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INTERSECTION GRAPHS OF FINITE GROUPS

SUMMARY

Let G be a group. The intersection graph I'(G) of G is an undirected graph without
loops and multiple edges defined as follows: the vertex set is the set of all proper
non-trivial subgroups of G, and there is an edge between two distinct vertices X and Y
if and only if X NY # 1 where 1 denotes the trivial subgroup of G. The purpose of this
thesis is to study the intersection graphs of finite groups. Particular emphasis was put
on the graph theoretical invariants of those objects.

In general, two non-isomorphic groups may have isomorphic intersection graphs.
However, finite abelian groups can almost be distinguished by their intersection graphs.
We prove that for any two abelian groups A and B, their intersection graphs are
1somorphic if and only if (i) the product of the non-cyclic Sylow subgroups of A is
1somorphic to the product of the non-cyclic Sylow subgroups of B, and (i1) exponents
of the orders of the cyclic Sylow subgroups of A and of B are equal up to a permutation.

We classified all finite groups whose intersection graphs are planar. There are a few
abelian groups with planar intersection graphs and the only non-abelian nilpotent
groups with planar intersection graph are the dihedral group Dg of order eight and
the quaternion group Qg. The rest of the list consists of some semi-direct products.
In particular, there is no non-solvable group whose intersection graphs is planar. By
Kuratowski’s Theorem a graph is planar if and only if it does not contain the complete
graph K;s over five vertices and the complete bipartite graph K3 3 as a minor. We further
determine the finite groups whose intersection graphs contains a K5 but not K33 as a
subgraph.

We studied the connectivity of intersection graphs of finite groups. Intuitively,
intersection graphs should be highly connected graphs and if there are some examples
of such graphs with ‘low’ connectivity, they must be exceptional. We classified finite
solvable groups whose intersection graphs are not 2-connected and finite nilpotent
groups whose intersection graphs are not 3-connected.
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SONLU GRUPLARIN KESIiSIM CIZGELERI

OZET

G ile bir grup temsil edilmek iizere G’nin kesisim c¢izgesi I'(G) ile su sekilde
tanimlanan dongii ve de coklu kenar icermeyen yonsiiz ¢izge kastedilmektedir: kose
kiimesi G’nin trivial olmayan 6zalt gruplarinin kiimesidir ve birbirinden farkli iki kose
X ve Y arasinda ancak ve ancak X NY # 1 ise bir kenar vardir. Burada 1 ile trivial
grup kastedilmektedir. Bu tez ¢caligmasinin amaci sonlu gruplarin kesisim ¢izgelerini
arastirmaktir. Daha 6zel olarak bu nesnelerin ¢izge kuramsal degismezleri iizerinde
durulmusgtur.

Genel olarak, izomorf olmayan iki grubun kesisim cizgeleri izomorf olabilirler. Mesela
kuaternion grup ile mertebesi bir asal sayinin besinci dereceden kuvveti olan dongiisel
grubu gdzoniine alalim. Her iki grubun da kesisim cizgeleri dorder adet koseye sahiptir.
Dahasi her iki grubun tek bir minimal altgrubu mevcuttur ve bu minimal altgrup
diger biitiin trivial olmayan 6zaltgruplar tarafindan igerilir. Dolayisiyla bu iki grubun
kesisim cizgeleri izomorftur. Ancak abelyen gruplarin sinifi géz oniine alindiginda
kesisim ¢izgelerinin bu gruplar birbirinden ayirmada neredeyse yeterli olduklarini
gosterdik. Daha net ifade edecek olursak su sonucu ispatladik: A ve B sonlu iki abelyen
grup olmak iizere bu gruplarin kesisim ¢izgeleri yalniz ve yalmiz su sartlar saglandigi
takdirde izomorftur: (i) A’nin dongiisel olmayan Sylow altgruplarinin ¢arpimi B’nin
dongiisel olmayan Sylow altgruplarinin ¢carpimina izormorftur, ve (ii) A’nin dongiisel
Sylow altgruplarinin mertebelerinin iisleri gerekiyorsa bir permutasyondan sonra B’nin
dongiisel Sylow altgruplarinin mertebelerinin iislerine esittir.

Eger bir cizge diizlem (yada kiire) tizerine kenarlar1 birbirini kesmeyecek sekilde tasvir
edilebiliyorsa bu ¢izgeye diizlemsel ¢izge denilir. Kesisim c¢izgeleri diizlemsel olan
sonlu gruplar siniflandirdik. Diyelim ki p, g, ve r birbirinden farkli asal sayilar1 temsil
etsinler. Kesisim cizgesi diizlemsel olan abelyen gruplar sunlardan ibarettir:

Lpgrs Lopgy Lpgy Lpi (0< i <5), Ly x Lo, Ly X Ly, Ly X Ly X Ly (p #2).

pgrr “p2q»

Abelyen olmayan ama nilpotent olan gruplar ise yalnizca mertebesi sekiz olan dihedral
grup Dg ve kuaternion grup Qg’dir. Ayrica asagidaki yari-direkt carpimlarin kesisim
cizgeleri de diizlemseldir ve boylece liste tamamlanir:

e Yari-direkt carpimlar Zg X Z > (p? | g—1)ve (Z,xZp)xZq (q ] p+1),
e Yari-direkt carpim (Z;, X Z)) X Z (q° } p+1),
e Yari-direkt carpim Z, X Z,q (pq ‘ r—1),

e Yari-direkt carpim Z, X Z4 (g ‘ p—1).

xXxi



Bu gruplarin prezentasyonlari elde edilmigtir. Ayrica ¢oziilebilir olmayan gruplarin
kesigsim c¢izgelerinin diizlemsel olamayacagi sonlu basit gruplarin siiflandirilmasi
(CFSG) kullanilmadan ispatlanmistir.

K, ile n adet kosesi olan ve herhangi iki ayr1 kose arasinda bir kenar bulunan yonsiiz
basit ¢izge, K, ile ise koge kiimesi V,, LIV, seklinde eleman sayilar1 m ve n olan
iki kiimenin ayrik birlesimi seklinde yazilabilen dyle ki iki kdse arasinda ancak ve
ancak biri V,,’nin eleman1 digeri ise V,,’nin eleman1 ise kenar bulunan yonsiiz basit
cizge temsil edilsin. Kuratowski’nin karakterizasyonu bir ¢izgenin ancak ve ancak hem
K5’i hem de K3 3’ii mindr olarak igermiyorsa diizlemsel olacagim sdyler. Ispatlarimiz
incelendigi vakit goriilecektir ki bir grubun kesisim ¢izgesi ancak ve ancak K5’1 yada
K3 371 altgizge olarak igeriyorsa diizlemsel degildir. Biz bu ¢aligmada kesigim ¢izgeleri
Ks’1ialtgizge olarak iceren ama K3 3’1 alt¢izge olarak igermeyen gruplari belirledik. Bu
gruplar sunlardir:

ZPG, Zps X Zq, Zg X Z3, (Z3 X Z3) X Z3, Zg X Zg,
Z3 X Z4, Dlg, Zq X Zp3 (p3 } q— 1)

I" kose sayis1 k’dan fazla baglantili bir ¢izge olmak iizere eger k’dan daha az sayida
koseyi kaldirarak I”y1 baglantisiz hale getirmek miimkiin degil ise [ ya k-baglantilidir
denir. I’nin k-baglantili oldugu en kiiciik deger ise I"nmin baglantililik sayisidir.
Bu baglamda baglantisiz ¢izgeler O-baglantili ¢izgeler olarak goriilebilirler. Kesisim
cizgeleri baglantisiz olan gruplar halihazirda siniflandirilmiglardir:

1. Zp x Zp, yada Z, X Zg;

2. GENxAOylekiN=Z,x - xZp, A=7Z4 NG(A) = A, ve N altgrubu G’nin
minimal normal altgrubudur.

Bu sonucu en azindan bir trivial olmayan normal 6zaltgrup i¢cerme faraziyesi altinda
ispatlamak ¢ok zor degildir. Sezgisel olarak kesisim cizgeleri baglantililik sayilar
yiiksek cizgelerdir ve eger baglantililik degerleri diisiik ¢izgeler varsa bunlar istisnai
durumlar olmalidirlar. Menger Teoremi bir ¢izgenin ancak ve ancak herhangi
iki kose arasinda birbirinden bagimsiz en az k adet patika bulunmasi durumunda
k-baglantili olacagimi sdyler. Ancak bir grubun kesisim ¢izgesinin k-baglantili
oldugunu iddia edebilmek i¢in belli sartlar1 saglayan bir¢cok altgrubun mevcudiyetini
gosterebilmeliyiz. Bu bakimdan yiiksek k degerleri icin daha kati faraziyeler sunmak
kacinilmaz olmustur. Bu c¢alismada kesisim c¢izgeleri 2-baglantili olmayan sonlu
coziilebilir gruplari siniflandirdik. &®(P) ile P grubunun Frattini altgrubu temsil
edilmek iizere bu G gruplar su sekilde nitelenebilirler:

1. |G|=p*(0< a<2);
2. |G| =p’oyleki G2 Qg ve GEZy X Zp X Lp;
3. |G| = p*q byle ki G’nin Sylow p-grubu P icin

(a) P= sz, veya

(b) P = Z, x Z, ve G’nin mertebesi p olan ve normal olmayan bir altgrubu
mevcuttur;

Xxii



4. G = PQ mertebesi p*q (a > 3) olan ve Sylow p-altgrubu P normal bir altgrup olan
bir gruptur dyle ki

(a) P elemanter abelyen olup Q’nun P iizerine etkisi indirgenemezdir ve
Ng(Q)’nin mertebesi en fazla pq’dir, veya

(b) N := ®(P) elemanter abelyen olup Q’nun hem N hem de P/N iizerine etkisi
indirgenemezdir, ayrica ya Ng(Q) = Q gergeklenir yada Ng(Q) =NQ = Z, X
Zg dir.

Ozel olarak, mertebesi iic farkli asal sayr tarafindan boliinebilen herhangi bir
coziilebilir grup 2-baglantilidir. Ayrica kesisim ¢izgeleri 3-baglantili olmayan sonlu
nilpotent gruplart siniflandirdik. Bu G gruplari su sekilde nitelenebilirler:

L |Gl=p*(0<a<3),G2£0gveGEZLyXLyXLp;
2. G mertebesi p* olan bir gruptur oyle ki
(a) G= Zp4, veya

(b) ®(G) = L, ve G % Q16, veya

© B(G) =7, xZp, Z(G) < B(G) ve
G % (a,b,c|a® =b>=1,ab=ba,a® = c3,bcb™" = ¢*,aca™ = cb™!);

3. G243, G=ZL,»

P3g> 2g» G = (Lp X Lp) X Ly, veya G = ZLpgy.

Dahasi, mertebesi dort farkli asal sayi1 tarafindan boliinebilen herhangi bir ¢oziilebilir
grup 3-baglantilidir.
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1. INTRODUCTION

Let .# be the set of proper subobjects of an object with an algebraic structure. We
define the intersection graph of .% in the following way [1]: there is a vertex for
each subobject in .# other than the zero object, where the zero object is the object
having a unique endomorphism, and there is an edge between two vertices whenever
the intersection of the subobjects representing the vertices is not the zero object. In
particular, if .% is the set of proper subgroups of a group G, then the zero object is the
trivial subgroup. The intersection graph of (the proper subgroups of) G will be denoted
by I'(G).

Intersection graphs first defined for semigroups by Bosdk in [2]. Let S be a semigroup.
The intersection graph of the semigroup S is defined in the following way: the vertex
set is the set of proper subsemigroups of S and there is an edge between two distinct
vertices A and B if and only if AN B # &. It is interesting to note that this definition is

not in the scope of the abstract generalization given in the preceding paragraph.

Afterwards, in [3] Csakany and Pollak adapted this definition into groups in the usual
way. Still there are analogous definitions such as intersection graphs of the proper
subspaces of a finite dimensional vector space over finite field, certain affine subspaces,
and the proper ideals of a commutative ring. For example, in [4] authors studied the
intersection graphs of ideals of a ring. In particular, they determine the values of n
for which the intersection graph of the ideals of Z,, is connected, complete, bipartite,
planar or has a cycle. For the corresponding literature the reader may also refer to [5-9]
and some of the references therein. In [1], Yaraneri studied intersection graph of the
proper submodules of any module over any ring, therefore most of the results of some
of the above papers are easy consequences of this study. Notice that his results are also

applicable to abelian groups.

It is easy to observe that the intersection graphs of the trivial group and the groups of
prime order are empty graphs, i.e. the corresponding vertex sets are empty. Let p,q,

and r be some pairwise distinct prime numbers. It is also easy to see that intersection

1



(a) T'(Zg) (b) I'(Dg)

(d) T(Zy x Z) (e) I'(Zy x 7o x Z)

Figure 1.1 : Intersection graphs of groups of order 23.

graphs of groups of order p? or of order pg consist of isolated vertices, so the first

interesting examples emerge when the order of the group is p°, p?q, or pqr.

In Figure 1.1, we present the intersection graphs of the groups of order 23. It is
well-known that if G is a finite cyclic group, then there is exactly one subgroup of
order n for each divisor n of |G| and for any pair of subgroups H and K, we have
H < K if and only if |H| ‘ |K|. Hence the intersection graph of the cyclic group Zg
of order eight consists of two connected vertices: one for the subgroup of order two
and the other for the subgroup of order four. Observe that any automorphism of the
group induces an automorphism of the intersection graph. For the group Zg, there are
exactly @(23) = 2% — 22 = 4 automorphisms each inducing the trivial automorphism
of the graph. Notice that the map interchanging the two vertices is an automorphism

of the graph which is not induced by an automorphism of Zg.

The dihedral group Dy of order eight contains three maximal subgroups of order four,
one of them is cyclic and the other two are not. Those three maximal subgroups
intersects at a subgroup of order two, hence together with this subgroup they form
a complete graph K4 in the intersection graph as a subgraph. In Figure 1.1(b), the
leftmost two vertices represents two conjugate subgroups of order two which can
be swapped by an automorphism of the graph induced by an inner automorphism
of the group. Notice that those automorphisms of the graph induced by the inner

automorphisms of the group form a subgroup.

2



Maybe the most interesting example is the intersection graph of the elementary abelian
group of order eight which is depicted in Figure 1.1(e). Here the vertices on the outer
circle represents the minimal subgroups and the vertices on the inner circle are the
maximal subgroups. Considered as a vector space over the field of two elements,
those minimal subgroups become 1-dimensional subspaces and the maximal subgroups
become the hyperplanes. Since the whole space is 3-dimensional, any two hyperplane
intersects at a 1-dimensional subspace. Therefore, the vertices in the inner circle form
a complete subgraph. Also, induced by a change of basis of the vector space, any
three element subset of the vertices at the outer circle can be mapped to any other three
element subset of the outer circle by a graph automorphism. Accordingly, I'(Z, x Z; X

Z,) is symmetrical enough to reflect the vector space structure of the group.

Subgroups of a group form a lattice ordered by set inclusion. Some of the structural
properties of a group may be inferred by studying its subgroup structure and those parts
of the group theory form a part of the lattice theory. Intersection graphs of groups are
natural objects and are intimately related with subgroup lattices. Let L(G) denote the
subgroup lattice of the group G. One can recover I'(G) from L(G) by cutting off
the uppermost vertex G from the maximal subgroups and also cutting off the trivial
subgroup 1 from the minimal subgroups, and then by connecting each pair of vertices
that still have a meet but are not linked by an edge. In other words, L(G) collects more
information than I'(G) in the sense that if L(G) is given, then we can recover I'(G) but

not vice versa in general.

As an example consider the quaternion group Og which has three maximal subgroups,
say (i), (j), and (k), of order four intersecting at the unique minimal subgroup {—1,1}.
By cutting off Qg itself and the trivial subgroup 1 from L(Qs), we obtain a partially
ordered set (poset) of four elements and clearly its Hasse diagram, as a graph, is
isomorphic to the star K;3. Adding the necessary edges, we see that I'(Qg) is
isomorphic to the complete graph K4. Another example is the cyclic group Z s, where
p denotes a prime number. After deleting the group itself and the trivial subgroup
from L(Zps), we obtain a poset with its Hasse diagram isomorphic to the path graph

Py. Observe that I'(Qg) = Ky = [(Z,5).

Recall that a (abstract) simplicial complex is a collection . of finite non-empty sets,

such that if ¢ is an element of ., so is every non-empty subset of . The element

3



o of .7 is called a simplex of . and each non-empty subset of o is called a face
of 0. The underlying set of .7 is the union of one-point elements (singletons) of ..
The k-skeleton of .7 is the subcollection of elements of .% having cardinality at most
k+ 1. For a group G, we may construct a simplicial complex K(G) in the following
way: the underlying set of K(G) is the vertex set of I'(G) and for each vertex H in
I'(G) there is an associated simplex oy in K(G) which is defined as the set of proper
subgroups of G containing H. Observe that the common face of oy and ok is Oy k).
Moreover, as a graph the 1-skeleton of K(G) is isomorphic to the intersection graph
I'(G). We call K(G) the intersection complex of G. This notion is somewhat between
the two other notions in literature, namely the order complex and the clique complex.
In the first case, we begin with a poset and construct its order complex by declaring
chains of the poset as the simplices. For example, the order complex of the poset of
Z,5 s the tetrahedron, whereas the order complex of the poset of Qg is isomorphic
to Kj 3 as a graph. Since the intersection complex of Qg is tetrahedron, we see that
order complexes and intersection complexes are not the same. In the latter case, we
begin with a graph and define the corresponding clique complex by simply declaring its
cliques as simplices. For example, the clique complex of I'(Qg) is the tetrahedron. In
Figure 1.1(e), the vertices in the inner circle do not form a simplex in the intersection
complex whereas in the clique complex they do. Thus, intersection complexes and

clique complexes are not the same in general.

In the previous paragraph we remarked that order complexes and intersection
complexes are different in general. However, they are equivalent up to homotopy. The
following argument is due to Volkmar Welker: Consider the face poset of K(G), i.e.
the poset of simplices ordered by inclusion. By the identification H — oy, the poset
of proper non-trivial subgroups of G becomes a subposet (after reversing the order
relation) of the face poset of K(G). The order complex of the face poset of a simplicial
complex is the barycentric subdivision of the simplicial complex and therefore they are
homeomorphic. We want to show that the poset of the proper non-trivial subgroups of
G and the face poset of K(G) are of the same homotopy type as order complexes. Let
f be the map taking oy to ok, where K is the intersection of all maximal subgroups
containing H. Then f is a closure operator on the face poset of K(G). Let g be the

map taking H to K, where K is the intersection of all maximal subgroups containing



H. Then g is a closure operator on the poset of proper non-trivial subgroups of G.
Since closure operations on posets preserve the homotopy type of the order complex
and since the images of f and g are isomorphic by the identification K — ok, we are
done. We shall remark that order complexes of subgroup posets are widely studied in

literature, see for example [10-12].

By defining intersection graphs we attach a graph to a group, like in the case of Cayley
graphs. So, there are two natural directions we may follow. First, we may study
the graph theoretical properties of intersection graphs by means of group theoretical
arguments. This is straightforward. For example we may ask for which groups
their intersection graphs are connected. This thesis study particularly focuses in
this direction. In particular, we’ve studied planarity and connectivity of intersection
graphs. And second, we may study the algebraic properties of groups by means
of combinatorial arguments applied to the intersection graphs. This part seems to
require more ingenuity. In the case of Cayley graphs a nice illustrative example for
both directions is the Gromow’s landmark ‘polynomial growth theorem’. It states
that a finitely generated group is virtually nilpotent (which is an algebraic property
of the group) if and only if its growth function is polynomial (which is a combinatorial

property of the Cayley graph).

As was mentioned previously, for any prime number p the intersection graph of Z s
is isomorphic to Ky. More generally, the intersection graphs of the cyclic groups Z,,
and Z, are isomorphic if in the prime number decomposition of m = p?' pgz .. p&
and n = qlfl qu .. .qf’, the multiset of the exponents o;, i € {1,2,...,s} is same with
the multiset of the exponents f3;, j € {1,2,...,t}; since their lattices are isomorphic in
that case. In Chapter 2, we prove that apart from this situation abelian groups can be
distinguished by their intersection graphs. For an abelian group D, we denote by D,
the product of the cyclic Sylow subgroups of D and by D, we denote the product of
the non-cyclic Sylow subgroups of D. To be more precise, we prove that intersection

graphs of two abelian groups A and B are isomorphic if and only if (i) A, = By, and

(ii) L(Ac) = L(B.).

In Chapter 3, we classify the finite groups whose intersection graphs are planar. By

Kuratowski’s characterization, a graph is planar if and only if it contains neither K5 nor



K3 3 as a minor. In Chapter 4, we further determine finite groups whose intersection

graphs contain a K5 but not K3 3 as a subgraph.

Finite groups with disconnected intersection graphs was determined by Shen in [8]. In
an earlier work [13], Lucido classified finite groups whose poset of proper non-trivial
subgroups are connected. Obviously, I'(G) is connected if and only if the poset of
proper non-trivial subgroups of G is connected. In Chapter 5, we further elaborate
in the previous results and classify finite solvable groups whose intersection graphs
are not 2-connected and finite nilpotent groups whose intersection graphs are not

3-connected.

In the remaining part of this chapter we recollect some group theoretical results that we
shall use later. As a preliminary remark, for any pair of subgroups H and K of the group
G, their (set-theoretic) product HK :={hk € G: h € H, k € K} is a subgroup provided
one of them is a normal subgroup. Accordingly, we may say that the construction of
['(G) is easier if there are normal subgroups of the group G. Consider the intersection
graph of the dihedral group Dg = {(a,b ’ a* = b* = 1,bab = a*) of order 8. There
are five involutions, namely a?,b,ab,a’b, and a’b with (a?) being the center of the
group. Here (b) and (a’b) form a pair of permutable subgroups generating a subgroup
of order four. On the other hand (b,ab) is the whole group Dg, hence the distance
between (b) and (ab) in the intersection graph must be greater than two (compare with

Figure 1.1(b)).

