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PSEUDOSYMMETRIC LOCALLY CONFORMAL
KAEHLER MANIFOLDS

SUMMARY

Many particular classes of almost Hermitian manifolds have been intensively studied.
Among them, almost Hermitian manifolds whose metric is globally conformal to an
almost Kaehler metric have been also encountered. But, obviously, these manifolds
have the same topological properties like the almost Kaehler manifolds. Therefore, it
is interesting to study almost Hermitian manifolds which are only locally conformal
to an almost Kaehler manifold. The notion of a locally conformal Kaehler manifold
(l.c.K-manifold) in a Hermitian manifold has been introduced by I. Vaisman in 1976.

After that T. Kashiwada has determined a necessary and sufficient condition that a
Hermitian manifold is an l.c.K-manifold by using the tensor equation and introduced
the curvature tensor of an l.c.K-manifold with a constant holomorphic sectional
curvature (an l.c.K-space form). Furthermore, T. Kashiwada and K. Matsumoto gave
some properties about such a manifold. Then we can see a lot of papers about these
manifolds and its submanifolds.

Moreover, M. Prvanović found a tensor of Kaehler type for an almost Hermitian
manifold and proved that this tensor reduces to the Riemannian curvature tensor R
in an almost Kaehler manifold. In addition, the author determined the holomorphic
curvature tensor of an l.c.K-manifold and introduced Riemannian curvature tensor in
an l.c.K-manifold with a constant holomorphic sectional curvature such that the tensor
P is not hybrid.

A Hermitian manifold M with structure M(J,g) is called an l.c.K-manifold if each
point p ∈ M has an open neighborhood U with a differentiable function ρ : U → R
such that g∗ = e−2ρg |U is a Kaehlerian metric on U .

An 2n-dimensional l.c.K-manifold is a Hermitian manifold admitting a global closed
1-form α (Lee form) whose structure (J,g) satisfies

∇kJi j =−βigk j +β jgki−αiJk j +α jJki,

where ∇ denotes the covariant differentiation with respect to the Hermitian metric g.

An l.c.K-manifold M(J,g,α) is called an l.c.K-space form if it has a constant
holomorphic sectional curvature.

A semi-Riemannian manifold (M,g) satisfying the condition ∇R = 0 is said to be
locally symmetric. These manifolds are first studied and classified by E. Cartan in the
late twenties.

A semi-Riemannian manifold (M,g) satisfying the condition R · R = 0 is said to
be semisymmetric. E. Cartan studied semi-symmetric manifolds which is a natural
generalization of symmetric spaces. R. Deszcz introduced the pseudo-symmetric
manifolds in semi-Riemannian manifolds.
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A semi-Riemannian manifold (M,g) is said to be pseudosymmetric in the sense of
Deszcz if at every point of M the condition

R ·R = LRQ(g,R)

holds on the set UR = {x ∈M | R− κ

n(n−1)G 6= 0 at x}, where LR is some function on
UR.

A semi-Riemannian manifold (M,g), n≥ 3, satisfying the condition

R ·S = LSQ(g,S)

on the set US = {x ∈ M | S− κ

n g 6= 0 at x} are called Ricci-pseudosymmetric. Every
pseudosymmetric manifold is Ricci-pseudosymmetric. The converse statement is
not true. The class of Ricci-pseudosymmetric manifolds is an extension of the
class of Ricci-semisymmetric (R · S = 0) manifolds as well as of the class of
pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric manifolds are
Ricci-pseudosymmetric. There exist various examples of Ricci-pseudosymmetric
manifolds which are not pseudosymmetric.

In this thesis, some properties of l.c.K-manifolds, l.c.K-space forms and submanifolds
of an l.c.K-space form are presented. Furthermore, we state some results on
pseudosymmetric and Ricci-pseudosymmetric l.c.K-space forms. Walker type
identities on l.c.K-space forms and Roter type l.c.K-space forms are studied. Finally
the Bochner curvature tensor on l.c.K-space forms are studied.

In the first chapter, it is mentioned about a review of literature. After that, results
obtained in this thesis are summarized.

In the second chapter, we give the fundamental concepts which we will use the next
chapters.

In the third chapter, we give a generalization about the results of an l.c.K-space form
such that the tensor field P is not hybrid. Moreover, the Sato’s form of the holomorphic
curvature tensor in almost Hermitian manifolds and l.c.K-manifolds are presented.
This chapter contains four sections.

In the first section, we gave the well-known results on l.c.K-manifolds. It is given that
the tensor field P is hybrid if and only if the Ricci tensor is hybrid. Then we state
that there exists the algebraic curvature tensor satisfying the condition of Kaehler type
manifold for any almost Hermitian manifold. This tensor is said to be the holomorphic
curvature tensor.

Furthermore, we state the holomorphic curvature tensor in an l.c.K-manifold and
the Riemannian curvature tensor in an l.c.K-manifold with a constant holomorphic
sectional curvature and the tensor field P is not hybrid.

In the second section, some results on l.c.K-space forms are presented. It is proved
that for a 2n-dimensional l.c.K-space form M(c), if the tensor field P is proportional to
g and tr P is constant, then M(c) is Einstein.

In the third section, we gave the basic definitions of submanifolds of l.c.K-manifolds.
The invariant submanifolds of l.c.K-space forms are studied. In the last section, we
give the Sato’s form of the holomorphic curvature tensor in an almost Hermitian
manifold and we determine the Sato’s form of the holomorphic curvature tensor in
an l.c.K-manifold.
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In the fourth chapter, we state some results on pseudosymmetric and
Ricci-pseudosymmetric l.c.K-space forms. This chapter contains two sections.

In the first section, we introduced some results of Pseudosymmetric l.c.K-space forms.
Moreover, we investigate generalized Einstein metric conditions in an l.c.K-space
form. It is proved that for 4-dimensional l.c.K-space forms such that the tensor field P
is hybrid and tr P is constant,

R ·C−C ·R = [
1
4
(2c+ tr P)] Q(g,R)

and for m-dimensional (m > 4) with the tensor P is proportional to g in l.c.K-space
forms

R ·C−C ·R =
1

4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,R).

In addition, we get the results under the assumption R ·R−Q(S,R) = L1Q(g,C).

In the second section, under the assumption that R ·R−Q(S,R) = L1Q(g,C) and R ·C =
L2Q(S,C) are satisfied, we obtain the results of Ricci-pseudosymmetric l.c.K-space
forms.

In the fifth chapter, Walker type identities on l.c.K-space forms and Roter type
l.c.K-space forms are investigated. Moreover Bochner curvature tensor are studied.
This chapter contains three sections.

In the first section, we present results on l.c.K-space forms satisfying curvature
identities called Walker type identities. It is proved that a 4-dimensional l.c.K-space
form such that the tensor field P is hybrid and tr P is constant satisfies Walker type
identities. For m-dimensional (m > 4) l.c.K-space forms, under the assumption of P is
proportional to g, the Walker type identities hold.

In the second section, we introduced the Roter type l.c.K-space forms. If P is hybrid, it
is proved R̄ · R̄ = Q(S̄, R̄)+ L̄1Q(g,C̄) in m-dimensional (m > 4) Roter type l.c.K-space
forms.

In the last section, firstly, the Bochner curvature tensor in an l.c.K-manifold such that
the tensor field P is hybrid is given. Then we present a generalization of the Bochner
curvature tensor in an l.c.K-manifold with the tensor field P is not hybrid. Moreover,
we state the Bochner curvature tensor in an l.c.K-space form. Furthermore, Walker
type identities for Bochner curvature tensor are studied. Next if the condition B ·B =
LBQ(g,B) is fulfilled, we proved that pseudosymmetric l.c.K-space forms (m > 4) are
Einstein.
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PSEUDÖ SİMETRİK LOKAL OLARAK KONFORM
KAEHLER MANİFOLDLARI

ÖZET

Hemen hemen Hermitian manifoldlarının belirli sınıfları üzerine yoğun çalışmalar
yapılmıştır. Bu, hemen hemen Hermitian manifoldların arasında metriği hemen hemen
Kaehler metriğe global olarak konform olanlar daha çok çalışılmıştır. Fakat açıktır ki
bu manifoldlar, Kaehler manifoldlarla aynı topolojik özelliklere sahiptirler. Bundan
dolayı bir hemen hemen Kaehler manifolduna lokal olarak konform olan hemen hemen
Hermitian manifoldlar hakkında çalışmak ilginçtir. Bir Hermitian manifoldda bir lokal
olarak konform Kaehler manifold (l.c.K-manifold) kavramı 1976 yılında I. Vaisman
tarafından ortaya atılmıştır.

Daha sonra T. Kashiwada tensör denklemini kullanarak bir Hermitian manifoldun
l.c.K-manifoldu olması için gerek ve yeter koşulu ispat etmiş ve holomorfik kesitsel
eğriliği sabit olan bir l.c.K-manifoldunun (l.c.K-uzay formu) eğrilik tensörünü
tanımlamıştır. Ayrıca T. Kashiwada ve K. Matsumoto böyle bir manifoldun bazı
özelliklerini vermişlerdir. Dolayısıyla, l.c.K-manifoldlar ve l.c.K-manifoldların alt
manifoldları ile ilgili bir çok yayın bulunmaktadır.

İlave olarak, M. Prvanović bir hemen hemen Hermitian manifoldu için Kaehler tipe
sahip olan bir tensör tanımlamış ve bir hemen hemen Kaehler manifoldunda bu
tensörün Riemann eğrilik tensörüne indirgendiğini ispatlamıştır. Ayrıca, bir l.c.K-ma-
nifoldunda holomorfik eğrilik tensörünü vermiş ve P tensörü hibrid olmayacak şekilde
bir sabit holomorfik kesitsel eğrilikli l.c.K-manifoldunda Riemann eğrilik tensörünü
tanımlamıştır.

Eğer bir Hermitian manifoldunun her p ∈ M noktasının, g∗ = e−2ρg |U metriği, U
kümesinde bir Kaehler metrik olacak şekilde türevlenebilir bir ρ : U → R fonksiyona
sahip olan açık U komşuluğu mevcut ise M(J,g) yapılı Hermitian manifolduna bir
l.c.K-manifoldu denir.

2n-boyutlu bir l.c.K-manifold, kompleks yapısı J nin

∇kJi j =−βigk j +β jgki−αiJk j +α jJki

eşitliğini sağlayan bir Hermitian manifolddur. Burada ∇, Hermitian metrik g ’ye göre
kovaryant türevdir.

Eğer bir l.c.K-manifold M(J,g,α), bir sabit holomorfik kesitsel eğriliğe sahip ise M
ye l.c.K-uzay formu denir.

∇R = 0 koşulunu sağlayan bir (M,g) yarı Riemann manifolduna lokal olarak simetrik
denir. Bu manifoldlar ilk kez 1920 li yıllarda E. Cartan tarafından çalışılmış ve
sınıflandırılmıştır.
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R · R = 0 koşulunu sağlayan bir yarı Riemann manifolduna yarı simetrik denir.
Simetrik uzayların bir doğal genelleştirilmişi olan yarı Riemann manifoldlar, E. Cartan
tarafından çalışılmıştır.

Yarı Rieman manifoldlarda pseudö simetrik manifoldlar R. Deszcz tarafından ortaya
atılmıştır.

M’nin her noktasında
R ·R = LRQ(g,R)

koşulu UR = {x ∈ M | R− κ

n(n−1)G 6= 0 at x} kümesinde geçerli ise bir (M,g) yarı
Riemann manifolduna Deszcz anlamında pseudö simetrik denir. Burada LR, UR ’da
bir fonksiyondur.

US = {x ∈M | S− κ

n g 6= 0 at x} kümesinde

R ·S = LSQ(g,S)

koşulunu sağlayan bir yarı Riemann manifolduna, n≥ 3, Ricci-pseudö simetrik denir.
Her pseudö simetrik manifold bir Ricci-pseudö simetriktir. Ancak bunun tersi doğru
değildir. Ricci-pseudö simetrik manifoldlar, pseudö simetrik manifold sınıfı gibi Ricci
yarı simetrik (R · S = 0) manifold sınıfının genişletilmişidir. Her Ricci yarı simetrik
manifoldlar Ricci-pseudö simetriktir. Pseudö simetrik olmayan, Ricci-pseudö simetrik
manifoldlarla ilgili bir çok örnek bulunmaktadır.

Bu tez çalışmasında, l.c.K-manifoldlarının, l.c.K-uzay formlarının ve l.c.K-uzay
formlarının alt manifoldlarının bazı özellikleri sunulmuştur. Ayrıca pseudö simetrik
ve Ricci-pseudö simetrik l.c.K-uzay formlarla ilgili sonuçlar elde edilmiştir. Buna
ilaveten, l.c.K-uzay formlarda Walker tip özdeşlikler ve Roter tip l.c.K-uzay formları
çalışılmıştır. Son olarak l.c.K-uzay formlarda Bochner eğrilik tensörü incelenmiştir.

Birinci bölümde, literatür araştırmasına yer verilmiştir. Ayrıca tez çalışmasında elde
edilen sonuçlar özetlenmiştir.

İkinci bölümde, tez çalışmasında kullanılan bazı temel kavramlar verilmiştir.

Üçüncü bölümde ilk olarak, P tensörü hibrid olmayacak şekilde, l.c.K-uzay formlarla
ilgili genelleştirilmiş bazı sonuçlar verilmiştir. Ayrıca hemen hemen Hermitian
manifoldlarda ve l.c.K-manifoldlarda holomorfik eğrilik tensörünün Sato formu
sunulmuştur. Bu bölüm dört kısımdan meydana gelmiştir.

İlk kısımda, l.c.K-manifoldlarda bilinen sonuçlara yer verilmiştir. P tensörünün hibrid
olması için gerek ve yeter koşulun Ricci tensörünün hibrid olması gerektiği verilmiştir.
Ayrıca, bir hemen hemen Hermitian manifold için Kaehler tip özelliğini sağlayan bir
eğrilik tensörünün varlığı ifade edilmiştir. Bu tensör holomorfik eğrilik tensörü olarak
adlandırılır.

Buna ilaveten, P tensörü hibrid olmamak üzere holomorfik eğrilik tensörü ve sabit
holomorfik kesitsel eğrilikli bir l.c.K-manifoldda Riemann eğrilik tensörü sunulmuştur.

İkinci kısımda, l.c.K-uzay formlarla ilgili sonuçlar verilmiştir. Eğer P tensörü g
metriğiyle orantılı ve tr P sabit ise 2n-boyutlu l.c.K-uzay formunun Einstein olduğu
ispatlanmıştır.

Üçüncü kısımda, l.c.K-uzay formlarının alt manifoldları ile ilgili temel tanımlar
verilmiştir. L.c.K-uzay formlarının invaryant alt manifoldları çalışılmıştır. Son
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kısımda ise, bir hemen hemen Hermitian manifoldunun holomorfik eğrilik tensörünün
Sato formu verilmiş ve ayrıca bir l.c.K-manifoldda holomorfik eğrilik tensörünün Sato
formu elde edilmiştir.

Dördüncü bölümde, pseudö simetrik ve Ricci-pseudö simetrik l.c.K-uzay formlarla
ilgili sonuçlar ifade edilmiştir. Bu bölüm iki kısımdan meydana gelmiştir.

İlk kısımda, pseudö simetrik l.c.K-uzay formlarda sonuçlar elde edilmiş tir. Ayrıca, bir
l.c.K-uzay formda genelleştirilmiş Einstein metrik koşulları incelenmiştir. P tensörü
hibrid ve tr P sabit olmak üzere, 4-boyutlu l.c.K-uzay formlarda

R ·C−C ·R = [
1
4
(2c+ tr P)] Q(g,R)

ve P tensörü g metriğiyle orantılı olmak üzere, m-boyutlu (m> 4) l.c.K-uzay formlarda

R ·C−C ·R =
1

4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,R)

denklemleri ispatlanmıştır. Ayrıca R · R−Q(S,R) = L1Q(g,C) koşulu altında bazı
sonuçlar bulunmuştur.

İkinci kısımda ise, R ·R−Q(S,R) = L1Q(g,C) ve R ·C = L2Q(S,C) koşulları altında
Ricci-pseudö simetrik l.c.K-uzay formlarda sonuçlar elde edilmiştir.

Beşinci bölümde, l.c.K-uzay formlarda Walker tip özdeşlikler ve Roter tip l.c.K-uzay
formları incelenmıştır. Ayrıca Bochner eğrilik tensörü üzerinde çalışılmıştır. Bu bölüm
üç kısımdan meydana gelmiştir.

Birinci kısımda Walker tip özdeşlikler olarak adlandırılan eğrilik özdeşliklerini
sağlayan bir l.c.K-uzay formuyla ilgili sonuçlar sunulmuştur. P tensörü hibrid ve tr P
sabit olmak üzere 4-boyutlu bir l.c.K-uzay formunun Walker tip özdeşlikleri sağladığı
ispatlanmıştır. Ayrıca, P tensörü g metriğiyle orantılı olması şartı altında, m-boyutlu
(m > 4) l.c.K-uzay formlarının Walker tip özdeşlikleri sağladığı gösterilmiştir.

