14]

(E/\T)<X17X27X37X4;Y33"'7Yk) = E X17X4 T X27X37Y37"'7Yk

— E(X, X)T(X1,X3,Y3,....%).  (2.31)
For symmetric (0, 2)-tensors E and F we have [15]
Q(E,ENF)=—Q(F,E), (2.32)
where E = LE AE. We also have [16]
EANQ(E,F)=—Q(F,E). (2.33)

For a symmetric (0, 2)-tensor E and a skew-symmetric (0, 2)-tensor @ , we define
(@ AE)ijnk = OkEjn + @jnEx — OinE ji — @jEip.- (2.34)
For skew-symmetric (0, 2)-tensors @ and 7 , we define
(@A T)ijnk = O Tjn + OjnTik — O Tjg — QT — 2(0;j Tk + O Tij). - (2.35)

Let (M, g) be covered by a system of charts {W;x*}. We define by gij » Ruiji » Sij »
Ghijk = gnk&ij — &hj&ik and
1

K
(1= D)(n—2)
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the local components of the metric tensor g, the Riemannian-Christoffel curvature

tensor R, the Ricci tensor S, the tensor G and the Weyl tensor C, respectively.
Further, the tensor S is defined by S*(X,Y) = S(.*X,Y).

The local components of the (0, 6)-tensor fields R- T and Q(g,T), (0,4)-tensor field

T -A on M are given by

R-T)pijkim = 8" (TrijiRshim + Thr jkRsitm

+ Thirkstlm + Thiersklm> ) (237)

O&:Tnijkim = —8&mmTiijk — &imThijk — & jmThitk — &kmThiji
+  nTmijk + &itThmjk + & j1 Thimk + &kt Thi jm> (2.33)
(T -A)pijk = ApTrijic + A Tonjic, (2.39)

respectively, where A is a symmetric (0,2)-tensor field.

Lemma 2.1 [17]. Any symmetric (0, 2)-tensor E on a semi-Riemannian manifold (M,

g), n > 4, satisfies

G G=0, E-G=0 (gAE)-G=0, G-E=0(gE),

G-(gNE)=0Q(g,¢NE), E-E=-Q(E*E), gAQ(g,E)=—-Q(E,G),
(8AE)-E=Q(g,E*), E-(eNE)+(gNE)-E=—Q(E*gAE),
(§AE)-(gNE)=—Q(E*,G), Q(E,G)=—-0(g,gNE),
Q(E,gNE)=—0(gE), G-E=Q(g,E), E-E=Q(EE).

Lemma 2.2 [18]. Let (M, g), n > 3, be a semi-Riemannian manifold. If E|, E, and F

be symmetric (0, 2)-tensors at x € M. Then at x we have

E\NQ(Ey, F)+Ex NQ(E1,F) = —Q(F,E\ NEs).
In this part we present some basic definitions of pseudosymmetric and
Ricci-pseudosymmetric manifolds.

A semi-Riemannian manifold (M, g) satisfying the condition VR = 0 is said to be
locally symmetric. Locally symmetric manifolds form a subclass of the class of

manifolds characterized by the condition

R-R=0, (2.40)
17



where R - R is a (0, 6)-tensor field with the local components

(R-R)nijtim = VmViRnijk — ViVmRnijk

= grs (Rriijshlm + thijsilm + Rhirkstlm + Rhiersklm) . (241)

Semi-Riemannian manifolds fulfilling (2.40) are called semisymmetric. They are not

locally symmetric, in general.

A semi-Riemannian manifold is said to be Ricci-semisymmetric if on M we have R-S =

0.

A more general class of manifolds than the class of semisymmetric manifolds is the

class of pseudosymmetric manifolds.

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric in the sense of

Deszcz [13] if at every point of M the condition
R-R=LzO(g,R) (2.42)

holds on the set g = {x e M |R — n(n—'(_])G # 0 at x}, where Lg is some function on
Ur.

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric if at every

point of M the condition
R-S=LsQ0(g,S) (2.43)

holds on the set % = {x € M | S — Xg # Oarx}, where Ly is some function
on %s [3]. Every pseudosymmetric manifold is Ricci-pseudosymmetric. The
converse statement is not true. The class of Ricci-pseudosymmetric manifolds is
an extension of the class of Ricci-semisymmetric (R-S = 0) manifolds as well as
of the class of pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric
is Ricci-pseudosymmetric. There exist various examples of Ricci-pseudosymmetric

manifolds which are not pseudosymmetric.

A semi-Riemannian manifold (M,g) is said to be Weyl-pseudosymmetric if at every

point of M the condition

R-C=LcQ(s,C) (2.44)
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holds on the set % = {x € M | C # 0 at x}, where L¢ is some function on %c. Every
pseudosymmetric manifold is Weyl-pseudosymmetric. The converse statement not

true. Every Weyl-semisymmetric manifold (R - C = 0) is Weyl-pseudosymmetric.

(2.42), (2.43), (2.44) or other conditions of this kind are called curvature conditions of

pseudosymmetry type.

The inclusion among the above mentioned classes of manifolds can be summarized in

Figure 2.1 [19].
The condition
R-C—C-R=L,0Q(g,C) (2.45)

holds on the set - = {x € M | C # 0 at x}, where L; is some function on %.

The condition
R-C—C-R=LQ(g,R) (2.46)

holds on the set Zgx = {x € M | R — n(n—K_I)G # 0 at x}, where L is some function on
UR.

The condition

R-C—C-R=LQ(S,R) (2.47)
holds on the set %] = {x € M | Q(S,R) # 0 at x}, where L is some function on %.
The condition

R-C—C-R=1,0(5,C) (2.48)
holds on the set %, = {x € M | Q(S,C) # 0 at x}, where L, is some function on %5.
The condition

R-R—Q(S,R)=L10(g,C) (2.49)

holds on the set % = {x € M | C # 0 at x}, where L, is a certain function on %.

This condition

R-C=1,0(S,C) (2.50)
19



holds on the set % = {x € M | Q(S,C) # 0 at x}, where L, is a certain function on %,.

Semi-Riemannian manifolds satisfying (2.49) and (2.50) or other conditions of this
kind, described in [13] are called manifolds of pseudosymmetry type and also we
note that curvature conditions of pseudosymmetry (2.45)- (2.48) are called generalized

Einstein metric conditions [20].

We refer to [19] for a survey on results on semi-Riemannian manifolds satisfying
such conditions. Very recently manifolds satisfying Einstein metric conditions were

investigated in: [21] [22] [23] [24] [25] [26].

20



EINSTEIN MANIFOLDS OF CONFORMALLY
MANIFOLDS CONSTANT FLAT MANIFOLDS
§="Xg CURVATURE C—0
R= n(n’i 1) G
1 1 1
RICCI LOCALLY CONFORMALLY
SYMMETRIC SYMMETRIC SYMMETRIC
MANIFOLDS MANIFOLDS MANIFOLDS
VS§=0 VR =0 vVC=0
{ 1 1
RICCI SEMI- SEMI SYMMETRIC WEYL SEMI-
SYMMETRIC MANIFOLDS SYMMETRIC
MANIFOLDS R-R=0 MANIFOLDS
R-§=0 R-C=0
1 1 1
RICCI-PSEUDO PSEUDO SYMMETRIC WEYL PSEUDO
SYMMETRIC MANIFOLDS SYMMETRIC
MANIFOLDS R-R=1LgQO(g,R) MANIFOLDS
R-§=Ls0(g.S) R-C=LcQ(g,C)

Figure 2.1 : Pseudosymmetric manifolds and some other classes of semi-Riemannian
manifolds.
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3. LOCALLY CONFORMAL KAEHLER MANIFOLDS

3.1 Locally Conformal Kaehler Manifolds

Let M be a real 2n-dimensional Hermitian manifold with structure (J,g), where J is
the almost complex structure and g is the Hermitian metric. The manifold M is called
a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has an

open neighborhood U with a positive differentiable function p : U — R such that
g =ePgly

is a Kaehlerian metric on U. Especially, if we can take U = M, then the manifold M is

said to be globally conformal Kaehler.

Proposition 3.1 [2]. A Hermitian manifold M(J,g) is an l.c.K-manifold if and only if
Vidij = —Bigkj + Bjgri — i + Ay (3.1)
Viaj=V;o; (or J;ViB" =J4iV;B"),
where « is a global closed 1-form and
Bi = a'Jyi. (3.2)

In l.c.K-manifolds, we have the following formulas [2]:

ViBi=—Bjoi+ Bict; — |]a|\2Jj,-+Vjochn~ , (3.3)
V,p =0, (3.4)

ViB'Jir = Vi i (3.5)

2(n—1)04 = J,;VJ"™ =TVl (3.6)
2in—1)Bi =V, (3.7)
a'V,Jij=B"V,J;j=0, (3.8)

o'V jiJyi = —Bjoi+ o B — || || 2T (3.9)
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and

BV iJri = Bii+ aj0i —|atl|g;i (3.10)
where || || denotes the length of the Lee form o with respect to g.

From the above equations we obtain

ViVildij—=ViVidij = PoJigni — Padi 8nj — Purdj8ki + Purd; 8kj

—  Pejdni+ Pridnj+ PrjJii — Pridkjs

where
Vo el
Pj= 0 — 0G0+ > 8ij- (3.11)
We note that P; = Pj; and || @||* = a-at”.
Using the Ricci identity, we get
—RukirJ; + Rujrdi = PirJi8hi — Prdi 8nj — Purd8ki + Purd; 8k j
= Prjidni+ Pridnj+ Prjdii — Pridij (3.12)
and then
Rurs I3 ;= Ruji+ Peignj — Prj&ni + Phjgki — Phigkj
+ Per,-rth — Pk,J]r-Jhi + Phrijki — PhrJl'erj- (3.13)
The tensor field F;; is hybrid, i.e.,
PyJiJi=PF; or  PJi+PiJi=0.
Now transvecting (3.12) with g* we have
— S+ Rk jrd{ 8% = —(2n—3) Py J — PiyJj + (Prog™ )
and so
_therkr — ShrJ; — (21’1 — 3>Phr.]]r _P]rJ}’; +tr P.Ih]
Using H i, = Ry jJ*" = — 5 Rpjir J* [271 (28] and Hj, = —Hy,j, we get
th :Sh,J;—(271—3)PhrJ;—Per£—|—l‘rPth. (3.14)
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Using the skew-symmetric property of H in (3.14) , we have [2]
Sjrdi +Sird; =2(n—1)(PjrJi + PirJ7) (3.15)

which means that, in a real 2n-dimensional (n >1) l.c.K-manifold M, the tensor field P

is hybrid if and only if the Ricci tensor is hybrid.