Theorem 1.1 (Product Formula, see [14, Theorem 2.20]). If X and Y are subgroups of
a finite group G, then
IXY||XNY| = |X||Y|.

Since we are dealing exclusively with finite groups, it is not surprising that the Product
Formula is an important tool in our investigations. Naturally, another important result
is the Sylow Theorems. Let p be a prime and G be a group. If |G| = p"s and p J( s, then
a Sylow p-subgroup of G is a subgroup of order p”".

Theorem 1.2 (Sylow, see [15, p. 7, Theorem 2.9]). If G is a finite group, then any
p-subgroup is contained in a Sylow p-subgroup. Moreover, any two Sylow p-subgroups

are conjugate.



Furthermore, Sylow Theorems states that the number of Sylow p-subgroups is 1 +mp

for some integer m. However, this fact is valid in a more general setting.

Theorem 1.3 (Sylow, see [16, p. 30, Exercise 9]).

(i) Let G be a group of order p" and k < n. Then the number of subgroups of order
prinGis=1 (mod p).

(ii) Let G be a group of order p"s, p J[ s, k < n. Then the number of subgroups of
order p* in Gis =1 (mod p).

Sylow Theorems are important not only for counting the subgroups but they also claim
their existence. In this regard, Correspondence Theorem is another powerful tool. It is
also useful when we want to derive structural results about the interrelations between
the intersection graph I'(G) of the group G and the intersection graph I'(G/N) of the
quotient group G/N, where N<G.

Theorem 1.4 (Correspondence Theorem, see [14, Theorem 2.28]). Let N < G and let
v: G — G/N be the canonical morphism. Then S — v(S) = S/N is a bijection from the

family of all those subgroups S of G which contain N to the family of all the subgroups
of G/N.

Moreover, if we denote S/N by S*, then:

(i) T <Sifand only if T* < S*, and then [S: T| = [S* : T*|; and

(ii) T <Sifand only if T* < S*, and then S/T = S*/T*.

The description of intersection graphs is easier if we impose some constraints onto the
groups such as being abelian. Actually, whenever we ask a question about the graph
theoretical invariants of the intersection graphs, we tend to answer it step by step for

the classes of groups ordered in the following way:

e cyclic groups
e abelian groups
e p-groups

e nilpotent groups



e solvable groups

e non-solvable groups

Notice that in the easier class of abelian groups all subgroups are normal whereas in
the most difficult class of non-solvable groups we claim neither the existence of normal
subgroups nor the existence of some subgroups of specified order. However, even in
the class of solvable groups we have some strong results. Recall that a chief series for
a group is a normal series which is maximal, i.e. there is no normal subgroup of the

group which lies between the two successive terms of the series.

Theorem 1.5 (see [15, p. 24, Theorem 4.2]). In a finite solvable group G, the factors
of every chief series are elementary abelian of prime power order. In particular, every

minimal normal subgroup of G is elementary abelian.

An important property of Sylow Theorems is that they are valid for all finite groups.
In the case of solvable groups we have more refined results. If 7 is a set of primes,
recall that a Hall -subgroup is a subgroup whose order is a product of primes in 7,

and whose index is coprime to its order.

Theorem 1.6 (see [15, p. 231, Theorem 4.1]). If G is a finite solvable group, then any
w-subgroup is contained in a Hall w-subgroup. Moreover, any two Hall w-subgroups

are conjugate.

Following two theorems give sufficient conditions for solvability.

Theorem 1.7 (Burnside p“q” Theorem, see [15, p.131, Theorem 3.3]). Any group of

order p*q® is solvable where p,q are prime numbers and a,b are natural numbers.

Theorem 1.8 (Holder’s Theorem, see [14, Corollary 7.54]). Any finite group of

square-free order is solvable.

Once we answered a question in the case of solvable groups, then we may invoke the
Classification of Finite Simple Groups (CFSG for short) to answer it for non-solvable

groups.

Subgroups defined by some property unambiguously, such as the center Z(G) or the
derived subgroup G’ of the group G, are important in group theory. There are two such

‘characteristic’ subgroups which will appear frequently in our later arguments.
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The Frattini subgroup ®(G) of a group G is the intersection of all maximal subgroups

of G. The following result is standard in finite group theory.

Theorem 1.9 (see [15, p. 174, Theorem 1.3]). The Frattini factor group G/®(G) of a
p-group G is elementary abelian. Furthermore, ®(G) = 1 ifand only if G is elementary

abelian.

The p-core O,(G) of a finite group G is the intersection of all Sylow p-subgroups of
G. It is the unique largest normal p-subgroup of G. In a finite solvable group G, the
factors of every chief series are elementary abelian of prime power order. In particular,
every minimal normal subgroup of G is elementary abelian (see Theorem 1.5). Hence,
for a non-trivial solvable group G, there exists a prime p dividing the order of G such

that O, (G) is non-trivial.

In our context, it is useful to know when a normal subgroup is complemented, i.e.

when the group is the semidirect product of the normal subgroup by some subgroup.

Theorem 1.10 (Schur-Zassenhaus Lemma, see [14, Theorem 7.41]). A normal Hall
subgroup H of a finite group G has a complement, i.e. G is the semidirect product of
H by G/H.

Theorem 1.11 (Gaschiitz, see [14, Theorem 7.43]). Let K be a normal abelian
p-subgroup of a finite group G, and let P be a Sylow p-subgroup of G. Then K has a

complement in G if and only if K has a complement in P.

It is also useful to know when a subgroup complemented by a normal subgroup.
The following theorem is known as the Burnside Normal Complement Theorem in

literature which we refer to as BNCT for short.

Theorem 1.12 (BNCT, see [14, Theorem 7.50]). Let G be a finite group and P be a
Sylow p-subgroup of G. If P is contained in the center of its normalizer Ng(P) in G
then there is a normal subgroup Q of G such that PNQ =1 and G = PQ.

Theorem 1.13 (see [14, Theorem 7.51]). Let G be a finite group and p be the smallest
prime divisor of |G|. If a Sylow p-subgroup P of G is cyclic, then there is a normal
subgroup N of G such that PNN =1 and G = PN.

We finish this introduction with some further results for later references.
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Theorem 1.14 (Frattini Argument, see [14, Theorem 4.18]). Let K be a normal
subgroup of a finite group G. If P is a Sylow p-subgroup of K (for some prime p),
then

G = KNg(P).

The following lemma is an easy consequence of the Frattini Argument.

Lemma 1.15 (see [14, Exercise 4.11]). Let P be a Sylow p-subgroup of a finite group
G. If Ng(P) < H < G, then H is self-normalizing, i.e. Ng(H) = H.

Theorem 1.16 (N/C Lemma, see [14, Theorem 7.1]). If H < G, then Cg(H) < Ng(H)
and Ng(H)/Cg(H) can be imbedded in Aut(H).
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2. INTERSECTION GRAPHS OF ABELIAN GROUPS

The aim of this chapter is to show that the following conjecture raised in [9] is almost

true.

Conjecture (see [9]). Two finite abelian groups with isomorphic intersection graphs

are isomorphic.

This conjecture was already studied in [17] whose main result is one half of our main
result. However, the proof in [17] contains some mistakes and inaccuracies. Here we

use a different approach. Our main result in this chapter is the following

Theorem 2.1. Let A and B be two finite abelian groups. Then, the intersection graphs

of A and B are isomorphic if and only if the following two conditions hold:

(i) The product of non-cyclic Sylow subgroups of A is isomorphic to the product of

non-cyclic Sylow subgroups of B.

(ii) There is a bijection 0 between the set of cyclic Sylow subgroups of A and the set
of cyclic Sylow subgroups of B such that if 0(S) = T then the number of divisors

of |S| is equal to the number of divisors of |T|.

Let ay,..., o, be some positive integers. By a Theorem of R. Baer [18], a group G is
cyclic of order p‘f‘l ... p% with distinct primes p; if and only if L(G) is a direct product

of chains of lengths a, ..., a,. Hence, we have the following

Corollary 2.2 (see [19, 1.2.8 Corollary]). Let a,...,Q, be some positive integers and
let py,...,pr be distinct primes. If G is a cyclic group of order p‘f‘1 ...p% and G is
any group, then L(G) = L(G) if and only if G is cyclic of order q‘f‘1 ...q% with distinct

primes qi,...,q

Let A, and B, be the product of cyclic Sylow subgroups of A and B respectively. By
Corollary 2.2, the second condition of the Theorem 2.1 is equivalent to the condition
L(A;) = L(B.).
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We shall explain some conventions we adopt in this chapter. It is clear that the
intersection graph of the trivial group or a group of prime order are empty graphs
(that is, it has no vertex). To distinguish groups of prime order from the trivial group,
whenever we mention the intersection graph of a group we implicitly assume that the
group is a non-trivial group. By a Sylow subgroup of G we mean a Sylow p-subgroup
of G for some prime number p dividing the order of G. Therefore, according to this
convention, G has no Sylow g-subgroups for prime numbers g not dividing the order
of G. Finally, we denote by V(G) the set of all proper non-trivial subgroups of G, i.e.
the vertex set of I'(G).

2.1 Preliminaries

In this section we recall the definitions of some basic notions, and also recall some
preliminary results from [9]. We state some of the results of [9] in slightly different

forms which are more convenient for our purposes.

Given two graphs I'| and I',, by a graph isomorphism ¢ : 'y — I'; we mean a bijective
map ¢ from the set of vertices of I'j to the set of vertices of I'; such that, for any two
vertices u and v of I'y, there is an edge in I'; between u and v if and only if there is
an edge in I, between ¢ («) and @(v). Note that the inverse of a graph isomorphism
is a graph isomorphism. Therefore, a graph isomorphism from the intersection graph
I'(G) of a group G to the intersection graph I'(H) of a group H is a bijective map
y: V(G) — V(H) satisfying for any X and Y in V(G) the condition: X NY # 1 if and
only if w(X)Nwy(Y) # 1.

Let I" be a graph. A subset .7 of the set of vertices of I is called an independent set
in " if there is no edge between any two elements of 7. It is obvious that a graph

isomorphism maps independent sets to independent sets.

Let G be a finite group. Since a finite group X has a subgroup of order p for any prime
divisor p of |X|, we see that any element of an independent set of maximum possible
cardinality in I'(G) must have a unique minimal subgroup. Moreover, assuming that
|G| is not a prime number, the set of all minimal subgroups of G is an independent set
of maximum possible cardinality in I'(G). Conversely, for any proper subgroup X of

G, if X has a unique minimal subgroup, then X together with all the minimal subgroups
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of G different from the minimal subgroup of X form an independent set of maximum
possible cardinality in I'(G). Thus, a graph isomorphism between intersection graphs
of groups maps a subgroup with a unique minimal subgroup to a subgroup with a
unique minimal subgroup. Since a finite abelian group having a unique minimal
subgroup must be a cyclic p-group for some prime p, we have the following result

of [9, Corollary of Lemma 2].

Remark 2.1. Let A and B be two finite abelian groups, and let ¢: T'(A) — I'(B) be a
graph isomorphism. Let p be a prime number. Then, for any proper non-trivial cyclic
p-subgroup X of A there is a prime number ¢ depending on X such that ¢(X) is a
proper non-trivial cyclic g-subgroup of B. More to the point, the numbers of minimal

subgroups of A and B are equal.

We will observe in Proposition 2.4 that the prime number ¢ in the above result does not
depend on the choice of the cyclic p-subgroup X. We first need a lemma whose proof

contains ideas from the proof of [9, Lemma 3].

Lemma 2.3. Let A and B be two finite abelian groups, and let ¢ : T'(A) — I'(B) be a
graph isomorphism. Let p be a prime number. Then, for any two proper non-trivial
cyclic p-subgroups X andY of A, if XY = 1 then there is a prime number q such that
both ¢ (X) and ¢ (Y) are proper non-trivial cyclic q-subgroups of B.

Proof. Let X and Y be two proper non-trivial cyclic p-subgroups of A such that X N
Y = 1. There is a subgroup of A isomorphic to Z, x Z,, implying that A and hence
B has more than 2 proper non-trivial subgroups. It follows from Remark 2.1 that
¢ (X) is a proper non-trivial cyclic g-subgroup and ¢ (Y) is a proper non-trivial cyclic
¢2-subgroup where ¢g; and ¢, are some prime numbers. Moreover, ¢(X)N@(Y) = 1.

We need to show that ¢; = ¢».

Assume for a moment that ¢; # g». For any non-trivial cyclic group C of prime power
order, we let m(C) denote the unique minimal subgroup of C. We note that m(C) is of
prime order. Let U = m(¢(X))m(¢(Y)). As q1 # g2, the proper non-trivial subgroups
of U are precisely m(¢ (X)) and m(¢(Y)). Therefore, U is a proper subgroup of B, and,
in the graph I'(B), any vertex adjacent to U must be adjacent or equal to either ¢ (X)
or ¢(Y). Consequently, letting Z be the proper non-trivial subgroup of A such that

¢(Z) = U, it follows that, in the graph I'(A), any vertex adjacent to Z must be adjacent
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or equal to either X or Y. We will observe that this is not possible. Firstly, as U is
adjacent to both of ¢ (X) and ¢ (Y), it follows that Z is adjacent to both of X and Y. This
implies that m(X)m(Y) < Z. Now, as both of m(X) and m(Y) are of order p, we may
take a group isomorphism 1 : m(X) — m(Y) and consider T := {xn(x): x € m(X)}.
Then, T is a subgroup of m(X)m(Y) of order p. Furthermore, although T is adjacent

to Z,as X NY =1 it follows that T is not adjacent (and not equal) to X andto Y. [

We now explain the idea of the proof of the main result of [9]. Let A and B be two
finite abelian groups, and ¢ : I'(A) — I'(B) be a graph isomorphism. Let p be a prime
number. Suppose that X is a proper non-trivial p-subgroup of A. Let <7 be the set
of all minimal subgroups of A, and let <7, be the set of all the minimal subgroups
of A of order p. We know from the explanation given before Remark 2.1 that ¢ (<)
is an independent set in I'(B) of maximal possible cardinality. Moreover, we know
from Lemma 2.3 that there is a prime number ¢ such that each element of ¢(.<7),) is a
g-group. We want to observe that ¢ (X) is a g-group. Otherwise, ¢ (X) has a subgroup
U of order r for some prime number r different from g. As ¢ (.<7) is an independent set
in I'(B) of maximal possible cardinality, either U must belong to ¢ (<) or else U must
be adjacent to an element of ¢ (.27). In any case, UN ¢ (Y) # 1 for some Y € &7. As U
is a subgroup of ¢ (X), it follows that ¢(X)N¢(Y) # 1. This implies that X NY # 1,
and hence Y € o7, (because X is p-group and Y € 7). But then ¢(Y) € ¢(=7,) is a
g-group intersecting U non-trivially. This is impossible, because |U | is a prime number
different from g. Therefore, we justified the first part of the following result. The rest

is easy because the inverse of the map ¢ is a graph isomorphism from I'(B) to I'(A).
Proposition 2.4 (see [9, Theorem]). Let A and B be two finite abelian groups, and let
¢:T(A) —T'(B)

be a graph isomorphism. Let p be a prime divisor of |A|, and S,(A) be the Sylow
p-subgroup of A. Then, there is a prime divisor q of |B| such that ¢ (X) < S,(B) for any
X < S,(A) with 1 # X # A, where Sy(B) is the Sylow q-subgroup of B. In particular,
the numbers of subgroups of S,(A) and S,(B) are equal. Moreover, there is a bijection

from the set of Sylow subgroups of A to the set of Sylow subgroups of B.

In [9, Theoreml], it is further claimed that the intersection graph of any Sylow subgroup

of an abelian group A is determined by the intersection graph of A. This is the only
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point in [9] we disagree with. Using the given arguments there (which are explained
here before Proposition 2.4), one can only determine p-subgroups of A, but among
these p-subgroups one cannot determine which one is the Sylow p-subgroup. That
is, assuming the notations of Proposition 2.4, it is further claimed in [9, Theorem]
that the restriction of ¢ to the proper non-trivial subgroups of S,(A) induces a graph
isomorphism ¢ : I'(S,(A)) — I'(S,4(B)). However, it may happen, for instance, that ¢
may map a proper subgroup of S,(A) to S,(B). Fortunately, we remedy this situation in
Remark 2.5 by showing that if the intersection graphs of A and B are isomorphic and if
|A| is not a prime power, then |B| is not a prime power and there is a graph isomorphism
y: I'(A) — I'(B) such that for each prime divisor p of |A| there is a prime divisor of ¢
of |B| satisfying y/(S,(A)) = S,(B). Moreover, in this case, the restriction of y to the
proper non-trivial subgroups of S,(A) induces a graph isomorphism y: I'(S,(4)) —
I(S,(B)).

The paper [9] ends with the conjecture: Two finite abelian groups with isomorphic

intersection graphs are isomorphic.

For any two distinct primes p and g, and for any natural number n, it is clear that the
intersection graphs of Z,» and Zg» are isomorphic (because both are complete graphs
on n — 1 vertices). Therefore, we assume that in the above conjecture of [9] it was

implicitly assumed that the abelian groups are not cyclic.

As remarked in [9], it follows from Proposition 2.4 (and Remark 2.5) that it suffices to

prove the conjecture for abelian groups whose orders are powers of prime numbers.

2.2 An Equivalence Relation

We begin by introducing some notations. Let G be an abelian group. We denote by
soc(G) the product of all minimal subgroups of G, which coincides with the socle of
G considered as a Z-module. For any proper non-trivial subgroup X of G we define

the notations .45 (X) and 4G (X) as follows:
N6(X)={Y €eV(G): YNX #1} and AG(X):=V(G)—A5(X).

So, in graph theoretical terminology, .#(X) is the closed neighborhood of the vertex
X of the graph I'(G). We next define a relation ~¢ on V(G) as follows: for any U and
VinV(G),U =gV if and only if A5(U) = A5(V). The following remark is obvious.
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Remark 2.2. Let G be an abelian group, and let U and V be elements of V(G). Then:

(1) A6(U) = A5(V) if and only if soc(U) = soc(V).

(2) = is an equivalence relation.

For an abelian group G and a proper non-trivial subgroup X of G, we denote by [X]g
the ~¢ equivalence class of X. Therefore, [X]g = {Y € V(G): soc(X) = soc(Y)} and

[X]G = [soc(X)]- The following result is immediate.

Remark 2.3. Let G be an abelian group. Then, ~¢ equivalence classes in V(G) are
precisely [X]g where X € V(G) with X < soc(G). Moreover, for any two distinct
elements Y,Z € V(G) with Y,Z < soc(G), the equivalence classes [Y]s and [Z]¢ are
distinct. In particular, the number of ~ equivalence classes in V(G) is equal to the

number of non-trivial subgroups of soc(G) which are different from G.

Since any two elements lying in the same equivalence class have the same socle (or
equivalently, have the same closed neighborhoods), we have the following obvious

observation.
Remark 2.4. Let G be an abelian group, and let X € V(G). Then:
1. There is an edge in I'(G) between any two distinct elements of [X]g.

2. For any Y € V(G), if there is an edge in I'(G) between Y and an element of [X|g

then there is an edge in I'(G) between Y and every element of [X|g other than Y.

In the next result we observe that a graph isomorphism maps an equivalence class to

an equivalence class.
Lemma 2.5. Let A and B be two abelian groups, and let
0:T(A) —-T(B)

be a graph isomorphism. Then, for any X in V (A), the restriction of ¢ to [X|4 induces
a bijection from [X|4 to [¢(X)]5.

Proof. Let U and V be in V(A). Since a graph isomorphism and its inverse map

adjacent vertices to adjacent vertices, we see that: A4(U) = A#4(V) if and only
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if A5(0(U)) = A3(¢(V)). In other words, U =4 V if and only if ¢(U) ~p ¢(V).
Therefore, for any ¥ € V(A), the element Y belongs to [X]4 if and only if the element
¢ (Y') belongs to [¢(X)]p. This proves the result. O

Let A and B be two finite abelian groups with isomorphic intersection graphs. It follows
from Remark 2.3 and Lemma 2.5 that the numbers of subgroups of soc(A) and soc(B)
are equal. We next show that more is true. That is, the intersection graphs of soc(A)

and soc(B) are isomorphic. We first need two lemmas.

Note that the existence of a bijection o in the following result is guaranteed by

Lemma 2.5.

Lemma 2.6. Let A and B be two abelian groups, and let
¢:T(A) —T'(B)

be a graph isomorphism. Then, for any X in V(A), and for any bijection ¢ [X|s —
[0(X)]B, the map ¢ : I'(A) — I'(B) defined for any U € V(A) as
o(U), ifU € [X]a
U)= .
o= o0y it0 bl
is a graph isomorphism. In particular, there is a graph isomorphism I'(A) — T'(B)

mapping soc(X) to soc(@(X)).

Proof. Tt follows from Lemma 2.5 that the map ¢: V(A) — V(B) is a bijection. Take
any two distinct elements V and W from V(A). To finish the proof, we need to show
that: there is an edge in I'(A) between V and W if and only if there is an edge in I'(B)
between ¢(V) and ¢(W).

Since ¢ is a graph isomorphism, what we need to show is already true if both of V and
W are not in [X]4. Hence we have to check two cases: the case in which both of V and

W are in [X]4, and the case in which exactly one of V and W is in [X4.

Suppose that both of V and W are in [X]4. Then, (V') and o(W) are distinct elements
of [¢(X)]p. The first part of Remark 2.4 implies that there is an edge in I'(A) between
V and W, and that there is an edge in I'(B) between ¢(V) = o (V) and (W) = c(W).

Suppose for the rest of the proof that V € [X]4 but W ¢ [X]4. Then, using Lemma 2.5
we see that ¢(V) € [¢(X)]p but ¢(W) ¢ [¢(X)]5.
17



Assume that there is an edge in I'(A) between V and W. Since ¢ is a graph
isomorphism, there must be an edge in I'(B) between ¢ (V) and ¢ (W). The second part
of Remark 2.4 implies that there is an edge in I'(B) between ¢ (W) and any element of
[¢(X)]p, in particular between ¢ (W) and &(V), which is in [¢ (X)]p. Therefore, there
is an edge in I'(B) between @(W) = ¢(W) and ¢(V) = o(V).