İkinci kısımda, Roter tip l.c.K-uzay formları hakkında çalışılmıştır. Eğer P tensörü
hibrid ise m-boyutlu (m > 4) Roter tip l.c.K-uzay formlarda R̄ · R̄ = Q(S̄, R̄) +
L̄1Q(g,C̄) olduğu ispatlanmıştır.

Son kısımda ise, P tensörü hibrid olacak şekilde bir l.c.K-manifoldda Bochner
eğrilik tensörü verilmiştir. Ayrıca P tensörünün hibrid olmaması durumunda, bir
l.c.K-manifoldda Bochner eğrilik tensörünün genelleştirilmişi ispatlanmıştir. Daha
sonra, bir l.c.K-uzay formunda Bochner eğrilik tensörü verilmiştir. İlave olarak,
Bochner eğrilik tensörü için Walker tip özdeşlikler çalışılmıştır. Son olarak B ·B =
LBQ(g,B) şartı altında pseudö simetrik l.c.K-uzay formlarının (m > 4) Einstein oldğu
ispatlanmıştır.
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1. INTRODUCTION

1.1 Purpose of Thesis

Let M be a real 2n-dimensional Hermitian manifold with structure (J, g), where J is

the almost complex structure and g is the Hermitian metric. The manifold M is called

a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has an

open neighborhood U with a positive differentiable function ρ : U → R such that

g∗ = e−2ρg |U

is a Kaehlerian metric on U. Especially, if we can take U = M, then the manifold M is

said to be globally conformal Kaehler [1].

The following is essential in l.c.K-manifolds [2].

An 2n-dimensional l.c.K-manifold is a Hermitian manifold admitting a global closed

1-form α (Lee form) whose structure (J,g) satisfies

∇kJi j =−βigk j +β jgki−αiJk j +α jJki,

where βi = αrJri and ∇ denotes the covariant differentiation with respect to the

Hermitian metric g.

In an l.c.K-manifold,we have

RhkrsJr
jJ

s
i = Rhk ji +Pkigh j−Pk jghi +Ph jgki−Phigk j

+ PkrJr
i Jh j−PkrJr

jJhi +PhrJr
jJki−PhrJr

i Jk j.

where

Pi j =−∇iα j−αiα j +
‖α‖2

2
gi j.

We note that Pi j = Pji and ‖α‖2 = αrα
r.

A 2-plane π in TpM, p ∈M, is said to be holomorphic if Jπ = π . The manifold M has

constant holomorphic sectional curvature if the sectional curvature relative to π does

not depend on the holomorphic 2-plane π in TpM.

1



An l.c.K-manifold M(J,g,α) is called an l.c.K-space form if it has a constant

holomorphic sectional curvature. Let M(c) be an l.c.K-space form with constant

holomorphic sectional curvature c, then the Riemannian curvature tensor R with

respect to g can be expressed in the form [2]

Ri jhk =
c
4
(gikg jh−gihg jk + JikJ jh− JihJ jk−2Ji jJhk)

+
3
4
(gikPjh +g jhPik−gihPjk−g jkPih)

− 1
4
(P̃ikJ jh + P̃jhJik− P̃ihJ jk− P̃jkJih−2P̃i jJhk−2P̃hkJi j),

where the tensor field P is hybrid, i.e. PirJr
j +PjrJr

i = 0 and P̃i j =−PirJr
j .

A semi-Riemannian manifold is said to be locally symmetric if the condition ∇R = 0 is

satisfied on that manifold. These manifolds are first studied and classified by E. Cartan

in the late twenties. A semi-Riemannian manifold is said to be semi-symmetric if the

condition R ·R = 0 is satisfied on that manifold.

A semi-Riemannian manifold is said to be pseudosymmetric if at every point of M the

following condition is satisfied:

The tensor R ·R and Q(g, R) are linearly dependent. This condition is equivalent to

the relation R ·R = LRQ(g,R) where LR is a function on the set UR = {x ∈ M | R−
κ

n(n−1)G 6= 0 at x}. Pseudosymmetric manifolds are a generalization of semisymmetric

manifolds.

A semi-Riemannian manifold (M,g) is said to be Ricci-pseudosymmetric if at every

point of M the condition

R ·S = LSQ(g,S)

holds on the set US = {x ∈ M | S − κ

n g 6= 0 at x}, where LS is some function

on US [3]. Every pseudosymmetric manifold is Ricci-pseudosymmetric. The

converse statement is not true. The class of Ricci-pseudosymmetric manifolds is an

extension of the class of Ricci-semisymmetric (R · S = 0) manifolds as well as of

the class of pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric is

Ricci-pseudosymmetric.
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A semi-Riemannian manifold (M,g) is said to be Weyl-pseudosymmetric if at every

point of M the condition

R ·C = LCQ(g,C)

holds on the set UC = {x ∈M |C 6= 0 at x}, where LC is some function on UC. Every

pseudosymmetric manifold is Weyl-pseudosymmetric. The converse statement not

true. Every Weyl-semisymmetric manifold (R ·C = 0) is Weyl-pseudosymmetric.

This thesis is divided into 6 chapters:

Chapter 2 gives the fundamental concepts which we will use the next chapters.

In chapter 3, we gave the well-known results on l.c.K-manifolds. It is given that the

tensor field P is hybrid if and only if the Ricci tensor is hybrid. Then we state that there

exists the algebraic curvature tensor satisfying the condition of Kaehler type manifold

for any almost Hermitian manifold. This tensor is said to be the holomorphic curvature

tensor. Furthermore, we state the holomorphic curvature tensor in an l.c.K-manifold

and the Riemannian curvature tensor in an l.c.K-manifold with a constant holomorphic

sectional curvature and the tensor field P is not hybrid. It is proved that for a

2n-dimensional l.c.K-space form M(c), if the tensor field P is proportional to g and

tr P is constant, then M(c) is Einstein. Moreover we gave the basic definitions of

submanifolds of l.c.K-manifolds. The invariant submanifolds of l.c.K-space forms are

studied. We give The Sato’s form of the holomorphic curvature tensor in an almost

Hermitian manifold and we determine the Sato’s form of the holomorphic curvature

tensor in an l.c.K-manifold.

In chapter 4, we introduced some results of Pseudosymmetric l.c.K-space forms.

Moreover, we investigate generalized Einstein metric conditions in an l.c.K-space

form. Furthermore, under the assumption that R ·R−Q(S,R) = L1Q(g,C) and R ·C =

L2Q(S,C) are satisfied, we obtain the results of Ricci-pseudosymmetric l.c.K-space

forms.

In chapter 5, we present results on l.c.K-space forms satisfying curvature identities

called Walker type identities. It is proved that a 4-dimensional l.c.K-space form such

that the tensor field P is hybrid and tr P is constant satisfies Walker type identities. For

m-dimensional (m> 4) l.c.K-space forms, under the assumption of P is proportional to

g, the Walker type identities hold. Moreover we introduced the Roter type l.c.K-space
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forms. If P is hybrid, it is proved R̄ · R̄=Q(S̄, R̄)+ L̄1Q(g,C̄) in m-dimensional (m> 4)

Roter type l.c.K-space forms.

The Bochner curvature tensor in an l.c.K-manifold such that the tensor field P is hybrid

is given. Then we present a generalization about the Bochner curvature tensor in

an l.c.K-manifold such that the tensor field P is not hybrid. Moreover, we state the

Bochner curvature tensor in an l.c.K-space form. Furthermore some properties of the

Bochner curvature tensor in an l.c.K-space form are obtained.

Finally, in chapter 6, we give conclusion and recommendations.

1.2 Literature Review

The notion of an l.c.K-manifold in a Hermitian manifold has introduced by I.

Vaisman on 1976 [1]. The author gives characterizations of locally conformal almost

Kaehler manifolds and some relations between locally conformal Kaehler and globally

conformal Kaehler metrics. After that he wrote a series of such manifolds [4] [5] etc.

T. Kashiwada has determined a necessary and sufficient condition that a Hermitian

manifold is an l.c.K-manifold by using the tensor equation and determined the

curvature tensor of an l.c.K-manifold with a constant holomorphic sectional curvature

(an l.c.K-space form).

Moreover K. Matsumoto studied some different questions concerning the geometry of

l.c.K-manifolds. The author gave some properties about l.c.K-manifolds, l.c.K-space

forms and their submanifolds. T. Kashiwada [2] [6] and K. Matsumoto [7] gave some

properties about such a manifold.

Furthermore, M. Prvanović found a tensor of Kaehler type for an almost Hermitian

manifold and proved that this tensor reduces to the Riemannian curvature tensor R

in an almost Kaehler manifold. In addition, the author determined the holomorphic

curvature tensor of an l.c.K-manifold and introduced Riemannian curvature tensor in

an l.c.K-manifold with a constant holomorphic sectional curvature and the tensor P is

not hybrid [8] [9].

E. Cartan studied the semi-symmetric manifolds which is a natural generalization of

the symmetric spaces. A fundamental study on Riemannian semisymmetric manifolds

has been given by Z. I. Szabó [10] [11] [12].
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R. Deszcz introduced the pseudo-symmetric manifolds which is called the

pseudosymmetry in the sense of Deszcz which is characterized by the condition

R ·R = LR Q(g,R), where LR is some function and Q(g,R) is the Tachibana tensor [13].

1.3 Hypothesis

In this thesis, some properties of l.c.K-manifolds, l.c.K-space forms and submanifolds

of an l.c.K-space form are presented. Furthermore, we state some results on

pseudosymmetric and Ricci-pseudosymmetric l.c.K-space forms. Walker type

identities on l.c.K-space forms and Roter type l.c.K-space forms are studied. Finally

the Bochner curvature tensor on l.c.K-manifolds and l.c.K-space forms are studied.
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2. PRELIMINARIES

2.1 Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a (0,2)-tensor field g on M that is

symmetric (i.e.,g(X ,Y ) = g(Y,X)) and positive definite (i.e., g(X ,X) > 0 if X 6= 0).

A Riemannian metric thus determines an inner product on each tangent space TpM,

which is typically written by

〈X ,Y 〉= g(X ,Y ) f or X ,Y ∈ TpM.

A manifold together with a given Riemannian metric is called a Riemannian manifold.

A semi-Riemannian metric on a smooth manifold M is a symmetric (0,2)-tensor field g

that is nondegenerate at each point p∈M. This means that g(X ,Y ) = 0 for all Y ∈ TpM

if and only if X = 0. A smooth manifold with a semi-Riemannian metric is called a

semi-Riemannian manifold.

The local components of g on an open set U ⊂M are given by

gi j = g(∂i,∂ j) = 〈∂i,∂ j〉 ,

where ∂i =
∂

∂xi are basis vectors on U.

A connection ∇ on a smooth Riemannian manifold M is a function

∇ : X(M)×X(M)→ X(M)

such that

(i) ∇ f X1+gx2Y = f ∇X1Y +g∇X2Y ,

(ii) ∇X(aY1 +bY2) = a∇XY1 +b∇XY2 ,

(iii) ∇X( fY ) = f ∇XY +(X f )Y ,

where f,g ∈ C∞(M) , a,b ∈ R, X,Y ∈ TpM. ∇XY is called the covariant derivative of

Y in the direction of X.
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A Riemannian connection (Levi-Civita connection) ∇ on a Riemannian manifold M is

a connection such that

(iv) X〈Y,Z〉= 〈∇XY,Z〉+ 〈Y,∇X Z〉,

(v) [X ,Y ] = ∇XY −∇Y X

and it is characterized by the Koszul formula

2〈∇XY,Z〉 = X〈Y,Z〉+Y 〈Z,X〉−Z〈X ,Y 〉−〈X , [Y,Z]〉

+ 〈Y, [Z,X ]〉−〈Z, [X ,Y ]〉 .

Let T be an r-tensor. The covariant derivative ∇T of T is a tensor of order (r+1) given

by

(∇T )(X1,X2, ...,Xr;X) = (∇T )(X1, ...,Xr)

= ∇X(T (X1, ...,Xr))−
r

∑
i=1

T (X1, ...,∇X Xi, ...,Xr) .

If X,Y ∈ TpM , then linear operator

R(X ,Y ) : TpM→ TpM

is called the curvature operator. The Riemannian curvature tensor R of M is the tensor

field of type (0,4) defined by

R(X ,Y,Z,W ) = 〈R(X ,Y )Z,W 〉= g(R(X ,Y )Z,W ) ,

where

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z . (2.1)

In terms of local coordinates

Ri jhk = Rr
i jhgrk ,

where

Rk
i jh = ∂iΓ

k
jh−∂ jΓ

k
ih +Γ

k
irΓ

r
jh−Γ

k
jrΓ

r
ih .

The curvature tensor satisfies the following symmetries :

(i) R(X ,Y )Z +R(Y,X)Z = 0,

(ii) R(X ,Y )Z +R(Y,Z)X +R(Z,X)Y = 0, (First Bianchi identity)

(iii) R(X ,Y,Z,W ) =−R(Y,X ,Z,W ),
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(iv) R(X ,Y,Z,W ) =−R(X ,Y,W,Z),

(v) R(X ,Y,Z,W ) = R(Z,W,X ,Y ) .

The total covariant derivative of the curvature tensor satisfies the following identity:

(∇X R)(Y,Z)+(∇Y R)(Z,X)+(∇ZR)(X ,Y ) = 0. (2.2)

The equation (2.2) is called the second Bianchi identity.

If e1,e2, ...,en are local orthonormal vector field, then

S(Y,Z) =
n

∑
i=1

g(R(ei,Y )Z,ei)

defines a (0,2) tensor field with local components

Si j = Rr
ri j = grsRri js .

The tensor field S(Y,Z) is called a Ricci tensor. It is clear that Si j = Sr
i gr j and

S j
i = g jrSir.

The scalar curvature is the function κ defined as the trace of the Ricci tensor:

κ =
n

∑
i=1

S(ei,ei) = tr S = Si
i = gi jSi j . (2.3)

The curvature tensor appears also in the Ricci identities:

∇i∇ jT h−∇ j∇iT h = Rh
i jrT

r , (2.4)

∇i∇ jTh−∇ j∇iTh =−Rr
i jhTr , (2.5)

∇i∇ jT s
hk−∇ j∇iT s

hk = Rs
i jrT

r
hk−Rr

i jhT s
rk−Rr

i jkT s
hr . (2.6)

A Riemannian manifold is called an Einstein manifold if

Si j = λgi j ,

where λ is constant.

Let M be a Riemannian manifold and p ∈ M. A two dimensional subspace π of the

tangent space TpM is called a tangent plane to M at p. π is determined by linearly

independent vectors X and Y at p. We define the sectional curvature K(π) of π spanned

by X and Y at p is given by

K(X ,Y ) = K(π) =
R(X ,Y,Y,X)

g(X ,X)g(Y,Y )−g(X ,Y )2 . (2.7)
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In particular, if π is spanned by an orthonormal basis u and v at p , the sectional

curvature is given by

K(π) = R(u,v,v,u).

In local components,

K(π) =
Ri jhkX iY jY hXk

(gikg jh−gihg jk)X iY jY hXk . (2.8)

The sectional curvature K of M is a real-valued function on the set of all nondegenerate

tangent planes to M.

The famous Theorem of Green can now be stated as follows:

Green’s Theorem. In a compact orientable Riemannian manifold M, we have∫
M
(∇v)dσ = 0 (2.9)

for any arbitrary vector field v, where dσ is the volume element

dσ =
√

gdv1∧dv2∧ ...∧dv2n.

2.2 Submanifolds of Riemannian Manifolds

Let N be an m-dimensional manifold isometrically immersed in a 2n-dimensional

manifold M. If the manifold M is covered by a system of coordinate neighborhoods

{V,vi} and N is covered by a system of coordinate neighborhoods {U,uλ}, where here

and in the sequel the indices i, j,h,k, ... run over the range 1,2, ...,2n and ν ,µ,λ , ...

run over the range 1, 2, ..., m, then the submanifold N can be locally represented by

vi = vi(uλ ) . (2.10)

In the following, we shall identify vector fields in N and their image under the

differential mapping, that is, if i denotes the immersion of N in M and X is a vector

field in N, we identify X and i∗(X) .

Thus, if X is a vector field in N and has the local expression X = uλ ∂λ , where ∂λ = ∂

∂uλ
,

then X also has the local expression

X = Bi
λ

uλ
∂i,

where ∂i =
∂

∂vi and Bi
λ
= ∂λ vi = ∂vi

∂uλ
.
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Suppose that the manifold M is a Riemannian manifold with Riemannian metric g,

then the submanifold N is also a Riemannian manifold with Riemannian metric g̃ is

given by

g̃(X ,Y ) = g(X ,Y ) (2.11)

for any vector fields X and Y in N. The Riemannian metric g̃ on N is called the induced

metric on N.

In local coordinates, it is given by

gµλ = g jiB
j
µBi

λ
(2.12)

with g̃ = gµλ duµduλ and g = g jidv jdvi.