Theorem 3.2 [8]. For an almost Hermitian manifold M(J,g), the tensor

1
(HR)(X.Y.ZW) = < [3 [R(X,Y,Z,W) +RUJX,JY,Z,W)+R(X,Y,JZ,JW)

+ R(JX,JY,JZ,JW)} “R(X,Z,JW,JY) —R(JX,JZ,W,Y)
— R(X,W,JY,JZ) — R(JX,JW,Y,Z) + RUX,Z,JW,Y)

+ R(X,JZ,W,JY)+R(JX,W.Y,JZ)+R(X,JW,JY,Z)| (3.16)

is a curvature tensor of Kaehler type.

The tensor (3.16) is said to be the holomorphic curvature tensor in an almost Hermitian

manifold.

It is easy to see that

(HR)(X.Y.Z,W) = —(HR)(X,Y,W.Z). (3.18)
(HR)(X.Y,Z,W) = (HR)(Z,W.X.Y), (3.19)
(HR)(X,Y.Z,W) + (HR)(X,Z,W,Y) + (HR)(X,W,Y,Z) =0, (3.20)
as well as
(HR)(X.,Y,JZ,JW) = (HR)(X,Y,Z,W), (3.21)
(HR)(X,JX,JX,X) = R(X,JX,JX,X). (3.22)

With respect to the local coordinates (3.16) reads

(HR)ijmk = 3(Rijuk + Resie{ T + Rijrs j I+ Rispg | T3 T 1)

16
Rihrs-]/’;-]j' - Rrskj‘]ir-]ivl - RikrsJ]r'JZ - Rrsth{J]i
- Rops 1T+ Rigo IS+ R oI5+ Rth,gJ;] . (3.23)
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Theorem 3.3 [9]. The holomorphic curvature tensor of an l.c.K-manifold has the form

1
(HR)ijmk = Rijni+ 3 8in(TPjk — PrsJJi) — 8ix(TPjn — PrsJ 1 J),)
8jk(TPin — PrsJi Jy) — 8 jn (TP — PrsJ{ Jy)

Jin(Pirdi — Pird ;) — Ji(Pjrdjy — PuyJ ;)

ij(PirJZ _Phr-]ir) _th(PirJ]: _Pkr-]ir)

+ o+ o+ o+

2Jij(Purdy — Pird}y) + 20 (PirJ T — PjrJ) | (3.24)

Theorem 3.4 [2]. Let M(J,g,a) be an L.c.K-manifold such that P is hybrid. If the

holomorphic sectional curvature at p € M is constant c, then

C
Rijme = Z(gikgjh — gin&jic +Jid jn — Jind jk — 2JijInk)
3
+ Z(gikpjh +&jnPix — ginPix — & jxPin)

1 - A _ _ _ _
- Z(Pikfjh + Pindik — Pnd jk — Pjtdin — 2P; jni — 2P ) (3.25)

at p € M, where Ig,-j = —Pl-,JJr- .
Theorem 3.5 [9]. An l.c.K-manifold has constant holomorphic sectional curvature if

and only if its curvature tensor can be expressed in the form

C
Rijme = Z(gikgjh_gihgjk+Jiijh_Jthjk_z']ij‘]hk)

1
3 |8 (TPjn = PrsJ 1) = 8in(TPjx = Prs 1)
8jn(TPic = P i J}) — 8 ju(TPin = PrsJ} J})

Ji(Pjrdyy = Purd ) = Jin(Pjrdy — P J7)

+ o+ 4+ o+

Jin(Pirdi = Pird}) — Jjc(Pirdjy — PurJ)

— 2Jij(PhrJ/: — PiJy) — 2Jhk(PirJ; — Per{) . (3.26)
If the tensor P is hybrid, the relation (3.24) reduces to

3
(HR)ijne = Rijn+ Z(ijgih + Pingjk — Pingix — P& jn)
1 r r r r
1 VinBirdic+J Py = Jucjrdiy = I jnFurdi

ZJhkPirJ; +2Jl’jPhrJ;;). (3.27)
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3.2 Locally Conformal Kaehler Space Forms

In this section, some properties of locally conformal Kaehler space forms are

presented.

An l.c.K-manifol M is called an [l.c.K-space form if the holomorphic sectional
curvature of the section {X,JX } at each point of M has a constant value. Let M(c) be an
l.c.K-space form with constant holomorphic sectional curvature c, then the Riemannian

curvature tensor R with respect to g can be expressed in the form (3.26).

Theorem 3.6 [29]. Let M(c) be a 2n-dimensional l.c.K-space form. If the tensor field

P is proportional to g and tr P is constant, then M(c) is Einstein.

Proof. Contracting (3.26) with g™, we have
4S;;=[2(n+1)c+3trPlgj+ (Tn—10)P;; — (n+ 2)Prle~’Jj. (3.28)

If the tensor field P is proportional to g and 7 P is constant, then P is written by

tr P
Pi=—gi. 3.29
j n 8ij ( )
Substituting (3.29) into (3.28), we obtain
1 3(n—1
Sij= E(n—i—l)c—l— (2n )trP]g,-j, (3.30)
which means that M(c) is Einstein. [

Corollary 3.7 [29]. A real 2n-dimensional Einstein l.c.K-space form M(c) is a

complex space form if tr P = 0.

Theorem 3.8 [29]. Let M(c) be a 2n-dimensional l.c.K-space form. If K is constant

and ||a|| is non-zero constant, then
(V¥ o) 0" +2(V05)[|ec* |77 = (Vo) BB = 0. (3.31)

Proof. Let M(c) be an 1.c.K-space form with constant holomorphic sectional curvature

c. Since the scalar curvature kK = n(n+ 1)c+3(n— 1) tr P is constant, then

trP=—-V, o +(n—1)|a|? (3.32)
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is constant. Now differentiating (3.28), we get

AViSy = (Tn—10)ViPjy—(n+2) [(vkprs)J;J,§+(ka;)P,SJ,§

+ (VS )P,SJJ’-] .

(3.33)

Substituting (3.11) into (3.33), using (2.5) and the equality V;o; = V;@; , we have

4(Vijh — VjSkh> = (771 - 10) {R,’;jhOCr-i- (VjOCh)OCk — (VkOCh)OCj

+ e~ (7 lalP)ew)
-
+

n+2) [(VkPrs)J,’-JZ — (VPu)Iidh + (Vid 5P

V)P — (Y J5)Prsd} — (V ng)P,SJ,g] .

(3.34)

Contracting (3.34) with gjh and taking into account ZV,S; = VK [28], we obtain

(I —10)[Sgay + (V;0)ou] — (n+2)[ ~ (V) If g™

+ (VkJ;)PrsJZgjh + (VkJZ>PI’SJ§gjh - (VjJI:)P"SJislgjh

(Vi) Psdig"| =0,

where

ViJi = =B + B grj — iy + o' Jy; .
Now contracting (3.28) with g and transvecting with o, we get

48t ot = [2(n+ 1)c+3 tr Plog + 6(n — 2) Pa™ .

From (3.32), we get

3trPoy=—3(V,a") oy +3(n—1)|o|* o
and transvecting Py, with o, we obtain

1 1
Poo = -~V |a|* = =|lalo .
%eh 5 k| 2” 27

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Substituting (3.37), (3.38) and (3.39) into (3.35) and transvecting with Bk, we find

(3.31).
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3.3 Submanifolds of Locally Conformal Kaehler Manifolds

Let N be a real m-dimensional manifold isometrically immersed in a real
2n-dimensional l.c.K-manifold M. If the manifold M is covered by a system
of coordinate neighborhoods {V,v'} and N is covered by a system of coordinate
neighborhoods {U, u’l}, where here and in the sequel the indices i, j, h,k, ... run over
the range 1,2,...,2n and v, u,A... run over the range 1, 2, ..., m, then the submanifold
N can be locally represented by

V=it (3.40)

In the following, we shall identify vector fields in N and their image under the

differential mapping. We put

~ .
B, =)' = —.
& A dut

Let g, be the induced metric on N, then we have
gun = &jiBLBY . (3.41)

Let &/ be a system of orthogonal normal vectors, where the indices x,y,z,... run over

the range 1,2, ...,2n — m. Then we have
g;iB}El=0. (3.42)
In local coordinates, the equation of Gauss and Codazzi are given by
RijncBLyBUBABY = Ryun — I by + Wy i (3.43)

RijuBlyBYBLEY =V ohyux — Vvhaus , (3.44)
respectively, where hﬁ ,, denote the second fundamental tensor.

Now the transformation J,’fBﬁ of Bﬁ by J,’f can be written as
JEBL = JEBk 4 S EX (3.45)

where ff and jg‘t are a tensor field of type (1,1) and a normal bundle valued 1-form in

N, respectively.
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The transformation J;fé;‘ of éyh by J¥ can be written as
& = —J B+ LEL (3.46)

where J;a and JBC are a tangent bundle valued 1-form and a tensor field of type (1,1) of

the normal bundle in N, respectively.