Assume finally that there is an edge in I'(B) between ¢(V) and ¢(W). So there is an
edge in I'(B) between 6(V) and ¢(W). Since o(V) € [¢(X)]p and ¢(W) & [¢(X)]p,
it follows from the second part of Remark 2.4 that there is an edge in I'(B) between
¢ (W) and any element of [¢(X)]p, in particular between ¢ (W) and ¢ (V'), which is in
[¢(X)]p. As ¢ is a graph isomorphism, there must be an edge in I'(A) between W and
V.

To justify the last sentence of the lemma, we note that soc(X) € [X]4 and soc(¢(X)) €
[¢(X)]p, and so we choose a bijection ¢ such that o (soc(X)) = soc(¢(X)). O

Remark 2.5. Let A and B be two finite abelian groups with isomorphic intersection
graphs. Then, |A|is not a prime power if and only if | B| is not a prime power. Moreover,
in the case |A| is not a prime power, there is a graph isomorphism y: I'(A) — I'(B)
mapping Sylow subgroups of A to Sylow subgroups of B. Moreover, the restriction of
y to the proper non-trivial subgroups of any Sylow subgroup S of A induces a graph

isomorphism y: I'(S) — I'(y(S)).

Proof. Let ¢: I'(A) — I'(B) be a graph isomorphism. It follows from Proposition 2.4
that the number of Sylow subgroups of A and B are the same. This justifies the first

part of the result.

Assume for the rest that Sylow subgroups of A (and hence of B) are proper subgroups.
Let p be a prime number dividing |A|, and let P be the Sylow p-subgroup of A. It
follows from Proposition 2.4 that ¢ (P) is a proper non-trivial g-subgroup of B for some
prime number g. Take any non-trivial g-subgroup Y of B. Applying Proposition 2.4 to
the inverse of ¢! we see that ¥ = ¢(X) for some non-trivial p-subgroup X of A.
Now, either P = X or else there is an edge in I'(A) between P and X. Hence, either
¢(P) =Y or else there must be an edge in I'(B) between ¢(P) and Y. Since Y is an
arbitrary g-subgroup, the intersection of ¢ (P) and any non-trivial g-subgroups of B is

non-trivial. This shows that soc(Q) < ¢(P) where Q is the Sylow g-subgroup of B.
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It is clear from soc(Q) < ¢(P) that Q € [¢(P)]p. Letting o: [P]s — [¢(P)|p be any
bijection sending P to Q, which is in [¢(P)]p, we apply Lemma 2.6 to find a graph
isomorphism from I'(A) to I'(B) mapping P to Q.

Note that ~4 equivalence classes of Sylow subgroups of A are mutually distinct (and
hence disjoint). The map v is obtained by applying the above procedure for each
Sylow subgroup of A. Finally, knowing that y maps Sylow subgroups to Sylow
subgroups, it follows from Proposition 2.4 that the restriction of y to the proper
non-trivial subgroups of any Sylow subgroup § of A induces a graph isomorphism

y: I(S) = T(w(S)). =

Lemma 2.7. Let A and B be two abelian groups with isomorphic intersection graphs.
Suppose that soc(A) is a proper subgroup of A. Then, soc(B) is a proper subgroup of
B, and there is a graph isomorphism from T'(A) to T'(B) mapping soc(A) to soc(B).

Proof. Let G be an abelian group, and H be a subgroup of G. It is clear that H N K # 1

for every non-trivial subgroup K of G if and only if soc(G) < H.

Let ¢: I'(A) — I'(B) be a graph isomorphism. Suppose that soc(A) is a proper
subgroup of A. Then, by the explanation in the above paragraph, there is an edge
in I'(A) between soc(A) and every proper non-trivial subgroup of A different from
soc(A). Thus, there is an edge in ['(B) between ¢ (soc(A)) and every proper non-trivial
subgroup of B different from ¢@(soc(A)). In other words, ¢(soc(A)) is a proper
subgroup of B and ¢(soc(A)) NZ # 1 for any non-trivial subgroup Z of B. Hence,
soc(B) < ¢(soc(A)). This shows that soc(B) is a proper subgroup of B, and shows
that the socles of soc(B) and ¢ (soc(A)) are the same so that [soc(B)]g = [¢(soc(A))]p.
Letting 6: [soc(A)]4 — [@(soc(A))]p be any bijection sending soc(A) to soc(B), which
is in [@(soc(A))]p, we apply Lemma 2.6 to find a graph isomorphism from I'(A) to
I'(B) mapping soc(A) to soc(B). O

Proposition 2.8. Let A and B be two abelian groups with isomorphic intersection
graphs. Then, there is a graph isomorphism

w: T(A) — [(B)

mapping proper non-trivial semisimple Z-submodules of the Z-module A to proper

non-trivial semisimple Z-submodules of the Z-module B. Moreover, if soc(A) is a
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proper subgroup of A, then soc(B) is a proper subgroup of B and y(soc(A)) = soc(B).

In particular, the restriction of W to V (soc(A)) induces a graph isomorphism
y: I'(soc(A)) — I'(soc(B)).

Proof. Let ¢: I'(A) — I'(B) be a graph isomorphism. Applying Lemma 2.6 for each
X € V(soc(A)) and for each bijection [X]|4 — [¢(X)]|p mapping X to soc(¢(X)),
we obtain a graph isomorphism ¢: I'(A) — I'(B) mapping each X € V(soc(A)) to
soc(¢ (X)), which is a non-trivial subgroup of soc(B). If soc(A) = A then Lemma 2.7
implies that soc(B) = B, and hence soc(@ (X)) # soc(B). Therefore, in this case, ¢
maps proper non-trivial semisimple submodules of A to proper non-trivial semisimple

submodules of B. We may let v := ¢ in this case.

Assume for the rest that soc(A) # A. It follows from Lemma 2.7 and its proof that
soc(B) # B and that soc(B) € [@(soc(A))]p. Letting 6: [soc(A)]a — [@(soc(A))]s be
any bijection sending soc(A) to soc(B), which is in [¢(soc(A))]p, we apply Lemma 2.6
to ¢ to find a graph isomorphism y: I'(A) — I'(B) mapping soc(A) to soc(B). Take
any non-trivial subgroup Y of soc(A) different from soc(A). As y: V(A) — V(B) is
a bijection satisfying y(soc(A)) = soc(B), we must have that y(Y) # soc(B). Note
that the classes [Y]|4 and [soc(A)]4 are different. In particular, ¥ ¢ [soc(A)]4 so that
y(Y)=o@(Y)=soc(¢(Y)) is semisimple. Consequently, Y maps proper non-trivial

semisimple submodules of A to proper non-trivial semisimple submodules of B. [

Corollary 2.9. Let A and B be two finite abelian groups with isomorphic intersection

graphs. Then, there is a graph isomorphism
y: [(A) = I'(B),

whose restriction to V(soc(A)) induces a graph isomorphism y: I'(soc(A)) —

['(soc(B)) satisfying the following conditions for any X € V(A) :

1. X is a minimal subgroup of A if and only if W(X) is a minimal subgroup of B. (That

is, |X| is prime if and only if |y(X)| is prime).

2. X is a maximal subgroup of soc(A) if and only if y(X) is a maximal subgroup of
soc(B).
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Proof. Let y: I'(A) — I'(B) be a graph isomorphism satisfying the conclusion of

Proposition 2.8.

Let <7 be the set of all proper non-trivial cyclic subgroups of A of prime power
orders, and let % be the set of all proper non-trivial cyclic subgroups of B of
prime power orders. It follows from Remark 2.1 that y is a bijection from <7 to
2. Also it follows from Proposition 2.8 that y is a bijection from V(soc(A)) to
V(soc(B)). Hence, y is a bijection from .o NV (soc(A)) to ZNV (soc(B)). It is clear
that &7 NV (soc(A)) (respectively, Z NV (soc(B))) is the set of all proper minimal

subgroups of A (respectively, of B). So, ¥ must satisfy the condition (i).

Let C be an abelian group, and M be a proper subgroup of soc(C). It is clear that M is
a maximal Z-submodule of soc(C) if and only if there is no non-simple Z-submodule

of soc(C) intersecting M trivially. That is, M is a maximal subgroup of soc(C) if and

only if A{(c)(M) consists entirely of minimal subgroups of soc(C).

Since y: I'(soc(A)) — I'(soc(B)) is a graph isomorphism, for any ¥ € V(soc(A)) we

W (Asoc(a)(Y)) = Aoe(s) (W(Y)) and y(V(soc(A))) = y(V (soc(B))),

implying that W(Aca)(Y)) = Asoem)(W(Y)). As y satisfies the condition (i),

Nioc(a)(Y) consists entirely of minimal subgroups of soc(A) if and only if

Nsoc()(W(Y)) consists entirely of minimal subgroups of soc(B). Therefore, y satisfies

the condition (ii). ]

Let A and B be as in the following result. It follows from Remark 2.1 or (from the
first part of Corollary 2.9) that the number of minimal subgroups of A is equal to
the number of minimal subgroups of B. Unfortunately, as remarked in [9], this is not
enough to deduce that p = ¢q. However, in the next result we see that Corollary 2.9

implies p = g for non-cyclic groups.

Proposition 2.10. Let p and q be prime numbers. Let A be a finite abelian p-group
and B be a finite abelian g-group. Suppose that the intersection graphs of A and B are

isomorphic. Then:

1. Ais cyclic if and only if B is cyclic. Moreover, in this case, there is a natural number

n such that A = Zyn and B = Zgn.
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2. If A is not cyclic then soc(A) = soc(B). In particular, in this case, p = q and the

ranks of A and B are equal.

Proof. Let y: I'(A) — I'(B) be a graph isomorphism satisfying the conditions in
Corollary 2.9.

(1) It is clear that an abelian group of prime power order is cyclic if and only if it
has a unique minimal subgroup. As v satisfies the condition (i) in Corollary 2.9, the
equivalence of being cyclic groups is easy. Moreover, as the number of subgroups of
A and B must be equal, there must be a natural number n satisfying the mentioned

conditions.

(2) Suppose that A is not cyclic. So, by the first part, B is not cyclic. Therefore, there

are natural numbers r > 1 and s > 1 such that

q-

soc(A) = (Zp)" :=7Zp xZLpx---xZ, and soc(B) = (Zy)' :=ZLgxLgx XL

r—times s—times

Let M be a maximal subgroup of soc(A). We will compare the numbers
’*/Vsoc(A) (MH and "/KOC(B)(W(M)H

to deduce that p = ¢ and r = s. Since y: I'(soc(A)) — I'(soc(B)) is a graph

isomorphism, it is clear that

|</Vsoc(A) (M)‘ = |</Vsoc(B) (W(M)) ’

Let X be a proper non-trivial subgroup of soc(A) such that XNM = 1. Since M is
a maximal subgroup of soc(A), the order of X must be p so that X = (x) for some
x € soc(A) — M. Conversely, for any element y € soc(A) — M the cyclic group (y) is
a proper non-trivial subgroup of soc(A) satisfying (y) "M = 1. As a cyclic group of
order p has p — 1 generators, the number of proper non-trivial subgroups of soc(A)

intersecting M trivially is

[ Aoeta) (M) = (Jsoc(A)| = IM|)/(p=1) = (p" = p" )/ (p—1)=p"".

As v satisfies the condition (ii) in Corollary 2.9, it follows that y(M) is a maximal
subgroup of soc(B). Therefore, arguing as in the previous paragraph, we may calculate

that

|JKOC(B)(W(M))| = qS71-
22



Hence, p'~! = ¢*~!, which implies that p = g and r = s (because p and g are primes,

and because r — 1 and s — 1 are not zero). ]

We finish this section with the following result. We use it in the next section to
show that two non-cyclic finite abelian p-groups, where p is a prime number, with
1somorphic intersection graphs are isomorphic. To facilitate reading we first introduce

some notations.

Let p be a prime number. For any finite abelian p-group G and any minimal subgroup
S of G we let cg(S) denote the number of proper cyclic subgroups of G containing S.
As S i1s a minimal subgroup of G, any subgroup of G intersecting S non-trivially must
contain S. Therefore, cs(S) is the number of cyclic groups in .45(S), or equivalently
it is the number of cyclic groups in the equivalence class [S]g. We have the finite list of
numbers cg(S) where S is ranging in the set of all minimal subgroups of G. We form
the sequence seq(G) by writing all the distinct numbers c(S) in this list in increasing
order. Note that although the list of numbers cg(S) may contain equal numbers, the

sequence seq(G) does not.

Lemma 2.11. Let p be a prime number, and let A and B be two finite abelian p-groups

with isomorphic intersection graphs. Then, seq(A) and seq(B) are the same.

Proof. Let y: I'(A) — I'(B) be a graph isomorphism satisfying the conditions in
Corollary 2.9. Since y satisfies the condition (i) in Corollary 2.9, it induces a bijection
from the set of all minimal subgroups of A to the set of all minimal subgroups of B.
Moreover, it is clear for any proper non-trivial subgroup X of A that y(44(X)) =
AB(y(X))). The result follows from Remark 2.1 saying that any graph isomorphism
['(A) — I'(B) maps proper non-trivial cyclic subgroups of A to proper non-trivial cyclic

subgroups of B. O

2.3 Cyclic Subgroups

The aim of this section is to calculate the number of cyclic subgroups of an abelian
group with a given fixed minimal subgroup. In other words we calculate the sequence

seq(G), defined in the previous section, of an abelian group G of prime power order.
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Throughout this section, let p be a prime number, and let G be a finite abelian p-group

of rank r > 1. So, there are natural numbers ¢; such that
G%Zpoz1 praQ X oo X Lipor where 1< ap <o <--- < 0.

Therefore, there are cyclic subgroups G; of G such that G is the internal direct product
of them as follows:

G=0G1G,...G, where G;=Z,0.

For any natural number m and any minimal subgroup S of G, we let ¢f(S) denote the
number of cyclic subgroups of G of order p” that contain S. Note that cyclic subgroups

of G are proper (because r > 1), implying that cg(S) = Z c(S), which is a finite sum.
m=1
For any element g of G we define the following notations:
[:={1,2,....,r}, Jo:={iel: m(g)=1}, and I,:=1—J,,

where 7;: G — G; is the i-th projection. Note that, for any elements x and y of G, if

(x) = (y) then J, = J, and I, = I,.
We begin with a trivial observation.

Remark 2.6. Let C be a cyclic p-group, and let a be an element of C of order p. For any
natural number n with p" < |C|, there are p"~! elements ¢ of C of order p” satisfying

.. n—1
the condition ¢ =a.

Lemma 2.12. Let g be an element of G of order p, and let g; := m;(g) for eachi € I so

that g = g1g>...&r with g; € G;. Let m be a natural number, and let S := (g). Then:
1. ci(S) #0ifand only if m < «j for any j € I.

2. Suppose that m < o for any j € I,. Then, any cyclic subgroup of G of order p™

that contains S is generated by an element of G of the form
aas...ay,

where if j € Iy then aj is any element of G of order p™ satisfying the condition

m—1

p — 0.
aj - gja

and where if j € J, then a; is any element of G of order less than p™. Moreover, in

1

each cyclic subgroup of G of order p™ that contains S there are exactly p™~" such

generators.
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Proof. Suppose that there is a cyclic subgroup X of G of order p” that contains S. Let
X = (x) and x; := m;(x) € G;. As X has a unique minimal subgroup, the unique minimal
subgroup of X must be equal to S. This gives that (xpmfl) = (g). Therefore, there is an

integer A with 0 < A < p such that

forany i€ l. We leta; := xlfl € G; for any i € I. Note that

m—1
X =M =(a1a...a,) and a’ =g
m—1
IficJ,, thenl=g; = af so that the order of a; is less than p™. If i € I,, then g;
is of order p so that the order of g; is p™, implying that |G;| > p™ and hence ¢; > m.

Moreover, if i € I, then a; is any element of G; of order p™ satisfying the condition

-1
pm .

So far we have observed that if there is a cyclic subgroup X of G of order p™ containing

S then m < @ for any j € I, and X must be generated by an element described in the

second part of this lemma.

Conversely, assume that o; > m for any i € I,. Let Y = (ajaz...a,) be any subgroup
generated by an element described in this lemma. It is clear that |Y| = p™, and that Y
contains S because

m—1

(alaz...ar)p =g

To finish the proof, let C be a cyclic subgroup of G of order p” that contains S. Then, C
is generated by an element u := ajay . ..a, of G described above. Note that a := u"
is an element of C of order p, and note that generators of C satisfying the described
conditions above are the elements ¢ of C of order p” satisfying " =a. Therefore,

it follows from Remark 2.6 that C contains exactly p”~! such generators. [l

For any integers k and /, we denote by min(k,/) the minimum of k and /.

Proposition 2.13. Let g be an element of G of order p, and let g; := m;(g) for each
i €1lsothat g =g1g>...8r with g; € G;. Let m be a natural number, and let S := (g).
Then:
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1. cf(S), the number of cyclic subgroups of G of order p™ containing S, is given by

PG(m) _
e\ <o

ca(S) = 1 itm < q;foralli €I,
0, otherwise

where Pg(m) := Hpmin(m_l’“-/).

2. ¢g(S), the number of cyclic subgroups of G containing S, is given by

cG(S) = 21 I;G,,ETR

where s is the smallest natural number in I,.

Proof. (1) Because of the first part of Lemma 2.12, it is enough to consider the case in
which m < ¢; for all i € I,. As a cyclic group of order p* contains prin(m—1.a) elements
of order less than p”, we see that the number of generators
ajay...ay
described in Lemma 2.12 is
ENIA o S
(pm 1) 8 H pmln(m l,aj)_
Jj€J,

Here, the factor (p’"’l) e comes from Remark 2.6. As we noted in Lemma 2.12 that
in any cyclic subgroup of G of order p that contains S there are exactly p ! such
generators, which implies that c{%(S) is the number of such generators divided by prL

Thus,

Cg(S) _ (pm—1)|1g‘*1 H pmin(m—Laj)‘
j€l,

As [ is the disjoint union of I, and Jg, and as min(m — 1,0;) = m— 1 for all j € I, we

see that

Pc;(m) _ (pm—1>‘lg| ITpmin(m—l,Ocj)7
j€l,

and so the result follows.

(2) Let s be the smallest natural number in I,. Then, for all i € I,, we have o < o,
implying that m < o if and only if m < ¢; for all i € I,. From the first part we then see

that c3(S) # 0 if and only if m < a. Therefore,

] Ol
cG(S) =}, cG(S) =} cG(S).
m=1 m=1
The result follows from the first part. ]
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We now aim to find the sequence seq(G). We first need a technical lemma. We also

use it later in an induction argument.
Lemma 2.14. Let a, g, and h be elements of G of order p. Then:

1. If s is the smallest natural number in I, then cg({as)) = cg({a)), where a; = m;j(a) €

G, for eachi €I so thata = aay .. .a,.

2. Suppose that I, = {k} and I, = {k+ 1} for some k € {1,2,3,...,r —1}. Then,

k ) 1 kL ‘
ca((h) —cc((g)) = (]l:IIP 1) (m_)o;kﬂ(p ) 1)’ if oty # 4.

0, if Oljy-1 = O.

In particular, cg({h)) > cg({g))-

Proof. (1) Follows from the second part of Proposition 2.13.

(2) Using the second part of Proposition 2.13 we see that
%1 p G(m)

col(h) —col(g) = 2y P
0, if Ol 1 = O.

if Oty 7# O

Assume for the rest that oy | # 0. As o) < 0p < --- < ¢, for any m with o + 1 <

m < 01 we see that

. a;, ifj<k
mm(m_l’“f'):{m—]l ifj‘>k

This shows that if o +1 < m < 041, then

k . r—k
PG(m) — <Hpaj> (pmfl) .
=1

The result follows. [

Recall that the sequence seq(G) is an increasing sequence whose terms are distinct
numbers in the list of numbers cg(S) where S is ranging in the set of all minimal

subgroups of G.

Lemma 2.15. For each i € I, let h; be any element of G; of order p so that I, = {i}.
Then, terms of the sequence seq(G) are precisely the distinct terms of the following

non-decreasing sequence of numbers:

cg({h)), cc((h2)), c((h3)), .-, c6((hr1)), e ((hr)).
Moreover, cg({h;)) = cg((hi+1)) if and only if @ = i1y .
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Proof. Firstly, it follows from the second part of Lemma 2.14 that

cG((h)) <cc((h2)) <cg((h3)) < -+ < ca((hr-1)) < cc((hr)),

and that cg((h;)) = cg((hi+1)) if and only if @; = ¢4 1.

To finish the proof, it is enough to show that for any minimal subgroup S of G there
is an i € I such that cg(S) = cg(h;). Indeed, given any minimal subgroup S of G, it

follows from the first part of Lemma 2.14 and the second part of Proposition 2.13 that

cG(S) = cc(gs) = cc(hs)

where g is any element of G such that S = (g) and s is the smallest natural number in

I. []
Now we may state the main result of this section.

Proposition 2.16. Let p be a prime number. Then, two non-cyclic finite abelian

p-groups with isomorphic intersection graphs are isomorphic.

Proof. Suppose that A and B are two non-cyclic finite abelian p-groups with
isomorphic intersection graphs. By Proposition 2.10 the ranks of A and B are equal.

So, there is a natural number r > 1, and there are natural numbers f; and ¥; with
<P <pp<--<f and I<pn<p<-<p
such that

pryz X oo X Lipr.

A%Zpﬁlxzpﬁzxmxzpﬁ, and B%an

Therefore, there are subgroups A; of A and subgroups B; of B such that A and B may

be written as internal direct sums as follows:
A=A|A...A, and B=B|B,...B,, where A; = Zpﬁi and B; =Z,y.

By comparing seq(A) and seq(B), we will show that 3; = ¥; for each i.