If a vector ξp of M at a point p ∈ N satisfies

g(Xp,ξp) = 0

for any vector Xp of N at p, then ξp is called a normal vector of N in M at p.

Let T⊥N denote the vector bundle of all normal vectors of N in M. The tangent bundle

of M , restricted to N, is the direct sum of the tangent bundle TN of N and the normal

bundle T⊥N of N in M, that is

T M |N= T N +T⊥N . (2.13)

From (2.13), we see that ∇XY can be expressed in the form

∇XY = ∇̃XY +h(X ,Y ) (2.14)

where ∇̃ is the covariant differentiation defined on the submanifold N with respect to

g̃ and h(X ,Y ) is a normal vector field on N and is symmetric and bilinear in X and Y .

We call h the second fundamental form of the submanifold N. The equation (2.14) is

called the Gauss formula.

Let X and ξ be a vector field and normal vector field on N, respectively. We can

decompose ∇X ξ as

∇X ξ =−Aξ (X)+∇
⊥

X ξ , (2.15)

where Aξ (X) and ∇⊥X ξ are the tangential component and the normal component of

∇X ξ , respectively. The equation (2.15) is called the Weingarten’s formula.
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A submanifold N is said to be totally geodesic if the second fundamental form h

vanishes identically, that is, h = 0.

Let ξ1, ...,ξ2n−m be an orthonormal basis of the normal space T⊥p (N) at a point p ∈ N

and let Ax = Aξx , then

H =
1
m
(tr Ax)ξx (2.16)

is a normal vector at p which is independent of the choice of the orthonormal basis ξx.

The vector H is called the mean curvature vector at p.

A submanifold N is called a minimal submanifold if the mean curvature vector vanishes

identically.

The equation of Gauss and Codazzi are respectively given by

〈R(X ,Y )Z,W 〉 = 〈R̃(X ,Y )Z,W 〉+ 〈h(X ,Z),h(Y,W )〉

− 〈h(X ,W ),h(Y,Z)〉 (2.17)

and

(R(X ,Y )Z)⊥ = (∇̄X h)(Y,Z)− (∇̄Y h)(X ,Z) , (2.18)

where

(∇̄X h)(Y,Z) = ∇
⊥
X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z).

2.3 Complex Manifolds

Consider a real 2n-dimensional manifold M of class C∞ covered by a system

of coordinate neighborhoods vi, where the indices i, j,k, ... run over the range

1,2, ...,n, 1̄, 2̄, ..., n̄. In each coordinate neighborhoods (vi) we introduce complex

coordinates za defined by

za = va +
√
−1 vā , (2.19)

where va and vā are real variables and the indices a, b, ... run over the range 1,2, ...,n.

We call vi real coordinates and za complex coordinates of a point with respect to these

system of coordinates respectively.

M2n is said to admit a complex structure and is called a complex manifold if there exist

a system of complex coordinate neighborhoods (za) covering the whole manifold M2n

such that in the intersection of two coordinate neighborhoods (za) and (zá) we have

zá = f á(za) , | ∂azá |6= 0 ,
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where f á(za) are analytic functions of complex variables z1,z2, ...,zn and | ∂azá |

denotes the Jacobian determinant, where ∂azá = ∂ zá

∂ za and

∂

∂ za =
1
2
(

∂

∂va −
√
−1

∂

∂vā ),

∂

∂ z̄a =
1
2
(

∂

∂va +
√
−1

∂

∂vā ),

where z̄ is the conjugate of z defined by

z̄a = va−
√
−1 vā . (2.20)

Let M be a real differentiable 2n-dimensional manifold. An almost complex structure

on M is a tensor field J of type (1,1) on M such that at every point p ∈M we have J2 =

−I, where I denotes the identity transformation of TpM. A manifold with an almost

complex structure J is called an almost complex manifold. Every almost complex

manifold is of even dimension and orientable.

We suppose M is an almost complex manifold. Then we define the torsion tensor of J

or the Nijenhuis tensor of J by

N(X ,Y ) = [JX ,JY ]− [X ,Y ]− J[X ,JY ]− J[JX ,Y ]

for any vector fields X and Y . If N vanishes identically, then an almost complex

structure is called a complex structure and M is called a complex manifold.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g such

that

g(JX ,JY ) = g(X ,Y )

for any vector fields X and Y .

An almost complex manifold (resp. a complex manifold) endowed with a Hermitian

metric is called an almost Hermitian manifold (resp. a Hermitian manifold).

Every almost complex manifold with a Riemannian metric ǵ admits a Hermitian

metric. In fact, if we take

g(X ,Y ) = ǵ(X ,Y )+ ǵ(JX ,JY ),

it is easily seen that g is a Hermitian metric on M.
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A Hermitian manifold M is called a Kaehler manifold if the almost complex structure

J on M is parallel, that is, ∇J = 0.

The curvature tensor R of Kaehlerian manifold M satisfies

Ri jhk = Jr
i Js

jRrshk. (2.21)

Let M be an almost Hermitian 2n-dimensional manifold with a Hermitian metric gi j

and an almost Hermitian structure J whose components are J j
i . Since any tangent

vector ui of M and its transform J(ui) at a point p are mutually orthogonal, they are

linearly independent and therefore determine a 2-plane in the tangent space of M at p

which is called a holomorphic plane. The sectional curvature of M at p with respect

to a holomorphic plane is called the holomorphic sectional curvature of M at p. If the

holomorphic sectional curvature of M at a point p is independent of the holomorphic

plane through p, the M is said to have a constant holomorphic sectional curvature at p.

If the holomorphic sectional curvature of M is constant for all holomorphic planes and

all points p, then M is called a manifold of constant holomorphic sectional curvature

or a complex space form.

The holomorphic sectional curvature c of M at p with respect to the holomorphic plane

π(U) is given by

c =−
Ri jhk Ji

ru
r u j Jh

s us uk

gr jur u j gskus uk . (2.22)

The Riemannian curvature tensor Ri jhk of a Kaehler manifold with the constant

holomorphic sectional curvature c is given by

Ri jhk =
c
4
(gikg jh−gihg jk + JikJ jh− JihJ jk−2Ji jJhk) . (2.23)

2.4 Pseudosymmetrically Related Tensors

In this section, we give the basic definitions, properties and results related with the

pseudosymmetric curvature conditions which will be used in the following sections.

Let (M, g) be an n−dimensional, n≥ 3, semi-Riemannian connected manifold of class

C∞ with Levi-Civita connection ∇. The Ricci operator S is defined by g(S X ,Y ) =

S(X ,Y ), where X ,Y ∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields on M.

14



We define the endomorphisms X ∧A Y , R(X ,Y )Z and C (X ,Y ) of Ξ(M) by

(X ∧A Y )Z = A(Y,Z)X−A(X ,Z)Y , (2.24)

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z , (2.25)

C (X ,Y )Z = R(X ,Y )Z

− 1
n−2

(X ∧g SY +S X ∧g Y − κ

n−1
X ∧g Y )Z , (2.26)

respectively, where X ,Y,Z ∈ Ξ(M), A is a symmetric (0,2)-tensor, κ the scalar

curvature and [X ,Y ] is the Lie bracket of vector fields X and Y. In particular we have

(X ∧g Y ) = X ∧Y .

The Riemannian-Christoffel curvature tensor R, the Weyl conformal curvature tensor

C and the (0,4)-tensor G of (M, g) are defined by

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4) ,

C(X1,X2,X3,X4) = g(C (X1,X2)X3,X4) ,

G(X1,X2,X3,X4) = g((X1∧g X2)X3,X4) , (2.27)

respectively, where X1,X2,X3,X4 ∈ Ξ(M).

Let B(X ,Y ) be a skew-symmetric endomorphism of Ξ(M). We define the (0,4)-tensor

B by B(X1,X2,X3,X4) = g(B(X1,X2)X3,X4). The tensor B is said to be a generalized

curvature tensor if

B(X1,X2,X3,X4) = B(X3,X4,X1,X2),

B(X1,X2,X3,X4)+B(X2,X3,X1,X4)+B(X3,X1,X2,X4) = 0.

For a (0,k)-tensor field T, k ≥ 1, a symmetric (0,2)-tensor field A and a generalized

curvature tensor B on (M, g), we define the (0,k+2)-tensor fields B ·T and Q(A,T ) by

(B ·T )(X1, ...,Xk;X ,Y ) = −T (B(X ,Y )X1,X2, ...,Xk)

− ...−T (X1,X2, ...,Xk−1,B(X ,Y )Xk), (2.28)

Q(A,T )(X1, ...,Xk;X ,Y ) = −T ((X ∧A Y )X1,X2, ...,Xk)

− ...−T (X1,X2, ...,Xk−1,(X ∧A Y )Xk), (2.29)

respectively, where X ,Y,Z,X1,X2, ...,Xk ∈ Ξ(M).
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Putting in the above formulas B = R or B = C , T = R or T = C or T = S, A = g or

A = S, we obtain the tensors R ·R, R ·C, R ·S, C ·S, Q (g, R), Q (S, R), Q (g, C), Q (g,

S) and Q (S, C) respectively.

For symmetric (0,2)-tensor E and F we define their Kulkarni-Nomizu product E ∧F

by

(E ∧F)(X1,X2,X3,X4) = E(X1,X4)F(X2,X3)+E(X2,X3)F(X1,X4)

− E(X1,X3)F(X2,X4)−E(X2,X4)F(X1,X3). (2.30)

For a symmetric (0,2)-tensor E and (0,k)-tensor T, k ≥ 2, we define their

Kulkarni-Nomizu product E ∧T by [14]

(E ∧T )(X1,X2,X3,X4;Y3, ...,Yk) = E(X1,X4)T (X2,X3,Y3, ...,Yk)

+ E(X2,X3)T (X1,X4,Y3, ...,Yk)

− E(X1,X3)T (X2,X4,Y3, ...,Yk)

− E(X2,X4)T (X1,X3,Y3, ...,Yk). (2.31)

For symmetric (0, 2)-tensors E and F we have [15]

Q(E,E ∧F) =−Q(F, Ē), (2.32)

where Ē = 1
2E ∧E. We also have [16]

E ∧Q(E,F) =−Q(F, Ē). (2.33)

For a symmetric (0, 2)-tensor E and a skew-symmetric (0, 2)-tensor ω , we define

(ω ZE)i jhk = ωikE jh +ω jhEik−ωihE jk−ω jkEih. (2.34)

For skew-symmetric (0, 2)-tensors ω and τ , we define

(ω [ τ)i jhk = ωikτ jh +ω jhτik−ωihτ jk−ω jkτih−2(ωi jτhk +ωhkτi j). (2.35)

Let (M, g) be covered by a system of charts {W ;xk}. We define by gi j , Rhi jk , Si j ,

Ghi jk = ghkgi j−gh jgik and

Chi jk = Rhi jk−
1

n−2
(ghkSi j−gh jSik +gi jShk−gikSh j)

+
κ

(n−1)(n−2)
Ghi jk , (2.36)
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the local components of the metric tensor g, the Riemannian-Christoffel curvature

tensor R, the Ricci tensor S, the tensor G and the Weyl tensor C, respectively.

Further, the tensor S2 is defined by S2(X ,Y ) = S(S X ,Y ).

The local components of the (0, 6)-tensor fields R · T and Q(g,T ), (0,4)-tensor field

T ·A on M are given by

(R ·T )hi jklm = grs(Tri jkRshlm +Thr jkRsilm

+ ThirkRs jlm +Thi jrRsklm) , (2.37)

Q(g,T )hi jklm = −ghmTli jk−gimThl jk−g jmThilk−gkmThi jl

+ ghlTmi jk +gilThm jk +g jlThimk +gklThi jm, (2.38)

(T ·A)hi jk = Ar
hTri jk +Ar

i Trh jk, (2.39)

respectively, where A is a symmetric (0,2)-tensor field.

Lemma 2.1 [17]. Any symmetric (0, 2)-tensor E on a semi-Riemannian manifold (M,

g), n≥ 4, satisfies

G ·G = 0, Ē ·G = 0, (g∧E) ·G = 0, G · Ē = Q(g, Ē),

G · (g∧E) = Q(g,g∧E), Ē · Ē =−Q(E2, Ē), g∧Q(g,E) =−Q(E,G),

(g∧E) ·E = Q(g,E2), Ē · (g∧E)+(g∧E) · Ē =−Q(E2,g∧E),

(g∧E) · (g∧E) =−Q(E2,G), Q(E,G) =−Q(g,g∧E),

Q(E,g∧E) =−Q(g, Ē), G ·E = Q(g,E), Ē ·E = Q(E,E2).

Lemma 2.2 [18]. Let (M, g), n ≥ 3, be a semi-Riemannian manifold. If E1, E2 and F

be symmetric (0, 2)-tensors at x ∈M. Then at x we have

E1∧Q(E2,F)+E2∧Q(E1,F) =−Q(F,E1∧E2).

In this part we present some basic definitions of pseudosymmetric and

Ricci-pseudosymmetric manifolds.

A semi-Riemannian manifold (M, g) satisfying the condition ∇R = 0 is said to be

locally symmetric. Locally symmetric manifolds form a subclass of the class of

manifolds characterized by the condition

R ·R = 0, (2.40)
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where R ·R is a (0, 6)-tensor field with the local components

(R ·R)hi jklm = ∇m∇lRhi jk−∇l∇mRhi jk

= grs(Rri jkRshlm +Rhr jkRsilm +RhirkRs jlm +Rhi jrRsklm). (2.41)

Semi-Riemannian manifolds fulfilling (2.40) are called semisymmetric. They are not

locally symmetric, in general.

A semi-Riemannian manifold is said to be Ricci-semisymmetric if on M we have R ·S=

0.

A more general class of manifolds than the class of semisymmetric manifolds is the

class of pseudosymmetric manifolds.

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric in the sense of

Deszcz [13] if at every point of M the condition

R ·R = LRQ(g,R) (2.42)

holds on the set UR = {x ∈M | R− κ

n(n−1)G 6= 0 at x}, where LR is some function on

UR.

A semi-Riemannian manifold (M,g) is said to be Ricci-pseudosymmetric if at every

point of M the condition

R ·S = LSQ(g,S) (2.43)

holds on the set US = {x ∈ M | S − κ

n g 6= 0 at x}, where LS is some function

on US [3]. Every pseudosymmetric manifold is Ricci-pseudosymmetric. The

converse statement is not true. The class of Ricci-pseudosymmetric manifolds is

an extension of the class of Ricci-semisymmetric (R · S = 0) manifolds as well as

of the class of pseudosymmetric manifolds. Evidently, every Ricci-semisymmetric

is Ricci-pseudosymmetric. There exist various examples of Ricci-pseudosymmetric

manifolds which are not pseudosymmetric.

A semi-Riemannian manifold (M,g) is said to be Weyl-pseudosymmetric if at every

point of M the condition

R ·C = LCQ(g,C) (2.44)
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holds on the set UC = {x ∈M |C 6= 0 at x}, where LC is some function on UC. Every

pseudosymmetric manifold is Weyl-pseudosymmetric. The converse statement not

true. Every Weyl-semisymmetric manifold (R ·C = 0) is Weyl-pseudosymmetric.

(2.42), (2.43), (2.44) or other conditions of this kind are called curvature conditions of

pseudosymmetry type.

The inclusion among the above mentioned classes of manifolds can be summarized in

Figure 2.1 [19].

The condition

R ·C−C ·R = L1Q(g,C) (2.45)

holds on the set UC = {x ∈M |C 6= 0 at x}, where L1 is some function on UC.

The condition

R ·C−C ·R = L Q(g,R) (2.46)

holds on the set UR = {x ∈ M | R− κ

n(n−1)G 6= 0 at x}, where L is some function on

UR.

The condition

R ·C−C ·R = L̄ Q(S,R) (2.47)

holds on the set U1 = {x ∈M | Q(S,R) 6= 0 at x}, where L̄ is some function on U1.

The condition

R ·C−C ·R = L2Q(S,C) (2.48)

holds on the set U2 = {x ∈M | Q(S,C) 6= 0 at x}, where L2 is some function on U2.

The condition

R ·R−Q(S,R) = L1Q(g,C) (2.49)

holds on the set UC = {x ∈M |C 6= 0 at x}, where L1 is a certain function on UC.

This condition

R ·C = L2Q(S,C) (2.50)
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holds on the set U2 = {x ∈M |Q(S,C) 6= 0 at x}, where L2 is a certain function on U2.

Semi-Riemannian manifolds satisfying (2.49) and (2.50) or other conditions of this

kind, described in [13] are called manifolds of pseudosymmetry type and also we

note that curvature conditions of pseudosymmetry (2.45)- (2.48) are called generalized

Einstein metric conditions [20].