A submanifold N is called invariant if JT,N = T,N for any point p € N , where
T,N denotes the tangent vector space of N at p in N, that is, a real m-dimensional
submanifold N of an l.c.K-manifold M is said to be invariant if the tangent space at

each point of N is invariant under the action of J.

For an invariant submanifold N, we have

=0 (3.47)

Using (3.45) and (3.46) , we have

TETA _ A *X7Z
BTk =—8F | TJi=-5.

Moreover
geyJﬁfy =8ua -

Next, we decompose the Lee vector field o as follows
of = a®BE 4+ a*EF (3.48)

where o and o are the tangential and the normal part of o respectively.

For an invariant submanifold N of an l.c.K-manifold M satisfying a* = 0, identically,
that is , the Lee vector field a is always tangent to N, say a* = a¢BX, we have the

following :
Vodur = —Bugvi +Brgvu — udya + vy (3.49)
where f,;, = —chJNfi.

Proposition 3.9 [7]. An invariant submanifold N of an l.c.K-manifold M in which Lee

vector field oX is tangent to N is an l.c.K-manifold with structure (j&, 8uis oy ).

Theorem 3.10 [7]. An invariant submanifold N of an l.c.K-manifold M is minimal,
that is,
trace(hﬁx) = thgM =0 (3.50)
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if and only if the Lee vector field at is tangent to N.

Let M(c) be an l.c.K-space form with constant holomorphic sectional curvature ¢ and

N be a real m-dimensional invariant submanifold of M(c).
Theorem 3.11. Let N be a real m-dimensional minimal invariant submanifold of an
L.c.K-space form M(c). Then we have

4x<m(m+2)c+6(m—2)trp, (3.51)
where K is the scalar curvature with respect to gyy. The equality holds if and only if
the submanifold N is totally geodesic.

Proof . Transvecting (3.26) with BZ,B{,BZB’)‘L and using (3.41), (3.43), (3.45) and in

view of Theorem 3.10., we obtain

ARpyur = c(8uvon — 8uwsva +Ividor —Joudva — 2oviyn)
+ %{gm (Tpvi — Peydedl) — 8wu(Tpya — Peyded])
+ gvu(TPor — Pepdod)) — 8va (TPop — Pey5J}h)
+ (va p,ufjé) - j:uu (vaf)&; — meﬁ)
+ Jvu(Pocs — Predsy) — Jva(Poell — puefi))}
— Jov(Pueds — Preds) —Jua (Pocts — Pvels)
+ 4(h)(i),1h\/ﬂx - h)ccoyhle) ) (3.52)
where
J pi l]|?
pvu = PjiByB), = =Vyay, —ayoy + > ——&vu - (3.53)

Contracting (3.52) with g“”L and using (3.50) , we get

Tm m ~
4Syy ={(m+2)c+3tr plgyu+ (= —10)pyy — (E +2)pg,,]\£,]7; — 4, ha)

2 Vx
(3.54)
where Sy, denotes the Ricci tensor with respect to gyy,.
Transvecting (3.54) with g"# |, we get
4k =m(m+2)c+6(m—2)tr p—4hg, hPH .
and so
4(k+||h)?) = m(m+2)c+6(m—2)trp, (3.55)
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where |4 denotes the length of the second fundamental tensor Ay, By virtue of

(3.55), we have (3.51).
If the equality holds in (3.51), then by using (3.55), we get
HhH :0 al’ld hV,LlX:O

which means that the submanifold N is totally geodesic.
Conversely, if the submanifold N is totally geodesic, then &y = 0 and ||4|| = 0 and us-
ing (3.55) the equality holds in the equation (3.51). [

Theorem 3.12. Let N be a real m-dimensional invariant closed minimal submanifold

of an l.c.K-space form M(c). Then we have
4/ degm(m+2)cVolN+3(m—2)2/ || e||?dN | (3.56)
N N

where dN and Vol N denote the volume element and the volume of N, respectively. The

equality holds if and only if the submanifold N is totally geodesic.
Proof. By transvecting (3.53) with g"#, we find
trp:—VvOCv+mT_2HOCH2 (3.57)
and substituting (3.57) into (3.55) , we get
4k =m(m+2)c—6(m—2)Vya¥ +3(m—2)%|c||> —4|h|>. (3.58)
Since the submanifold is compact, using Green’s Theorem , we have
4/N K dN = m(m+2)c Vol N +3(m —2)? /N || e||*dN — 4/N |h?dN  (3.59)
and so (3.56).
If the submanifold N is totally geodesic, then ||| = 0 and by virtue of (3.59), we write
4/N k dN = m(m+2)c Vol N +3(m — 2)2/N la|dN .

Hence, the equality holds in (3.56).
Conversely if the equality holds in (3.56), from (3.59), we obtain ||| = 0, that is, the

submanifold N is totally geodesic. |

Theorem 3.13. Let N be a minimal invariant submanifold of an l.c.K- space form M(c)
such that Ry, is tangent to N if and only if
5.0 =0 and hflyag =0. (3.60)
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Proof. Transvecting (3.26) with B’;OBJV'BZ K we get

o 1 - -
AR;jnByBIByES = 3 [gwu (Th} Ot — h 0V TY) — gy (Thy e — B, 0t T, TY)
+ 'ZDIJ (hf/yafj; _hixasj\)//) _j:’ll (hﬁ)yaé'j; _hixaef()tg

— 2o (—hy 0T}~ e d])|. (3.61)
Since Rovur is tangent to N, in view of (3.44), we get Vhyux — Vyheuy = 0 and so
§[(T0u8% — Tgvudh — TouTL6} + Ty} + 2on T8} )15 00
+ (—8ap iR 8} + gvud b8} + Jopll8) — JuuJ) 5
+ 2oy NS} | =0 (3.62)

and so we get (3.60).

Conversely, if (3.60) holds in (3.62), we have

ARy B, BY Bl EX =0,
and so by using (3.44) we get

Vcol’lvux - Vvhwmc =0,

thatis, Ry, 1s tangent to N. |

3.4 Sato’s Form of the Holomorphic Curvature Tensor

In this section, using the Sato’s form of the holomorphic curvature tensor in an almost
Hermitian manifold we determine the Sato’s form of the holomorphic curvature tensor

in an l.c.K-manifold.
The curvature tensor of an almost Hermitian manifold of constant holomorphic
sectional curvature c is given by [30]

RX.Y,ZW) = Sle(X,W)g(Y,Z)—g(X,Z2)g(Y,W)+J(X,W)J(Y,Z)

o

— J(X,2)J(Y, W) —=2J(X,Y)J(Z,W)]
1
+ GUZ.JW.JX,JY)|+13[G(X.Z,Y,W) +G(Y,W,X,Z)
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— G(X,W,Y,Z)—G(Y,Z,X,W)|—3[G(JX,JZ,JY,]W)
G(JY,IJW,JX ,JZ) — G(JX,IW,JY,JZ) — G(JY,JZ,JX,IW)]
4[G(X,JY,Z,IW)+G(JX,Y,JZ,W)]|+2[G(X,JZ,Y,JW)

G(JX,Z,JY,W) —G(X,JW.,Y,JZ) — G(JX,W,JY, Z)]}, (3.63)

where

G(X,Y,Z,W)=R(X,Y,Z,W)—R(X,Y,JZ,JW). (3.64)
Theorem 3.14 [29]. The Sato’s form of the holomorphic curvature tensor of an l.c.K-
manifold has the form

13

(HR);jnk = 2 [Prjgni — Prignj+ Prigkj — Fhjgki

+ Pk,JJr-Jh,- — Pird{ T j 4 PuJ{ T j — PhrJ;Jki]. (3.65)

Proof. Substituting (3.64) into (3.63), using (3.16) and the Bianchi identity we obtain
1

(HR)(X,Y,Z,W) = Q{B[—R(X,Y,Z,W) +R(JX,JY,Z,W)]}. (3.66)

The tensor (3.66) is said to be the Sato’s form of the holomorphic curvature tensor.

Now substituting (3.13) into (3.66) , we get (3.65). H
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4. PSEUDOSYMMETRIC LOCALLY CONFORMAL KAEHLER SPACE
FORMS

4.1 Pseudosymmetric Locally Conformal Kaehler Space Forms

Let M(c) be an m = 2n-dimensional l.c.K-space form with constant holomorphic
sectional curvature ¢ and the tensor field P is hybrid. The Riemannian curvature tensor

R with respect to g is given by (3.25).

Contracting (3.25) with g, we get
1 3
Sjn= 7 l(m+2)c+3tr Plgjn+ (m—4)Py, 4.1)

which is the Ricci tensor of an l.c.K-space form.

Proposition 4.1 [7]. If the tensor field P is hybrid and tr P is constant in a

4-dimensional l.c.K-space form M(c), then M(c) is Einstein.

Theorem 4.2 [7]. A real m-dimensional (m # 4) l.c.K-space form M(c) in which the
tensor field P is hybrid and tr P is constant is Einstein if and only if the tensor field P

is proportional to g.