Firstly, for each i, choose an element x; of A; of order p, and choose an element y;

of B; of order p. It follows from Lemma 2.11 that seq(A) and seq(B) are the same.
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Then, Lemma 2.15 implies that cg({(x1)) = cg({y1)). By using the second part of

Proposition 2.13 we see that

B M
ca((x1)) = Z,l(Prl)m "and  cp((n)) = Z,](Prl)ml,

implying that B; = ;.

Using Lemma 2.15, we then see that 3; = B for all i € I if and only if the sequence
seq(A) has only one term. As this observation is also true for B and as seq(A) = seq(B),
we conclude that B; = B; for all i € I if and only if y; = ¥ for all i € I. Therefore, if
Bi = Bi1 for all i € I then y; = y; for all i € I, implying that 3; = ¥, for alli € I.

For the rest we assume that there is an i € I such that §; # B;. Let u be the smallest
number in I such that 8,1 # Bi, and let v be the smallest number in [ such that

Y11 # 71 - Note that
Br=P==Pu<Pur1 and p=p==%<VYir
Then, Lemma 2.15 implies that
ca((n)) = cal(x)) = = cal(x) < eal(xut1)),

cp((1)) = cp((2)) = - = c((W)) < ca(v1):

The first two terms of the sequences seq(A) and seq(B) are

ca((xu)); ca(faut1)) and cp({yw)), e((v+1))-

As seq(A) = seq(B), we must have that

ca((u1)) = ca(fa)) = e((vr1)) —ea((n)-

If we use the second part of Lemma 2.14 to calculate the above equal differences, we

see that
N Bur1—Bu—1 {\m T Yor1—1—1 -
(") P =) X ()
m=0 m=0
As B =n,
Bur1—Bu—1 m Yor1—%—1 -
-1+ Z (pr_"t_l) =—1+ Z (pr—v—l)
m=0 m=0



If the above equal numbers are zero, then from B, = ¥, we see that B,.1 = %.1.
Otherwise, comparing the highest powers of the prime p dividing the above equal
numbers, we see that (u = v and) B,4+1 = %+1. To see that u = v in both cases, using
Remark 2.1, Corollary 2.9, and Lemma 2.11, we note that the number of minimal
subgroups S of A such that c4(S) > ca({x,)) is equal to the number of minimal
subgroups T of B such that cg(T) > cg({y,)). It follows from Lemma 2.14 that the
numbers of such minimal subgroups of A and B are equal to the numbers of minimal
subgroups of the groups A, +1A,+2---A, and B, 1B, ---B,. Hence, being abelian

p-groups, these groups must have isomorphic socles, implying that u = v.

We now continue as in the previous two paragraphs. We see that f8; = 3, for all
i > u+ 1 if and only if the sequence seq(A) has exactly two terms. As this observation
is also true for B and as seq(A) = seq(B), for the rest we assume that there is an i > u+ 1
such that f3; # B,+1. Let u/ be the smallest number such that 8,1 > B,+1, and let v/

be the smallest number such that ¥, > %,+;. Note that ' > u =v <V and

Bi=B=-=Bi<Bur1="--=Bw <But1,

h=r==%<Yr="=% <N+

The second and the third terms of the sequences seq(A) and seq(B) are

cal(xuw)), cal(xwy1)) and ca((yv)), es((vs1))-
We must have that

ca((wy1)) —cal(xw)) = eg((v 1)) — s ()

By the second part of Lemma 2.14,

By 1—Bu—1 Y1~ Y —1

pﬁw (pr—u—l)ﬁu-H u Z (pr_u/_1>m — phv (pr—v—l)%+1 Z <pr—v’—1>m
m=0 =
Asu=vand =7y foralliwithl <i<u+1,
Bu/+1_ﬁu/—1 , m ’)/V/Jrl—'yv/—l ) "
-1+ ) <pr—u—1) =1+ Y <pr—v—1> '
m=0 0

As in the first part, from the above equal numbers we deduce that B, = ¥/41. To

see that ' = V' we may use the equality of the number of minimal subgroups S’ of A
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such that ca(S") > ca({x,)) and the number of minimal subgroups T’ of B such that
ca(T') > ca({yv))-

As I is a finite set, applying this procedure finitely many times we may prove that

Bi=7v foralliel. O

2.4 Proof of the Main Theorem

This section contains the main result this chapter. One half of the main result will
follow from what we have proved in the previous sections. The other half will be the
consequence of the following result. For any two finite groups K and L of coprime
orders, the subgroups of K x L are all of the form M x N where M is a subgroup of K

and N is a subgroup of L. Thus, the next result follows.

Lemma 2.17. Let Uy, U, and Vy,V; be four groups such that |U)| and |Us| are coprime
and that |Vy| and |Va| are coprime. If the intersection graphs of U; and V; are
isomorphic for each i = 1,2, then the intersection graphs of the direct products Uy X U,

and Vi X V, are isomorphic.

Now we can prove our main theorem.

Proof of Theorem 2.1. (=): Suppose that the intersection graphs of A and B are
isomorphic. If A is of prime power order than the result follows from Remark 2.5,
Proposition 2.10, and Proposition 2.16. So, assume that |A| is not a prime power.
Let P,P,,...,P, be a complete list of Sylow subgroups of A where P,P;,...,P,
are non-cyclic and all the others are cyclic. (Here, a > 1, and the cases b = 0 and
b = a are not excluded). Assume that each P, is a p;-group where p; is a prime.
It follows from Proposition 2.4 and Remark 2.5 that there is a graph isomorphism
y: T'(A) — I'(B) such that Qy,0Q»,...,0Q, is a complete list of Sylow subgroups of B
and y: I'(P,) — I'(Q;) is a graph isomorphism for each i, where Q; := y(P,). Assume
that each Q; is a g;-group where g; is a prime.

The first part of Proposition 2.10 implies that Qp 1 1,Qp412,...,Q, are all cyclic (and all
the other Q; are non-cyclic), and that there are natural numbers ny, 1 1,n542,...,n, such

that B, = Z,» and Q; = Zg» for each i > b. If we let 6 be the map defined for any
i > b by 6(P;) = Q;, then the condition (ii) is satisfied.
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The second part of Proposition 2.10 implies that Q1,Q»,...,Q; are all non-cyclic and
pi = qi for each i < b. It then follows from Proposition 2.16 that P; = Q; for each i < b.

So, the condition (i) is satisfied.

(<): Suppose that the conditions (i) and (ii) are satisfied. Let S;,S7,...,S, and
T\,T5,...,T, be complete lists of cyclic Sylow subgroups of A and B, respectively,
where T; = 6(S;). (Here, the case r = 0 is not excluded). Since the subgroup lattice of
a cyclic group of prime power order is a chain, the intersection graphs of S; and 7; are
both complete graphs. As the number of divisors of |S;| and|T;| are the same, it follows

that the graphs I'(S;) and I'(7;) are isomorphic.

For any finite abelian group G let us denote by G, the product of all non-cyclic Sylow
subgroups of G. As A, and B, are isomorphic, the graphs I'(A4,.) and I'(B,.) are
isomorphic. Note that any two distinct Sylow subgroups of a finite abelian group have
coprime orders. We now apply Lemma 2.17 r times to see that the intersection graphs
of the groups (Apc X S1 X Sy X --- X S,) and (B X T} X Ty X - -+ x T,) are isomorphic.
As the first group is isomorphic to A and the second group is isomorphic to B, this

finishes the proof. O

We finish this chapter with the following obvious consequence of Theorem 2.1, which

is the main result of [17].

Corollary 2.18. Let A and B be two finite abelian groups. Suppose that A has no cyclic
Sylow subgroup. Then, if the intersection graphs of A and B are isomorphic, then A

and B are isomorphic.
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3.

PLANARITY OF INTERSECTION GRAPHS

In this chapter we characterize all finite groups whose intersection graphs are planar.

A graph is called planar if it can be drawn on the plane in such a way that its edges

intersect only at their endpoints. Planarity of the subgroup lattice and the subgroup

graph of a group were studied by Bohanon and Reid in [20] and by Schmidt in [21,22]

and by Starr and Turner III in [23], and planarity of the intersection graph of a module

over any ring was studied in [1].

We call a group planar if its intersection graph is planar. Our main result in this chapter

is the following

Theorem 3.1. A finite group is planar if and only if it is isomorphic to one of the

following groups:

~

Zopgrr L2

P2 Lipg, Zp,-, where p,q,r are distinct primes and 0 <i < 5.

Ty X Ly Loy X Lpyy Ly X Ly X Ly (p # 2), where p is a prime.
The dihedral group Dg of order 8, the quaternion group Qg of order 8.

The semidirect products Zg X Z > with P’ | q—1,(Zy, xZp) x Ly with q } p+1,
where p,q are distinct primes. Presentations and the subgroup structures of these

groups are given in Lemma 3.11.

The semidirect product (Z, X Z,) x Ly with 7 ‘ p+ 1, where p,q are distinct
primes. A presentation and the subgroup structure of this group are given in

Lemma 3.12.

The semidirect product Z, X Zpq with pq ‘ r—1, where p,q,r are distinct primes. A

presentation and the subgroup structure of this group are given in Lemma 3.13.

The semidirect product Z, X Zg with q ‘ p — 1, where p > q are distinct primes. A

presentation and the subgroup structure of this group are given in Lemma 3.15.
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In the above theorem, up to isomorphism, the first item lists the finite cyclic planar
groups, the second item lists the finite non-cyclic abelian planar groups, the third item
lists the finite non-abelian nilpotent planar groups, and the remaining items list the
finite non-nilpotent solvable planar groups. There are no finite non-solvable planar

groups (this was proved without using CFSG).

It may be interesting to study connections between the subgroup lattice and the
intersection graph of a group. It is clear that the subgroup lattice determines the
intersection graph, but not conversely. Moreover, comparing our main result with the
main results of [20,21], we see that there are groups whose subgroup lattices are planar

but the intersection graphs are not planar, and vice versa.

3.1 Preliminaries

Let I" be a graph. By replacing some of the edges of I (possibly none or all) by
independent paths, we obtain another graph which is called a subdivision of I'. Let A
be another graph. We say A contains I" as a minor if there is a subgraph of A which is

a subdivision I.

Kuratowski’s theorem characterizes planar graphs by means of forbidden minors: a
finite graph is planar if and only if it does not contain a subdivision of either the
complete graph Ks or the complete bipartite graph K3 3. The complete graph K, is
a simple undirected graph with n vertices in which every pair of distinct vertices is
connected by a unique edge. The complete bipartite graph K, , is a simple undirected
graph with m 4 n vertices and with two disjoint sets V,, and V,, containing exactly m
and n vertices respectively such that there is an edge between two vertices if and only if
one of them belongs to V,,, and the other belongs to V,,. Figure 3.1 shows the forbidden

minors of planar graphs.

(a) Ks (b) K33

Figure 3.1 : Forbidden minors of planar graphs.
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We use Kuratowski’s theorem for the planarity of intersection graphs. That is, if G
is a finite group, to show that I'(G) is not planar, we typically try to find five proper
non-trivial subgroups of G such that any pair of them intersect non-trivially and to
show that I'(G) is planar, we simply draw it onto the plane without crossings of its
edges apart from their end points. It turns out I'(G) is planar if and only if it does not

contain K5 and K3 3 as a subgraph.

3.2 Solvable Groups

In this section we determine solvable groups which are planar. We first deal with

abelian groups.

Modules over any ring whose intersection graphs are planar were already characterized
in [1]. Notice that if H < G and I'(G) does not contain a graph I" as a subgraph/minor,
then I'(H) also does not contain I" as a subgraph/minor. By using this simple remark
and the fundamental theorem of finite abelian groups (see [14, Theorem 6.5]), we may

easily justify the following result. We will further use it in Chapter 4.

Proposition 3.2. Let G be a finite abelian group. Then I'(G) does not contain K3 3 as

a subgraph if and only if G is isomorphic to one of the following groups
Zpi (O§l§6), ZP3 XZq, sz XZq, ZPXZq, ZgXZg, Z4XZ2,

Zp % L, Lip X Lg X Ly, Lo xZLoxZp(p#2)

where p, q, and r are distinct primes. Moreover, among those groups only

ZPG, Zp3 X Zq, and 79 X 13

are non-planar.

Proof. Let G be a finite abelian group and p, ¢, and r be prime numbers.

Case I: G is a cyclic group. Then there is exactly one subgroup of G of order n for each
divisor n of | G|. Observe that I'(G) does not contain K3 3 if G is of order p’ (0 <i < 6),
p?q, or pg; as the number of proper non-trivial subgroups of G would be less than six

in such cases.
Case I (a): |G| = p' (i > 6). Then I'(G) contains a K¢ and so K3 3 as well.
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Case Il (b): G=Z g Let a and b be two elements of G of order p3 and of order ¢
respectively. There are exactly six proper non-trivial subgroups of G in this case and
five of them, namely (a”z), (aP), (a), (a”z,b>, and (a?,b) form a complete graph in
I'(G) as all of them contain (al’z). The remaining vertex (b) has degree two in the
intersection graph and, therefore, I'(G) does not contain K3 3. Moreover, since I'(G)
contains a Ks, it cannot be a proper subgroup of a group containing K3 3. (Notice that
in a larger group G becomes a vertex and so vertices containing (al’z) form a subgraph

containing a Kg.)

Case I (c): G = szqz. Let a and b be two elements of G of order p2 and of
order ¢° respectively. As in the previous case we have five subgroups forming a K,
namely (a”), (a), (a’,bP), (a,bP), and (a”,b). However, unlike the previous case, the
subgroup (b”) is linked by an edge with those last three subgroups forming the Ks.

Therefore, I'(G) contains K3 3 in this case.

Casel(d): G= Zpgr. Leta,b, and c be three elements of orders p, g, and r respectively.
The vertices of I'(G) are (a), (b), (c), (a,b), (a,c), and (b,c). As the valency of (a)
is two, I'(G) does not contain K3 3 in this case. However, if G is a proper subgroup
of a larger group, then maximal subgroups of G together with (a), (b), and G form a

subgraph containing a K3 3.

To sum up, the only possible values for the order of a cyclic group which does not

contain a K3 3 are
. . ,
p(0<i<6), pq  p'q,  pqr,  pq

Case II: G is not a cyclic group. Let us make a useful observation. If G is an abelian
group of order n that does not contain K3 3, then n must be one of the above values. This
is because for any pair of subgroups A < B of Z,,, there are corresponding subgroups

H < K of G such that |A| = |H| and |B| = |K]|.

Casell (a): G= 7y, X Ly X L. Observe that maximal subgroups of G are dimension 2
subspaces of G considering it as a vector space over [F,. Then, by a counting argument
the number of maximal subgroups of G is [(p® — 1)(p® — p)|/[(p* = 1)(p* — p)] =
p? + p+ 1. However, by the Product Formula (see Theorem 1.1), any pair of maximal

subgroups intersects non-trivially; and hence, they form a complete graph in I'(G).
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Thus, any group containing an elementary abelian subgroup of rank three contains

K3 3 in its intersection graph.

Case Il (b): G = sz X Zp. Let a and b be two generator elements for G of order
p? and of order p respectively. Then, subgroups (a”), (a?,b), (a), (ab),...,{abP~")
form a K, > in I'(G). Hence, the only possible values of p are 2 and 3 if G does not
contain K3 3. Actually, G is ‘K3 3-free’ for those primes. Intersection graph of Zg x Z3

is depicted in Figure 3.2(a).

Case Il (c): G is an abelian p-group which is not considered in Cases II (a) and (b).
If G=7Z, xZ, then I'(G) does not contain K33, since the intersection graph of a
group of order p? consists of isolated vertices. Otherwise, G has a proper subgroup
H isomorphic to Z» X Z, with p € {2,3} by the previous cases. Let a and b be two
generator elements for H of order p? and of order p respectively. Since H is a proper
subgroup of G, there exists an element ¢ € G that does not lie in H. Now, if ¢” € (a),
then (a”), (a?,b), (a), (ab), (c), and H form a K¢ in I'(G). And if ¢” ¢ (a), then (a?),
(aP,b), (a), (ab), (a’,c), and H form a K¢ in I'(G).

Case I (d): |G| = p*q. Since G is a non-cyclic abelian group, either G = (Z,, x Z,, X
Zp) X Lg or G = (Z,2 X Zyp) X Ly However, the first case cannot occur if G does not
contain K3 3 in virtue of Case II (a); and in the latter case (a”), (a?,b), (a), (ab), (a,b),
and (a”,c) form a Kg in the intersection graph where a,b, and ¢ are some generators

of G of orders p?, p, and g respectively.

Case II (e): G = (Z, x Zp) X Zg. Let a and b be two elements of G generating
a subgroup of order p?, and let ¢ be an element of G of order g. As in Case II
(b), subgroups (c), {(a,c), {ab,c),...,(ab?~1,c), and (b,c) form a K, in I'(G), and
therefore, if G does not contain K3 3 either p =2 or p = 3. If p =2, then G is planar and
its intersection graph presented in Figure 3.2(b). However, if p = 3, then subgroups

(c), {a,c), (ab,c), {ab?,c), (b,c) together with (a,b) form a subgraph containing K3 3.

As abelian groups of order pgr and of order pg are necessarily cyclic, this completes
the proof of the first part. It is also easy to show that the intersection graphs of
Ly, Lpys X g, and Zg X 73 contains Ks in their intersection graphs, hence they cannot
be planar. The second part of the lemma can be justified by simply drawing the

intersection graphs of the remaining groups. [
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b/<a o <a>{>/ \<b>
\ / 7NN

3b2> (a,c) (ab, c) (b,c)

VAN

(a) F(Zg X Z3) (b) F(Zz X Ly X Zp)

Figure 3.2: F(Zg X Z3) and F(Zz X Zz X Zl))'

Lemma 3.3. Let p be a prime number and G be a non-cyclic group of order p*. Then

G is not planar.

Proof. Since a finite group having exactly one maximal subgroup must be cyclic, it
follows from Theorem 1.3 that there are at least three maximal subgroups of G, say
X1,X> and X3. Since G is a p-group of order p*, each X; is of order p> and the product
of any two of them is G. Employing the Product Formula, ¥ = X; N X, is of order p?
and it intersects X3 non-trivially. Let Z be a non-trivial subgroup of X3NY of order p
(note that the order of X3 NY is either p or p?). Now, X1,X>,X3,Y and Z form a K5 in

the intersection graph of G, so that G is not planar. [

Lemma 3.4. Let p be an odd prime and G be a non-cyclic group of order p>. Then G

is not planar.

Proof. Since p > 2, arguing as in the proof of Lemma 3.3, we first conclude that
there are at least four maximal subgroups of G, say X;,X»,X3 and X4, of order p?.
Assume that Y = X N X, MNX3MN Xy is non-trivial, then this group together with X, X>, X3
and Xy form a K5 in the intersection graph. Now let us assume that Y is trivial. In
this case ®(G) = 1 where ®(G) denotes the Frattini subgroup of G. Since G is a
p-group, G/®(G) is elementary abelian. Thus, if ®(G) = 1 and |G| = p> then G =
G/®(G) = Z, x L, x Z,, which is not planar, because Z, x Z, x Zj, is not listed in
Proposition 3.2. O

Up to isomorphism, there are exactly 5 distinct groups of order 8 and only two of them,
namely Dg (dihedral group of order 8) and Qg (quaternion group), are non-abelian.

Both groups, whose intersection graphs are given in Figure 3.3, are planar.
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(a) T'(Dg) (b) T'(Qs)

Figure 3.3 : Non-abelian planar nilpotent groups.

It is clear that if H is a proper subgroup of G and the intersection graph of H contains
K4, then G cannot be planar, because there would be a K5 in the graph. With this simple

remark we have:

Proposition 3.5. A finite non-abelian nilpotent group is planar if and only if it is

isomorphic to Dg or Qg.

Proof. Suppose that G is a finite non-abelian nilpotent group which is planar. Since
a nilpotent group is the direct product of its Sylow subgroups, there must be a
non-abelian Sylow subgroup S of G. Let |S| = p®* for some prime p and natural number
a. Since S is non-abelian, & > 3. As S must be planar, it follows from Lemma 3.3 and
Lemma 3.4 that @ = 3 and p = 2, which means $ must be isomorphic to Dg or Qs.
In both cases the intersection graph of S contains K. Therefore S cannot be a proper

subgroup of G, and so G = S. [

Since a subgroup of a planar group is planar, the following lemma is an easy

consequence of Propositions 3.2 and 3.5.

Lemma 3.6. Let G be a finite planar group of order n = p‘f‘1 pgz e pg" where k > 2
and p; are distinct prime numbers. Then oj <5 for any j. Moreover, if a;j =3 or

o = 4 for some j then any Sylow p j-subgroup of G is cyclic.

Proof. There is only one planar group of order p°, namely Z,s, and only one planar
group of order p*, namely Z 4, and four planar groups of order p°, namely Ly, Lg X
Z», Dg and Qg (see Propositions 3.2 and 3.5). But, each of Zps, Zi4 X Ly, Dg and Qg

contains Ky in its intersection graph. [

A finite solvable group is a group with a composition series whose factor groups are

of prime order. This means that if G is a planar solvable group of order p{'p5?... p,?k
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where p; are distinct prime numbers, then o + ap + ... + 0 < 6; otherwise, there
must be a chain of five proper non-trivial subgroups forming a K5 in the intersection
graph. Hence, for a finite solvable group G there are finitely many cases that must be
examined, and these cases are given in Table 3.1, whose first row consist of p-groups

and they are already classified.

Table 3.1 : Possible orders of a finite planar solvable group G.

G| =p° tollel=p | IGl=p?
IGl=p*q | |G|=p’q ||G|=p*q||G|=pq
G| =p’¢* | |G|=p*¢* | |G| = pqr
G| = qug |G| = p*qr
|G| = p°q°r | |G| = pqrt
|G| = p*qrt
|G| = pqrtu

Note that the groups in Lemmas 3.7-3.8 and 3.11-3.13 are all solvable by the virtue of
Theorems 1.7 and 1.8.

We say that non-trivial subgroups Hy,H>,...,H, of a group G are pairwise intersecting

if H;jNH;# 1 forany i,j € {1,...,n}.