We refer to [19] for a survey on results on semi-Riemannian manifolds satisfying

such conditions. Very recently manifolds satisfying Einstein metric conditions were

investigated in: [21] [22] [23] [24] [25] [26].
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EINSTEIN
MANIFOLDS

S = κ

n g
←−

MANIFOLDS OF
CONSTANT
CURVATURE

R = κ

n(n−1)G

−→
CONFORMALLY
FLAT MANIFOLDS

C = 0

↓ ↓ ↓

RICCI
SYMMETRIC
MANIFOLDS

∇S = 0

←−

LOCALLY
SYMMETRIC
MANIFOLDS

∇R = 0

−→

CONFORMALLY
SYMMETRIC
MANIFOLDS

∇C = 0

↓ ↓ ↓

RICCI SEMI-
SYMMETRIC
MANIFOLDS

R ·S = 0

←−

SEMI SYMMETRIC
MANIFOLDS

R ·R = 0 −→

WEYL SEMI-
SYMMETRIC
MANIFOLDS

R ·C = 0

↓ ↓ ↓

RICCI-PSEUDO
SYMMETRIC
MANIFOLDS
R ·S = LSQ(g,S)

←−

PSEUDO SYMMETRIC
MANIFOLDS
R ·R = LRQ(g,R) −→

WEYL PSEUDO
SYMMETRIC
MANIFOLDS
R ·C = LCQ(g,C)

Figure 2.1 : Pseudosymmetric manifolds and some other classes of semi-Riemannian
manifolds.
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3. LOCALLY CONFORMAL KAEHLER MANIFOLDS

3.1 Locally Conformal Kaehler Manifolds

Let M be a real 2n-dimensional Hermitian manifold with structure (J,g), where J is

the almost complex structure and g is the Hermitian metric. The manifold M is called

a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has an

open neighborhood U with a positive differentiable function ρ : U → R such that

g∗ = e−2ρg |U

is a Kaehlerian metric on U. Especially, if we can take U = M, then the manifold M is

said to be globally conformal Kaehler.

Proposition 3.1 [2]. A Hermitian manifold M(J,g) is an l.c.K-manifold if and only if

∇kJi j =−βigk j +β jgki−αiJk j +α jJki , (3.1)

∇iα j = ∇ jαi (or J jr∇iβ
r = Jir∇ jβ

r),

where α is a global closed 1-form and

βi = α
rJri. (3.2)

In l.c.K-manifolds, we have the following formulas [2]:

∇ jβi =−β jαi +βiα j−‖α‖2J ji +∇ jα
rJri , (3.3)

∇rβ
r = 0 , (3.4)

∇kβ
rJir = ∇iβ

rJkr , (3.5)

2(n−1)αi = Jri∇sJrs = Jsr
∇sJri , (3.6)

2(n−1)βi = ∇
rJri , (3.7)

α
r
∇rJi j = β

r
∇rJi j = 0 , (3.8)

α
r
∇ jJri =−β jαi +α jβi−‖α‖2J ji (3.9)
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and

β
r
∇ jJri = β jβi +α jαi−‖α‖2g ji , (3.10)

where ‖α‖ denotes the length of the Lee form α with respect to g.

From the above equations we obtain

∇k∇hJi j−∇h∇kJi j = PkrJr
jghi−PkrJr

i gh j−PhrJr
jgki +PhrJr

i gk j

− Pk jJhi +PkiJh j +Ph jJki−PhiJk j,

where

Pi j =−∇iα j−αiα j +
‖α‖2

2
gi j. (3.11)

We note that Pi j = Pji and ‖α‖2 = αrα
r.

Using the Ricci identity, we get

−RhkirJr
j +Rhk jrJr

i = PkrJr
jghi−PkrJr

i gh j−PhrJr
jgki +PhrJr

i gk j

− Pk jJhi +PkiJh j +Ph jJki−PhiJk j (3.12)

and then

RhkrsJr
jJ

s
i = Rhk ji +Pkigh j−Pk jghi +Ph jgki−Phigk j

+ PkrJr
i Jh j−PkrJr

jJhi +PhrJr
jJki−PhrJr

i Jk j. (3.13)

The tensor field Pi j is hybrid, i.e.,

PrsJr
i Js

j = Pi j or PirJr
j +PjrJr

i = 0 .

Now transvecting (3.12) with gik we have

−ShrJr
j +Rhk jrJr

i gik =−(2n−3)PhrJr
j −PjrJr

h +(Prsgrs)Jh j

and so

−Rhkr jJkr = ShrJr
j − (2n−3)PhrJr

j −PjrJr
h + tr PJh j.

Using H jh = Rhkr jJkr =−1
2Rh jkrJkr [27] [28] and H jh =−Hh j, we get

Hh j = ShrJr
j − (2n−3)PhrJr

j −PjrJr
h + tr PJh j. (3.14)
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Using the skew-symmetric property of H in (3.14) , we have [2]

S jrJr
i +SirJr

j = 2(n−1)(PjrJr
i +PirJr

j) (3.15)

which means that, in a real 2n-dimensional (n >1) l.c.K-manifold M, the tensor field P

is hybrid if and only if the Ricci tensor is hybrid.

Theorem 3.2 [8]. For an almost Hermitian manifold M(J,g), the tensor

(HR)(X ,Y,Z,W ) =
1

16

[
3
[
R(X ,Y,Z,W )+R(JX ,JY,Z,W )+R(X ,Y,JZ,JW )

+ R(JX ,JY,JZ,JW )
]
−R(X ,Z,JW,JY )−R(JX ,JZ,W,Y )

− R(X ,W,JY,JZ)−R(JX ,JW,Y,Z)+R(JX ,Z,JW,Y )

+ R(X ,JZ,W,JY )+R(JX ,W,Y,JZ)+R(X ,JW,JY,Z)
]

(3.16)

is a curvature tensor of Kaehler type.

The tensor (3.16) is said to be the holomorphic curvature tensor in an almost Hermitian

manifold.

It is easy to see that

(HR)(X ,Y,Z,W ) =−(HR)(Y,X ,Z,W ) , (3.17)

(HR)(X ,Y,Z,W ) =−(HR)(X ,Y,W,Z) , (3.18)

(HR)(X ,Y,Z,W ) = (HR)(Z,W,X ,Y ) , (3.19)

(HR)(X ,Y,Z,W )+(HR)(X ,Z,W,Y )+(HR)(X ,W,Y,Z) = 0 , (3.20)

as well as

(HR)(X ,Y,JZ,JW ) = (HR)(X ,Y,Z,W ), (3.21)

(HR)(X ,JX ,JX ,X) = R(X ,JX ,JX ,X). (3.22)

With respect to the local coordinates (3.16) reads

(HR)i jhk =
1

16

[
3(Ri jhk +RrshkJr

i Js
j +Ri jrsJr

hJs
k +RrspqJr

i Js
jJ

p
h Jq

k )

− RihrsJr
kJs

j−Rrsk jJr
i Js

h−RikrsJr
jJ

s
h−Rrs jhJr

i Js
k

+ Rrhs jJr
i Js

k +RirksJr
hJs

j +Rrk jsJr
i Js

h +RirshJr
kJs

j

]
. (3.23)
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Theorem 3.3 [9]. The holomorphic curvature tensor of an l.c.K-manifold has the form

(HR)i jhk = Ri jhk +
1
8

[
gih(7Pjk−PrsJr

jJ
s
k)−gik(7Pjh−PrsJr

jJ
s
h)

+ g jk(7Pih−PrsJr
i Js

h)−g jh(7Pik−PrsJr
i Js

k)

+ Jih(PjrJr
k−PkrJr

j)− Jik(PjrJr
h−PhrJr

j)

+ J jk(PirJr
h−PhrJr

i )− J jh(PirJr
k−PkrJr

i )

+ 2Ji j(PhrJr
k−PkrJr

h)+2Jhk(PirJr
j −PjrJr

i )
]
. (3.24)

Theorem 3.4 [2]. Let M(J,g,α) be an l.c.K-manifold such that P is hybrid. If the

holomorphic sectional curvature at p ∈M is constant c, then

Ri jhk =
c
4
(gikg jh−gihg jk + JikJ jh− JihJ jk−2Ji jJhk)

+
3
4
(gikPjh +g jhPik−gihPjk−g jkPih)

− 1
4
(P̃ikJ jh + P̃jhJik− P̃ihJ jk− P̃jkJih−2P̃i jJhk−2P̃hkJi j) (3.25)

at p ∈M, where P̃i j =−PirJr
j .

Theorem 3.5 [9]. An l.c.K-manifold has constant holomorphic sectional curvature if

and only if its curvature tensor can be expressed in the form

Ri jhk =
c
4
(gikg jh−gihg jk + JikJ jh− JihJ jk−2Ji jJhk)

+
1
8

[
gik(7Pjh−PrsJr

jJ
s
h)−gih(7Pjk−PrsJr

jJ
s
k)

+ g jh(7Pik−PrsJr
i Js

k)−g jk(7Pih−PrsJr
i Js

h)

+ Jik(PjrJr
h−PhrJr

j)− Jih(PjrJr
k−PkrJr

j)

+ J jh(PirJr
k−PkrJr

i )− J jk(PirJr
h−PhrJr

i )

− 2Ji j(PhrJr
k−PkrJr

h)−2Jhk(PirJr
j −PjrJr

i )
]
. (3.26)

If the tensor P is hybrid, the relation (3.24) reduces to

(HR)i jhk = Ri jhk +
3
4
(Pjkgih +Pihg jk−Pjhgik−Pikg jh)

+
1
4
(JihPjrJr

k + J jkPirJr
h− JikPjrJr

h− J jhPirJr
k

+ 2JhkPirJr
j +2Ji jPhrJr

k). (3.27)
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3.2 Locally Conformal Kaehler Space Forms

In this section, some properties of locally conformal Kaehler space forms are

presented.

An l.c.K-manifol M is called an l.c.K-space form if the holomorphic sectional

curvature of the section {X ,JX} at each point of M has a constant value. Let M(c) be an

l.c.K-space form with constant holomorphic sectional curvature c, then the Riemannian

curvature tensor R with respect to g can be expressed in the form (3.26).

Theorem 3.6 [29]. Let M(c) be a 2n-dimensional l.c.K-space form. If the tensor field

P is proportional to g and tr P is constant, then M(c) is Einstein.

Proof. Contracting (3.26) with ghk, we have

4Si j = [2(n+1)c+3 trP]gi j +(7n−10)Pi j− (n+2)PrsJr
i Js

j . (3.28)

If the tensor field P is proportional to g and tr P is constant, then P is written by

Pi j =
tr P
2n

gi j . (3.29)

Substituting (3.29) into (3.28), we obtain

Si j =
[1

2
(n+1)c+

3(n−1)
2n

tr P
]
gi j , (3.30)

which means that M(c) is Einstein. �

Corollary 3.7 [29]. A real 2n-dimensional Einstein l.c.K-space form M(c) is a

complex space form if tr P = 0.

Theorem 3.8 [29]. Let M(c) be a 2n-dimensional l.c.K-space form. If κ is constant

and ‖α‖ is non-zero constant, then[
(∇ j∇rαs)α

r +2(∇ jαs)‖α‖2
]
J js− (∇ jαr)β

r
β

j = 0. (3.31)

Proof. Let M(c) be an l.c.K-space form with constant holomorphic sectional curvature

c. Since the scalar curvature κ = n(n+1)c+3(n−1) tr P is constant, then

tr P =−∇rα
r +(n−1)‖α‖2 (3.32)
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is constant. Now differentiating (3.28), we get

4∇kS jh = (7n−10)∇kPjh− (n+2)
[
(∇kPrs)Jr

jJ
s
h +(∇kJr

j)PrsJs
h

+ (∇kJs
h)PrsJr

j

]
. (3.33)

Substituting (3.11) into (3.33), using (2.5) and the equality ∇ jαi = ∇iα j , we have

4(∇kS jh−∇ jSkh) = (7n−10)
{

Rr
k jhαr +(∇ jαh)αk− (∇kαh)α j

+
1
2
[(∇k‖α‖2)g jh− (∇ j‖α‖2)gkh]

}
− (n+2)

[
(∇kPrs)Jr

jJ
s
h− (∇ jPrs)Jr

kJs
h +(∇kJr

j)PrsJs
h

+ (∇kJs
h)PrsJr

j − (∇ jJr
k)PrsJs

h− (∇ jJs
h)PrsJr

k

]
. (3.34)

Contracting (3.34) with g jh and taking into account 2∇rSr
j = ∇ jκ [28], we obtain

(7n −10)
[
Sr

kαr +(∇ jα
j)αk

]
− (n+2)

[
− (∇ jPrs)Jr

kJs
hg jh

+ (∇kJr
j)PrsJs

hg jh +(∇kJs
h)PrsJr

jg
jh− (∇ jJr

k)PrsJs
hg jh

− (∇ jJs
h)PrsJr

kg jh
]
= 0, (3.35)

where

∇kJr
j =−β jδ

r
k +β

rgk j−α jJr
k +α

rJk j . (3.36)

Now contracting (3.28) with ghr and transvecting with αr, we get

4Sr
kαr = [2(n+1)c+3 tr P]αk +6(n−2)Pkhα

h . (3.37)

From (3.32), we get

3 tr P αk =−3(∇rα
r)αk +3(n−1)‖α‖2

αk (3.38)

and transvecting Pkh with αh , we obtain

Pkhα
h =−1

2
∇k‖α‖2− 1

2
‖α‖2

αk . (3.39)

Substituting (3.37), (3.38) and (3.39) into (3.35) and transvecting with β k, we find

(3.31). �
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3.3 Submanifolds of Locally Conformal Kaehler Manifolds

Let N be a real m-dimensional manifold isometrically immersed in a real

2n-dimensional l.c.K-manifold M. If the manifold M is covered by a system

of coordinate neighborhoods {V,vi} and N is covered by a system of coordinate

neighborhoods {U,uλ}, where here and in the sequel the indices i, j,h,k, ... run over

the range 1,2, ...,2n and ν ,µ,λ ... run over the range 1, 2, ..., m, then the submanifold

N can be locally represented by

vi = vi(uλ ) . (3.40)

In the following, we shall identify vector fields in N and their image under the

differential mapping. We put

Bi
λ
= ∂λ vi =

∂vi

∂uλ
.

Let gµλ be the induced metric on N, then we have

gµλ = g jiB
j
µBi

λ
. (3.41)

Let ξ i
x be a system of orthogonal normal vectors, where the indices x,y,z, ... run over

the range 1,2, ...,2n−m. Then we have

g jiB
j
λ

ξ
i
x = 0. (3.42)

In local coordinates, the equation of Gauss and Codazzi are given by

Ri jhkBi
ωB j

νBh
µBk

λ
= Rωνµλ −hx

ωλ
hνµx +hx

ωµhνλx , (3.43)

Ri jhkBi
ωB j

νBh
µξ

k
x = ∇ωhνµx−∇νhωµx , (3.44)

respectively, where hx
µλ

denote the second fundamental tensor.

Now the transformation Jk
hBh

λ
of Bh

λ
by Jk

h can be written as

Jk
hBh

λ
= J̃ε

λ
Bk

ε + J̃x
λ

ξ
k
x , (3.45)

where J̃ε

λ
and J̃x

λ
are a tensor field of type (1,1) and a normal bundle valued 1-form in

N, respectively.
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The transformation Jk
hξ h

y of ξ h
y by Jk

h can be written as

Jk
hξ

h
y =−J̃ε

y Bk
ε + J̃x

y ξ
k
x , (3.46)

where J̃ε
y and J̃x

y are a tangent bundle valued 1-form and a tensor field of type (1,1) of

the normal bundle in N, respectively.

A submanifold N is called invariant if JTpN = TpN for any point p ∈ N , where

TpN denotes the tangent vector space of N at p in N, that is, a real m-dimensional

submanifold N of an l.c.K-manifold M is said to be invariant if the tangent space at

each point of N is invariant under the action of J.

For an invariant submanifold N, we have

J̃x
µ = 0 . (3.47)

Using (3.45) and (3.46) , we have

J̃ε
µ J̃λ

ε =−δ
λ
µ , J̃x

y J̃z
x =−δ

z
y .

Moreover

gεγ J̃ε
µ J̃γ

λ
= gµλ .

Next, we decompose the Lee vector field αk as follows

α
k = α

εBk
ε +α

x
ξ

k
x , (3.48)

where αε and αx are the tangential and the normal part of αk respectively.

For an invariant submanifold N of an l.c.K-manifold M satisfying αx = 0, identically,

that is , the Lee vector field αk is always tangent to N, say αk = αεBk
ε , we have the

following :

∇ν J̃µλ =−βµgνλ +βλ gνµ −αµ J̃νλ +αλ J̃νµ , (3.49)

where βµ =−αε J̃ε
µ .

Proposition 3.9 [7]. An invariant submanifold N of an l.c.K-manifold M in which Lee

vector field αk is tangent to N is an l.c.K-manifold with structure (J̃λ
µ ,gµλ ,αλ ).

Theorem 3.10 [7]. An invariant submanifold N of an l.c.K-manifold M is minimal,

that is,

trace(hλ
µx) = hµλxgµλ = 0 (3.50)
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if and only if the Lee vector field αλ is tangent to N.