In view of (2.37), we have

(R-C)pijiim = 8" (CrijiRshim + Chr jkRsitm + ChirkRs jim + Chi jrRskim) (4.2)

(C-R)nijiim = 8" (RyijxCshim + Ry jkCsitm + RhirkCs jim + Rhi jrCsicim) - (4.3)

Using (2.36) in (4.3) we obtain

(C-Rnijkim = 8" (RyijkCshim + Rur jtCsitm + RhirkCs jim + Rhi jrCateim)
= (R R)nijim

1 K
= 5 O(S R)ijam + CENCE
1

) (&hiAmijk — &rmAiiji — gitAmhjk + &imAinjk
+  8jtAmkni — & jmAlkhi — 81dAm jni + kmAljhi), (4.4)

35

O(8,R) hijkim



where
Apijk = SjRyi k. 4.5)
Applying, in the same way, (2.36) in (4.2) we get

(R : C) hijklm — grs (Criijshlm + Chrijsilm + Chirkstlm + Chiersklm>
1

= (R-R)nijkim — p— RpkimSij — RjnimSik + RjitmSnhk
—  RiitmSnj + RijimSnk — RujimSik + RinimSij — RikimSh
+ 8ijSiRshim + 8nkSiRsitm + niSi Rs jim ~+ 8ijShRskim

— 8ikSRsnim — &njSiRsitm — 8ikSyRs jim — &h ijRskzm]

K
+ (m—1)(m—2) [Rkhlmgij = Rjnim8ik + Rjitm&nk

= Riitm&nj + Rijim&nk — Rujim&ik + Rukim8ij — Rikim&h j}

1
= (R-R)pijiim— ——= [gij(Akhlm + Ankim) + &hkc (A jitm +Aijim)

m—2
— 8ik(Ajnim + Anjim) — 8nj(Aitm -I-Aikzm)} (4.6)
and so
(R-C—C-R)pijkim = ;Q(S,R)hjjklm — x (&, R)hijkim
m—?2 (m—1)(m—2)
- ﬁ (8niAmijk — hmAtijk — &itAmhjk + gimAlnjk

+  gjiAmkni — & jmAikhi — 8kiAmjhi + &kmAljhi)

1
- |8 (Akhim + Ankim) + nk (Ajjitm + Aijim)

— ik(Ajnim +Anjim) — 8nj(Akiim +Aiklm)] . 4.7)

Theorem 4.3 [31]. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor

field P is hybrid and tr P is constant . Then we have
1
RC-CR = [Z (2c+rrp)] 0(g,R)

- [% (2c+trP)] 0(g,C)

1

= gQ(SvR)

1
= 05.0) (4.8)

Proof. Using (4.1) and (4.5) for a 4-dimensional 1.c.K-space form, we have

3
S,’j:Z (2c+trP)gl~j, 4.9)

36



3
Apijk = 1 (2¢+1tr P) Rpijic

O(S.R) = (2¢+1r P) O(.R),

Kk =32c+1trP)
and so

8ij(Aknim +Ankim) = 0, gk (A jitm +Ajjim) = 0,

ik (A jnim + Anjim = 0, 8hj(Akitm + Aikim) = 0.

Now the equations (4.6) and (4.4) reduce to

(R-C)pijiim = (R R)pj jkim (4.10)

and
1
(C-R)nijkim = (R R)pijkim — L_l (2c+1tr P)] O(g,R) i jkim> (4.11)
respectively. Hence we get
1
R-C—C-R= 2 (2¢+tr P) Q(g,R).
Now using (2.36) and (4.9), we get
1
C:R—Z(2c+trP)G 4.12)

and so O(g,R) = Q(g,C). This completes the proof. [

Theorem 4.4 [31]. Let M(c) be an m-dimensional (m > 4) L.c.K-space form. If the

tensor field P is hybrid, tr P is constant and P is proportional to g, then we have

6(m—2)tr P]

R-C—C-R = m+2)c+ O(g,R)

mﬂ

1

- —D[(m—l—Z)c—F

W] 0(g,C)

L s (4.13)
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Proof . In view of Theorem 4.2., we have P = g if and only if M(c) is Einstein.

Then the equations (4.6) and (4.4) reduce to

(R-C)pijiim = (R R)pj jkim (4.14)
and
(C-R)pijim = (R-R)nijkim
1 6(m—2)tr P
- m[(”ﬂrz)ﬁ'—} O(&;R)nijkim: (4.15)
respectively. Thus we have
1 6(m—2)tr P
R-C—C-R:—[ 2 —] ,R
By using (2.36) we have
1 6(m—2)tr P
:R—————[ 2 ——————] 4.16
C Tom—1) (m+2)c+ ” G (4.16)
and so Q(g,R) = Q(g,C). This completes the proof. [ |

Theorem 4.5. Let M(c) be an m-dimensional (m > 4) l.c.K-space form and the tensor

field P is hybrid. Then we have

o(m—2)—PBtrP

(m—=2)(R-C—C-R)pijim = 1 Q(gaR)hijklm

+ B{Q(P R)nijiim + — Q(g> P)pijiim

2] B Dun) U i (e Bon— Din) I 7 )
— (¢ Py — D) (J A )itk + (¢ Poom — Dion) (I A )i

— (¢ Py~ D) (I Ag)mije+ (¢ Py — Dig) (J A ) hum

+ (¢ Py —Djt)(J Ag)himk + (¢ Py _Dkl)(J/_\g)hijm]
I o~ _ L
g[ghm(P/\P)zijk+gim(PAP)h1jk+gjm( A P)nitk

k(P AP ijt — 1t (P AP mijk — 8it (P APk
)

N

— gi(PAP)himk — gu(PAP hum]
C ~_ ~_
E[ij(P/\g)hilm+Jhi<P/\g)jklm]
1

+ E[ij(D/_\g)hilm+Jhi(D/_\g)jklm]}a 4.17)

where o = %[(m—i—2)c—|—3trP], ﬁ - %(m—4) al’lle‘j :Plsﬁ;]
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Proof. Now substituting (4.1) into (4.6), (4.4) and (4.7), we get

B
(R-COpijim = (R-R)nijkim — —= | 8ij (Enkim + Exhim) + 8nk (Eijim + E jitm)

m—72
gik(Enjim + Ejnim) — &nj(Eikim +Ekizm)], (4.18)
o BtrP
(C-R)pijkim = (R-R)pijkim — mQ(g:R)hijklm + = 1) (m—2) (g, R)nijkim
- %Q(P,R)hi (L a— (&nEmijk — 8nmEiijk — it Emn jk
+  gimEnjk + & jtEmini — & jmEikni — 8kiEmjni + 8kmEljni) 4.19)
and so
o(m—2)—BtrP
(m—=2)(R-C—C-R)pijxim = ( ) Q(8,R) i jkim + BO(P,R) hijkim

m—1

B |8niEmijk — &rmEiijk — itEmnjk + &imEin jk
8 j1tEmkni — & jmEikni — &kiEmjni + rmE1 jhi

—  8ij(Exnim + Entim) — &nk(E jitm + Eijim)

+  &ik(Ejnim + Enjim) + &nj(Exitm + Eitam) |-~ (4.20)
Furthermore we have
Enim = PRsm
C ~ ~ ~
= 7 (Pun8ii — Pri&km + Pamdii — Puidion — 2Pnicdim)
+§(PP P2, — PyPon — gimP?
7 \Fhm %t + 8k1Pim — PhiPrm — &kmPip)
1 ~ - - o
-1 (PunPra +Jx1Dum — Pt Pim — JimDni — 2PuicPim — 2J1mDpi), (4.21)

where Pl%- = P’F;;. Then we have

Eniim + Exnim = PyRskim + B Rshim
C
= 1 (Pun8ii + Pem&hi — Pra8hm — Priiom)

+  (Pundit + Pondnt — Pt — ﬁhljkm)]

3
+ Z(Pf%mgkl +Pk2mghl _szlghm _P}%lgkm)

1
-7 (DimJxi + DimIni — Diadim — DiniJiom)- (4.22)

Substituting (4.21), (4.22) into (4.20) and using (2.34), (2.35) and Lemma 2.1., we ob-
tain (4.17). [ |
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Theorem 4.6 [31]. Let M(c) be an m-dimensional (m > 4) L.c.K-space form such that
the tensor field P is hybrid. If the relation (2.49) is fulfilled on % C M(c), then at

every point of %c we have
PiRyijk + PiRgin + PiRyinj = . (4.23)
Proof. The left side of the equation (2.49) in local coordinates takes the form
8" (RyijkRsnim ~+ Rpy jkRsitm ~+ Rhirk Ry jim + RhijrRskim)

—  (SinRumiji + S1iRpm ji + S1jRnimk + SixRhi jm — SmnRii jk

SmiRni jk — SmjRnitk — SmiRnij1) = L1 Q(8,C)nijkim
and contracting with g"/ we get
SR skim + SiRsnim = SiRskhm + 1 Rshiem — SyRskni — Sy Rshii (4.24)
and substituting (4.1) into the above equation we have
PyRskim + PeRspim = Py Rnm + Py Rt — PRkt — PRk - (4.25)
Summing (4.25) cyclically in h, I, m, we have

3(PyRskim + P/ Rskmn + Py Rskn1) = Py (Rgnii + Rsimk) + P (Rshiem + Rmnk)

— By (Rgxn + Rsnik)»
which yields
3(PyRskim + P/ Rskmn + Py Rskn1) = —Py Rykim — P} Rgkmn — Py Rskchi - [ |

Theorem 4.7. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor field
P is hybrid and tr P is constant . If the relation (2.49) is fulfilled on %c C M(c),
where Ly is some function on %c, then M(c) is pseudosymmetric with the function

Lg =Ly +3(2c+1trP).
Proof. Using (4.9) and (4.12) in (2.49), we have

R-R— Z(2c~|—tr P)Q(g,R) =L,0Q(g,R)
and so

R-R=[L;+ %(2c+tr P)|O(g,R). (4.26)
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This completes the proof. |

Theorem 4.8. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that the
tensor field P is hybrid, tr P is constant and the tensor field P is proportional to g . If

the relation (2.49) is fulfilled on %c C M(c), where Ly is some function on ¢, then
6(m—2)

M(c) is pseudosymmetric with the function Ly = Ly + %[(m +2) c+ ="~ 1trP|.
Proof. In view of Theorem 4.2., we have
1 6(m—2
S:Z[(m+2)c+MtrP]g 4.27)
m

Substituting (4.27) into (2.49) and using (4.16), we get

R-R = Hm+2) e+ e Plo(e R) = Li0(s R
and so
R-R= [Ll +%[(m—|—2) c+@trﬂ O(g,R). (4.28)
This completes the proof. |

4.2 Ricci-pseudosymmetric Locally Conformal Kaehler Space Forms

In this section, some properties of Ricci-pseudosymmetric l.c.K-space forms are
presented. Firstly, we consider Ricci-pseudosymmetric l.c.K-space forms satisfying
(2.50). After that, Ricci-pseudosymmetric l.c.K-space forms satisfying (2.49) and
(2.50) are studied.