We first eliminate groups of order p3g and of order p*q as non-planar groups.

Lemma 3.7. If G is a group of order p>q or p*q where p and q are distinct prime

numbers, then G is not planar.

Proof. We prove the assertion for groups of order p3g. Similar arguments apply
for groups of order p*q. Let P be a Sylow p-subgroup of G and let Q be a Sylow
g-subgroup of G. By Lemma 3.6, we see that P is cyclic, otherwise G is not planar.
Take a chain A; < Ay < P where |A;| = p and |A;| = p>. We have three cases to
analyze: in the first case P is normal in G; in the second case Q is normal in G; and in

the third case both P and Q are not normal in G.

Case I: Assume that P is normal in G. As any subgroup of a normal cyclic subgroup
is also a normal subgroup, each A; is normal in G, implying that the products A;Q
are subgroups of G. It is now clear that the five subgroups Ay, A>, P, A1Q, A>Q are
pairwise distinct and each of them contains A;. Consequently, the graph of G contains

K5, and so G is not planar.
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Case II: Assume that Q is normal in G. In this case the products A;Q are subgroups of
G. So, as in the first case, Ay, A2, P, A1Q and A;Q form a K5 in the graph of G, and so

G is not planar.

Case III: Assume that both of P and Q are not normal in G. Let N be a minimal
normal subgroup of G. Since G is solvable, N is an elementary abelian r-group for
some prime r (that is, a direct product of cyclic groups Z,). As Q is a not normal,
r = p. Therefore, N is an elementary abelian p-group inside the cyclic p-group P. This
shows that N = Z,. Now take a subgroup 7 such that N < T < P where |T| = p°.
As each Sylow p-subgroup of G contains N, we see that each Sylow p-subgroup of G
intersects 7. Consequently, all the Sylow p-subgroups together with the subgroups N
and T are pairwise intersecting and pairwise distinct. As P is not normal, there are at
least p+ 1 Sylow p-subgroups. Therefore, in the above we have at least p + 3 pairwise

distinct and pairwise intersecting subgroups. As p+3 > 5, G cannot be planar. [

Lemma 3.8. Let G be a group of order p>q*> where p and q are distinct prime numbers.

Then G is not planar.

Proof. Since G is solvable, there must be a (normal) subgroup H of order either p*q?
or p°q. By Lemma 3.7 we eliminate the latter case. Then H has a subgroup K of order
either p2q or pg®. Let X be a subgroup of K of order p, and let P be a Sylow p-subgroup
of G containing X. As |X| = p and |P| = p?, we may choose a subgroup Y of G such
that X <Y < P with |Y| = p?. Then, H,K,X,Y,P form a K5 in the intersection graph
of G. [

Let G be a finite group and let N be a non-trivial normal subgroup of G. If G/N has at
least five proper subgroups, then by the Correspondence Theorem (see Theorem 1.4)
G has at least five proper subgroups all containing N and these subgroups form a K5 in
the intersection graph of G. The groups having exactly m subgroups where m < 6 are

classified in [24].

Proposition 3.9 (see [24]). A non-abelian group has at least 6 subgroups.

It follows easily from the previous result that the center Z(G) of any non-nilpotent
planar group G is trivial. Another immediate consequence of the classification in [24]

is the following.
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Lemma 3.10. Let G be a finite planar group and let N be a non-trivial normal
subgroup of G. Then G/N is abelian. Moreover, letting ng be the number of proper

non-trivial subgroups of G/N, the following occur:

I ny=0 = G/N2Z,
2.n=1 = GINZL,
3.n=2 = G/N=ZZLzorG/N=L,

4 ng=3 = G/N§Zp4 OVG/NEZZXZQ
for some distinct prime numbers p and q.

We use the above result to reduce the number of possible cases for the order of a finite
planar solvable group. Let G be a finite planar solvable group, and let N be a minimal
normal subgroup of G. Then N must be a planar elementary abelian s-group where s is
a prime number. It follows from Proposition 3.2 that N is isomorphic to Zg or Zg X Zs.
Moreover, G/N must be isomorphic to one of the groups described in Lemma 3.10.
Therefore, the solvable groups of order p3gr, p>q*r, pqrt, p*qrt and pgrtu given in

Table 3.1 cannot be planar.

Lemma 3.11. Let G be a non-nilpotent group of order p*q where p and q are distinct
prime numbers. Then, G is planar if and only if it is isomorphic to one of the following

groups:

ZyxaZy={ab|al=b" =1,bab" = a%)

where p? divides g — 1 and o is any integer not divisible by q whose order in the
unit group Zy of Zg is p?. (Moreover, such a group has exactly q subgroups of order
p?* which are all cyclic and pairwise non-intersecting, and has exactly 1 subgroup
of order q, and has exactly 1 subgroup of order pq, and has exactly q subgroups of
order p).

(Zp x Lp) ¥ Lq=(a,b,c|a’ =b" = c? = 1,ab=ba,cac™' = b,cbc™" = a~'bP)
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where q divides p+ 1 and B is any integer such that the matrix 60 = [(1) _ﬁ 1 } has order
q in the group GL(2,7,) and such that 6 has no eigenvalue in Z,. (Moreover, such
a group has exactly 1 subgroup of order p* which is elementary abelian, and has
exactly p* subgroups of order q, and has exactly p + 1 subgroups of order p, and
has no subgroup of order pq).

Proof. Let G be a non-nilpotent group of order p?q. Let P be a Sylow p-subgroup of
G and Q be a Sylow g-subgroup of G. We separate the proof into two parts. In the first
case we assume that P is not normal in G and in the second case we assume that P is

normal in G.

Case I: Assume that P is not normal: As P is a maximal subgroup and as it has
order p?, we see that the center of Ng(P) is P, from which we conclude by applying
BNCT (see Theorem 1.12) that Q is normal in G. Moreover, the Sylow Theorems (see
Theorem 1.3) imply that G has g Sylow p-subgroups Py,..,P, and ¢ =1 (mod p). As

|P| = p?, there are two possibilities: P Z, x Z,, or P L.

Case I (a): Assume that P =7, X Z,, : As G = PQ and Q is normal in G, we see that
G/Q = P. Now P has p + 1 subgroups of order p, and hence by the Correspondence
Theorem G has p + 1 subgroups Ry, R3,...,R, 1 of order pq (all of which contain Q).
As |P||R;| = p*pq > |G|, we see that LNR; # 1. Since both of g and p + 1 are greater
than or equal to 3, we see that P, P>, P3 and Ry,R;,R3 form a K33 in the intersection

graph of G. Hence, G is not planar in this case.
Case I (b): Assume that P = sz :

Case I (b) (i): Assume that P, P; # 1 for some distinct i and j : Let X = P, P;. Then
Ng(X) contains both of P, and P;, implying that X is a normal subgroup of G of order
p. Therefore, X is in every Sylow p-subgroups of G. Hence, P, P,,...,P; and X and
OX form a K, in the intersection graph of G. Note thatas ¢ =1 (mod p), g+2 > 5.

So, G is not planar in this case.

Case I (b) (ii): Assume the contrary of the previous case: That is, we assume that
the intersection of any two distinct Sylow p-subgroups is trivial. As G/Q = P and P
is cyclic, G/Q has a unique subgroup of order p. From the Correspondence Theorem

G has a unique subgroup of order pg. So, in this case, it is clear that G is planar, and
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its intersection graph is given in Figure 3.4(a). To write a presentation of G let a be a
generator of Q and b be a generator of P. Then bab~' = a% for some integer . For
any natural number k, it is easy to see that bkab=* = a® . This shows that a”” = 1
(mod ¢g). Moreover, a” # 1 (mod g), otherwise the intersection of any two Sylow
p-subgroups of G is not trivial. Conversely, it is clear that any group with the given

presentation has the stated subgroup structure.

Case II: Assume that P is normal in G. As G is not nilpotent, Q cannot be normal in
G. We have two possibilities either there is a subgroup of G of order pg or there is no

such subgroup.
Case II (a): Assume that there is a subgroup of G of order pgq :

Case II (a) (i): Assume that there is a normal subgroup of G of order pg, say
Y. Then Sylow g-subgroups of Y and G are the same, implying that ¥ and hence
G has p Sylow g-subgroups Q;,0>,...,0p, and p = 1 (mod ¢). Note that the
normalizers Ng(Q1),Ng(Q2),...,Ng(Qp) must be pairwise distinct, because each
Ng(Q;) has a unique Sylow g-subgroup which is Q;. Moreover, they all have order
pq. As the normalizer of a Sylow subgroup is self-normalizing (see Lemma 1.15),
each Ng(Q;) is not normal in G. Therefore, we see that the p + 2 subgroups
PY,NG(Q1),NG(Q2),...,Ng(Q)) are pairwise distinct and intersecting, forming a
K> in the intersection graph of G. Since p+2 > 5 (because p =1 (mod q)), G

is not planar.

Case Il (a) (ii): Assume that there is a non-normal subgroup of G of order pg, say Z.
Its index p cannot be the smallest prime dividing the order of G. Hence, p > ¢. Let U
be a Sylow p-subgroup of Z. Then U must be normal in Z. Note that U is contained
in P (because P is normal in G) and that U is normal in P (because P is abelian).
Therefore, U is normal in G. It follows from Proposition 3.9 and the explanation given
before it that if the quotient group G/U is not abelian, then G is not planar. On the
other hand, if G/U is abelian, then the Correspondence Theorem implies that G has a
normal subgroup of order pg. We know from the previous subcase that in this case G

is not planar.

Case Il (b): Assume that there is no subgroup of G of order pgq : In this case it is clear

that G is planar. Moreover, P cannot be cyclic. Otherwise, its unique subgroup 7" of
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order p will be a normal subgroup of G, implying that the quotient group G/T will have
a subgroup of order ¢, and hence G will have a subgroup of order pq. Therefore, P =
Ly X Zp. As G has no subgroup of order pg, the normalizer of a Sylow g-subgroup of
G must have index p”. The subgroup Q acts by conjugation on the set of all subgroups
of G of order p. As G has no subgroup of order pg, this action has no fixed point,
implying that g divides p + 1.

To write a presentation of G, let a be an element of P of order p and let ¢ be a generator

of Q. As G has no subgroup of order pg, the elements a and cac™!

must generate P.
Letting b := cac™!, it is enough to determine chc~! in terms of a and b. Now cbc™! =
a"bP for some integers v and . Conjugation by ¢ induces an invertible linear operator
f on the vector space P over the field Z, and the matrix of f with respect to the basis

{a,b} of Pis 6 = [?g}

Note that G has no subgroup of order pq if and only if f has no eigenvalue in Z, :
Indeed, if 1 # s € P is an eigenvector of f corresponding to an eigenvalue A € Z,,, then
f(s) = s, implying that (c)(s) is a subgroup of G (because (c)(s) = (s)(c)) of order
pq. Conversely, if G has a subgroup of order pg, then conjugating it by an element of
G we see that there is a subgroup H of G of order pg which contains Q. Therefore,
H = (t)(c) for some 1 # ¢ € P. As H is a subgroup, ¢t = t"¢" for some integers m and

n. Thent " f(t) = "' € PNQ = 1, implying that f(t) = t".

As the order of ¢ is prime g, the order of 6 in GL(2,7Z,) must be ¢q. Considering the
determinants we see from the equation 689 = I that the possibilities for the order of —7y
in Zj, is 1 or q. Suppose for a moment that the order of —y is g. Then g divides p—1,
implying that ¢ = 2 (because we already know that ¢ divides p + 1). But then 8% =1
implies that 8 = [(1) (1)] , which has an eigenvalue in Z,. Therefore, the order of —y must

be 1, implying that y= —1 (mod p).

Conversely, it is clear that any group with the given presentation has the
stated subgroup structure. The intersection graph of such a group is given in

Figure 3.4(b). L]

The prime ¢ in the second part of the previous lemma cannot be 2. Indeed, it is easy
to see that 82 # I where 0 is the matrix in Lemma 3.11. Therefore, there is no planar

group of order 2p? where p is an odd prime.
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Groups of order pzq were classified by Holder (see [25], [26, p. 76], [27], or [28]).
The previous lemma may also be justified by analyzing the cases described in these

references.

@) T(Zg %0 Z,y) (b) T((Zp x Zp) ¥ p Zy)

Figure 3.4 : Non-nilpotent planar groups of order p?q.

Lemma 3.12. Let G be a non-nilpotent group of order p*q*> where p > q are distinct

prime numbers. Then, G is planar if and only if it is isomorphic to
(Zp xZp) xp Zp = (a,b,c |al = bV = ¢ =1,ab=ba,cac™" = b,chc™" = a'bP)

where g* divides p+ 1 and B is any integer such that the matrix 6 = [(1) %1} has order
q* in the group GL(2,7Z,) and such that 69 has no eigenvalue in Z,. (Moreover, such
a group has exactly 1 subgroup of order p*q, and has no subgroup of order pg?, and
has exactly 1 subgroup of order p* which is elementary abelian, and has exactly p*
subgroups of order q> which are all cyclic and pairwise non-intersecting, and has no
subgroup of order pq, and has exactly p+ 1 subgroups of order p, and has exactly p>
subgroups of order q).

Proof. Assume that G is planar. Let P be a Sylow p-subgroup of G and Q be a Sylow

g-subgroup of G. We have the following subgroup structure for G :
(I) G has no normal subgroup of prime order: This follows from Lemma 3.10.

(II) P is normal in G and Q is not normal in G : It is clear that the intersection of any
two distinct Sylow p-subgroups P and P> of G is a normal subgroup of G of order p.
The normality of P; N P, may be seen easily by considering the normalizer of P N P;.
Therefore, it follows from (I) that P is normal in G. As G is not nilpotent, Q is not

normal in G.

() P = Z), X Zp : Using Lemma 3.10 and (I) and (II) we see that P is a minimal

normal subgroup of G.
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(V) Q = Z, : It follows from Lemma 3.10 that G/P = Ly or G/P =73 x7Zy. In
the case G/P = 7 X Z,, there are 3 subgroups of G/P of order 2. Hence, there are
3 subgroups X;,X»,X3 of G of order 2p? all of which contain P. Letting ¥ be any
subgroup of P of order p, we see that the groups Xi,X>,X3,P,Y form a K5 in the

intersection graph of G so that G is not planar.

(V) G has exactly one subgroup of order p?>q : As P is normal in G, any subgroup of G
of order divisible by p? contains P. So, the number of subgroups of G of order p?q is
equal to the number of subgroups of Q = G/P of order g. The result follows because

Q is cyclic by (IV).

(VI) G has no subgroup of order pg”> and has no subgroup of order pg : There is a
unique subgroup of G of order p?>g by (V). This subgroup, say H, must be planar
and P is the unique Sylow p-subgroup of H. As P is elementary abelian, H must be
isomorphic to the second group found in Lemma 3.11. In particular, H has no normal
subgroup of order p and has no subgroup of pg. Now, suppose for a moment that there
is a subgroup U of G of order pg® or pq. Note that U is not in H. As P is an abelian
normal subgroup of G, we see that PNg(U) < Ng(PNU). Considering the order of
the subgroup PNg(U) and the uniqueness of H, we see that H < PNg(U). Therefore,

PNU is anormal subgroup of H of order p, which is impossible.

(VII) G has exactly p?> subgroups of order ¢, all of which are cyclic: As Q is not

normal, this follows from (IV), (VI), and the Sylow Theorem:s.

(VIII) The intersection of any two distinct subgroups of order ¢ is trivial: Otherwise
the intersection is a subgroup of G of order g such that the order of the normalizer of
the intersection is pq2 or p2q2. It follows from (VI) and (I) that each of the two cases
is impossible.

(IX) G has exactly p2 subgroups of order ¢ : This follows from (VII) and (VIII).

(X) ¢* divides p+ 1 : Q acts by conjugation on the set of all subgroups of G of order
p. Since by (VI) there is no subgroup of G of order pg” or pq, the stabilizer of any

subgroup of G of order p must be the trivial subgroup of Q. Therefore, each orbit has

cardinality ¢°.

Conversely, it is clear that any group satisfying the above properties (I)-(X) is planar,

and its intersection graph is given in Figure 3.5(a). On the left the vertices represent
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the subgroup of order p? and the p + 1 subgroups of order p, and on the rightmost two

columns the vertices represent subgroups of order ¢ and of order ¢?.

Finally, we may argue as in the proof of the second part of Lemma 3.11 to see that such
a group has the given presentation. Indeed, let a be an element of P of order p and let ¢
be a generator of Q. As G has no subgroup of order pg?, the elements a and b := cac™!
form a basis for the vector space P over Z,. Now cbhe™! = a"bP for some integers Y and
B. The matrix of the conjugation on P by cis 8 = [? 23/] . The order of 6 in GL(2,7Z,)
must be g> because ¢ has order ¢g> and G has no subgroup of order pg. The order of
(—7)in Z, is 1 or q or g*. We see easily that the order is not ¢> (otherwise ¢° divides
2) and is not ¢ (otherwise, ¢ =2 and y*> = 1 in Ly, and 6* = I implies that B = 0 in
Zy, and so 6 is diagonal, implying that G has a subgroup of order pq). Therefore,

= —1 (mod p). Moreover, as G has no subgroup of order pg we have to assume that

04 (implying that ) has no eigenvalue in Z,. [

The prime ¢ in the previous lemma cannot be 2. Indeed, 8* = I implies that 67 is
diagonal, and so G has a subgroup of order pg, where 0 is the matrix in Lemma 3.12.

Therefore, there is no planar group of order 4p? where p is an odd prime.

Groups of order p?>q? were determined by Le Vavasseur in [29]. The previous result

may also be proved by analyzing the cases given there.

Lemma 3.13. Let G be a non-nilpotent group of order pgr where p < g < r are distinct

prime numbers. Then, G is planar if and only if it is isomorphic to
Zy¥qZpg={a,b|d" =bP!=1,bab~" = a*)

where pq divides r — 1 and « is any integer not divisible by r whose order in the unit
group 7\ of Z, is pq. (Moreover, such a group has exactly 1 subgroup of order pr, and
has exactly 1 subgroup of order qr, and has exactly r subgroups of order pq, which are
all cyclic and pairwise non-intersecting, and has exactly 1 subgroup of order r, and

has exactly r subgroups of order p, and has exactly r subgroups of order q).

Proof. The Sylow Theorems imply that G has a unique Sylow r-subgroup R. Assume

first that G is planar. We have the following subgroup structure for G :
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(I) G has exactly 1 subgroup of order pr and exactly 1 subgroup of order gr : From
Lemma 3.10, we see that G/R = Z,,. Thus G/R has exactly one subgroup of order p

and ¢. Since any subgroup of G of order divisible by r contains R, the result follows.

(II) G has exactly r subgroups of order pg, which are all cyclic and pairwise
non-intersecting: Let X be a Hall subgroup of G of order pg. By (I) there are unique
subgroups of G of order pr and gr, say Y and Z. If X is normal in G, then XNY NZ =1
so that G is isomorphic to a subgroup of the cyclic group Z, x Z, X Z,. Therefore, X
is not normal in G. As any two Hall subgroups of a finite solvable group of the same
order are conjugate [15, p. 231, Theorem 4.1], there are exactly r subgroups of G of
order pg. Moreover, X must be cyclic because X NY and X N Z are normal subgroups
of X of orders p and g whose product is X. Finally, let X; and X, be two subgroups of
G of order pg such that X; N X, # 1. Then we see that X; N X, is a normal subgroup of
G of order p or g. But then X| N X, must be contained in each of r subgroups of G of
order pq. Therefore, the intersection graph of G contains K. As r > 5, in this case G

is not planar.

(IIT) G has exactly r subgroups of order p and r subgroups of order g : As any subgroup

of G of order p or ¢ is contained in a subgroup of G of order pg, the result follows from
(1ID).

(IV) pg divides r — 1 : It follows from (IIT) and the Sylow Theorems that =1 (mod p)

and r =1 (mod g). The result follows.

Conversely, it is clear that any group satisfying the above properties (I)-(IV) is planar,
and its intersection graph is given in Figure 3.5(b). The uppermost middle vertex
represents the unique subgroup of G of order r, and the leftmost and the rightmost

vertices represent the unique subgroups of G of order pr and gr.

Finally, we may argue as in the proof of the first part of Lemma 3.11 to see that such a

group has the given presentation. 0

Groups of order pgr were classified by Holder (see [25]). One may also analyze the

cases there to prove the previous result.

Lemma 3.14. Let G be a non-nilpotent solvable group of order p>qr where p, q and r

are distinct prime numbers. Then G is not planar.
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@) D((Zy x Zp) ¥p Zp) () T(Z) %6 Zpy)

Figure 3.5 : Non-nilpotent planar groups of orders p*>g* and pgr.

Proof. Assume for a moment that G is planar. Let P be a Sylow p-subgroup of G. We

have the following subgroup structure for G :

(I) Pisnormal in G and P = Z,, x Z,, and G/P = 7, : As any minimal normal subgroup
of a finite solvable group is elementary abelian group of prime power order, the result

follows from Lemma 3.10.

(I) G has exactly 1 subgroup A of order p?>q and has exactly 1 subgroup B of order
p?r. Moreover, both A and B contain P : As P is normal, any subgroup of G of order
divisible by p?> must contain P. The result follows from (I) which implies that G/P has

exactly 1 subgroup of order g and has exactly 1 subgroup of order r.

(IIT) The intersection graph of G contains K3 3 : It follows from (I) that P has exactly
p + 1 subgroups of order p. Take any 3 distinct subgroups of P of order p, say
X1,X72,X3. Then, it is clear from (II) that the intersection of any element of the set
{X1,X>,X3} with any element of the set {A, B, P} is not trivial. Thus, the intersection

graph of G contains K3 3.

Finally, we note that (III) contradicts the planarity of G. ]

Finally, if G is a group of order pg where p > g are prime numbers, then any proper
non-trivial subgroup of G is of prime order, and so there is no edge in the intersection
graph of G. Therefore, any such group is planar, and we have the following easy

consequence of the Sylow Theorems.