Let M(c) be an l.c.K-space form with constant holomorphic sectional curvature c and

N be a real m-dimensional invariant submanifold of M(c).

Theorem 3.11. Let N be a real m-dimensional minimal invariant submanifold of an

l.c.K-space form M(c). Then we have

4 κ 6 m(m+2)c+6(m−2) tr p , (3.51)

where κ is the scalar curvature with respect to gνµ . The equality holds if and only if

the submanifold N is totally geodesic.

Proof . Transvecting (3.26) with Bi
ωB j

νBh
µBk

λ
and using (3.41), (3.43), (3.45) and in

view of Theorem 3.10., we obtain

4Rωνµλ = c(gµνgωλ −gµωgνλ + J̃νµ J̃ωλ − J̃ωµ J̃νλ −2J̃ων J̃µλ )

+
1
2

{
gωλ (7pνµ − pεγ J̃ε

ν J̃γ

µ)−gωµ(7pνλ − pεγ J̃ε
ν J̃γ

λ
)

+ gνµ(7pωλ − pεγ J̃ε
ω J̃γ

λ
)−gνλ (7Pωµ − pεγ J̃ε

ω J̃γ

µ)

+ J̃ωλ (pνε J̃ε
µ − pµε J̃ε

ν)− J̃ωµ(pνε J̃ε

λ
− pλε J̃ε

ν)

+ J̃νµ(pωε J̃ε

λ
− pλε J̃ε

ω)− J̃νλ (pωε J̃ε
µ − pµε J̃ε

ω)
}

− J̃ων(pµε J̃ε

λ
− pλε J̃ε

µ)− J̃µλ (pωε J̃ε
ν − pνε J̃ε

ω)

+ 4(hx
ωλ

hνµx−hx
ωµhνλx) , (3.52)

where

pνµ = PjiB
j
νBi

µ =−∇ναµ −αναµ +
‖α‖2

2
gνµ . (3.53)

Contracting (3.52) with gωλ and using (3.50) , we get

4Sνµ = {(m+2)c+3 tr p}gνµ +(
7m
2
−10)pνµ − (

m
2
+2)pεγ J̃ε

ν J̃γ

µ −4hx
ωµhω

νx ,

(3.54)

where Sνµ denotes the Ricci tensor with respect to gνµ .

Transvecting (3.54) with gνµ , we get

4 κ = m(m+2)c+6(m−2) tr p−4hx
ωµhωµ

x .

and so

4(κ +‖h‖2) = m(m+2)c+6(m−2) tr p , (3.55)
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where ‖h‖ denotes the length of the second fundamental tensor hνµx. By virtue of

(3.55), we have (3.51).

If the equality holds in (3.51), then by using (3.55), we get

‖h‖= 0 and hνµx = 0

which means that the submanifold N is totally geodesic.

Conversely, if the submanifold N is totally geodesic, then hνµx = 0 and ‖h‖= 0 and us-

ing (3.55) the equality holds in the equation (3.51). �

Theorem 3.12. Let N be a real m-dimensional invariant closed minimal submanifold

of an l.c.K-space form M(c). Then we have

4
∫

N
κ dN 6 m(m+2)c Vol N +3(m−2)2

∫
N
‖α‖2dN , (3.56)

where dN and Vol N denote the volume element and the volume of N, respectively. The

equality holds if and only if the submanifold N is totally geodesic.

Proof. By transvecting (3.53) with gνµ , we find

tr p =−∇να
ν +

m−2
2
‖α‖2 (3.57)

and substituting (3.57) into (3.55) , we get

4 κ = m(m+2)c−6(m−2)∇να
ν +3(m−2)2‖α‖2−4‖h‖2 . (3.58)

Since the submanifold is compact, using Green’s Theorem , we have

4
∫

N
κ dN = m(m+2)c Vol N +3(m−2)2

∫
N
‖α‖2dN−4

∫
N
‖h‖2dN (3.59)

and so (3.56).

If the submanifold N is totally geodesic, then ‖h‖= 0 and by virtue of (3.59), we write

4
∫

N
κ dN = m(m+2)c Vol N +3(m−2)2

∫
N
‖α‖2dN .

Hence, the equality holds in (3.56).

Conversely if the equality holds in (3.56), from (3.59), we obtain ‖h‖= 0 , that is, the

submanifold N is totally geodesic. �

Theorem 3.13. Let N be a minimal invariant submanifold of an l.c.K- space form M(c)

such that Rωνµλ is tangent to N if and only if

hε

λxαε = 0 and hε

λyαε = 0. (3.60)
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Proof. Transvecting (3.26) with Bi
ωB j

νBh
µξ k

x , we get

4Ri jhkBi
ωB j

νBh
µξ

k
x =

1
8

[
gωµ(7hε

νxαε −hε
γyαε J̃γ

ν J̃y
x)−gνµ(7hε

ωxαε −hε
γyαε J̃γ

ω J̃y
x)

+ J̃ωµ(hε
νyαε J̃y

x −hε
γxαε J̃γ

ν)− J̃νµ(hε
ωyαε J̃y

x −hε
γxαε J̃γ

ω)

− 2J̃ων(−hε
µyαε J̃y

x −hε
γxαε J̃γ

µ)
]
. (3.61)

Since Rωνµλ is tangent to N, in view of (3.44), we get ∇ωhνµx−∇νhωµx = 0 and so

1
8

[
(7gωµδ λ

ν −7gνµδ λ
ω − J̃ωµ J̃γ

νδ λ
γ + J̃νµ J̃γ

ωδ λ
γ +2J̃ων J̃γ

µδ λ
γ )h

ε

λxαε

+ (−gωµ J̃γ

ν J̃y
x δ

λ
γ +gνµ J̃γ

ω J̃y
x δ

λ
γ + J̃ωµ J̃y

x δ
λ
ν − J̃νµ J̃y

x δ
λ
ω

+ 2J̃ων J̃y
x δ

λ
µ )h

ε

λyαε

]
= 0 (3.62)

and so we get (3.60).

Conversely, if (3.60) holds in (3.62), we have

4Ri jhkBi
ωB j

νBh
µξ

k
x = 0,

and so by using (3.44) we get

∇ωhνµx−∇νhωµx = 0,

that is, Rωνµλ is tangent to N. �

3.4 Sato’s Form of the Holomorphic Curvature Tensor

In this section, using the Sato’s form of the holomorphic curvature tensor in an almost

Hermitian manifold we determine the Sato’s form of the holomorphic curvature tensor

in an l.c.K-manifold.

The curvature tensor of an almost Hermitian manifold of constant holomorphic

sectional curvature c is given by [30]

R(X ,Y,Z,W ) =
c
4
[g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )+ J(X ,W )J(Y,Z)

− J(X ,Z)J(Y,W )−2J(X ,Y )J(Z,W )]

=
1

96

{
26[G(X ,Y,Z,W )−G(Z,W,X ,Y )]−6[G(JX ,JY,JZ,JW )

+ G(JZ,JW,JX ,JY )]+13[G(X ,Z,Y,W )+G(Y,W,X ,Z)
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− G(X ,W,Y,Z)−G(Y,Z,X ,W )]−3[G(JX ,JZ,JY,JW )

+ G(JY,JW,JX ,JZ)−G(JX ,JW,JY,JZ)−G(JY,JZ,JX ,JW )]

+ 4[G(X ,JY,Z,JW )+G(JX ,Y,JZ,W )]+2[G(X ,JZ,Y,JW )

+ G(JX ,Z,JY,W )−G(X ,JW,Y,JZ)−G(JX ,W,JY,Z)]
}
, (3.63)

where

G(X ,Y,Z,W ) = R(X ,Y,Z,W )−R(X ,Y,JZ,JW ). (3.64)

Theorem 3.14 [29]. The Sato’s form of the holomorphic curvature tensor of an l.c.K-

manifold has the form

(HR)i jhk =
13
24

[Pk jghi−Pkigh j +Phigk j−Ph jgki

+ PkrJr
jJhi−PkrJr

i Jh j +PhrJr
i Jk j−PhrJr

jJki]. (3.65)

Proof. Substituting (3.64) into (3.63), using (3.16) and the Bianchi identity we obtain

(HR)(X ,Y,Z,W ) =
1

24

{
13[−R(X ,Y,Z,W )+R(JX ,JY,Z,W )]

}
. (3.66)

The tensor (3.66) is said to be the Sato’s form of the holomorphic curvature tensor.

Now substituting (3.13) into (3.66) , we get (3.65). �
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4. PSEUDOSYMMETRIC LOCALLY CONFORMAL KAEHLER SPACE
FORMS

4.1 Pseudosymmetric Locally Conformal Kaehler Space Forms

Let M(c) be an m = 2n-dimensional l.c.K-space form with constant holomorphic

sectional curvature c and the tensor field P is hybrid. The Riemannian curvature tensor

R with respect to g is given by (3.25).

Contracting (3.25) with gik, we get

S jh =
1
4
[(m+2)c+3 tr P]g jh +

3
4
(m−4)Pjh (4.1)

which is the Ricci tensor of an l.c.K-space form.

Proposition 4.1 [7]. If the tensor field P is hybrid and tr P is constant in a

4-dimensional l.c.K-space form M(c), then M(c) is Einstein.

Theorem 4.2 [7]. A real m-dimensional (m 6= 4) l.c.K-space form M(c) in which the

tensor field P is hybrid and tr P is constant is Einstein if and only if the tensor field P

is proportional to g.

In view of (2.37), we have

(R ·C)hi jklm = grs(Cri jkRshlm +Chr jkRsilm +ChirkRs jlm +Chi jrRsklm) , (4.2)

(C ·R)hi jklm = grs(Rri jkCshlm +Rhr jkCsilm +RhirkCs jlm +Rhi jrCsklm) . (4.3)

Using (2.36) in (4.3) we obtain

(C ·R)hi jklm = grs(Rri jkCshlm +Rhr jkCsilm +RhirkCs jlm +Rhi jrCsklm)

= (R ·R)hi jklm

− 1
m−2

Q(S,R)hi jklm +
κ

(m−1)(m−2)
Q(g,R)hi jklm

− 1
m−2

(ghlAmi jk−ghmAli jk−gilAmh jk +gimAlh jk

+ g jlAmkhi−g jmAlkhi−gklAm jhi +gkmAl jhi), (4.4)

35



where

Ahi jk = Ss
hRsi jk. (4.5)

Applying, in the same way, (2.36) in (4.2) we get

(R ·C)hi jklm = grs(Cri jkRshlm +Chr jkRsilm +ChirkRs jlm +Chi jrRsklm)

= (R ·R)hi jklm−
1

m−2

[
RhklmSi j−R jhlmSik +R jilmShk

− RkilmSh j +Ri jlmShk−Rh jlmSik +RkhlmSi j−RiklmSh j

+ gi jSs
kRshlm +ghkSs

jRsilm +ghkSs
i Rs jlm +gi jSs

hRsklm

− gikSs
jRshlm−gh jSs

kRsilm−gikSs
hRs jlm−gh jSs

i Rsklm

]
+

κ

(m−1)(m−2)

[
Rkhlmgi j−R jhlmgik +R jilmghk

− Rkilmgh j +Ri jlmghk−Rh jlmgik +Rhklmgi j−Riklmgh j

]
= (R ·R)hi jklm−

1
m−2

[
gi j(Akhlm +Ahklm)+ghk(A jilm +Ai jlm)

− gik(A jhlm +Ah jlm)−gh j(Akilm +Aiklm)
]

(4.6)

and so

(R ·C−C ·R)hi jklm =
1

m−2
Q(S,R)hi jklm−

κ

(m−1)(m−2)
Q(g,R)hi jklm

+
1

m−2
(ghlAmi jk−ghmAli jk−gilAmh jk +gimAlh jk

+ g jlAmkhi−g jmAlkhi−gklAm jhi +gkmAl jhi)

− 1
m−2

[
gi j(Akhlm +Ahklm)+ghk(A jilm +Ai jlm)

− gik(A jhlm +Ah jlm)−gh j(Akilm +Aiklm)
]
. (4.7)

Theorem 4.3 [31]. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor

field P is hybrid and tr P is constant . Then we have

R ·C−C ·R =
[1

4
(2c+ tr P)

]
Q(g,R)

=
[1

4
(2c+ tr P)

]
Q(g,C)

=
1
3

Q(S,R)

=
1
3

Q(S,C). (4.8)

Proof. Using (4.1) and (4.5) for a 4-dimensional l.c.K-space form, we have

Si j =
3
4
(2c+ tr P)gi j , (4.9)
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Ahi jk =
3
4
(2c+ tr P) Rhi jk ,

Q(S,R) =
3
4
(2c+ tr P) Q(g,R),

κ = 3(2c+ tr P)

and so

gi j(Akhlm +Ahklm) = 0, ghk(A jilm +Ai jlm) = 0,

gik(A jhlm +Ah jlm = 0, gh j(Akilm +Aiklm) = 0.

Now the equations (4.6) and (4.4) reduce to

(R ·C)hi jklm = (R ·R)hi jklm (4.10)

and

(C ·R)hi jklm = (R ·R)hi jklm−
[1

4
(2c+ tr P)

]
Q(g,R)hi jklm, (4.11)

respectively. Hence we get

R ·C−C ·R =
1
4
(2c+ tr P) Q(g,R).

Now using (2.36) and (4.9), we get

C = R− 1
4
(2c+ tr P) G (4.12)

and so Q(g,R) = Q(g,C). This completes the proof. �

Theorem 4.4 [31]. Let M(c) be an m-dimensional (m > 4) l.c.K-space form. If the

tensor field P is hybrid, tr P is constant and P is proportional to g, then we have

R ·C−C ·R =
1

4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,R)

=
1

4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,C)

=
1

m−1
Q(S,R)

=
1

m−1
Q(S,C). (4.13)
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Proof . In view of Theorem 4.2., we have P = tr P
m g if and only if M(c) is Einstein.

Then the equations (4.6) and (4.4) reduce to

(R ·C)hi jklm = (R ·R)hi jklm (4.14)

and

(C ·R)hi jklm = (R ·R)hi jklm

− 1
4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,R)hi jklm, (4.15)

respectively. Thus we have

R ·C−C ·R =
1

4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
Q(g,R).

By using (2.36) we have

C = R− 1
4(m−1)

[
(m+2)c+

6(m−2)tr P
m

]
G (4.16)

and so Q(g,R) = Q(g,C). This completes the proof. �

Theorem 4.5. Let M(c) be an m-dimensional (m > 4) l.c.K-space form and the tensor

field P is hybrid. Then we have

(m−2)(R ·C−C ·R)hi jklm =
α(m−2)−β tr P

m−1
Q(g,R)hi jklm

+ β

{
Q(P,R)hi jklm +

3
4

Q(g, P̄)hi jklm

+
1
4

[
(c P̃hm−Dhm)(J Zg)li jk +(c P̃im−Dim)(J Zg)hl jk

− (c P̃jm−D jm)(J Zg)hilk +(c P̃km−Dkm)(J Zg)hi jl

− (c P̃hl−Dhl)(J Zg)mi jk +(c P̃il−Dil)(J Zg)hm jk

+ (c P̃jl−D jl)(J Zg)himk +(c P̃kl−Dkl)(J Zg)hi jm

]
+

1
8

[
ghm(P̃[ P̃)li jk +gim(P̃[ P̃)hl jk +g jm(P̃[ P̃)hilk

+ gkm(P̃[ P̃)hi jl−ghl(P̃[ P̃)mi jk−gil(P̃[ P̃)hm jk

− g jl(P̃[ P̃)himk−gkl(P̃[ P̃)hi jm

]
− c

2
[J jk(P̃Zg)hilm + Jhi(P̃Zg) jklm]

+
1
2
[J jk(DZg)hilm + Jhi(DZg) jklm]

}
, (4.17)

where α = 1
4 [(m+2)c+3 tr P], β = 3

4(m−4) and Di j = Ps
i P̃s j.
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Proof. Now substituting (4.1) into (4.6), (4.4) and (4.7), we get

(R ·C)hi jklm = (R ·R)hi jklm−
β

m−2

[
gi j(Ehklm +Ekhlm)+ghk(Ei jlm +E jilm)

− gik(Eh jlm +E jhlm)−gh j(Eiklm +Ekilm)
]
, (4.18)

(C ·R)hi jklm = (R ·R)hi jklm−
α

m−1
Q(g,R)hi jklm +

β tr P
(m−1)(m−2)

Q(g,R)hi jklm

− β

m−2
Q(P,R)hi jklm−

β

m−2
(ghlEmi jk−ghmEli jk−gilEmh jk

+ gimElh jk +g jlEmkhi−g jmElkhi−gklEm jhi +gkmEl jhi) (4.19)

and so

(m−2)(R ·C−C ·R)hi jklm =
α(m−2)−β tr P

m−1
Q(g,R)hi jklm +βQ(P,R)hi jklm

+ β

[
ghlEmi jk−ghmEli jk−gilEmh jk +gimElh jk

+ g jlEmkhi−g jmElkhi−gklEm jhi +gkmEl jhi

− gi j(Ekhlm +Ehklm)−ghk(E jilm +Ei jlm)