Theorem 4.9. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-
space form. If the tensor field P is hybrid and the condition (2.50) is fulfilled for L, # 0
at x € UsN U, C M(c), then

PyRyiji + PjRyikn + P Ryinj = 0, (4.29)
PyCyijic+ PiCrig + P Cripj = 0, (4.30)
C-P=0, (4.31)
a%%zwwgm (432)
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where o = %[(m+2)c+3trP] B = %(m—4),a: (m—2)Ls+ma+ﬁ”P and

m—1

_ mo242 o B tr P+B2 tr(P?) a+BtrP a+BtrP

Proof. In local coordinates (2.43) takes the form
SiRyiji +SiRenjk = Ls(gn;Sik — &niSij + &ijSnk — 8ikShj)- (4.33)
Summing cyclically (4.33) in h, j, k we obtain
SiRrijk + SRrikn + SiRyinj = 0. (4.34)
Now substituting (4.1) into the above equality we have
SiRviji + SiRrikn + SiRyinj = %[(m +2)c+3 tr P)(Rpijk + R jikn + Riinj)
+ %(m —4)(PRyiji + PiRyitn + Py Ryinj).-

Using the Bianchi identity we obtain (4.29).

Now applying (4.34) in (2.36) we get
SiCrijk +SiCritn +SiCrinj =0 (4.35)

and using (4.1) we have (4.30).
The relation (2.50) in local coordinates takes the form

8" (CrijiRshim ~+ Chr jiRsitm ~+ ChirkRs jim + ChijrRsiim)

= L, (Sthmi ik — SumClijk + SiuCrmji — SimChijk + S j1Chimk

S imChitk + Sk1Chijm — SkmChi jl) (4.36)
and contracting (4.36) with g we get
0 =Ly |S;(Crijm~+Crjim) + S, (Crirj + erli)] (4.37)
and by the assumption L, # 0, we obtain
S1Crijm +SpCritj + S;Crjim + S;Crjii = 0.
Using (4.35) we have

(C-8)ijim = SiCrjim +SiCritm = 0. (4.38)
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Now substituting (4.1) into (4.37) we have

Lz{%[(mﬂL 2)c+3trP)| [(Clijm + Cjim) — (Ciji "‘ijil)}

+ z(m —4) [Pf(Crijm +Crjim) — P (Criji + eril)} } =0
and so
P/ Cyijm~+ Py Critj + P Crjim + PyCrjii = 0.
Now applying (4.30) we have
(C-P)ijim = P Crjim + P;Critm = 0.

In view of (2.36) we have

. A | >

K
(m—1)(m—2)
Applying (2.43) and (4.38) we get

Q<g752—[(m—2)Ls—|— x }S):o.

m—1

Using (Lemma 2.4(i) of [16]) we obtain

$=[m-2L+—"]s+2g,  AeR

m—1

Now Substituting (4.1) into (4.39), we obtain (4.32). This completes the proof.

(4.39)

Theorem 4.10. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-

space form. If the tensor field P is hybrid and the condition (2.50) holds for Ly # 0 at

X E UsN\U C M, then

(mLS — (mot+trP ﬂ)Lz)P[Cn-jk = (tr PLs—(atrP+p tr(Pz))Lz) Ciiji (4.40)

at x, where o = L[(m+2)c+3tr Pl and B = 3(m—4).

Moreover, if Ls = T L at x, then

1 tr P
ir(P) = glatr P £
m

Proof. In view of (4.39) and (4.35) or (4.38) we get

).

2 2 2
SirCiix + 85 Citn + S Cinj = 0,
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C-$>=0. (4.43)
Transvecting (2.50) with Sg we get
grs [S;yanlhsCrijk + S?leischrjk + SZZlejsChirk + S?}lekschijr]

= Ly (Sth;Cri ik +SiS,Chrjkc + S j1SpChirk + Skt SpChijr

2 2 2 2
ShpCiijk — SipChtjk — SpChitk — Skpchijl) :

Now symmetrization in p, I, we have

grs [(SZllehs + S?Rmphs)crijk + (SZlleis + S;ﬂRmpis)Chrjk

+  (SyRmijs +S7"Rmp js) Chirkc + (S Rnties + 87" Rupis ) Ci jr]
- L [(SMS; + SpST)Crigic+ (S + SipST) i+

+  (SjSp, +SpS1)Chirk + (SkaSp + SkpSi) Chijr

— S2Clijk = SinCoijk — SoiCrijk — SiChpjk

2 2 2 2
SpiChitk = S1;Chipk — SpkChiji — SiiChijp | -

In view of (2.43) we get

Ls|8pnS)Crijk + 81nSpCrijk — 8piS; Crnjk — 81iS pCrijk

+ 8pjSiCrichi + 8178, Crini — 8 pkeSi Crjni — 81k SpCrini
— S1nCijk — SpnClijk — S1iChp jk — SpiChi jk

—  81iChipk — SpjChitk — SikChijp — SpkChi jl]

= Lo |(SuS), + SupSi)Criji+ (SuSy + SipST)Chrji
+  (SiS, +SipST)Chirk + (Sk1S), + SkpSi )Chijr

— S34Cuijic = SiiCpijk = SpiCiijk — STChpj

B Slzﬂjchﬂk - S,chh,-pk - S}zvkchijl — SiChi jp] . (4.44)

Contracting (4.44) with ghp and using (4.35), (4.38), (4.42) and (4.43) we obtain
Ls(mS|Cyiji — KCiijt) = La(KS;Cpiji — tr(S*)Crijn)- (4.45)
In view of (4.1) we have

tr(S?) = 8,8 = ma* +2 o B tr P+ B% tr(P?) (4.46)
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and

K=mo+ptrP. (4.47)
Applying (4.46) and (4.47) in (4.45) we obtain (4.40).
Finally, if Lg = ng, then (4.40), in view of C #0 and L, # 0 at x, yields
tr(Pz):%(a trp — KUY, [
The following proposition is based on ( [32], Lemma 3.1.).

Theorem 4.11. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-
space form. If the tensor field P is hybrid and the conditions (2.49) and (2.50) hold for
Ly # 0 at x € Us "\ then

(m—1)Lg(R-P) = |a(oo—mLs)—BtrPLs|Q(g,P)

+ Q(aBg+B*P.P?), (4.48)

where o = %[(m+2)c+3 trP] and p = ?T(m—4).

Proof. Contracting (4.33) with g we find
T;j = S Ryijs = S;; — mLsSi; + KLsgij. (4.49)
Applying the operation R- to the equation (4.49), we obtain
(R-S)rsmR7;* + 8™ (R R)yijshk = (R-S%)ijnk — mLs(R - S) i jnk. (4.50)

In view of (2.43), (2.49) and S™C,;j; = 0, which follows immediately from (4.38), the

left hand side of this identity is equal to
Ls(SiRyjin +SiRyijn — SpRyjik — SiRyijk)
2 2 2 2
+ SR+ SRk — SirRjin — S Rijn
+ SinTix — SikTjn+SjnTix — S ji Tin
—  Li(8;Cyjin + SiCrijn — SCrjik — SpCriji)-
Using twice (4.35) and next (4.38) we can easily see that the expression in the last

brackets vanishes. Moreover in view of (4.34), we have

SRy jin — SpRrjik = —Si Ry jnk
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and using S,%erjk + S%rR{kh + S,%rR{hj =0, we get

2 pr 2 pr__ 2 pr Q2 pr
SirRiik — SirRjik = —SiRjin = SirRjpge-

Taking into account all these identities one can easily see that the left hand side of

(4.50) can be written as follows:
—Ls(R-S)ijnk + (R-S%)ijnk + SinTix — SacTjn + Sjn T — S Tin.
Substituting this expression into (4.50) we obtain
(m—1)Ls(R-S)ijnk = SuTjn — SinTjx + S jxTin — S jn Tik.- 4.51)
In local coordinates, (5.12) takes the form
PyR,iji + P/ Ry jx = Ls(gnjPik — gniPij + 8ijPuk — &itPaj) (4.52)

and contracting (4.52) with ghk and using (4.1), we have

P"Ryijs = aP;j+ PP — mLgP,j +trP Lsg;; (4.53)
and
Tjh - SrSRrjhs - agrerjhs + ﬁPrSRrjhs
= OCth + ,BPrSRrjhs-

Using above equation we have

(m—1)Ls(R-S)ijikc = BP"RyjnsSik — P"RyjisSin

+ PrSRrihsSjk — Preriksth)

and so
(m—1)Ls(R-P)ijnk = P"RyjnsSik — P Ry jksSin
+ PrSRrihsSjk _PrSRriksth' (454)
Applying (4.53) and (4.1) in (4.54), we find (4.48). [ |

Theorem 4.12. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-
space form such that the tensor field P is hybrid. If the conditions (2.49) and (2.50)
hold then on %s N\ %, we have
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a(La—1)~L1] Q(g,R) +B(La—1) Q(PR)

=P o) [tap et E )] (4.55)
and

(L2 = 1)(7 P R+ P R + 25 [ (Lo = 1) = Ly | Ry

= B(LZ - 1)(PmkPl] _ijPik)
Ly — 1)+ (m— 1)1'] (8ijPuk — 8ikPmj)
a(ly—1)—Li + T] (8mkP;j — &mjPik)

[
F (Lo = 1) = L) = 1Pt (gmsix — 8misis) (4.56)

+ - -

=

where o= 1[(m+2)c+3trP], B=3(m—4) and r:ﬁ[Lz([S o+ )L —
Ls|.