Lemma 3.15. Let G be a group of order pq where p > q are distinct primes. Then, G

is planar. If G is non-nilpotent, then q divides p — 1 and G is isomorphic to
ZpxaZly=(a,b|a’ =b!=1bab~" =a®)
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where o is any integer not divisible by p whose order in the unit group Z; of Ly is q.
(Moreover, such a group has exactly 1 subgroup of order p and has exactly p subgroups

of order q).

3.3 Non-solvable Groups
In this section we show that any non-solvable finite group is not planar.

Lemma 3.16. If G is a finite non-solvable simple group then G is not planar.

Proof. Suppose contrarily that G is a finite non-solvable simple group which is planar.

Then we have:

(I) Any Sylow subgroup of G is abelian: Let P be a Sylow p-subgroup of G for some
prime p dividing |G|. As P is planar, it follows from Propositions 3.2 and 3.5 that
P is isomorphic to one of the groups Z,« (& <5), Z, X Z,, Dg, Qg. However, the
intersection graph of any of the groups Z s, Dg, Qg contains a K4. Therefore, P must

be isomorphic to one of the groups Zye (&t < 4), Z, X Z,.

(IT) For any non-trivial Sylow subgroup P of G, its normalizer Ng(P) is a non-abelian
proper subgroup of G : As G is simple, the result follows from BNCT (see
Theorem 1.12).

(IIT) If P is a Sylow p-subgroup of G for some prime p dividing |G|, then P is
isomorphic to Z, x Z, or Z,. Moreover, if P is isomorphic to Z, x Z, then Ng(P)
is a non-nilpotent group of order p>q isomorphic to the group described in the second
part of Lemma 3.11: Suppose that P = Z,a where o > 2. The unique subgroup C of the
cyclic group P of order p must be normal in Ng(P). Moreover, P # Ng(P) by (I)-(1ID).
It then follows from Lemma 3.10 that Ng(P)/C is isomorphic to Z,, and o¢ = 2 where
r is a prime number different from p. So Ng(P) is a non-abelian planar group of order
p?r having a normal cyclic subgroup of order p?, which is impossible by the virtue
of Lemma 3.11. Consequently, it follows from the proof of (I) that P is isomorphic
to Z, x Zp or Z,. Suppose now that P is isomorphic to Z, x Z,. If Ng(P)/P has a
proper non-trivial subgroup X /P, then the set {Ng(P),X,P} and the set consisting of
any distinct three subgroups of P of order p form a K3 3 in the intersection graph of G.
Hence, Ng(P)/P must have prime order g so that Ng(P) is a non-abelian planar group

of order p’q.
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(IV) If |G| is even then any Sylow 2-subgroup of G is isomorphic to Z; x Z; : Indeed,
if there is a cyclic Sylow 2-subgroup §, then S = Z, by (III). But then the N/C Lemma
(see Theorem 1.16) implies that N (S) = Zg(S) so that S has a normal complement by
BNCT.

(V) G has no subgroup of order 2s where s is an odd prime: Suppose for a moment
that G has a subgroup Y of order 2s. Let U be a subgroup of Y of order 2, and let W
be a Sylow 2-subgroup of G containing U. From (IV) we know that U # W. Let g be
an element of W. Note that 8Y contains U. If Y and 8Y are distinct then the subgroups
U,W,Ng(W),Y,8Y form a K5 in the intersection graph of G. Therefore, Y = 8Y so that
g € Ng(Y). Therefore, W < Ng(Y), implying that WY = YW so that WY is a subgroup
of G of order 4s. Note that WY # G (because Y is a normal subgroup of WY), and
note that WY # Ng(W) (because otherwise |[Ng(W)| = 225, and it follows from (IIT)
and Lemma 3.11 that Ng(W) has no subgroup of order 2s). Therefore, the subgroups
U,W,Y,WY,Ng(W) form a Ks in the intersection graph of G. This contradicts the
planarity of G.

(VI) If P is a Sylow p-subgroup of G for some prime p dividing |G|, then P is
isomorphic to Z,, : Assume contrarily that P is a Sylow p-subgroup of G not isomorphic
to Z,. It follows from (III) that P = Z, x Z, and Ng(P) is a non-abelian group of
order p?q for some prime g different from p. Let Q be a Sylow g-subgroup of Ng(P).
It follows from (IIT) and Lemma 3.11 that Ng(P) N1 Ng(Q) = Q. Let T be a Sylow
g-subgroup of G containing Q. If T = Q then (II) implies that Q # Ng(Q). If T # Q
then Ng(Q) contains 7 by (I) so that Q # Ng(Q). Hence, Ng(Q)/Q is a non-trivial
group. For any two distinct elements aQ and bQ of the quotient group Ng(Q)/Q, the
subgroups “Ng(P) and ”Ng(P) are distinct subgroups containing Q (because Ng(P)
is self normalizing and Ng(P) N Ng(Q) = Q.) Therefore, if [Ng(Q)/Q| > 3 then there
are three distinct conjugates Z;,Z,,Z3 of Ng(P) containing Q, so that the subgroups
Z1,75,73,0,Ng(Q) form a K5 in the intersection graph of G. Therefore, we must have
that [Ng(Q)/Q| = 2, and so |[Ng(Q)| = 2¢q. But then, (V) implies that g = 2 and so
Ng(Q) is a Sylow 2-subgroup of G. Now the subgroups Ng(P),*Ng(P),Q,Ng(Q),M
form a K5 in the intersection graph of G where zQ is any non-identity element of

Ng(Q)/Q and M is the normalizer in G of the Sylow 2-subgroup Ng(Q) of G.
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It follows from (VI) that G has square free order. But such a group is solvable by
Holder’s Theorem (see Theorem 1.8). ]

Corollary 3.17. A finite non-solvable group is not planar.

Proof. Suppose contrarily that G is a finite non-solvable group which is planar. Since
solvability is closed under group extension, G must have a non-solvable simple
composition factor X. It follows from Proposition 3.16 that X is not isomorphic to
a subgroup of G. Thus X is isomorphic to H/N for some non-trivial subgroup H of
G and for some non-trivial proper normal subgroup N of H. But then, as H is planar,

Lemma 3.10 implies that X is abelian. [
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4. K33-FREENESS OF INTERSECTION GRAPHS

Let I" and A be two graphs. We say that I" is A-free if there is no subgraph of I which
is 1somorphic to A, 1.e. I' does not contain A as a subgraph. Let G be a group. For

simplicity we say that G is A-free whenever its intersection graph is A-free.

In a recent work [30], Rajkumar and Devi classified finite groups whose intersection
graphs does not contain one of Ks, Ky, Cs, C4, P4, P35, P>, K13, Kr3 or K14 as a
subgraph. Here we present the classification of finite K3 3-free groups. Our main result

in this chapter is

Theorem 4.1. A finite non-planar group is K3 3-free if and only if it is isomorphic to

one of the following groups:

1. Zpé, Zp3 X Zq, Lo X 13, (Z3 X Z3) X 23, 19 X L3, L3 X Ly, and D1g, where p,q are

distinct primes.

2. The semidirect product Zg X s with P> | g—1, where p,q are distinct primes.

4.1 Solvable Groups

Recall that in Proposition 3.2 we determined finite abelian groups which are K3 3-free.

Here we restate this result for convenience:

Lemma 4.2. A finite abelian group is K3 3-free if and only if, for some distinct primes

p, q and r, it is isomorphic to one of the following groups

Zpi (0§l§6), Zp3 XZq, sz XZq, ZPXZq, Z9><Z3, Z4><Zz,

Zip X L, ZLp X Ly X Ly, Zo X Lo X Ly (p #2).

Let G be a non-abelian p-group of order p* (o0 > 2) which is K3 3-free. Then, as
the quotient of G by the Frattini subgroup ®(G) (i.e. the intersection of all maximal

subgroups) is elementary abelian, ®(G) is a non-trivial subgroup of G. That is, there
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are subgroups K,L of G such that |[K| = p, |L| = p?, and K is contained in every
maximal subgroup of G as well as in L. If p > 3, by Theorem 1.3 there are at least 6
maximal subgroups each containing a common subgroup, hence I'(G) contains a K7
which is a contradiction. (Notice that for a graph being K3 3-free is a more stringent
condition than being Kg-free.) Thus G is either a 2-group or a 3-group. Also, the
exponent & = 3. To see this, suppose that & = 4 and consider the case p = 3. Then
there are at least four maximal subgroups of G of order p® and together with K and
L, they form a Kg in the intersection graph. If a =4, p =2 and |®(G)| = p, then
G/®(G) is elementary abelian of rank 3 which is not listed in Lemma 4.2. Suppose
that |®(G)| = p?. If ®(G) is cyclic, then the subgroup Z < ®(G) of order p is in the
center of G. Since the intersection graph of the quaternion group of order 16 is Kg, we
may further assume there are more than one minimal subgroups of G. Let K be another
minimal subgroup of G, then three maximal subgroups together with Z, ®(G), and ZK
form a K¢ in I'(G). If ®(G) is not cyclic, then we may take three maximal subgroups
and the three subgroups of ®(G) to form a K33 in the intersection graph. Finally,
|®(G)| = p? implies G is cyclic which is a contradiction. There are two non-abelian
groups of order 8, namely the dihedral group Dg and the quaternion group Qg; and also
there are two non-abelian groups of order 27, namely (Z3 X Z3) x Z3 and Zg x Z3. It
can be verified that these groups are K3 3-free (see Figure 3.3 and Figure 4.1). Thus,

we almost proved that

Lemma 4.3. A finite non-abelian nilpotent group is K3 3-free if and only if it is

isomorphic to one of the following groups

Ds, 0Os, (Z3 x Z3) X Zs, Zo X Zs3.

Proof. Since a nilpotent group G is the direct product of its Sylow subgroups, at least
one of them must be non-abelian. However, (Z3 X Z3) % Z3 and Zg x Z3 both contains
a Ks in their intersections graphs, therefore cannot be a proper subgroup of G. Also, if
G contains Dg properly, then the three maximal subgroups together with Dg and ®(Dg)
form a Ks in I'(G). If we take another minimal subgroup K which is not a subgroup of
Dg, then the subgroup ®(Dg)K would be a sixth vertex which is connected by an edge

with each vertices of K5. Same argument is valid also for Qs. [l
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(a) F((Z3 X Z3) X Z3) (b) F(Zg X Z3)
Figure 4.1 : Vertices labelled with ® represents Frattini subgroups.

Let G be a finite non-nilpotent solvable group. Following Section 3.2, we may reduce
the number of cases substantially with regard to the orders of the groups. Let N be a
minimal subgroup of G. By Theorem 1.5, N is an elementary abelian group and as a
subgroup of G it is K3 3-free. Moreover, N is either of rank 1 or rank 2 in virtue of
Lemma 4.2. It is well-known that there is a correspondence between the subgroups of

G containing N and the subgroups of G/N. Now we make a very useful observation

e the rank of N is | = # subgroups of G/N is at most 6;

e the rank of N is 2 = # subgroups of G/N is at most 3.

As a consequence of Sylow and Hall Theorems (see Theorems 1.3 and 1.6), the only
possible values of |G/N| are p’ (0 < i <5), pg, and p?q, where p and ¢ distinct prime
numbers. Moreover, if N is of rank 2, then G/N is isomorphic to a cyclic group of

prime or prime squared order. Therefore, the only possible cases for the order of G are

Pq, p'a, pari pPa. pla, PP pan pq
In [30], the K 3-free groups are determined as a sublist of Ks-free groups. Our
preceding discussion made it apparent that if G is a K 3-free group and N <G is

elementary abelian of rank 2, then either [G : N] = 1 or p, where p is a prime.

Returning to the possible orders of the non-nilpotent solvable K3 3-free groups, we can

still eliminate some of the cases by ad hoc arguments.

Lemma 4.4. There are no finite non-nilpotent solvable group which is K3 3-free and of

order
5 4 2
P4 P q; or pqr
where p,q,r are distinct prime numbers.
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Proof. Let G be a K3 3-free group, and let N be a minimal normal subgroup of G. First,
consider the case |G| = p*q. Clearly, [N| = g. Since the number of the subgroups
of G/N is at most 6, G/N is isomorphic to Z+. Let A< B < C < D be a chain
of non-trivial p-subgroups of G. Then, one may form NA, NB and NC which are
proper subgroups. As the orders of those groups are different, they form a K7 in I'(G)
(intersection of any two of them contains A). Therefore, G is not K3 3-free. Similar

arguments can also be applied for |G| = p’q case.

Next, suppose |G| = p?qr. Clearly, N is not a p-group. Without loss of generality
we may assume that |[N| = r. Then |G/N| = p?q. If G/N is not cyclic, then the
number of subgroups of G/N exceeds 6. This is clear if Sylow p-subgroup of G/N
is elementary abelian. And if G/N is not abelian, then there must be a non-normal
subgroup (since there is no subgroup of G/N isomorphic to Qs, it is not Hamiltonian)
implying there are more than 6 subgroups. Hence, G/N must be cyclic. In this case
there are subgroups of G/N of orders p?, pg, p, and q. Then, by the Correspondence
Theorem (see Theorem 1.4) there are four subgroups containing N, say A, B, C, D of
orders p*r, pgr, pr, and gr respectively. Let T be a subgroup of order p?>q. By the
Product Formula T intersects A, B, and C non-trivially. That is, A,B,C,D,N, T span a

subgraph in I'(G) containing K3 3. ]

Now we examine the other cases.

Lemma 4.5. Let G be a non-nilpotent group of order p>q, where p and q are distinct

prime numbers. Then, G is K3 3-free if and only if it is isomorphic to

ZyXaqZ,s = (a,b|al —b"’ =1,bab™" =a%)

p

where p3 divides g — 1 and o is any integer not divisible by g whose order in the unit

group Zy of Zg is P

Proof. Suppose that G is K3 3-free. Clearly, the order of the minimal normal subgroup

N cannot be p?. Therefore, we only need to consider the following two cases.

Case I: |N| = p. Since the number of subgroups of G/N is at most 6, we have
G/N = L2, Let P be a Sylow p-subgroup of G containing N; and let Q be a Sylow
g-subgroup. By the Correspondence Theorem P is the unique Sylow p-subgroup

containing N, hence it is normal in G. As G is not a nilpotent group, Q is not a
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normal subgroup of G. Let H and K be the subgroups containing N with orders pg
and p?q respectively. Since NQS is a subgroup of order pg for any conjugate Qf of Q
which contains N and since H is the unique subgroup of order pg containing N by the
Correspondence Theorem, H contains all conjugates of Q and this implies the number
of Sylow g-subgroups of G is [H : N| = p. In particular H = Z, x Z, and p > g. Then,
the normalizer Ng(Q) has order p?>q. Moreover, since Ng(Q) is self-normalizing by
Lemma 1.15, there are p conjugates of Ng(Q) which are different from the normal
subgroup K. By the Product Formula, P,H,K and p conjugates of Ng(Q) pairwise
intersect non-trivially. In other words, those subgroups form a K,.3 on I'(G). As

p 2> 3, G cannot be K3 3-free in this case.

Case II: |N| = q. Since [G : N] = p* and since the number of subgroups of G/N is at
most six, G/N is isomorphic to either Z,3 or Qg. Notice that a group with a unique
maximal subgroup is necessarily cyclic and by the Theorem 1.3 a non-cyclic p-group
has at least three maximal subgroups. Therefore, G/N must have a unique minimal

subgroup even if it is not cyclic.

Case II (a): G/N = Z,3. Take three non-trivial p-subgroups A < B < C and form
NA and NB. As the orders of those groups are different, they form a K5 in I'(G).
Also, since G is not nilpotent, there are more than one Sylow p-subgroups of G. If A
is contained in a Sylow p-subgroup D other than C, then together with D we have 6
proper non-trivial subgroups pairwise intersecting non-trivially. On the other hand, if
any two Sylow p-subgroups intersect trivially, then I'(G) is K3 3-free. Notice that NA
is the unique subgroup of G of order pg and NB is the unique subgroup of G of order
p?q. Let Q = (a) and P = (b). We want to write a presentation for G. Since Q is
normal, bab~—! = a* for some integer ¢ not divisible by g. Observe that, b*ab—* = a®
for any integer k. This implies ar’ =1 (mod g), i.e. the order of & in the unit group
ZZ‘I divides p3. Moreover, its order is exactly p3, as otherwise, the intersection of some

Sylow p-subgroups would be non-trivial. Conversely, the group
Zq%aZy=(ab|al=b" =1bab~" = a%)

has the subgroup structure described above and it is K3 3-free. See Figure 4.2.

59



Case Il (b): G/N = Qs. Then, there are 5 non-trivial subgroups of a Sylow p-subgroup
each containing a unique minimal subgroup A. Together with NA we have 6 subgroups

forming a K¢ in I'(G). Thus, there is no K3 3-free group in this case. O]

Figure 4.2 : I'(Zy 1 Z p3), gray vertices represents
subgroups of orders ¢, pg, and p*q.

There are non-nilpotent solvable planar groups of orders

p’q, e, par, and  pgq

which are necessarily K3 3-free. Previously, we proved that the groups presented at the

second and third items of the following lemma are planar.

Lemma 4.6 (compare with Lemma 3.11). Let G be a non-nilpotent group of order
p?q, where p and q are distinct prime numbers. Then, G is K3 3-free if and only if it is

isomorphic to one of the following groups:

L3 XLy, or D,

ZyxaZp=(a,b|a?=b" =1,bab~" = a®)

p
where p?* divides g — 1 and o is any integer not divisible by q whose order in the

unit group Z, of Zq is 2

(Zp X Lp) ¥ Lg=(a,b,c|al =b" = c? = 1,ab = ba,cac™' =b,cbc™! :a_le>

where q divides p+ 1 and B is any integer such that the matrix 6 = [(1) 731] has

order q in the group GL(2,7Z,) and such that 0 has no eigenvalue in Z,,.
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Proof. Suppose that G is K3 3-free. There are three possible cases for the order of the

minimal normal subgroup N of G.

Case I: |[N| = p. Let P be the Sylow p-subgroup of G, and Q be a Sylow g-subgroup
of G.

Case I (a): P is not a normal subgroup of G. Then N is contained in every Sylow
p-subgroups as well as in some subgroups of order pg. However, there are ¢ = 1 + kp
conjugates of P and since G is Kg-free, we have p =2, g =3 and H := NQ must be a
normal subgroup of G. Notice that, the three Sylow p-subgroups together with N and
H form a K5 in I'(G). Moreover, Q is a normal subgroup of G; otherwise, H = Z, X Z,,
however 312 — 1. If P = Z, X Z,, there would be a non-normal subgroup K = 7, as
otherwise, P would be a normal subgroup of G. Then QK is connected by an edge with
two of the three Sylow p-subgroups as well as with H which is a contradiction because

we assumed that G is K3 3-free. Therefore, P = Z4 and we can easily observe that
Z3xZ4=(a,b|a® =b*=1,bab™' = d?)

is K3 3-free as it has exactly six proper non-trivial subgroups and the minimal subgroup

of order 3 has degree one in the intersection graph.

Case I (b): P is the normal Sylow p-subgroup of G. As G is not a nilpotent group by

assumption, Q is not a normal subgroup of G.

Suppose that there is a normal subgroup L of G of order pg containing Q. Then L
contains all conjugates of Q, hence L = Z), x Z, and in particular ¢ ] p — 1. Moreover,
by Lemma 1.15 any subgroup containing Ng(Q) is self-normalizing and this implies
Ng(Q) # Q, as L<G by assumption. However, Ng(Q) # G either, thus H := Ng(Q)
is of order pq and it is not a normal subgroup of G. Let K be the subgroup of H of
order p. Notice that since p > g, we have K <H. Clearly, conjugates of H together
with K and P form a K 4, in I'(G). Therefore p = 3 and ¢ = 2. However, any (Sylow)
g-subgroup is contained in the normal subgroup L implying there is an edge between
L and any conjugate of H. That is, conjugates of H together with K, P, and L span a

subgraph containing K3 3.

Now suppose that there is no normal subgroup of order pg. In particular NQ is not a
normal subgroup of G. As in the previous paragraph, conjugates of NQ together with

N and P form a K, ;> in I'(G). Therefore p = 3 and ¢ = 2, as the number of Sylow
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g-subgroups is = 1 (mod g). (Since any subgroup of index 2 must be normal, p # 2.)
If P = Z3 x Z3, there must be a normal subgroup K of order p different from N. To
see this, consider the action of Q by conjugation on the set of subgroups of order p.
(Notice that there are totally four subgroups of order p.) Since N is a normal subgroup
of order p and the length of an orbit of Q is either 1 or 2, there must be a subgroup K
fixed by Q and different from N. However, G is generated by the elements of N, K, and
Q, thus K is a normal subgroup. Then KQ is a group of order pq different from NQ and
its conjugates. This is because, NQ and KQ have unique subgroups of order p which
are not conjugate to each other. By the Product Formula any two subgroups of order
pq intersects non-trivially. Therefore, conjugates of NQ together with the conjugates

of KQ form a K¢ in I'(G). Finally, if P = Zg, we have the dihedral group
Dig = (a,b|a® =b* = 1,bab=a")

which is K3 3-free. See Figure 4.3.

Case II: |N| = q. As the Sylow g-subgroup N is normal and as G is not a nilpotent

group, there are at least three Sylow p-subgroups, say P; (1 <i < g).

Suppose that G/N = Z,, x Z,,. By the Correspondence Theorem there are at least three
subgroups H; (1 < j < p+1) of order pq each containing N. By the Product Formula,
P.NH; # 1 for any 1 <i,j <3 and we have six vertices which span a subgraph of

I'(G) containing a K3 3, contradiction!

Now suppose that G/N = L. If X = BN Pj is non-trivial for some distinct Sylow
p-subgroups, then X must be a normal subgroup of G as Ng(X) contains both P, and
P;. However, this case was considered in Case I (a). If the intersection of any pair of

Sylow p-subgroups is trivial, then G has a presentation
Zy¥aZyp={ab|a?=b" =1,bab~" =a%)

and it is planar. See Lemma 3.11 for details.