+ gik(E jhlm +Eh jlm)+gh j(Ekilm +Eiklm)
]
. (4.20)

Furthermore we have

Ehklm = Ps
hRsklm

=
c
4
[Phmgkl−Phlgkm + P̃hmJkl− P̃hlJkm−2P̃hkJlm]

+
3
4
(PhmPkl +gklP2

hm−PhlPkm−gkmP2
hl)

− 1
4
(P̃hmP̃kl + JklDhm− P̃hlP̃km− JkmDhl−2P̃hkP̃lm−2JlmDhk), (4.21)

where P2
i j = Ps

i Ps j. Then we have

Ehklm +Ekhlm = Ps
hRsklm +Ps

k Rshlm

=
c
4

[
(Phmgkl +Pkmghl−Pklghm−Phlgkm)

+ (P̃hmJkl + P̃kmJhl− P̃klJhm− P̃hlJkm)
]

+
3
4
(P2

hmgkl +P2
kmghl−P2

klghm−P2
hlgkm)

− 1
4
(DhmJkl +DkmJhl−DklJhm−DhlJkm). (4.22)

Substituting (4.21), (4.22) into (4.20) and using (2.34), (2.35) and Lemma 2.1., we ob-

tain (4.17). �
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Theorem 4.6 [31]. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that

the tensor field P is hybrid. If the relation (2.49) is fulfilled on UC ⊂ M(c), then at

every point of UC we have

Ps
hRsi jk +Ps

j Rsikh +Ps
k Rsih j = 0. (4.23)

Proof. The left side of the equation (2.49) in local coordinates takes the form

grs(Rri jkRshlm +Rhr jkRsilm +RhirkRs jlm +Rhi jrRsklm)

− (SlhRmi jk +SliRhm jk +Sl jRhimk +SlkRhi jm−SmhRli jk

− SmiRhl jk−Sm jRhilk−SmkRhi jl) = L1 Q(g,C)hi jklm

and contracting with gi j we get

Ss
hRsklm +Ss

kRshlm = Ss
l Rskhm +Ss

l Rshkm−Ss
mRskhl−Ss

mRshkl (4.24)

and substituting (4.1) into the above equation we have

Ps
hRsklm +Ps

k Rshlm = Ps
l Rskhm +Ps

l Rshkm−Ps
mRskhl−Ps

mRshkl. (4.25)

Summing (4.25) cyclically in h, l, m, we have

3(Ps
hRsklm +Ps

l Rskmh +Ps
mRskhl) = Ps

h(Rsmkl +Rslmk)+Ps
l (Rshkm +Rsmhk)

− Ps
m(Rslkh +Rshlk),

which yields

3(Ps
hRsklm +Ps

l Rskmh +Ps
mRskhl) =−Ps

hRsklm−Ps
l Rskmh−Ps

mRskhl. �

Theorem 4.7. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor field

P is hybrid and tr P is constant . If the relation (2.49) is fulfilled on UC ⊂ M(c),

where L1 is some function on UC, then M(c) is pseudosymmetric with the function

LR = L1 +
3
4(2c+ tr P).

Proof. Using (4.9) and (4.12) in (2.49), we have

R ·R− 3
4
(2c+ tr P)Q(g,R) = L1Q(g,R)

and so

R ·R = [L1 +
3
4
(2c+ tr P)]Q(g,R). (4.26)
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This completes the proof. �

Theorem 4.8. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that the

tensor field P is hybrid, tr P is constant and the tensor field P is proportional to g . If

the relation (2.49) is fulfilled on UC ⊂ M(c), where L1 is some function on UC, then

M(c) is pseudosymmetric with the function LR = L1 +
1
4 [(m+2) c+ 6(m−2)

m tr P].

Proof. In view of Theorem 4.2., we have

S =
1
4
[(m+2) c+

6(m−2)
m

tr P] g (4.27)

Substituting (4.27) into (2.49) and using (4.16), we get

R ·R− 1
4
[(m+2) c+

6(m−2)
m

tr P]Q(g,R) = L1Q(g,R)

and so

R ·R =
[
L1 +

1
4
[(m+2) c+

6(m−2)
m

tr P]
]
Q(g,R). (4.28)

This completes the proof. �

4.2 Ricci-pseudosymmetric Locally Conformal Kaehler Space Forms

In this section, some properties of Ricci-pseudosymmetric l.c.K-space forms are

presented. Firstly, we consider Ricci-pseudosymmetric l.c.K-space forms satisfying

(2.50). After that, Ricci-pseudosymmetric l.c.K-space forms satisfying (2.49) and

(2.50) are studied.

Theorem 4.9. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-

space form. If the tensor field P is hybrid and the condition (2.50) is fulfilled for L2 6= 0

at x ∈Us∩U2 ⊂M(c), then

Pr
hRri jk +Pr

j Rrikh +Pr
k Rrih j = 0, (4.29)

Pr
hCri jk +Pr

jCrikh +Pr
kCrih j = 0, (4.30)

C ·P = 0, (4.31)

P2
i j =
−2α +a

β
Pi j +

−α2 +a α +b
β 2 gi j, (4.32)
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where α = 1
4 [(m+2)c+3 tr P] , β = 3

4(m−4), a = (m−2)Ls +
mα+β tr P

m−1 and

b = mα2+2 α β tr P+β 2 tr(P2)
m − mα+β tr P

m

[
(m−2)Ls +

mα+β tr P
m−1

]
.

Proof. In local coordinates (2.43) takes the form

Sr
hRri jk +Sr

i Rrh jk = LS(gh jSik−ghkSi j +gi jShk−gikSh j). (4.33)

Summing cyclically (4.33) in h, j, k we obtain

Sr
hRri jk +Sr

jRrikh +Sr
kRrih j = 0. (4.34)

Now substituting (4.1) into the above equality we have

Sr
hRri jk +Sr

jRrikh +Sr
kRrih j =

1
4
[(m+2)c+3 tr P](Rhi jk +R jikh +Rkih j)

+
3
4
(m−4)(Pr

hRri jk +Pr
j Rrikh +Pr

k Rrih j).

Using the Bianchi identity we obtain (4.29).

Now applying (4.34) in (2.36) we get

Sr
hCri jk +Sr

jCrikh +Sr
kCrih j = 0 (4.35)

and using (4.1) we have (4.30).

The relation (2.50) in local coordinates takes the form

grs(Cri jkRshlm +Chr jkRsilm +ChirkRs jlm +Chi jrRsklm)

= L2

(
ShlCmi jk−ShmCli jk +SilChm jk−SimChl jk +S jlChimk

− S jmChilk +SklChi jm−SkmChi jl

)
(4.36)

and contracting (4.36) with ghk we get

0 = L2

[
Sr

l (Cri jm +Cr jim)+Sr
m(Cril j +Cr jli)

]
(4.37)

and by the assumption L2 6= 0, we obtain

Sr
lCri jm +Sr

mCril j +Sr
lCr jim +Sr

mCr jli = 0.

Using (4.35) we have

(C ·S)i jlm = Sr
iCr jlm +Sr

jCrilm = 0. (4.38)
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Now substituting (4.1) into (4.37) we have

L2

{
1
4 [(m+2)c+3 trP]

[
(Cli jm +Cl jim)− (Cmi jl +Cm jil)

]

+
3
4
(m−4)

[
Pr

l (Cri jm +Cr jim)−Pr
m(Cri jl +Cr jil)

]}
= 0

and so

Pr
l Cri jm +Pr

mCril j +Pr
l Cr jim +Pr

mCr jli = 0.

Now applying (4.30) we have

(C ·P)i jlm = Pr
i Cr jlm +Pr

jCrilm = 0.

In view of (2.36) we have

C ·P = R ·S− 1
m−2

Q(g,S2)+
κ

(m−1)(m−2)
Q(g,S).

Applying (2.43) and (4.38) we get

Q
(

g,S2−
[
(m−2)Ls +

κ

m−1

]
S
)
= 0.

Using (Lemma 2.4(i) of [16]) we obtain

S2 =
[
(m−2)Ls +

κ

m−1

]
S+λg, λ ∈ R. (4.39)

Now Substituting (4.1) into (4.39), we obtain (4.32). This completes the proof. �

Theorem 4.10. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-

space form. If the tensor field P is hybrid and the condition (2.50) holds for L2 6= 0 at

x ∈US∩U2 ⊂M, then(
mLS− (mα + tr P β )L2

)
Pr

l Cri jk =
(

tr P LS− (α tr P+β tr(P2))L2

)
Cli jk (4.40)

at x, where α = 1
4 [(m+2)c+3 tr P] and β = 3

4(m−4).

Moreover, if LS =
κ

mL2 at x, then

tr(P2) =
1
β
(α tr P− κ tr P

m
). (4.41)

Proof. In view of (4.39) and (4.35) or (4.38) we get

S2
hrC

r
i jk +S2

jrC
r
ikh +S2

krC
r
ih j = 0, (4.42)
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C ·S2 = 0. (4.43)

Transvecting (2.50) with Sm
p we get

grs[Sm
p RmlhsCri jk +Sm

p RmlisChr jk +Sm
p Rml jsChirk +Sm

p RmlksChi jr]

= L2

(
ShlSr

pCri jk +SilSr
pChr jk +S jlSr

pChirk +SklSr
pChi jr

− S2
hpCli jk−S2

ipChl jk−S2
jpChilk−S2

kpChi jl

)
.

Now symmetrization in p, l, we have

grs
[
(Sm

p Rmlhs +Sm
l Rmphs)Cri jk +(Sm

p Rmlis +Sm
l Rmpis)Chr jk

+ (Sm
p Rml js +Sm

l Rmp js)Chirk +(Sm
p Rmlks +Sm

l Rmpks)Chi jr

]
= L2

[
(ShlSr

p +ShpSr
l )Cri jk +(SilSr

p +SipSr
l )Chr jk +

+ (S jlSr
p +S jpSr

l )Chirk +(SklSr
p +SkpSr

l )Chi jr

− S2
phCli jk−S2

lhCpi jk−S2
piChl jk−S2

liChp jk

− S2
p jChilk−S2

l jChipk−S2
pkChi jl−S2

lkChi jp

]
.

In view of (2.43) we get

LS

[
gphSr

lCri jk +glhSr
pCri jk−gpiSr

lCrh jk−gliSr
pCrh jk

+ gp jSr
lCrkhi +gl jSr

pCrkhi−gpkSr
lCr jhi−glkSr

pCr jhi

− SlhCpi jk−SphCli jk−SliChp jk−SpiChl jk

− Sl jChipk−Sp jChilk−SlkChi jp−SpkChi jl

]
= L2

[
(ShlSr

p +ShpSr
l )Cri jk +(SilSr

p +SipSr
l )Chr jk

+ (S jlSr
p +S jpSr

l )Chirk +(SklSr
p +SkpSr

l )Chi jr

− S2
phCli jk−S2

lhCpi jk−S2
piChl jk−S2

liChp jk

− S2
p jChilk−S2

l jChipk−S2
pkChi jl−S2

lkChi jp

]
. (4.44)

Contracting (4.44) with ghp and using (4.35), (4.38), (4.42) and (4.43) we obtain

LS(mSr
lCri jk−κCli jk) = L2(κSr

lCri jk− tr(S2)Cli jk). (4.45)

In view of (4.1) we have

tr(S2) = SirSir = mα
2 +2 α β tr P+β

2 tr(P2) (4.46)
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and

κ = mα +β tr P. (4.47)

Applying (4.46) and (4.47) in (4.45) we obtain (4.40).

Finally, if LS =
κ

mL2, then (4.40), in view of C 6= 0 and L2 6= 0 at x, yields

tr(P2) = 1
β
(α trP− κ trP

m ). �

The following proposition is based on ( [32], Lemma 3.1.).

Theorem 4.11. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-

space form. If the tensor field P is hybrid and the conditions (2.49) and (2.50) hold for

L2 6= 0 at x ∈US∩U2 then

(m−1)LS(R ·P) =
[
α(α−mLS)−β trPLS

]
Q(g,P)

+ Q(αβg+β
2P,P2), (4.48)

where α = 1
4 [(m+2)c+3 trP] and β = 3

4(m−4).

Proof. Contracting (4.33) with ghk we find

Ti j = SrsRri js = S2
i j−mLSSi j +κLSgi j. (4.49)

Applying the operation R· to the equation (4.49), we obtain

(R ·S)rshkRr s
i j +Srs(R ·R)ri jshk = (R ·S2)i jhk−mLS(R ·S)i jhk. (4.50)

In view of (2.43), (2.49) and SrsCri js = 0, which follows immediately from (4.38), the

left hand side of this identity is equal to

LS(Sr
kRr jih +Sr

kRri jh−Sr
hRr jik−Sr

hRri jk)

+ S2
hrR

r
jik +S2

hrR
r
i jk−S2

krR
r
jih−S2

krR
r
i jh

+ SihTjk−SikTjh +S jhTik−S jkTih

− L1(Sr
kCr jih +Sr

kCri jh−Sr
hCr jik−Sr

hCri jk).

Using twice (4.35) and next (4.38) we can easily see that the expression in the last

brackets vanishes. Moreover in view of (4.34), we have

Sr
kRr jih−Sr

hRr jik =−Sr
i Rr jhk
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and using S2
hrR

r
i jk +S2

jrR
r
ikh +S2

krR
r
ih j = 0, we get

S2
hrR

r
jik−S2

krR
r
jik =−S2

irR
r
jkh = S2

irR
r
jhk.

Taking into account all these identities one can easily see that the left hand side of

(4.50) can be written as follows:

−LS(R ·S)i jhk +(R ·S2)i jhk +SihTjk−SikTjh +S jhTik−S jkTih.

Substituting this expression into (4.50) we obtain

(m−1)LS(R ·S)i jhk = SikTjh−SihTjk +S jkTih−S jhTik. (4.51)

In local coordinates, (5.12) takes the form

Pr
hRri jk +Pr

i Rrh jk = LS(gh jPik−ghkPi j +gi jPhk−gikPh j) (4.52)

and contracting (4.52) with ghk and using (4.1), we have

PrsRri js = αPi j +βP2
i j−mLSPi j + trP LSgi j (4.53)

and

Tjh = SrsRr jhs = αgrsRr jhs +βPrsRr jhs

= αS jh +βPrsRr jhs.

Using above equation we have

(m−1)LS(R ·S)i jhk = β (PrsRr jhsSik−PrsRr jksSih

+ PrsRrihsS jk−PrsRriksS jh)

and so

(m−1)LS(R ·P)i jhk = PrsRr jhsSik−PrsRr jksSih

+ PrsRrihsS jk−PrsRriksS jh. (4.54)

Applying (4.53) and (4.1) in (4.54), we find (4.48). �

Theorem 4.12. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric l.c.K-

space form such that the tensor field P is hybrid. If the conditions (2.49) and (2.50)

hold then on US∩U2 we have
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[
α(L2−1)−L1

]
Q(g,R)+β (L2−1) Q(P,R)

=
β

m−2
Q(g,Ũ)

[
L2(β −α +

κ

m−1
)−L1−LS

]
(4.55)

and

(L2−1)(tr P Rmi jk +Pr
i Rrm jk)+

m−1
β

[
α(L2−1)−L1

]
Rmi jk

= β (L2−1)(PmkPi j−Pm jPik)

+
[
α(L2−1)+(m−1)τ

]
(gi jPmk−gikPm j)

+
[
α(L2−1)−L1 + τ

]
(gmkPi j−gm jPik)

+
[

α

β
(α(L2−1)−L1)− trP τ

]
(gm jgik−gmkgi j), (4.56)

where α = 1
4 [(m+ 2)c+ 3 tr P], β = 3

4(m− 4) and τ = 1
m−1

[
L2(β −α + κ

m−1)−L1−

LS

]
.

Proof. The Weyl curvature tensor C can also be presented in the following form:

C = R− 1
m−2

U +
κ

(m−1)(m−2)
G,

where

Uhi jk = ghkSi j−gh jSik +gi jShk−gikSh j. (4.57)

Applying the operation R· and in view of (2.43) we get

(R ·U)hi jklm = ghk(R ·S)i jlm−gh j(R ·S)iklm +gi j(R ·S)hklm−gik(R ·S)h jlm

= LS

(
ghkQ(g,S)i jlm−gh jQ(g,S)iklm

+ gi jQ(g,S)hklm−gikQ(g,S)h jlm

)
= −LS

(
SilGhm jk +S jlGhimk +SklGhi jm +ShlGmi jk

− SimGhl jk−S jmGhilk−SkmGhi jl−ShmGli jk

)
= −LSQ(S,G)hi jklm

= LSQ(g,U)hi jklm. (4.58)

Substituting (4.1) into (4.57) we have

Uhi jk = 2αGhi jk +βŨhi jk, (4.59)
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where

Ũhi jk = ghkPi j−gh jPik +gi jPhk−gikPh j. (4.60)

Using (4.59) we get

(R ·U)hi jklm = β (R ·Ũ)hi jklm (4.61)

and

(R ·Ũ)hi jklm =−LSQ(P,G)hi jklm = LSQ(g,Ũ)hi jklm. (4.62)

Moreover, using (2.36) we obtain R ·C = R ·R− 1
m−2R ·U . Substituting (4.58), (2.49)

and (2.50) into (4.62) we get

L2Q(S,C) = Q(S,R)+L1Q(g,C)− 1
m−2

R ·U (4.63)

and using (4.1) and (4.61) we have

L2(αQ(g,C)+βQ(P,C)) = αQ(g,R)+βQ(P,R)+L1Q(g,C)

− β

m−2
(R ·Ũ). (4.64)

After straightforward calculations, we get

Q(g,C) = Q(g,R)− β

m−2
Q(g,Ũ) (4.65)

and

Q(P,C) = Q(P,R)+
1

m−2
Q(P,U)+

κ

(m−1)(m−2)
Q(P,G)

= Q(P,R)+
2α−β

m−2
Q(g,Ũ)− κ

(m−1)(m−2)
Q(g,Ũ). (4.66)

Substituting (4.65) and (4.66) into (4.64) we get (4.55).