Proof. The Weyl curvature tensor C can also be presented in the following form:

1 K
=R— U G
G m—?2 +(m—1)(m—2) ’

where

Uhijk = &nikSij — &njSik + &ijShk — &ikShj- 4.57)

Applying the operation R- and in view of (2.43) we get

(R-Unijim = &hk(R+S)ijim — 8nj(R-S)ikim + &ij(R - S)niim — ik (R - S) njim
Ly (gth(& S)ijim — 8njQ(&,S)ikim

+ 8ij0(8,S) hiim — gikQ(gvs)hjlm)

—Lg (Sil Grmji + S jiGhimk + SkiGhijm + ShiGmijk

— SimGuijk — S jmGhitk — SkmGhiji — S Gii jk)

= —LsO(S,G)nijkim

= LsO(&,U)pijkim- (4.58)

Substituting (4.1) into (4.57) we have
Unijk = 20Griji+ BUpiji (4.59)
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where

ﬁhijk = gnkbPij — &njPir + &ijPuk — &ikFhj- (4.60)
Using (4.59) we get
(R-U)hijeim = B(R-U ) hijiim (4.61)
and
(R-U)ijiim = —LsQ(P,G)pijim = LsO(8, U ) i jiim- (4.62)

Moreover, using (2.36) we obtain R-C =R-R — ﬁR -U. Substituting (4.58), (2.49)
and (2.50) into (4.62) we get

1
L,Q(S,C) = Q(S,R)+L1Q(g,C)—mR-U (4.63)

and using (4.1) and (4.61) we have

L (aQ(s,C) +BO(P.C)) = aQ(g.R)+BO(PR)+L10(g.C)
B

- m(R-U). (4.64)
After straightforward calculations, we get
4 B /7
and
1 K
O(RC) = QPR+ —0(PU)+ =5 0(P.G)
B 200— ~ K ~

Substituting (4.65) and (4.66) into (4.64) we get (4.55).
Using (2.38) and (4.1), we obtain
" 0(g, R)ijiim = (m— V) Ryiji — OGpijt+ B(gjmPik — mPj),
&"OP.R)ijiim = tr P Rupijic+ P/ Romjic + (gitPrnj — &ijPouk)
+  B(PiBnj— PijPuk)
and
§"0(g, Wnijiam = (m—1)(8i;Puk — 8itPmj) + 17 P(gik&mj — ijgmk)
+  gmkbij — &mjPik-

Contracting (4.55) with g/ and using the above relations we get (4.56), which

completes the proof. [ |
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5. CURVATURE PROPERTIES OF LOCALLY CONFORMAL KAEHLER
SPACE FORMS

5.1 Walker Type Identities On Locally Conformal Kaehler Space Forms

In this section, we present results on l.c.K-space forms satisfying curvature identities

named Walker type identities.

Lemma 5.1 [33]. For a symmetric (0,2)-tensor A and a generalized curvature tensor

B on a semi-Riemannian manifold (M,g), n > 3, we have
O(A, B) hijkim + Q(A, B) jkimni + Q(A, B) impiji = 0. (5.1)
It is well-known that the following identity
(R-R)pijkim + (R -R) jkimni + (R - R) impijk =0 (5.2)

holds on any semi-Riemannian manifold. The equation (5.2) is called the Walker type

identity.

On any semi-Riemannian manifold (M,g), n > 4, the following three identities are

equivalent to each other [34]:

(R-C)pijkim + (R-C) jkimni + (R - C) pmhijic = 0, (5.3)
(CR)pijkim + (C - R) jktmhi + (C - R) imhijic = 0 (5.4

and
(R'C_C'R)hijklm + (R-C—C-R)jklmhi-l- (R'C_C'R)lmhijk =0. (5.5)

The equations (5.3) - (5.5) are called the Walker type identities. We also can consider

the following Walker type identity

(C-CO)pijkim + (C-C) jktmni + (C - C) i jx = 0. (5.6)
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Theorem 5.2 [35]. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor
field P is hybrid and tr P is constant. Then the Walker type identities (5.3) - (5.5) and
(5.6) hold on M(c).

Proof. In view of Theorem 4.3., we have
1
RC-CR = [Z (ZC—i—trP)] 0(g,R)
and using (5.1) we get (5.5) (equivalently (5.3) and (5.4)) .

Further, we note that (2.36) turns into C = R — MG. This gives

2c+trP
c.c = c-(R-=T"Gy—c.r
2c+trP 2c+trP
— R=TG) R=RR= 0 R). (5.7)
Now using (5.1) and (5.2) we complete the proof. [ |

Theorem 5.3 [35]. Let M(c) be an m-dimensional (m > 4) L.c.K-space form such that
tr P is constant, the tensor field P is hybrid and is proportional to g, then the Walker
type identities (5.3) - (5.5) and (5.6) hold on M(c).

Proof. In view of Theorem 4.4. and (5.1) we get (5.5) (equivalently (5.3) and (5.4)) .

Using (4.16), we get

B 6(m—2)
c.c = c-(R—m [(m—}—Z)c—l—TtrP] G)
— C-R
B 1 6(m—2)
B 1 6(m—2)
= RR- g [(m+2)c+TtrP} 0(g,R).
Using (5.1) and (5.2), we get the result. |

Lemma 5.4 [35]. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that
the tensor field P is hybrid. Then, we have

(m—2) [(R *Cnijkim + (R - C) jramni + (R - C)lmhijk]
= —B (e A R-PDijan + (A (R-P))jumai + (¢ A R-Pnie| - (5.8)
Proof. Substituting (4.1) into (2.36), we obtain
B

—R——Y _(onP)—
C 5 enp)

o(m—2)—PtrP
(n—D(m-2)

5.9
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where @ = [(m+2)c+3trP] and = 2 (m —4) and so
RC=R-R——P_ ¢n(r-P). (5.10)
m—2

Using (5.2) the proof is completed. |

Corollary 5.5 [35]. If one of the Walker type identities (5.3) - (5.5) holds on an
m-dimensional (m > 4) l.c.K-space form M(c) and the tensor field P is hybrid, then on
M(c) we have

(A (R-P))nijkim + (8N (R P)) jttmni + (8 N (R P)) imnijk = 0. (5.11)

Theorem 5.6 [35]. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric
l.c.K-space form M(c) such that the tensor field P is hybrid. Then the Walker type
identities (5.3) - (5.5) hold on %; C M.

Proof. In view of (2.43) and (4.1), m-dimensional (m > 4) Ricci-pseudosymmetric

l.c.K-space forms satisfy
R-P=Ls0(g,P). (5.12)
Using (5.12) in (5.8), we obtain the following identity on %5
(m—2) [(R “Cijim + (R C) jtmni + (R - C) 1mhi ji
= —PBLs [(g NQO(&,P))nijkim+ (8 NQ(&, P)) jkimni + (g N Q(gap))lmhijk} :
Making use of (2.33) and (5.1), we obtain on %
(m—2) [(R *C)nijkim + (R~ C) jramni + (R C)lmhijk}

= PBLs [Q (P, G)ijtim + Q(P, G) jimhi + Q(P, G) i jk]
= 0. (5.13)

Hence (5.3) (equivalently (5.4), (5.5)) holds on M(c). |
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5.2 Roter Type Locally Conformal Kaehler Space Forms

Let B be a generalized curvature tensor on a semi-Riemannian manifold (M,g), n > 4.
We denote by Ric(B), Weyl(B) and k(B) its Ricci tensor, the Weyl tensor and the scalar
curvature tensor, respectively. The subset %p, %gic(p) and %,y (p) are defined in the

same manner as the subsets %, %s, and %, respectively.

A generalized curvature tensor B on a semi-Riemannian manifold (M,g), n > 4, is

called Roter type tensor if

B= gRic(B) ARic(B) + g ARic(B)+1 G, (5.14)

on %gic(B) N %weyi(p)» Where @, 1L and 1) are some functions on that set. Manifolds
admitting Roter type tensors were investigated in [36] [23] [17].

A semi-Riemannian manifold (M,g), n > 4, with the curvature tensor R satisfying

(5.14) on Us N C M, i.e.
R:gS/\SJr,ug/\SJrn G, (5.15)
where ¢, u and 1 are some functions on %s N %,, is called a Roter type manifold [37].
In local coordinates (5.15) takes the form
Rpijk = % (25hk5ij - ZShjSik> +u (ghkSij + 8ijShk — 8 jSik — gikShj> + 1 Ghijk-
Substituting (4.1) into the above equation we have
Ryjk = ¢ [athijk + B (g AP)nijk+ B*(PucPij — Pthik)}
u [2aGhi_jk +B(&AP)hiji
N Gpijk
and so

R=x(PAP)+y(gNP)+zG, (5.16)

where x = ¢Tﬁz,y:¢aﬁ +uP and z= o +2au +1.