Case III: |N| = p*. As the Sylow p-subgroup N is normal and as G is not a nilpotent
group, any subgroup of order ¢ is not normal in G. We want to observe that there are
no subgroups of G of order pg. To see this, first suppose that there is a subgroup H
of G of order pg. If H is a normal subgroup of G, obviously H contains all (Sylow)

g-subgroups. Then A = HNN is normal in H as well as in G, since N is abelian and
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(H,N) = G. However, this is in contradiction with the assumption that there is no
normal subgroup of order p. If H is not a normal subgroup of G, since a subgroup
of smallest prime index must be normal, we have p > ¢g. Then, again A is a normal
subgroup of H and of G and we have the same contradiction. Therefore, there is no

subgroup of G of order pq. In that case, G has a presentation
(Zp X Lp) Mg Zg = (a,b,c|a’ =b" = c?=1,ab = ba,cac™ = b,cbc™" = a~'bP)

and it is planar. See Lemma 3.11 for details. [

Figure 4.3 : I'(D3g), gray colored vertices represents subgroups of order pq.

Lemma 4.7 (compare with Lemma 3.12). Let G be a non-nilpotent group of order
p2q?, where p > q are distinct prime numbers. Then, G is K3 3-free if and only if it is

isomorphic to
(Zp X Zp) Mg Zp = (a,b,c | a’ = b = @ = 1,ab = ba,cac”' =b,cbc™ " =a " 'bP)

where g* divides p+ 1 and B is any integer such that the matrix 6 = [(1) El] has order

q° in the group GL(2, Zp) and such that 04 has no eigenvalue in Z,,.

Proof. Suppose that G is K3 3-free. First we shall observe that the minimal normal
subgroup N of G must be a Sylow subgroup. To this end, let us assume |N| = p.
Then, G/N =7 »q2 and there exists a unique Sylow p-subgroup P containing N. Since
Sylow p-subgroups are conjugate and since /N is a normal subgroup, P is also a normal
subgroup of G. Let Q be a Sylow g-subgroup. By assumption G is not nilpotent, hence
Q is not a normal subgroup of G. (Notice that assuming |N| = ¢, one may deduce in a
similar fashion that the unique Sylow g-subgroup is a normal subgroup of G. However,

this 1s not possible for p > q.)
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Let A, B, C be the subgroups of respective orders pg, pg”, p>q containing N and Q;
(1 <i<3) be three Sylow g-subgroups. Let X be a group of order ¢g. Since N is a
normal subgroup, NX is a group of order pg containing X. This implies A contains any
group of order g, as it is the unique subgroup of order pg containing N. That is AN Q;
is non-trivial for 1 <i < 3. This is also true for B and C, and so A, B,C together with

Q; span a subgraph containing a K3 3 in I'(G).

By the preceding discussion we conclude that N is the normal Sylow p-subgroup of
G and since it is minimal, N = Z, x Z, by Theorem 1.5. We know that if the rank
of the minimal normal subgroup N is two, then G/N has at most three subgroups,
hence it is a cyclic group of prime or prime squared order. Since the order of G is
p*q?, we conclude Q = Ly, where Q is a Sylow g-subgroup. Let K be the unique
subgroup of G of order p?q containing N. Since any subgroup of order p>q contains
N, we see that K is the unique subgroup of G of order p>q. Moreover, since NX = K
for any subgroup X of order g, K contains all subgroups of G of order g. Also, since
any subgroup of a K3 3-free group is also K3 3-free, K is isomorphic to the third group
stated in the previous Lemma 4.6. In particular, there is no subgroup of K of order
pq and in turn this implies there are no subgroups of G of order pg* or pg. To see
this observe that if H < G is of order pg, then H N K contains a subgroup of order
p by the Product Formula. However, K contains every subgroup of order ¢ which
implies H < K, contradiction! Similar argument works when |H| = pq*. Hence G is
a group with a normal Sylow p-subgroup isomorphic to Z, X Z, and a non-normal
Sylow g-subgroup isomorphic to Z,» and there are no subgroups of G of order pq or

of order pg?. Such a group has a presentation
(Zp xZp) xp Zp = (a,b,c|al = bV = ¢ =1,ab=ba,cac™ = b,chc™" = a'bP)
and it is planar. See Lemma 3.12 for details. ]

Lemma 4.8 (compare with Lemma 3.13). Let G be a non-nilpotent group of order
pqr, where p < q < r are distinct prime numbers. Then, G is K3 3-free if and only if it

is isomorphic to
L sia g = {a,b | @ = b7 = 1, bab™ = a

where pq divides r — 1 and o is any integer not divisible by r whose order in the unit
group 7 of Zy is pq.
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Proof. Let R be a Sylow r-subgroup. Applying Sylow Theorems it can be easily
observed that R<G. Since |G/R| = pg and p < g, we see that either G/R = Z; X Z,
or G/R =2 7Z, x Zg. Observe that in the first case the number of subgroups of G/R is

g+ 3 implying G/R = S5 as this number is at most six.

Suppose that G/R = S3. By the Correspondence Theorem, there is a unique subgroup
N of order 3r and three subgroups L; (1 <i < 3) of order 2r containing R. Since
N is a Hall {3,r}-subgroup and R is normal, N is a normal subgroup of G as well
(see Theorem 1.6). Let Q be the Sylow 3-subgroup of G contained in N. Then, by
Lemma 1.15, Q is a normal subgroup of G. Let H be a Hall {2,3}-subgroup of G. If
H is not a normal subgroup of G, then the number of its conjugates is [G : H| = r and
those subgroups together with Q form a K, in I'(G). Since r > 5, the intersection
graph cannot be K3 3-free in this case. Also, if H <G then it is easy to observe that the

subgroups H, N, R together with L; (1 <i < 3) form a subgraph containing K3 3.

Suppose that G/R = Z,,. By the Correspondence Theorem, there are unique
subgroups N of order pr and M of order gr. As in the preceding paragraph both M
and N are normal subgroups. Let K be a subgroup of order pg. Clearly, K is not a
normal subgroup of G and in particular it has r conjugates. Now assume that there
exist two distinct conjugates K; and K> of K such that their intersection X = K1 N K>
is non-trivial. Then, as |X| is either p or ¢, we have X < G; and this implies X is
contained in all conjugates of K. That is, conjugates of K together with X form a K, |
in the intersection graph which is a contradiction as » > 5. Therefore, any two distinct

subgroup of order pgq intersects trivially. Such a group has a presentation
Zy ¥ Lpg = {a,b|a" =bP1=1,bab~" = a*)

and it is planar. See Lemma 3.13 for details. U

Finally, intersection graph of any group of order pq consists of isolated vertices and so

K3 3-free. For further references we state it as a lemma.

Lemma 4.9. Let G be a non-nilpotent group of order pq, where p,q are prime numbers
and p > q. Then, g | p—1 and
G=ZpyxZy

is K3 3-free.

65



4.2 Non-solvable Groups

First, we shall show that there is no finite non-abelian simple group which is K3 3-free.

To this end, we need the following result.

Theorem 4.10 (see [31, Theorem 1]). If the finite group G contains a maximal

subgroup M which is nilpotent of class less than 3, then G is solvable.

As a consequence of Theorem 4.10, if a Sylow p-subgroup P of G is maximal and

|P| = p?, then G is solvable.

Proposition 4.11. If G is a finite non-abelian simple group, then I'(G) contains a K3 3

as a subgraph.

Proof. Consider a finite simple group G which is K3 3-free. Then there exists a minimal
finite simple group U which is isomorphic to a non-abelian composition factor of some

subgroup of G. Thus, U must be K3 3-free.

Minimal simple groups are known (see [32, Corollary 1]). Thus, U is isomorphic to

one of the following groups: PSL>(q), Sz(q), PSL3(3).

In view of Feit-Thompson Theorem, 2 divides |U|. Let S be a Sylow 2-subgroup of U.
Then S is a 2-group from Lemmas 4.2 or 4.3. Thus, either § = Z,;, where 1 <i <6, or
Se {Zz X Zz,Z4 X Zz,Dg,Qg}.

Since the intersection graphs of each of the 2-groups Z4 x Z,, Dg and Qg contains K] 3,

those groups must be maximal in U. By Theorem 4.10, U is solvable. A contradiction.

Suppose that S is cyclic. Then, by Theorem 1.13, S has a normal complement in U

which contradicts with the assumption that U is simple.

Thus, S = Z;, x Z;. By BNCT (see Theorem 1.12), the normalizer Ny (S) properly
contains S. Clearly, Ny(S) is a proper subgroup of U, as otherwise, S would be a

normal subgroup.

Normalizers of Sylow 2-subgroups of finite simple groups are known (see [33,
Corollary]). Thus, U is isomorphic to either PSL;(g), where ¢ = 4+3 (mod 8) (in
this case Ny (S) = Ay), or to PSL3(3). But PSL3(3) properly contains Sy (see [34]),
therefore is not K3 3-free. If U = PSL,(q), where ¢ = +3 (mod 8), then there is a
subgroup H = D of U which is a subgroup of odd index (see [35, Table 8.7]). Take
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S to be a Sylow 2-subgroup of H. Then H, Ny (S), S and three proper subgroups of S

form a graph which contains K3 3. A contradiction. 0

Corollary 4.12. A finite non-solvable group is not K3 3-free.

Proof. Let G be a finite non-solvable group. Since G has a non-abelian simple
composition factor which is not K3 3-free by Proposition 4.11, G is not K3 3-free as

well. L]

Our main result follows from Lemmas 4.2,4.3,4.5,4.6,4.7,4.8,4.9 and Corol-
lary 4.12.
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5. CONNECTIVITY OF INTERSECTION GRAPHS

In this chapter, we classify finite solvable groups whose intersection graphs are not

2-connected and finite nilpotent groups whose intersection graphs are not 3-connected.

Let I" be a simple graph with vertex set V(I'). A sequence ¥ = (vg,vy,..., V) of vertices
is a path of length k between vy and vy, if each consecutive pair of vertices are adjacent
in I We call two or more paths with the same end points internally independent
provided that none of them have a common inner vertex with another. (For brevity, we
usually omit ‘internally’ and say simply ‘independent paths’.) A graph is connected
if any two of its vertices are linked by a path. Let % be a subset of V(I') such that
the induced subgraph by % is connected. If % is a maximal subset of V(I") with
this property, then we say € is a component of I'. Alternatively, we may define an
equivalence relation ~ on V(I") by using the adjacency of vertices inductively: If x ~ y
and {y,z} is an edge, then x ~ z. (Of course, we also insert x ~ x for every x € V(I').)
Then a subset %" of V(I') is said to be a component of I, if ¢’ is an equivalence class.

Clearly, I is connected if and only if V(I') is the single component.

Let G be a group. It is not difficult to determine finite non-simple groups having a

disconnected intersection graph:

Theorem 5.1. Let G be a finite non-simple group. Then T'(G) is not connected if and

only if for some prime numbers p and q one of the following holds.

1. G=Zy XLy, or G%prZq.

2. G=N xA where N =7, x --- X Lp, A =7y NGg(A) =A, and N is a minimal

normal subgroup of G.

In [8], Shen proved this result and also showed that intersection graphs of (non-abelian)
simple groups are connected, thereby completed the classification for all finite groups.
Here we shall give a different proof for Theorem 5.1 which is due to I. M. Isaacs. In

an earlier work [13], Lucido classified finite groups whose poset of proper non-trivial
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subgroups are connected. Obviously, I'(G) is connected if and only if the poset of

proper non-trivial subgroups of G is connected.

The aim of the present chapter is to give a more detailed account of the “connectivity”
of intersection graphs. For a connected graph I', a subset . of the vertex set V(I
is said to be a separating set, if removal of the vertices in . yields more than one
components. We say I is k-connected if |V (I')| > k and there is no separating set of
cardinality < k. We define the connectivity k(I'") of " as the greatest value of k such
that I is k-connected. By convention, the connectivity of the complete graph K, on n
vertices is n — 1. Hence, 1-connected graphs form the class of connected graphs with
at least two vertices. Clearly, I" is not connected if and only if k(') = 0. By abuse
of notation, we denote the connectivity of the intersection graph of G by k(G). For

solvable groups we proved the following theorem.

Theorem 5.2. Let G be a finite solvable group. Then k(G) < 2 if and only if for some

prime numbers p and q one of the following holds.

1. |G| =p*with0< o <2.
2. |G| = p? and neither G = Qg nor G = Lp X Lp X Lp.
3. |G| = p*q with a Sylow p-group P such that either

(a) P=1Zy, or
(b) P=17, x 7L, and there exists a non-normal subgroup of G of order p.

4. G = PQ is a group of order p*q (o« > 3) with P being the normal Sylow p-group of

G such that either

(a) P is elementary abelian, Q acts on P irreducibly, and the order of Ng(Q) is at

most pq, or

(b) N := ®(P) is elementary abelian, Q acts on both N and P/N irreducibly, and
either Ng(Q) = Q or Ng(Q) = NQ = 7, X Zy.

In particular, any solvable group whose order is divisible by at least three distinct

primes is 2-connected.
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Intuitively, intersection graphs should be highly connected graphs and if there are
some examples of such graphs with ‘low’ connectivity, they must be exceptional. By
Menger’s Theorem (see [36, Theorem 3.3.6]), a graph is k-connected if and only if it
contains k independent paths between any two vertices. Hence, if I'(G) is 3-connected,
there must exist sufficiently many vertices in the intersection graph forming at least
three independent paths between any pair of vertices. However, claiming the existence
of those subgroups and also verifying that they intersect non-trivially sufficiently many
times seems to be a fairly complicated problem for the class of solvable groups. For

nilpotent groups we obtain the following theorem.

Theorem 5.3. Let G be a finite nilpotent group. Then k(G) < 3 if and only if for some

prime numbers p,q, and r one of the following holds.

1. |G| =p®* (0 < a < 3) and neither G = Qg nor G = Zp, X Ly X ZLp.
2. G is a group of order p* such that

(a) G= Zp4, or

(b) ®(G) =7, and G 2 Qq6, or

p2
(c) ®(G)=Z,x Ly, Z(G) < P(G) and

G#{a,b,c|a®=b>=1,ab=ba,a® =c3,bcb™' = c* aca™ = cb™1).

3.G=27Z3,G=7,

P g G2 (Lp X Ly) X Ly, 01 G= Ly

Moreover, any solvable group whose order is divisible by at least four distinct primes

is 3-connected.

5.1 Preliminaries

Let V(G) be the set of proper non-trivial subgroups of G. This vertex set V(G) (of
I'(G)) naturally carries a poset structure under set inclusion and its minimal elements
are the minimal subgroups of G. A subset . of V(G) is upward closed if whenever

H e ¥ and H <K, then also K € ..

Proposition 5.4. For a finite group G with |V(G)| > k the following statements are

equivalent:
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(i) T(G) is k-connected.
(ii) There is no “upward closed” separating set . of T'(G) with |.| < k.

(iii) There are at least k independent paths in I'(G) between any pair of “minimal”

subgroups.

Proof. (1) <= (i1): By definition a graph is k-connected if and only if there is no
separating set of cardinality < k. Thus, all we need to do is to show that any minimal
separating set for I'(G) is upward closed (except, if ['(G) is a complete graph).
Take a vertex S € . where .% is a minimal separating set. By the minimality of
&, for any two vertices H,K € V(G) \ . there is a path y = (H,...,K) traversing
only the points in (V(G)\ .)U{S}. Suppose that H and K belong to the different
components (obtained after removing all the vertices in .#’). So 7 necessarily visits S,
ie. y=(H,...,S,....,K). f S€ V(G) and S < S, then = (H,...,S,...,K) is also a
path from H to K and therefore S € .. Since S was chosen arbitrarily, . is upward

closed.

(1) < (111): Menger’s Theorem states that a graph is k-connected if and only if it
contains k independent paths between any two vertices. Therefore, it is enough to
show that existence of k independent paths between any pair of minimal subgroups
implies the existence of k independent paths between any pair of subgroups in V(G).
If there exists a unique minimal subgroup of G, then I'(G) is a complete graph on more
than k vertices, thus it is k-connected. Suppose that there are more than one minimal
subgroups of G. Let X,Y € V(G) be two distinct vertices and A, B be two minimal
subgroups with ¥ = (A,A;,...,B;,B), | <i <k, are independent paths between them.
Suppose that neither X nor Y are minimal subgroups. There are two cases that may

occur:

Case I: X and Y contains a common minimal subgroup, say A. Then % := (X,A;,Y)
are independent paths provided that no coincidence occurs. If X coincides with, say
Ay, then replace ¥, with (X,Y). If, in addition, ¥ coincides with, say A, then substitute
(X,...,B1,By,...,Y) for .
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Case II: X and Y contains distinct minimal subgroups, say A and B respectively. In this
case, we may simply take % = (X,A;,B;,Y) as independent paths between X and Y. If

X or Y coincides with some inner vertex, we may simply shorten the path accordingly.

Finally, it is easy to see that above arguments can still be applied with minor changes

if one of X and Y is a minimal subgroup. [

Obviously, if a graph is k-connected, then the degree (valency) of any vertex is at least
k. In view of Proposition 5.4 (ii1) we make the following convention: For a finite group

G, we say
“G satisfies the k-valency condition”

provided that any minimal subgroup of G is contained strictly by at least k proper

subgroups.

A vertex v of a connected graph I is called a cut-vertex, if removing v from I" renders a
disconnected graph, i.e. if {v} is a separating set for I". For the complete graph K>, we
shall regard any of its two vertices as a cut-vertex. (This is not a standard convention.)

Hence, k(I') = 1 if and only if there exists a cut-vertex of I'.

Lemma 5.5. Let G be a finite nilpotent group. Then there exists a cut-vertex of T'(G)

if and only if G is isomorphic to one of the following groups

Zp3, sz X Zp, sz X Zq

for some prime numbers p and q.

Proof. Let G be a finite nilpotent group such that there is a cut-vertex M in I['(G). By
Proposition 5.4 (ii), M can be taken as a maximal subgroup of G. Actually, M must
be a maximal subgroup unless I'(G) is a complete graph. Suppose that I'(G) = K.
Obviously it must be the complete graph on two vertices. In other words, G has a
unique maximal subgroup and a unique minimal subgroup different from the maximal
subgroup. This is possible only if G = Z 3 for some prime number p. (Observe that a
finite group has a unique maximal subgroup if and only if it is isomorphic to a cyclic

group of prime power order.)

Next, suppose that ['(G) is not complete. Clearly, there are more than one minimal

subgroups. Let N be a minimal normal subgroup of G. Since G is the direct product
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of its Sylow subgroups and since a p-group has a normal subgroup of prime order,
N is a minimal subgroup of G. As any subgroup contains a minimal subgroup, any
component of the graph obtained by removing the vertex M and all the incident edges
to M from I'(G) contains at least one minimal subgroup. Let A be a minimal subgroup
which is not in the same component with N. Since (A,NA,N) is a path between them,
M = NA. It can be easily seen that NA is a maximal subgroup of the nilpotent group G
if and only if G is isomorphic to either Z > X Z, or Z,» X Zq for some prime numbers

p and q. O]

As can be observed from the proof of the Lemma 5.5, it is important to know when
two minimal subgroups generate a preferably small proper subgroup. Accordingly, it
is easier to describe the connectivity of groups with many normal subgroups such as
p-groups. On the other hand, it is known that any simple group can be generated by
two elements. Let us recapitulate some basic group theoretical facts that are essential

for our arguments.

Recall that the Frattini subgroup ®(G) of a group G is the intersection of all maximal
subgroups of G. It is well-known that the quotient of a finite p-group by its Frattini
subgroup is elementary abelian. Moreover, ®(G) is the minimal subgroup with
this property. Therefore, ®(G) = 1 if and only if G is elementary abelian (see

Theorem 1.9). Notice that ®(G) is a normal (even characteristic) subgroup of G.

The p-core O,(G) of a finite group G is the intersection of all Sylow p-subgroups
of G. Like ®(G) it is a characteristic subgroup; actually, it is the unique largest
normal p-subgroup of G. In a finite solvable group G, the factors of every chief series
are elementary abelian of prime power order. In particular, every minimal normal
subgroup of G is elementary abelian (see Theorem 1.5). Hence, for a non-trivial

solvable group G, there exists a prime p | |G| such that O,(G) is non-trivial.

A finite group G is called supersolvable if it posseses a normal series with each factor
group is cyclic of prime order. If a finite group is supersolvable, then every maximal

subgroup is of prime index (see [37, Problem 3B.7(b)]); and therefore, any maximal

1,,002 O

Py - D
where p; (1 <i < k) are distinct prime numbers. We define the order length of G as

chain of subgroups have the same length. Let G be a group of order p‘lx

¢(G) :=YX | a;. Clearly, for a supersolvable group G, the order length ¢(G) is equal
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to the length of a maximal chain. Supersolvable groups form a class between the class

of nilpotent groups and the class of solvable groups.

We close this section by presenting another structural result. Observe that the
intersection graph of the trivial group 1 as well as the intersection graph of Z, (p
is a prime) are empty graphs. However, we set |V (1)| = —1 and |V (Z,)| = 0 to make
the statement of the following Proposition easier. Moreover, we adopt the following

convention
k(1) =-2, K(Zp) =—1, K(Z,2) = k(K1) = 0.
Notice that this is in conformity with the our previous convention that k(K,) =n — 1.

Proposition 5.6. Let G be a finite group and N be a normal subgroup of G. If G/N is

k-connected, then G is (k+x — 1)-connected where x is the length of the series
I<N I <Ny <---<Ny=N

such that N;< G for each 1 <i < x. In particular, k(G/N) < x(G).

Proof. Let G and N be as in the hypothesis of the Proposition. Let A and B be two

minimal subgroups of G. If k(G/N) = —2, then there is a normal series
I<NI <N, <--- <Ny =G,

and we may easily form x — 2 independent paths y; = (A,N;A,N;B,B), 1 <i<x-—2,
between A and B. (In case of a possible coincidence of the vertices we can safely
shorten the paths.) A similar argument shows that we may construct x — 1 independent

paths if x(G/N) = —1.