Using (2.38) and (4.1), we obtain

ghlQ(g,R)hi jklm = (m−1)Rmi jk−αGmi jk +β (g jmPik−gkmPi j),

ghlQ(P,R)hi jklm = tr P Rmi jk +Pr
i Rrm jk +α(gikPm j−gi jPmk)

+ β (PikPm j−Pi jPmk)

and

ghlQ(g,Ũ)hi jklm = (m−1)(gi jPmk−gikPm j)+ tr P(gikgm j−gi jgmk)

+ gmkPi j−gm jPik.

Contracting (4.55) with ghl and using the above relations we get (4.56), which

completes the proof. �

48



5. CURVATURE PROPERTIES OF LOCALLY CONFORMAL KAEHLER
SPACE FORMS

5.1 Walker Type Identities On Locally Conformal Kaehler Space Forms

In this section, we present results on l.c.K-space forms satisfying curvature identities

named Walker type identities.

Lemma 5.1 [33]. For a symmetric (0,2)-tensor A and a generalized curvature tensor

B on a semi-Riemannian manifold (M,g), n≥ 3, we have

Q(A,B)hi jklm +Q(A,B) jklmhi +Q(A,B)lmhi jk = 0. (5.1)

It is well-known that the following identity

(R ·R)hi jklm +(R ·R) jklmhi +(R ·R)lmhi jk = 0 (5.2)

holds on any semi-Riemannian manifold. The equation (5.2) is called the Walker type

identity.

On any semi-Riemannian manifold (M,g), n ≥ 4, the following three identities are

equivalent to each other [34]:

(R ·C)hi jklm +(R ·C) jklmhi +(R ·C)lmhi jk = 0, (5.3)

(C ·R)hi jklm +(C ·R) jklmhi +(C ·R)lmhi jk = 0 (5.4)

and

(R ·C−C ·R)hi jklm +(R ·C−C ·R) jklmhi +(R ·C−C ·R)lmhi jk = 0. (5.5)

The equations (5.3) - (5.5) are called the Walker type identities. We also can consider

the following Walker type identity

(C ·C)hi jklm +(C ·C) jklmhi +(C ·C)lmhi jk = 0. (5.6)
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Theorem 5.2 [35]. Let M(c) be a 4-dimensional l.c.K-space form such that the tensor

field P is hybrid and tr P is constant. Then the Walker type identities (5.3) - (5.5) and

(5.6) hold on M(c).

Proof. In view of Theorem 4.3., we have

R ·C−C ·R =
[1

4
(2c+ tr P)

]
Q(g,R)

and using (5.1) we get (5.5) (equivalently (5.3) and (5.4)) .

Further, we note that (2.36) turns into C = R− 2c+trP
4 G. This gives

C ·C = C · (R− 2c+ trP
4

G) =C ·R

= (R− 2c+ trP
4

G) ·R = R ·R− 2c+ trP
4

Q(g,R). (5.7)

Now using (5.1) and (5.2) we complete the proof. �

Theorem 5.3 [35]. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that

tr P is constant, the tensor field P is hybrid and is proportional to g, then the Walker

type identities (5.3) - (5.5) and (5.6) hold on M(c).

Proof. In view of Theorem 4.4. and (5.1) we get (5.5) (equivalently (5.3) and (5.4)) .

Using (4.16), we get

C ·C = C ·
(

R− 1
4(m−1)

[
(m+2)c+

6(m−2)
m

tr P
]

G
)

= C ·R

=
(

R− 1
4(m−1)

[
(m+2)c+

6(m−2)
m

tr P
]

G
)
·R

= R ·R− 1
4(m−1)

[
(m+2)c+

6(m−2)
m

tr P
]

Q(g,R).

Using (5.1) and (5.2), we get the result. �

Lemma 5.4 [35]. Let M(c) be an m-dimensional (m > 4) l.c.K-space form such that

the tensor field P is hybrid. Then, we have

(m−2)
[
(R ·C)hi jklm +(R ·C) jklmhi +(R ·C)lmhi jk

]
=−β

[
(g∧ (R ·P))hi jklm +(g∧ (R ·P)) jklmhi +(g∧ (R ·P))lmhi jk

]
. (5.8)

Proof. Substituting (4.1) into (2.36), we obtain

C = R− β

m−2
(g∧P)− α(m−2)−β trP

(m−1)(m−2)
G, (5.9)
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where α = 1
4 [(m+2)c+3 trP] and β = 3

4(m−4) and so

R ·C = R ·R− β

m−2
g∧ (R ·P). (5.10)

Using (5.2) the proof is completed. �

Corollary 5.5 [35]. If one of the Walker type identities (5.3) - (5.5) holds on an

m-dimensional (m > 4) l.c.K-space form M(c) and the tensor field P is hybrid, then on

M(c) we have

(g∧ (R ·P))hi jklm +(g∧ (R ·P)) jklmhi +(g∧ (R ·P))lmhi jk = 0. (5.11)

Theorem 5.6 [35]. Let M(c) be an m-dimensional (m > 4) Ricci-pseudosymmetric

l.c.K-space form M(c) such that the tensor field P is hybrid. Then the Walker type

identities (5.3) - (5.5) hold on Us ⊂M.

Proof. In view of (2.43) and (4.1), m-dimensional (m > 4) Ricci-pseudosymmetric

l.c.K-space forms satisfy

R ·P = LSQ(g,P). (5.12)

Using (5.12) in (5.8), we obtain the following identity on US

(m−2)
[
(R ·C)hi jklm +(R ·C) jklmhi +(R ·C)lmhi jk

]
=−βLS

[
(g∧Q(g,P))hi jklm +(g∧Q(g,P)) jklmhi +(g∧Q(g,P))lmhi jk

]
.

Making use of (2.33) and (5.1), we obtain on US

(m−2)
[
(R ·C)hi jklm +(R ·C) jklmhi +(R ·C)lmhi jk

]
= βLS

[
Q(P,G)hi jklm +Q(P,G) jklmhi +Q(P,G)lmhi jk

]
= 0. (5.13)

Hence (5.3) (equivalently (5.4), (5.5)) holds on M(c). �
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5.2 Roter Type Locally Conformal Kaehler Space Forms

Let B be a generalized curvature tensor on a semi-Riemannian manifold (M,g), n≥ 4.

We denote by Ric(B), Weyl(B) and κ(B) its Ricci tensor, the Weyl tensor and the scalar

curvature tensor, respectively. The subset UB, URic(B) and UWeyl(B) are defined in the

same manner as the subsets UR, US, and UC, respectively.

A generalized curvature tensor B on a semi-Riemannian manifold (M,g), n ≥ 4, is

called Roter type tensor if

B =
φ

2
Ric(B)∧Ric(B)+µg∧Ric(B)+η G, (5.14)

on URic(B) ∩UWeyl(B), where φ ,µ and η are some functions on that set. Manifolds

admitting Roter type tensors were investigated in [36] [23] [17].

A semi-Riemannian manifold (M,g), n ≥ 4, with the curvature tensor R satisfying

(5.14) on US∩UC ⊂M, i.e.

R =
φ

2
S∧S+µg∧S+η G, (5.15)

where φ ,µ and η are some functions on US∩Uc, is called a Roter type manifold [37].

In local coordinates (5.15) takes the form

Rhi jk =
φ

2

(
2ShkSi j−2Sh jSik

)
+µ

(
ghkSi j +gi jShk−gh jSik−gikSh j

)
+η Ghi jk.

Substituting (4.1) into the above equation we have

R̄hi jk = φ

[
α

2Ghi jk +αβ (g∧P)hi jk +β
2(PhkPi j−Ph jPik)

]
+ µ

[
2αGhi jk +β (g∧P)hi jk

]
+ η Ghi jk

and so

R̄ = x (P∧P)+ y (g∧P)+ z G, (5.16)

where x = φβ 2

2 , y = φαβ +µβ and z = φα2 +2αµ +η .

An m-dimensional l.c.K-space form M(c), (m > 4), with the curvature tensor R̄

satisfying (5.16) on US∩UC is called a Roter type l.c.K-space form.
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Using (4.9) for 4-dimensional Roter type l.c.K-space forms, we get

R̄ =
[
η +

9
16

φ (2c+ tr P)2 +
3
2

µ (2c+ tr P)
]

G. (5.17)

Lemma 5.7 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space form

such that the tensor field P is hybrid. If at x ∈US∩UC the Weyl curvature tensor C̄ is

nonzero, then φ is nonzero at x.

Proof. We suppose that φ vanishes at x. Now (5.16) reduces to

R̄ = µβ (g∧P)+(2αµ +η)G. (5.18)

Contracting the above equation with ghk, we have

S̄i j = µβ

[
(m−2)Pi j + tr P gi j

]
+(2αµ +η)(m−1)gi j (5.19)

and so

κ̄ = (m−1)
[
m(2αµ +η)+2β µ tr P

]
. (5.20)

Substituting (5.18), (5.19) and (5.20) into (2.36) we obtain C̄ = 0, a contradiction. �

Lemma 5.8 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space form

such that the tensor field P is hybrid. If φ is nonzero at a point x ∈US∩UC , then we

have

P2 =
1
2x

{
[2x tr P+ y(m−2)]P+[y tr P + z(m−1)]g− S̄

}
, (5.21)

R̄ ·P = (m−2)
( y2

2x
− y
)

Q(g,P)−Q(P, S̄)− y
2x

Q(g, S̄). (5.22)

Proof. Contracting (5.16) with ghk, we have

S̄i j = 2x(tr P Pi j−P2
i j)+ y

[
(m−2)Pi j + tr P gi j

]
+ z(m−1)gi j (5.23)

and so we get (5.21). In view of (5.16) we have

Pr
h R̄ri jk = 2x(P2

hkPi j−P2
h jPik)+ y(PhkPi j +P2

hkgi j−Ph jPik−P2
h jgik)

+ z(Phkgi j−Ph jgik) (5.24)

and using (2.39) we get

(R̄ ·P) = 2x Q(P,P2)+ y Q(g,P2)+ z Q(g,P).
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Substituting (5.21) into the above equation we obtain (5.22). �

Theorem 5.9 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space

form such that the tensor field P is hybrid. Then at a point x ∈US∩UC at which φ is

nonzero we have

R̄ · R̄ = Q(S̄, R̄)+ L̄1Q(g,C̄), (5.25)

where

L̄1 = (m−2)
[ y2

2x
− z
]
. (5.26)

Proof. Applying (5.16) into (2.37) we get

(R̄ · R̄)hi jklm = 2x
[
Pi j(Ēhklm + Ēkhlm)+Phk(Ēi jlm + Ē jilm)−Pik(Ē jhlm + Ēh jlm)

− Ph j(Ēiklm + Ēkilm)
]
+ y
[
gi j(Ēhklm + Ēkhlm)+ghk(Ēi jlm + Ē jilm)

− gik(Ē jhlm + Ēh jlm)−gh j(Ēiklm + Ēkilm)
]
, (5.27)

where

Ēmi jk = Ps
mR̄si jk = 2x (P2

mkPi j−P2
m jPik)

+ y (PmkPi j−Pm jPik +P2
mkgi j−P2

m jgik)

+ z (Pmkgi j−Pm jgik), (5.28)

Ēhklm + Ēkhlm = 2x (P2
hmPkl−P2

hlPkm +P2
kmPhl−P2

klPhm)

+ y (P2
hmgkl−P2

hlgkm +P2
kmghl−P2

klghm)

+ z (Phmgkl−Phlgkm +Pkmghl−Pklghm)

= 2x Q(P,P2)hklm + y Q(g,P2)hklm + z Q(g,P)hklm.

(5.29)

Now (5.27) in view of Lemma 2.1, Lemma 2.2, (2.31) and (5.29) yields

R̄ · R̄ = z Q(g,R)−Q(2x P2,2x P̄)−Q
(

2x P2,y (g∧P)
)

− y2

2x
Q(2x P2,G),
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where P̄ = 1
2P∧P. Substituting (5.21) into the above equation we have

R̄ · R̄ = z Q(g,R)−Q
(
[y tr P+(m−1)z]g,2x P̄

)
+ Q(S̄,2x P̄)−Q

(
[2x tr P+(m−2)y] P,y (g∧P)

)
− Q

(
[y tr P+(m−1)z]g,y (g∧P)

)
+ Q(S̄,y (g∧P))− y2

2x
Q
(
[2x tr P+(m−2)y]P,G

)
+

y2

2x
Q(S̄,G)+Q(S̄,zG)−Q(S̄,zG)

and so we get

R̄ · R̄ = Q(S̄, R̄)+ z Q(g, R̄)−
( y2

2x
− z
)

Q(g,g∧ S̄)

− z (m−1)Q(g,2x P̄)+
(m−2)y2

2x
Q(g,2x P̄)

− z (m−1)Q(g,y(g∧P))+
(m−2)y2

2x
Q(g,y(g∧P))

= Q(S̄, R̄)+(m−2)
( y2

2x
− z
)

Q(g,C̄).

This completes the proof. �

Theorem 5.10 [38]. Let M(c) be an m-dimensional (m > 4) Roter type l.c.K-space

form such that the tensor field P is hybrid. Then at a point x ∈US∩UC at which φ is

nonzero we have

(m−2)(R̄ ·C̄−C̄ · R̄) =
[
2(y tr P+ z (m−1))− κ

m−1

]
Q(g, R̄)

+
[
2x tr P+ y (m−2)

]
Q(P, R̄)−2x Q(P2, R̄)

+ 2x
[
2x tr P+ y (m−1)

][
P∧Q(g,P2)−g∧Q(P,P2)

]
+ y

[
2x tr P+ y (m−2)

]
Q(g, P̄)

+ (2x)2
[
P∧Q(g,N)−g∧Q(P,N)

]
, (5.30)

where Ni j = Ps
i P2

s j.

Proof. Substituting (5.23) into (4.7), we get

(m−2)(R̄ ·C̄−C̄ · R̄)hi jklm =
{

2[y tr P+ z (m−1)]− κ

m−1

}
Q(g, R̄)hi jklm

+
[
2x tr P+ y (m−2)

]
Q(P, R̄)hi jklm−2x Q(P2, R̄)hi jklm
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+
[
2x tr P+ y (m−2)

][
glhĒmi jk−gmhĒli jk−gliĒmh jk

+ gmiĒlh jk +gl jĒmkhi−gm jĒlkhi−gklĒm jhi +gkmĒl jhi

− gi j(Ēkhlm + Ēhklm)−ghk(Ē jilm + Ēi jlm)+gik(Ē jhlm + Ēh jlm)

+ gh j(Ēkilm + Ēiklm)
]
−2x

[
glhF̄mi jk−gmhF̄li jk−gliF̄mh jk

+ gmiF̄lh jk +gl jF̄mkhi−gm jF̄lkhi−gklF̄m jhi +gkmF̄l jhi

− gi j(F̄khlm + F̄hklm)−ghk(F̄jilm + F̄i jlm)+gik(F̄jhlm + F̄h jlm)

+ gh j(F̄kilm + F̄iklm)
]
, (5.31)

where F̄mi jk = P2
mrg

rsR̄si jk.