An m-dimensional l.c.K-space form M(c), (m > 4), with the curvature tensor R

satisfying (5.16) on %s N % is called a Roter type l.c.K-space form.
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Using (4.9) for 4-dimensional Roter type l.c.K-space forms, we get
- 9 > 3
R= T]+Rq)(20+trP) +§u(2c+trP) G. (5.17)

Lemma 5.7 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space form
such that the tensor field P is hybrid. If at x € Us N\ %c the Weyl curvature tensor C is

nonzero, then ¢ is nonzero at x.
Proof. We suppose that ¢ vanishes at x. Now (5.16) reduces to
R=up (gAP)+ (2au+n)G. (5.18)
Contracting the above equation with g%, we have
Sij = 1B |(m—2)Py+1r P gi| + (2ap+1)(m —1)g; (5.19)
and so
I'C:(m—l)[m(20m+n)+2[3u n»P]. (5.20)

Substituting (5.18), (5.19) and (5.20) into (2.36) we obtain C = 0, a contradiction. W

Lemma 5.8 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space form
such that the tensor field P is hybrid. If ¢ is nonzero at a point x € Us N\ Yc , then we

have

p2 — %C{[htrP—l—y(m—Z)]P—l—[ytrP +z(m— 1)]g_g}’ (5.21)

2
R-P=(m=2)(3-~7)0(e.P) - Q(P.5) ~ 5-0(s.5). (522)

Proof. Contracting (5.16) with g™, we have

Sij=2x(tr PPj—P}) +y[(m—2)P,-j+trPg,-,- +z(m—1)g; (5.23)
and so we get (5.21). In view of (5.16) we have

PiRuiji = 2x(PpPij—PriPu) +y(PucPij + Piygij — PajPi — Prigix)

+  z2(Pugij — Phjgir) (5.24)

and using (2.39) we get

(RP} = 2x Q<P7P2)+y Q<g7P2)+Z Q(g,P)
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Substituting (5.21) into the above equation we obtain (5.22). |

Theorem 5.9 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space
form such that the tensor field P is hybrid. Then at a point x € s N %c at which ¢ is

nonzero we have

where
— y2
Li=(m—2) [Z - z} . (5.26)

Proof. Applying (5.16) into (2.37) we get

(R-R)nijkim = 2x|Pij(Enam + Exnim) + Puc(Eijim + Ejitm) — Pic(E jpim + Epjim)
— Pyi(Eiim + Ekilm)} +y [gi i (Enkim + Exnim) + 8nk(Eijim + E jitm)

ik (E jnim + Enjim) — 8nj(Eikim + Exitm) | » (5.27)

where

Epiji = Pyistijk =2 (P,%kpij _Pr%leik)
+ y (PuPij — PojPac+ Pry8ij — P jgin)

+ 2 (Puk8ij — Pmjgik)s (5.28)

Entim + Exnim 2x (P2, Pit — PP + P2y Pu — PoPun)

Y (PRu&ii — Ph&im + Pen&ii — Phighm)

- -

2 (Pum8ki — Pri&km + Pem&ni — Pe1&hm)

2x Q(P, P*)iam + Q(8, P*)kim +2 Q8 P)kim-

(5.29)

Now (5.27) in view of Lemma 2.1, Lemma 2.2, (2.31) and (5.29) yields

R-R = z0(3,R)—Q(2x P2 2xF)—Q(2 P2y (g/P))
2
y 9)
— ZCQ(ZXP7G)7
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where P = %P A P. Substituting (5.21) into the above equation we have
R-R = z0(8.,R)~Q([yrr P+ (m—1)dJg,2x P)

+ 05,20 P) = Q([2x1r P+ (m—2))] Py (g P))

- Q([ytrPJr(m—l)Z]g,y(g/\P))

+
()

2
S,y (gAP)) — ;—x Q([2xtrP+ (m—2)y]P,G)

n % 0(S,6) +0(8,2G) — 0(5,2G)

and so we get

RR = QSR +20(s,R)—(5-—2)0s.815)

(m—2)y*

— z(m—1)0Q(g,2x P) + Q0(g,2x P)

This completes the proof. |

Theorem 5.10 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space
form such that the tensor field P is hybrid. Then at a point x € YUs N\ %c at which ¢ is

nonzero we have

K

— J 0(g.R)

[2xzrp+ y (m— 2)] O(P.R) — 2x Q(P*,R)

(m—2)(R-C—C-R)

[Z(ytrP—kz (m—1))— p”

2 [2xtrP+y (m — 1)] [P/\ 0(g,P?) — g AQ(P,P?)
y [2xer+y(m—2)]Q(g,P)

(2x)? [P/\ 0(g,N) — g A Q(P,N)] , (5.30)

+ o+ 4+ o+

where N;; = Pl-SPszj.
Proof. Substituting (5.23) into (4.7), we get

(m—2)(R-C—C-R)pijum = {Z[y trP+z(m—1)]— %}Q(&R)hijklm

+ [ZX trP+y (m— 2)] Q(P,R)pijtim — 2 Q(P*, R) i jim
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+ |2xtrP+y(m— 2)} [glhEmijk — &mnElijic — 81iEmnjk
gmiEinjic + &1iEmkni — &mjEikni — kiEmjni + kmEijni
— &ij(Exnim + Entim) — 8k (E jitm + Eijim) + &ik (E jnim + Enjim)
ghj(Exitm + Eiklm)} —2x [gthmi ik — 8miFlijk — &iiFmh jk
gmiFinjk + &1 Fmichi — &mjFikni — 8kiFm jni + &imFljni
—  8ij(Finim + Fiim) — 8k (Fjitm + Fi jim) + i (Fjnim ~+ Fajim)
+ gnj(Fritm + Fiklm)} 7 (5.31)
where Fp,;jx = P28 Ryijk.

Using (5.28), we get

8inEmijk — 8mnEiiji — 81iEmnjk + miLnji + &1 Emkni
—  8mjEini — &Emjni + imE1jni
= 2x (P NO(g, PZ)) v +y <Q(8, P)pijrim — Q(P?, G)hijklm)
— 2 0(P,G)pijkim- (5.32)
The equation (5.16) implies
Fuijt = 2x (NyP;j — NnjPi)
+ y (PoyPj— PP+ Nukgij — Nijgix)

+ 2 (Pgij— Pojgix); (5.33)
Fgim + Finim = 2X Q(P,N) pgam +y (Q(R P?) jim + Q(g,N)hklm>

+ 208, P nim- (5.34)

Using (5.33), we get

8inFomijk — &mnFlijic — 81iFmn jic + 8miFinjk + &1jFmichi

—  &mjEikni — gkiFmjni + kmFijni

= 2 (PAQ&N)), .+ ((PAC(E P ijin — QN G

— 20(P*,G)ijiim- (5.35)

Substituting (5.29), (5.32), (5.34) and (5.35) into (5.31) and using (2.32), (2.33) we ob-
tain (5.30). |
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5.3 Bochner Curvature Tensor On Locally Conformal Kaehler Space Forms

In this section, the Bochner curvature tensor in l.c.K-manifolds and l.c.K-space forms
are presented. Moreover, some properties of the Bochner curvature tensor in an

l.c.K-space form are obtained.

The Bochner curvature tensor in a Kaehler manifold M™(J, g) is defined by [39]

1 ~_
B = R———(SAg+SAJ
m+4( g+SAJ)

K —
+ Ng+JINT), 5.36
2(m—|—2)(m—|—4)(g & ) (5.36)
where §,-j = S,-ri’-.
Using
Rystg{ I3 T30 = Rijnk, (5.37)

the Bochner curvature tensor in a Kaehler manifold has been generalized into an almost

Hermitian manifold which is given by [40]

£ K .
B=R—(TNg+TnrJ)+ BgAng—JnJ), (5.38)
8m(m —

where

(5.39)

Tj =T}, Zijk = Rijrs}J} — Rijnk,  Sij = Sij+Zij, &= Sn8".

Theorem 5.11. In an m-dimensional I.c. K-manifold the Bochner curvature tensor is

1
B;; = R——|(SA
ijhk 4 (Sng)+

(

3(m—3)< 3(m—4)

4(m+4) 4(m+ )

2mi —3(m* +2m+8) tr P
dm(m+2)(m+4)

—2mk + (m> —6m+8)trP, _

dm(m+2)(m+4)

§77)

/\g)+

3 ~
T mid) (KNg), (5.40)

where K;; = P,.J and K;j = P J[ TS .
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Proof. In 1.c.K-manifolds we have [2]

Zijnk = RijrsJpJy — Rijnk

= Pigin— Pingik + Ping jk — Pix& jn

+ P Jidin— PirJyJix + Pirdid jk — Pird i -

Contracting the above equation with g'* we get
Zjh = —(m— 3)Pjh —trngh —I—Prs.];]i )

In view of (5.39) and (5.42) we get

(TAg)+(TAJ) = mLH[(SAg)Jr(ﬁJ)]
3(m—3) 3(m—4), -
S e (GOORE i GOY)
K 3trP 3(m—2)trP
K (mm+mwﬂ4y+qm+@_4mﬂaxm+®

—K 3trP 3(m—2)trP
4 (ﬂm+2ﬂm+4) A(m+4) " 4(m+2)(m+4)

3 ~
— —— (KA
2(m+4)( g)
and we also have
K—K - tr P =
—BgNg—JInNS)=——BgNg—JnJ).
8m<m_2)( gNg—INS) == (3gNg—InJ)

Substituting (5.43) and (5.44) into (5.38) we obtain (5.40).

(5.41)

(5.42)

) (ere

(JAJT)

(5.44)

Theorem 5.12. Let M be an m-dimensional l.c.K-manifold such that the tensor field P

is hybrid. Then the Bochner curvature tensor is given by

B — R—ﬁ((mgw(ﬁn)

3(m—4) ~_

m((P/\g)—(P/\J))

2mKk —3(m* +2m+8) tr P
dmmt(m+d) 8N

—2mk + (m* —6m+8)trP, _
mmt mid) )

_|_

_|_

_|_

Proof. Contracting (5.41) with g’ we get

Zjh = —(m—4)Pjh—trngh.
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In view of (5.39) and (5.46) we get

(TAG)+(TRJ) = ﬁ((S/\g)—F(g/:\J))
_ M((P/\g) (Pij))

4(m+4)
3trP 3(m—2)trP
(2 m+2 m+4) + 4(m+4) B 4(m+2)(m+4)

) er)

3trP 3(m—2)trP U
2(m+2)( m—|—4) C4(m+4) " A(m+2)(m+4) A
(5.47)
Substituting (5.44) and (5.47) into (5.38) we obtain (5.45). [ |

Theorem 5.13. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then the Bochner curvature tensor is given by
B=R+A(gNg)+Y(RJ), (5.48)

where

a  2mk—3(m>+2m+8)trP
m+4 dm(m+2)(m+4)

Y

o N —2mk + (m* — 6m+8) tr P
m+4 dm(m+2)(m+4)

’)/:

and o = f[(m+2)c+31tr Pl

Proof. Using (4.1) into the (5.45), we get

a  2mk—3(m>+2m+8)tr P
md T dmimt2)(m+4)
a —2mk + (m* — 6m+8) tr P
mtd T dmmt2)(mtd)

Bijnk = Rijn+ [— ] (2gikgjn — 28ing jk)

+ [ ] (2Jid jn — 2Jind jre — 4 jInk ) -

Using (2.30) we obtain (5.48). |

Theorem 5.14. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then we have
R-B=R-R+2yT (5.49)
and

B-R=R-R+2A Q(g,R)+2yT, (5.50)
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where

Thi jkim

Thijkim

and Vijlm = Jfstlm-

Jij(Vitm — Vinim) + Ik Vijim = Viitm)
Ji(Vinim = Vijim) +InjVeitm — Vikim)

2J ik Vinim = Vaitm) + 2D5i(Vicjim — Vjkim) (5.51)

(thvmijk + Vi jk + JitVianjk — JimVinjk
Ji1Vikni +J jmVikni + It Vinjni — kavljhi)

2J1m (Vhijk — Vinji + Vikni — Vi jni) (5.52)

Proof. Using (2.37) and in view of (5.48), we get

(R - B) hijkim

and

(B R) i jkim

This completes the proof.

grs (Briijshlm + Bhrijsilm I Bhirkstlm P Bhiersklm)

(R - R) pijkim + 2 Thi jkim (5.53)

grs (RrijkBshlm + thjkBsilm + Rhirkstlm + RhijrBsklm)

(R R)pijkim +22.0(8, R)pijiim +2¥ Thijiim- (5.54)

Theorem 5.15. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then the following three equalities are equivalent :

(R-B)pijiim + (R B) jkimni + (R - B) imhiji = 0, (5.55)
(B R)pijkim + (B R) jkimhi + (B - R)imhijk = 0 (5.56)
and
(R-B—B-R)pijkim+ (R-B—B-R) jxymni + (R-B— B R)jpijx = 0 (5.57)
on M(c).
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Proof. We set

hijam = JijVikam — Vinwm) +Ink(Vijim — Vijitm)
Jit(Vintm = Vijim) +Inj(Veitm — Vikim)
Jit (Vimni = Vnjni) +Jjm(Vitni — Vikni)
Jem(Vijni = Vitni) +J it (Vinkni — Vimhi)
JmhViiji = Vitjx) + I (Vi jk — Vimji))
Iimi Vit jk = Vinji) +Jin (Vimjk — Vini ji))
2J ik (Vintim = Vitm) + 20 (Vijim — Vikim)
2J1m (Vi jni = Vikni) + 2J jk(Vinini — Vimni)

2034Vt je = Vimjr) + 2J1m(Vinjk — Vnijie) - (5.58)

+ + 4+ + + 4+ + o+

Symmetrizing (5.49) with respect to the pairs (h,1), (j,k) and (I,m) and applying (5.2)

we obtain

(R-B)pijiam+ (R-B) jkimni + (R-B)imnijic = 2V (Thijkim + Tikimni + Timhi jic)

= 2V Dhijiim- (5.59)
In the same way, using (5.50) and applying (5.1) and (5.2) we have

(B-R)nijkim+ (B R) jramni + (B-R)imnije = =2V (Thijiam + Titimni + Timni jic)

= =2Y Dhijkim- (5.60)
From (5.59) and (5.60) we get
(R-B—B-R)pijkim+ (R-B—B-R) jximni + (R- B — B R) i jx = 4Y “hijkim- (5.61)

This completes the proof. [

Theorem 5.16. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then we have

(B B)nijkim = 2(R-B)pijkim — (R R)pijkim

2(A—7) [Jij(‘lxg)hklm +Jik(JA ) jhim

k(I A 8)ijim +Inj(J A &) itm + 2J jt(J A &) inim

274i(J Kg)kjlm]- (5.62)
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Proof. In view of (2.37) and using (5.48), we get

(B-B)nijiim = & (BrijkBshim + BhrjkBsitm + BhirkBs jim + Bhi jrBskim)
= (R-B)nijiim + 27 |Jij Viim — Vi) + I Vijim — Vjitm)
+ JaVinim = Vijim) +Inj Vaitm — Vikim)
+ 205k Viim — Viritm) + 2J0i (Vi jim — ijlm)] , (5.63)
where \Zﬂm = JiByjim-

Furthermore in view of (5.48) and using (2.34) we have

Vikim = Vinim = I3 [Rsklm + 24 (gsm8rt — &si&km) +2 Y(JsmI — JstJkm — 2Jsk~]lm)}
- [Rshlm + 24 (gsm&ht — 8s518hm) +2 Y(Jsmdni — T hm — ZJSthm)}

= Vikim — Vienim +2(A =) (J A &) nkim- (5.64)

Substituting (5.64) into (5.63), we get

(B-B)pijkim = (R~ B)pijiam +2 ?’[Jij(thlm — Vienim) + Ik (Vijim — Vijitm)
+ T (Vinim — Vijim) + Inj(Viitm — Vikim) + 2J ik Vinim — Viitm)
+ 25 (Vijim — ijlm)} +2(A—7) [Jij(fK ) nkimik (T A &) jhim
+ T (TAE)ijim +Inj (I A &)kitm + 2T jk(J A &) inim
+ 20 R Ekjim |- (5.65)
Using (5.49), we obtain (5.62). [ |

Theorem 5.17. Let M(c) be an m-dimensional (m > 4) pseudosymmetric l.c.K-space

form such that the tensor field P is hybrid and tr P is constant. If the condition
B-B=130(g,B) (5.66)

is fulfilled on %p = {x € M(c) | B # 0 at x}, where Lg is a function on g, then M(c)

is Einstein.

Proof. Using (5.62) we have

LpQ(8,B)nijtim = 2(R-B)nijkim — (R R)pijkim

2(A =) [Jij(fK nkim +Jik(J A ) jhim

Jnk (SN )ijim +Inj (I A &)kitm + 2J 5 (J A &) inim

201i(J R )ijin] - (5.67)
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Now in view of (2.42) and (5.49) we get

LeQ(&,B)nijkim = LrO(&:R)nijkim +4Y Thijkim
2(A —7) [Jij(-]/_\g)hklm +Jik(J A g) jhim
Ik (T A Q)ijim +Inj (I A &)kitm =+ 2T jk(J A &)inim

2Jhi(JKg)kam] : (5.68)

+ 4+ +

Contracting (5.68) with g/ and g/ we get
Lp(—mSy + kgu) = Lr(—mSy + Kgk). (5.69)
Substituting (4.1) into the above equation we get
(Lr — Lp)(—ma +K)gi = (Lr — Lp)(—ma + k) Py,

where @ = {[(m+2)c+31r P).
Using the fact that Lg # Lg we obtain

tr P
Py = —2gu
m

which means that the tensor field P is proportional to g and in view of Theorem 4.2,

M(c) is Einstein. |

63






6. CONCLUSIONS AND RECOMMENDATIONS

Let M be a real 2n-dimensional Hermitian manifold with structure (J, g), where J is
the almost complex structure and g is the Hermitian metric. The manifold M is called
a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has
an open neighborhood U with a positive differentiable function p : U — R such that

g* = e ?Pg |y is a Kaehlerian metric on U.

An 2n-dimensional 1.c.K-manifold is a Hermitian manifold admitting a global closed
1-form o (Lee form) whose structure (J,g) satisfies ViJ;; = —Bigkj + Bjgki — 0tk +
ojJyi, where B; = a’J,; and V denotes the covariant differentiation with respect to the

Hermitian metric g.

An lLc.K-manifold M(J,g,a) is called an Lc.K-space form if it has a constant
holomorphic sectional curvature. We give a generalization about the results of an
l.c.K-space form and invariant submanifolds of l.c.K-space forms with the tensor field

P is not hybrid.

It is proved that for a 2n-dimensional l.c.K-space form M(c), if the tensor field P is
proportional to g and ¢r P is constant, then M(c) is Einstein. The Sato’s form of the

holomorphic curvature tensor in an l.c.K-manifold are presented.

Some results on pseudosymmetric and Ricci-pseudosymmetric 1.c.K-space forms are
obtained. It is proved that for 4-dimensional l.c.K-space forms such that the tensor
field P is hybrid and ¢r P is constant, R-C — C-R = [§ (2c +tr P)] Q(g,R) and for
m-dimensional (m > 4) with the tensor P is proportional to g in l.c.K-space forms

R-C=C-R= gl [(m+2)e+ 202 o (g R)

m
Furthermore, we present results on l.c.K-space forms satisfying curvature identities
called Walker type identities. It is proved that a 4-dimensional l.c.K-space form such
that the tensor field P is hybrid and 7r P is constant satisfies Walker type identities.
We introduced the Roter type l.c.K-space forms. If P is hybrid, it is proved R-R =
O(S,R)+L;Q(g,C) in m-dimensional (m > 4) Roter type 1.c.K-space forms.
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Moreover, we present a generalization about the Bochner curvature tensor in an
l.c.K-manifold with the tensor field P is not hybrid. Moreover, we state the Bochner
curvature tensor in an l.c.K-space form. Furthermore, Walker type identities for

Bochner curvature tensor are studied.

In the future, we aim to study the Bochner pseudosymmetry in l.c.K-manifolds, the
l.c.K-space forms which satisfy some properties of the Bochner curvature tensor and

some properties of Roter type l.c.K-space forms.

Furthermore, some properties of pseudosymmetric and Ricci-pseudosymmetric
l.c.K-space forms will be studied. Moreover, we are going to work hypersurfaces of
l.c.K-manifolds and 1.c.K-space forms. Later on, as a natural extension, we are going

to study pseudosymmetric hypersurfaces of 1.c.K-manifolds in the sense of Deszcz.
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