Using (5.28), we get

glhĒmi jk−gmhĒli jk−gliĒmh jk +gmiĒlh jk +gl jĒmkhi

− gm jĒlkhi−gklĒm jhi +gkmĒl jhi

= 2x
(

P∧Q(g,P2)
)

hi jklm
+ y
(

Q(g, P̄)hi jklm−Q(P2,G)hi jklm

)
− z Q(P,G)hi jklm. (5.32)

The equation (5.16) implies

F̄mi jk = 2x (NmkPi j−Nm jPik)

+ y (P2
mkPi j−P2

m jPik +Nmkgi j−Nm jgik)

+ z (P2
mkgi j−P2

m jgik), (5.33)

F̄hklm + F̄khlm = 2x Q(P,N)hklm + y
(

Q(P,P2)hklm +Q(g,N)hklm

)
+ z Q(g,P2)hklm. (5.34)

Using (5.33), we get

glhF̄mi jk−gmhF̄li jk−gliF̄mh jk +gmiF̄lh jk +gl jF̄mkhi

− gm jF̄lkhi−gklF̄m jhi +gkmF̄l jhi

= 2x
(

P∧Q(g,N)
)

hi jklm
+ y
(
(P∧Q(g,P2))hi jklm−Q(N,G)hi jklm

)
− z Q(P2,G)hi jklm. (5.35)

Substituting (5.29), (5.32), (5.34) and (5.35) into (5.31) and using (2.32), (2.33) we ob-

tain (5.30). �
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5.3 Bochner Curvature Tensor On Locally Conformal Kaehler Space Forms

In this section, the Bochner curvature tensor in l.c.K-manifolds and l.c.K-space forms

are presented. Moreover, some properties of the Bochner curvature tensor in an

l.c.K-space form are obtained.

The Bochner curvature tensor in a Kaehler manifold Mm(J,g) is defined by [39]

B = R− 1
m+4

(S∧g+ S̃[ J)

+
κ

2(m+2)(m+4)
(g∧g+ J [ J), (5.36)

where S̃i j = SirJr
j .

Using

RrstqJr
i Js

jJ
t
hJq

k = Ri jhk, (5.37)

the Bochner curvature tensor in a Kaehler manifold has been generalized into an almost

Hermitian manifold which is given by [40]

B = R− (T ∧g+ T̃ [ J)+
κ̄−κ

8m(m−2)
(3 g∧g− J [ J), (5.38)

where

T =
1

4(m+4)

(
S+3S̄− κ +3κ̄

2(m+2)
g
)
, (5.39)

T̃i j = TirJr
j , Zi jhk = Ri jrsJr

hJs
k−Ri jhk, S̄i j = Si j +Zi j, κ̄ = S̄rsgrs.

Theorem 5.11. In an m-dimensional l.c.K-manifold the Bochner curvature tensor is

Bi jhk = R− 1
m+4

[
(S∧g)+(S̃[ J)

]
+

3(m−3)
4(m+4)

(P∧g)+
3(m−4)
4(m+4)

(K [ J)

+
2mκ−3(m2 +2m+8) tr P

4m(m+2)(m+4)
(g∧g)

+
−2mκ +(m2−6m+8) tr P

4m(m+2)(m+4)
(J [ J)

+
3

2(m+4)
(K̂∧g), (5.40)

where Ki j = PirJr
j and K̂i j = PrsJr

i Js
j .
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Proof. In l.c.K-manifolds we have [2]

Zi jhk = Ri jrsJr
hJs

k−Ri jhk

= Pjkgih−Pjhgik +Pihg jk−Pikg jh

+ PjrJr
kJih−PjrJr

hJik +PirJr
hJ jk−PirJr

kJ jh. (5.41)

Contracting the above equation with gik we get

Z jh =−(m−3)Pjh− tr P g jh +PrsJr
jJ

s
h . (5.42)

In view of (5.39) and (5.42) we get

(T ∧g)+(T̃ [ J) =
1

m+4

[
(S∧g)+(S̃[ J)

]
− 3(m−3)

4(m+4)
(P∧g)− 3(m−4)

4(m+4)
(K [ J)

−
(

κ

2(m+2)(m+4)
+

3 tr P
4(m+4)

− 3(m−2) tr P
4(m+2)(m+4)

)
(g∧g)

−
(

−κ

2(m+2)(m+4)
− 3 tr P

4(m+4)
+

3(m−2) tr P
4(m+2)(m+4)

)
(J [ J)

− 3
2(m+4)

(K̂∧g) (5.43)

and we also have

κ́−κ

8m(m−2)
(3 g∧g− J [ J) =−tr P

4m
(3 g∧g− J [ J). (5.44)

Substituting (5.43) and (5.44) into (5.38) we obtain (5.40). �

Theorem 5.12. Let M be an m-dimensional l.c.K-manifold such that the tensor field P

is hybrid. Then the Bochner curvature tensor is given by

B = R− 1
m+4

(
(S∧g)+(S̃[ J)

)
+

3(m−4)
4(m+4)

(
(P∧g)− (P̃[ J)

)
+

2mκ−3(m2 +2m+8) tr P
4m(m+2)(m+4)

(g∧g)

+
−2mκ +(m2−6m+8) tr P

4m(m+2)(m+4)
(J [ J). (5.45)

Proof. Contracting (5.41) with gik we get

Z jh =−(m−4)Pjh− tr P g jh. (5.46)
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In view of (5.39) and (5.46) we get

(T ∧g)+(T̃ [ J) =
1

m+4

(
(S∧g)+(S̃[ J)

)
− 3(m−4)

4(m+4)

(
(P∧g)− (P̃[ J)

)
−

(
κ

2(m+2)(m+4)
+

3 tr P
4(m+4)

− 3(m−2) tr P
4(m+2)(m+4)

)
(g∧g)

−
(

−κ

2(m+2)(m+4)
− 3 tr P

4(m+4)
+

3(m−2) tr P
4(m+2)(m+4)

)
(J [ J).

(5.47)

Substituting (5.44) and (5.47) into (5.38) we obtain (5.45). �

Theorem 5.13. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then the Bochner curvature tensor is given by

B = R+λ (g∧g)+ γ (J [ J), (5.48)

where

λ =− α

m+4
+

2mκ−3(m2 +2m+8) tr P
4m(m+2)(m+4)

,

γ =
α

m+4
+
−2mκ +(m2−6m+8) tr P

4m(m+2)(m+4)

and α = 1
4 [(m+2)c+3 tr P].

Proof. Using (4.1) into the (5.45), we get

Bi jhk = Ri jhk +
[
− α

m+4
+

2mκ−3(m2 +2m+8) tr P
4m(m+2)(m+4)

]
(2gikg jh−2gihg jk)

+
[

α

m+4
+
−2mκ +(m2−6m+8) tr P

4m(m+2)(m+4)

]
(2JikJ jh−2JihJ jk−4Ji jJhk).

Using (2.30) we obtain (5.48). �

Theorem 5.14. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then we have

R ·B = R ·R+2γ T (5.49)

and

B ·R = R ·R+2λ Q(g,R)+2γ T̄ , (5.50)
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where

Thi jklm = Ji j(Vhklm−Vkhlm)+ Jhk(Vi jlm−Vjilm)

+ Jik(Vjhlm−Vh jlm)+ Jh j(Vkilm−Viklm)

+ 2J jk(Vihlm−Vhilm)+2Jhi(Vk jlm−Vjklm), (5.51)

T̄hi jklm =
(

JlhVmi jk + JhmVli jk + JilVmh jk− JimVlh jk

− J jlVmkhi + J jmVlkhi + JklVm jhi− JkmVl jhi

)
+ 2Jlm(Vhi jk−Vih jk +Vjkhi−Vk jhi) (5.52)

and Vi jlm = Js
i Rs jlm.

Proof. Using (2.37) and in view of (5.48), we get

(R ·B)hi jklm = grs(Bri jkRshlm +Bhr jkRsilm +BhirkRs jlm +Bhi jrRsklm)

= (R ·R)hi jklm +2γ Thi jklm (5.53)

and

(B ·R)hi jklm = grs(Rri jkBshlm +Rhr jkBsilm +RhirkBs jlm +Rhi jrBsklm)

= (R ·R)hi jklm +2λQ(g,R)hi jklm +2γ T̄hi jklm. (5.54)

This completes the proof. �

Theorem 5.15. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then the following three equalities are equivalent :

(R ·B)hi jklm +(R ·B) jklmhi +(R ·B)lmhi jk = 0, (5.55)

(B ·R)hi jklm +(B ·R) jklmhi +(B ·R)lmhi jk = 0 (5.56)

and

(R ·B−B ·R)hi jklm +(R ·B−B ·R) jklmhi +(R ·B−B ·R)lmhi jk = 0 (5.57)

on M(c).
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Proof. We set

Ahi jklm = Ji j(Vhklm−Vkhlm)+ Jhk(Vi jlm−Vjilm)

+ Jik(Vjhlm−Vh jlm)+ Jh j(Vkilm−Viklm)

+ Jkl(Vjmhi−Vm jhi)+ J jm(Vklhi−Vlkhi)

+ Jkm(Vl jhi−Vjlhi)+ J jl(Vmkhi−Vkmhi)

+ Jmh(Vli jk−Vil jk)+ Jli(Vmh jk−Vhm jk)

+ Jmi(Vhl jk−Vlh jk)+ Jlh(Vim jk−Vmi jk)

+ 2J jk(Vihlm−Vhilm)+2Jhi(Vk jlm−Vjklm)

+ 2Jlm(Vk jhi−Vjkhi)+2J jk(Vmlhi−Vlmhi)

+ 2Jhi(Vml jk−Vlm jk)+2Jlm(Vih jk−Vhi jk). (5.58)

Symmetrizing (5.49) with respect to the pairs (h,i), (j,k) and (l,m) and applying (5.2)

we obtain

(R ·B)hi jklm +(R ·B) jklmhi +(R ·B)lmhi jk = 2γ (Thi jklm +Tjklmhi +Tlmhi jk)

= 2γ Ahi jklm. (5.59)

In the same way, using (5.50) and applying (5.1) and (5.2) we have

(B ·R)hi jklm +(B ·R) jklmhi +(B ·R)lmhi jk = −2γ (T̄hi jklm + T̄jklmhi + T̄lmhi jk)

= −2γ Ahi jklm. (5.60)

From (5.59) and (5.60) we get

(R ·B−B ·R)hi jklm +(R ·B−B ·R) jklmhi +(R ·B−B ·R)lmhi jk = 4γ Ahi jklm. (5.61)

This completes the proof. �

Theorem 5.16. Let M(c) be an m-dimensional l.c.K-space form such that the tensor

field P is hybrid. Then we have

(B ·B)hi jklm = 2(R ·B)hi jklm− (R ·R)hi jklm

+ 2(λ − γ)
[
Ji j(J Zg)hklm + Jik(J Zg) jhlm

+ Jhk(J Zg)i jlm + Jh j(J Zg)kilm +2J jk(J Zg)ihlm

+ 2Jhi(J Zg)k jlm

]
. (5.62)
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Proof. In view of (2.37) and using (5.48), we get

(B ·B)hi jklm = grs(Bri jkBshlm +Bhr jkBsilm +BhirkBs jlm +Bhi jrBsklm)

= (R ·B)hi jklm +2γ

[
Ji j(Ṽhklm−Ṽkhlm)+ Jhk(Ṽi jlm−Ṽjilm)

+ Jik(Ṽjhlm−Ṽh jlm)+ Jh j(Ṽkilm−Ṽiklm)

+ 2J jk(Ṽihlm−Ṽhilm)+2Jhi(Ṽk jlm−Ṽjklm)
]
, (5.63)

where Ṽi jlm = Js
i Bs jlm.

Furthermore in view of (5.48) and using (2.34) we have

Ṽhklm−Ṽkhlm = Js
h

[
Rsklm +2λ (gsmgkl−gslgkm)+2 γ(JsmJkl− JslJkm−2JskJlm)

]
− Js

k

[
Rshlm +2λ (gsmghl−gslghm)+2 γ(JsmJhl− JslJhm−2JshJlm)

]
= Vhklm−Vkhlm +2(λ − γ)(J Zg)hklm. (5.64)

Substituting (5.64) into (5.63), we get

(B ·B)hi jklm = (R ·B)hi jklm +2 γ

[
Ji j(Vhklm−Vkhlm)+ Jhk(Vi jlm−Vjilm)

+ Jik(Vjhlm−Vh jlm)+ Jh j(Vkilm−Viklm)+2J jk(Vihlm−Vhilm)

+ 2Jhi(Vk jlm−Vjklm)
]
+2(λ − γ)

[
Ji j(J Zg)hklmJik(J Zg) jhlm

+ Jhk(J Zg)i jlm + Jh j(J Zg)kilm +2J jk(J Zg)ihlm

+ 2Jhi(J Zg)k jlm

]
. (5.65)

Using (5.49), we obtain (5.62). �

Theorem 5.17. Let M(c) be an m-dimensional (m > 4) pseudosymmetric l.c.K-space

form such that the tensor field P is hybrid and tr P is constant. If the condition

B ·B = LBQ(g,B) (5.66)

is fulfilled on UB = {x ∈M(c) | B 6= 0 at x}, where LB is a function on UB, then M(c)

is Einstein.

Proof. Using (5.62) we have

LBQ(g,B)hi jklm = 2(R ·B)hi jklm− (R ·R)hi jklm

+ 2(λ − γ)
[
Ji j(J Zg)hklm + Jik(J Zg) jhlm

+ Jhk(J Zg)i jlm + Jh j(J Zg)kilm +2J jk(J Zg)ihlm

+ 2Jhi(J Zg)k jlm

]
. (5.67)
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Now in view of (2.42) and (5.49) we get

LBQ(g,B)hi jklm = LRQ(g,R)hi jklm +4γ Thi jklm

+ 2(λ − γ)
[
Ji j(J Zg)hklm + Jik(J Zg) jhlm

+ Jhk(J Zg)i jlm + Jh j(J Zg)kilm +2J jk(J Zg)ihlm

+ 2Jhi(J Zg)k jlm

]
. (5.68)

Contracting (5.68) with ghm and gi j we get

LB(−mSlk +κglk) = LR(−mSlk +κglk). (5.69)

Substituting (4.1) into the above equation we get

(LR−LB)(−mα +κ)glk = (LR−LB)(−mα +κ)Plk,

where α = 1
4 [(m+2)c+3 tr P].

Using the fact that LR 6= LB we obtain

Plk =
tr P
m

glk

which means that the tensor field P is proportional to g and in view of Theorem 4.2.,

M(c) is Einstein. �
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6. CONCLUSIONS AND RECOMMENDATIONS

Let M be a real 2n-dimensional Hermitian manifold with structure (J, g), where J is

the almost complex structure and g is the Hermitian metric. The manifold M is called

a locally conformal Kaehler manifold (an l.c.K-manifold) if each point p in M has

an open neighborhood U with a positive differentiable function ρ : U → R such that

g∗ = e−2ρg |U is a Kaehlerian metric on U.

An 2n-dimensional l.c.K-manifold is a Hermitian manifold admitting a global closed

1-form α (Lee form) whose structure (J,g) satisfies ∇kJi j =−βigk j +β jgki−αiJk j +

α jJki, where βi = αrJri and ∇ denotes the covariant differentiation with respect to the

Hermitian metric g.

An l.c.K-manifold M(J,g,α) is called an l.c.K-space form if it has a constant

holomorphic sectional curvature. We give a generalization about the results of an

l.c.K-space form and invariant submanifolds of l.c.K-space forms with the tensor field

P is not hybrid.

It is proved that for a 2n-dimensional l.c.K-space form M(c), if the tensor field P is

proportional to g and tr P is constant, then M(c) is Einstein. The Sato’s form of the

holomorphic curvature tensor in an l.c.K-manifold are presented.

Some results on pseudosymmetric and Ricci-pseudosymmetric l.c.K-space forms are

obtained. It is proved that for 4-dimensional l.c.K-space forms such that the tensor

field P is hybrid and tr P is constant, R ·C−C ·R = [1
4 (2c+ tr P)] Q(g,R) and for

m-dimensional (m > 4) with the tensor P is proportional to g in l.c.K-space forms

R ·C−C ·R = 1
4(m−1)

[
(m+2)c+ 6(m−2)tr P

m

]
Q(g,R).

Furthermore, we present results on l.c.K-space forms satisfying curvature identities

called Walker type identities. It is proved that a 4-dimensional l.c.K-space form such

that the tensor field P is hybrid and tr P is constant satisfies Walker type identities.

We introduced the Roter type l.c.K-space forms. If P is hybrid, it is proved R̄ · R̄ =

Q(S̄, R̄)+ L̄1Q(g,C̄) in m-dimensional (m > 4) Roter type l.c.K-space forms.
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Moreover, we present a generalization about the Bochner curvature tensor in an

l.c.K-manifold with the tensor field P is not hybrid. Moreover, we state the Bochner

curvature tensor in an l.c.K-space form. Furthermore, Walker type identities for

Bochner curvature tensor are studied.

In the future, we aim to study the Bochner pseudosymmetry in l.c.K-manifolds, the

l.c.K-space forms which satisfy some properties of the Bochner curvature tensor and

some properties of Roter type l.c.K-space forms.

Furthermore, some properties of pseudosymmetric and Ricci-pseudosymmetric

l.c.K-space forms will be studied. Moreover, we are going to work hypersurfaces of

l.c.K-manifolds and l.c.K-space forms. Later on, as a natural extension, we are going

to study pseudosymmetric hypersurfaces of l.c.K-manifolds in the sense of Deszcz.
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Mutlu, P., Şentürk, Z., Walker Type Identities on Locally Conformal Kaehler Space
Forms, Rend. Sem. Mat. Univ. e Politec. Torino. (accepted)
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