Next suppose that k(G/N) > 0, i.e. |V(G/N)| > 1. By the Correspondence Theorem
there is a bijection between the subgroups of the quotient group G/N and the subgroups
of G that are containing N. Observe that NA and NB correspond to some subgroups of
G/N that are either trivial or minimal. Then, as G/N is k-connected by the assumption,
we may construct at least k additional independent paths y; = (A,...,B), x < j < k+
x — 1, such that the inner vertices represents some proper subgroups of G containing

N. ]

Corollary 5.7. Let G be a supersolvable group with { := {(G). Then x(G) > {—3. In

particular, all p-groups of order > p* are (@ — 2)-connected. O
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5.2 Non-simple Groups

Proof of Theorem 5.1 (Isaacs). Let G be a finite non-simple group and N be a minimal
normal subgroup of G. Suppose that I'(G) is not connected. Let A be a subgroup of
G which does not lie in the component of N in I'(G). Then NA = G, as otherwise,
(N,NA,A) would be a path between N and A. Also NNA = 1, as otherwise, N and A
would be linked via the subgroup N NA. Therefore [G : N] = |A|. Since this equality
holds for every subgroup that does not lie in the component containing N, it holds
also for any non-trivial subgroup of A. As a consequence [G : N] = |A| = ¢ is a prime
number. Moreover, A is a maximal subgroup of G. To see this, suppose that there
exists a proper subgroup B containing A. Since B does not lie in the same component

with N, we have |B| = ¢, i.e. B coincides with A.

Let Q be a Sylow g-subgroup of G containing A. Since A is a maximal subgroup, either
G = Q or A = Q. In the first case since N is a minimal normal subgroup and G is a
g-group, the order of N is g. As N and A are distinct subgroups of same order ¢ and as

G = NA, we see that G = Z,; x Z,. Clearly, I'(Z, x Z,) is not connected.

In the latter case since G is not a g-group and since G = NA, there must be a prime
p dividing |N| and different from ¢g. We want to show that N is a p-group. Suppose
contrarily that N is not a p-group. Let P be a Sylow p-subgroup of N and T = Ng(P).
(Notice that G # T, as N is a minimal normal subgroup.) By the Frattini Argument
(see Theorem 1.14) G = NT which, in turn, implies that ¢ ‘ |T|. Since A is a Sylow
g-subgroup, some conjugate of 7' contains A. However, this contradicts with the
maximality of A. Therefore, N is a p-subgroup. Further, N must be an elementary

abelian subgroup since it is a minimal normal subgroup.

Consider the normalizer Ng(A). Since A is a maximal subgroup, there are two
possibilities. If A is a normal subgroup of G, then A centralizes N; hence, |N| = p
and G = Z, x Zy. Clearly, I'(Z,, x Z) is not connected. And if A is self-normalizing,
G is a group described as in the second part of Theorem 5.1. To conclude the proof it

is enough to show that I'(G) is not connected in such a case.
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Let H be a proper non-trivial subgroup of G. We want to show that H is either a
subgroup of the unique (normal) Sylow p-subgroup N of G or it is a Sylow g-subgroup.
Obviously, I'(G) is not connected if this is the case. Suppose contrarily, H is neither
a p-subgroup nor a g-subgroup. Then ¢ | |H| as |G| = |[NA| = p%q for some integer
a > 1. Hence, H contains a conjugate of A and we may suppose that H contains A
by replacing H with some conjugate of it if necessary. Then NH = G and it follows
that NN H <G. (Notice that NN H is normalized by N as N is an abelian subgroup
and N N H is normalized by H as N is a normal subgroup.) Since N is a minimal
normal subgroup, either NNH =1 or NN H = N yielding either |H| = g or H = G.
However, this contradicts with the assumption that H is a proper subgroup which is not

a g-subgroup.

]

Notice that for a finite non-simple group G, the connectivity of G is 1 if and only if G

satisfies the 1-valency condition.

5.3 Solvable Groups

Lemma 5.8. Let G be a finite solvable group. Then x(G) = 2 if and only if G satisfies

the 2-valency condition.

Proof. Sufficiency is obvious. Let G be a finite solvable group satisfying the 2-valency
condition. We want to show that there exist at least two independent paths between any
pair of minimal subgroups A; and A,. If (A}, A;) is a second maximal subgroup, then
clearly there are two independent paths between them. Thus, for the rest we assume
(A1,A,) is either G or a maximal subgroup. Let M be a maximal subgroup of prime
index and N be a minimal normal subgroup. Notice that since G is solvable, there exist
a subgroup of prime index and minimal normal subgroups are elementary abelian.

Further, let A} < H{,K; and A, < Hj, K3 such that NA| # H, and NA; # H,.
Case I: Suppose that N is of prime index in G and take M = N.

Case I (a): A1,Ay <M = N. Obviously (A1,M,A;) is apath and (A1,A2) =M = Z, x
Z,. And the order of G is either p> or p?q. By the Product formula, (A1, Hy,H>,A;) is

also a path and independent from the first.
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Case I (b): M and A are distinct p-groups. Then G is also a p-group and in turn
|G| = p? since M must be a cyclic group of prime order. However, intersection graph of
a group of order p? or pq consists of isolated vertices and G does not satisfy 2-valency

condition in that case.

Case I (c): M is an elementary abelian p-group of rank n > 2 and A} = Z,;. In
particular |G| = p"q. Observe that A; 4 G, as otherwise, G would be an abelian group
contradicting with the fact that M is a minimal normal subgroup. Moreover, O,(H)
and O, (K) are trivial (again this is because M is a minimal normal subgroup) and this
in turn implies Hy,K; < Ng(A1) < G. (Notice that this implies n > 3). Hence, we may
assume A| < H; < K; = Ng(A;). If Ay < M, then we have the two independent paths
(Ay,H;,M,A>) and (A1,K;,T,A;) where T is a subgroup of order p”*1 containing A,.
And if A; is a conjugate of Ay, then (A,H;,M,H;,A;) and (A1,K,,T,K>,A;) are two

independent paths between A and A, where H, < Kj.

Case II: Suppose that [G : N| is not prime. Then NA| # G, NA; # G. If one of
NA| and NA; coincides with M, say NA|, then we may take (A;,H;,NA,,A,) and
(A1,K1,M,H,,A>) as independent paths. If both NA; and NA, coincides with M, then
we may take (Aj,M,A;) and (A;,H>,N,H>,A;). Finally, if NA| # M and NA; # M,
then (A|,NA|,NA;,A,) and (A,H|,M,H,,A;) are two independent paths between A
and Aj. O

Lemma 5.9. Let G be a finite p-group. Then k(G) < 2 if and only if

1. |G|=p* 0<a<2,

2. |G|=p* and G2 Qs or GZZ,x L, *x L,
In particular, all p-groups of order > p> are 2-connected.

Proof. By Lemma 5.8, all we need to do is to determine p-groups which does not
satisfy the 2-valency condition. Clearly, intersection graph of a group of order p%,
0 < a <2, is either empty graph or consists of isolated vertices. Hence 2-valency

condition does not hold for those groups.

Suppose that |G| = p>. If G has a unique maximal subgroup, then G & Z,3 and I'(G) =

K>. So it is not 2-connected in this case. If G has more than one maximal subgroup
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and @ := ®(G) is non-trivial, then either G has a unique minimal subgroup (which
is @) or there are minimal subgroups different from ®. In the first case, G = Qg and
I'(Qg) = Ky. That s, G is 3-connected. In the latter case, PA is a maximal subgroup of
G and it is the unique subgroup of order p? containing A, as all the maximal subgroups
contain ®. If @ is trivial, then G is elementary abelian and by the Correspondence
Theorem any minimal (normal) subgroup is contained in p + 1 maximal subgroups.

Therefore, G is 2-connected in this case, as the 2-valency condition holds. .

Suppose that |G| = p%*, o > 3. Then any minimal subgroup of G is contained in a
subgroup of order p? and by a subgroup of order p*. Hence G satisfies 2-valency

condition. O

Lemma 5.10. Let G be a group of order p*q with a Sylow p-subgroup P. Then x(G) <
2 if and only if one of the following holds.

2. P= 7, x Ly and there exists a non-normal subgroup of G of order p.

Proof. Let G be a group of order p*>q with a Sylow p-subgroup P and a Sylow
g-subgroup Q.

Case I: P = Z,>. If PG, then G has a unique subgroup of order p. However, this
implies any g-subgroup is contained in one and only one subgroup (of order pq).
Assume that P £ G. Since P is a cyclic group, P and any conjugate of it contains
a unique minimal subgroup, hence either 0,(G) = Z, is the unique subgroup of
order p or any pair of Sylow p-subgroups intersects trivially. Clearly, in the first
case there exists a unique subgroup containing Q. In the latter case, O,(G) = Q is a
normal subgroup of G and there exists a normal subgroup M = 7, x Z,, containing all

subgroups of order p. Those two facts imply that M is the unique subgroup containing
0.

Case Il: P= 7., X Zp.

Case II (a): Q<G. Clearly, any subgroup of order p is contained in a subgroup of
order p? and by a subgroup of order pg. We shall observe that Q is also contained in

at least two subgroups of order pg. Let U,V < P be two distinct subgroups of order
p. Clearly, QU and QV are of order pq. Suppose that QU = QV. As (U,V) = P,
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this gives a contradiction. Hence, QU and QV are distinct subgroups containing Q and
2-valency condition holds. Notice that any subgroup of order p is normal in G in this

case.
Casell (b): Q 4 G.

Case Il (b)(i): P<G. First, we shall observe that either there is no normal subgroup of
G of order p or there are more than one. As Q 4 G, the index of Ng(Q) is either p or p?
and this implies ¢ ‘ p—1orqg | p+1. Consider the action of Q on the subgroups of P
by conjugation. Since the length of an orbit is either 1 or g, the number of fixed points
(the number of normal subgroups of order p) may be 0, 2, or a multiple of g. Next, we
determine the groups in which Q is contained in at most one subgroup. If Q acts on P
irreducibly (without fixed points) and Q is contained in subgroup M of order pq, then
M = 74 X Z, and it normalizes Q. Moreover, it is the unique subgroup containing Q
as Q 4 G. If there are distinct normal subgroups U and V of order p, then clearly UQ
and UV are two distinct subgroups containing Q. Finally, we determine the groups in
which a (non-normal) subgroup 7" of order p is not contained in a subgroup of order
pq. As we have seen that groups in which Q acts on P irreducibly does not satisfy
2-valency condition, we further assume that there exist two normal subgroups U and
V of order p. Suppose that 7" is contained in a subgroup of order pg. Then as T 4 G,
we have M = Z, X Z,. On the other hand, both UQ and V Q cannot be isomorphic to
Zp % Zg, as otherwise, Q < Z(G) implying G is abelian. That is, one of UQ and VQ
is isomorphic to Z, % Z, which is impossible. Therefore, T is not contained in any

subgroup of order pq.

Case II (b)(ii): P £ G. We show that there is no such group. Suppose that it exists.
Since G is solvable, there exists a normal subgroup M of order pg and U := O,(G) is

non-trivial.

(I) U 1s the only normal subgroup of order p. Suppose contrarily V <G be a normal
subgroup of order p different from U. Then (U,V) be a normal Sylow p-subgroup

which is a contradiction.

(IT) M = UQ and contains all g-subgroups. As M is a normal subgroup, it contains all

(Sylow) g-subgroups. Therefore M = Z, X Z, and q | p— 1. In particular, there are
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[M : Q] = p subgroups of order g. From (I), we know that U is the unique subgroup of
order p normalized by Q, hence M = U Q.

(I) Ng(Q) = QZ for a subgroup Z of order p and QZ = Z, x Z,. By (I), [G:
Ng(Q)] = p and since g | p— 1, we have NG(Q) = Z,, x Zy.

(IV) Z <G which contradicts with (I). ]

As is seen by Lemma 5.10, many of the groups of order p?>g does not satisfy 2-valency

condition. Compare it with the following result.

Lemma 5.11. Let G be a group of order p*>q. Then G is 3-connected if and only if
G = (a,b,c|a’ =b" =c?=1,ab=ba,cac”' = a*, chbe! = bl>
where g ‘ p—1land A > 1 is any integer such that A1 =1 (mod p).

Proof. Let G be a 3-connected group of order p?q and let Q be a g-subgroup of G.
Take a minimal p-subgroup U of G and let P be a Sylow p-subgroup containing U.

Case I: Q<G. Clearly, QU is the unique subgroup of order pq containing U. Moreover,
there exist at least two distinct Sylow p-subgroups containing U, as otherwise,
3-valency condition does not hold. This, in turn, implies that Ng(U) = G. Suppose
that Sylow p-subgroups are cyclic. Then, U is the unique subgroup of order p and QU
is the unique subgroup containing Q. Again 3-valency condition cannot be satisfied.
Now, suppose that Sylow p-subgroups are elementary abelian. Since U is a normal
subgroup of G and since this must be the case for any minimal p-subgroup, P is also a

normal subgroup of G which is a contradiction.

Case II: Q £ G. Since G is a solvable group, the p-core O,(G) is a non-trivial normal

subgroup of G. Thus, we shall consider following two sub-cases.

Case Il (a): P <1 G,U <G. Suppose that Sylow p-subgroups are cyclic. As in Case I,
PQ is the unique subgroup containing Q and this case can be discarded. Now, suppose
that Sylow p-subgroups are elementary abelian. However, by the proof of Lemma 5.10

we know that no such group exists.

Case Il (b): P<G. As in previous cases, P cannot be a cyclic subgroup. Thus P =7, x

Zp. We claim that Ng(Q) = Q. Assume contrarily that Ng(Q) is a group of order pq.
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Then Ng(Q) is self-normalizing and by the Product Formula any two distinct conjugate
of it intersect at Q; however, Q is normal in both of them which is a contradiction.
Therefore, any subgroup of order pg must be isomorphic to Z, x Z, and since G is
3-connected there must exist at least three such subgroups containing Q. To write a
presentation for G, let a, b, ¢ be three elements generating G such that a, b are of order
p and c is of order g. Moreover, we may suppose that ¢ normalizes (a), (b), and (ab")
where k£ > 1 is an integer. (Notice that any subgroup of order p is generated by some
element ab* for some integer k.) In other words, we have the relations cac™! = gM ,
chbe™! = M, and cabc™! = (ab*)' = d'b’* for some integers A;,Ay,r. On the other
hand, cab*c™! = aMb™* implying A; = A, (mod p) and hence we may take A :=
A1 = A. As a consequence all p-subgroups are normal in G. Notice that A = 1 implies

29

Q <G, hence A > 1. Moreover, since a = ¢?ac™? = a”*", we have A9 =1 (mod p).

Conversely, it can be verified that a group with this presentation is of order p?q.

Let G a the group with the given presentation. To conclude the proof, we shall show
that G is 3-connected. We claim G satisfies 3-valency condition. From the previous
arguments, (c) is contained in at least three subgroups of order pq and any element of
order g acts on P in the same way as ¢ does. Moreover, all p-subgroups are normal and
there are clearly more than three proper subgroups containing any subgroup of order
p. Finally, since the maximal subgroups of G form a complete graph in I'(G) by the

Product Formula, we deduce that G is 3-connected. O

Proof of Theorem 5.2. Let G be a finite solvable group which is not a p-group. (Finite
p-groups that are not 2-connected are presented in Lemma 5.9.) Since G is a solvable
group by assumption, there exists a maximal subgroup M of G of prime index. By
Lemma 5.8, it is enough to determine groups for which the 2-valency condition does
not hold. Suppose that G does not satisfy 2-valency condition. Let A be a minimal
subgroup of order g such that A is (strictly) contained in at most one proper subgroup

of G.

First, suppose that > } |G| and let Q be the Sylow g-subgroup containing A. Then
either M = Q and |G| = pg® where [G: M| = p, or M # Q and [G: M] = g as Q is
the unique subgroup containing A. The first case was considered in Lemma 5.10. In

the latter case, if Q<G then |G| = pq® as Q is the only proper subgroup containing
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A; hence, we again refer to Lemma 5.10. And if Q 4 G, then we may further assume
that M is a normal subgroup. (Notice that since Sylow g-subgroup Q is maximal, there
must be a normal subgroup of G of index ¢ in that case.) Moreover, M must be a
minimal normal subgroup as Q is the unique proper subgroup containing A. Since G
is solvable M = Z,, x --- X Z, for some prime p different from g. However, this is

impossible as ¢ | |M|.

Next, suppose that A is a Sylow g-subgroup. If |G| = pq, clearly 2-valency condition
does not hold and the case |G| = p*q was already considered in Lemma 5.10. Suppose
that p,r ‘ |G| where p and r distinct prime numbers different from ¢g. Since G is
solvable, there exist a Hall {p,q}-subgroup and a Hall {g, r}-subgroup containing A.
Hence, we may assume |G| = p%q, o > 3. If A<G, then it is contained in more than
one proper subgroup. Thus A 4 G. Furthermore, P <G in this case, where P is the
Sylow p-subgroup of G. Suppose to the contrary that P ¢ G. Since G is solvable, there
exists a normal subgroup M of index p. Hence, M contains all Sylow g-subgroups
implying [M : Ny (A)] = [G : Ng(A)]. On the other hand, since M is the unique proper
subgroup of G containing A, either Njs(A) = A or Ny(A) = M. In the first case Ng(A)
would be a subgroup order pg contradicting with the assumption that A is contained in
at most one subgroup. And in the latter case A would be a normal subgroup of G which
is again a contradiction. Therefore P<G. For the rest of the proof, we take Q := A. Let
N be a minimal normal subgroup of G. Since G is solvable N is elementary abelian.

Now we examine two cases:

Case I: P = N. Thus, P is elementary abelian. We claim that G does not satisfy
2-valency condition if and only if Q acts on P irreducibly and the order of Ng(Q) is
at most pq. Sufficiency is obvious. For the necessity, observe that if K is a minimal
subgroup properly containing Q, then either Q is a normal subgroup of K (hence K <
Ng(Q)) or O,(K) is a non-trivial normal subgroup of K (hence O,(K) <G and the

action of Q is not irreducible).
Case Il: P # N.

Case Il (a): P is elementary abelian. A Theorem of Gaschiitz (see Theorem 1.11)
states that an abelian normal p-subgroup has a complement in G if and only if it has

a complement in a Sylow p-subgroup. Clearly, N is complemented in the elementary
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abelian p-subgroup P. Let K be the complement of N in G. Then NQ and K are two

distinct subgroups containing A.

Case Il (b): P is not elementary abelian. As NQ is a proper subgroup of G containing
A, we conclude that P and N are the only proper non-trivial normal subgroups of G.
Moreover, N coincides with ®(P), since ®(P) is a non-trivial characteristic subgroup
of P. Notice that a characteristic subgroup of a normal subgroup is normal in the whole
group (see [14, Lemma 5.20]). That is, P is a p-group such that its Frattini subgroup N
is elementary abelian. Moreover, since Q is contained in at most one subgroup, either
Ng(Q) = Q or Ng(Q) = NQ. Notice that in the latter case we have NQ = Z, x Z,.
Consider the action of Q on the set of subgroups of P by conjugation. It is easy to
see that the fixed points of this action must be precisely P, N, and the trivial subgroup.
Clearly, Q acts on N irreducibly and by the Correspondence Theorem the induced
action of Q on P/N is also irreducible. Conversely, if the action of Q on N and P/N
are irreducible, then N is the only proper non-trivial subgroup of P fixed by Q. To
see this, take an element a € Q and consider its action. If 1 <X < N, then X # X
by assumption. Let N < NX # P and X* =Y. We want to show that X # Y. By
assumption (NX/N)* # NX/N. However, (NX/N)* = (NX)*/N = NY /N implying
X#£Y. 0

Remark 5.1. The “smallest” non-solvable group is the alternating group As on five
letters and its order is divisible by three distinct primes. However, it does not satisfy
the 2-valency condition. To be more precise, if H is a subgroup of order 5, then there
is exactly one proper subgroup, say K, of A5 containing H. To see this, first observe
that any maximal subgroup M of As has index > 5, as otherwise, there would be a
homomorphism ¢: As — Sg/ with a non-trivial kernel which is impossible. Hence
the only possibility for the order of K is 10. Since H is not a normal subgroup of As
and since H is normalized by the maximal subgroup K, we see that K is the unique

subgroup containing H.

5.4 Nilpotent Groups

As it was mentioned at the beginning of this chapter, to show that the intersection graph
of a given solvable group is 3-connected we must claim the existence of “sufficiently”

many vertices to construct at least three independent paths for any pair of minimal
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subgroups which seems to be not an easy task. (Or, conversely, we must claim the
non-existence of vertices to verify that the graph is not 3-connected.) Of course, Hall
Theorems enables us to claim that 3-valency condition is satisfied if there are at least
four distinct prime divisors of the order of the group. Also, it is not difficult to show that
such groups are indeed 3-connected (compare with Corollory 5.13 below). However,
if there are less than four prime divisors things are more complicated. Therefore, in

this section we restrict our attention to nilpotent groups.

Lemma 5.12. Let G be a finite supersolvable group. Then k(G) =3 if and only if G

satisfies the 3-valency condition.

Proof. Sufficiency is obvious. Let G be a finite supersolvable group satisfying the
3-valency condition. We want to show that there are at least three independent paths
between any pair of minimal subgroups A and B. Clearly, we may suppose that /(G) >
3, since groups of order p? and pg does not satisfy even 1-valency condition. Notice
that as G is supersolvable, any maximal subgroup is of prime index; and thus, if X
is a non-trivial subgroup of G which is not minimal, then X intersects any maximal

subgroup non-trivially.

Case I: G has exactly one maximal subgroup. Then G is a cyclic group of prime power
order p% and it satisfies 3-valency condition if and only if o > 5 which is the case if

and only if K(G) > 3.

Case II: G has exactly two maximal subgroups. If G is a p-group, then the number
of maximal subgroups = 1 (mod p) (see Theorem 1.3). Also, if |G| is divisible by
three distinct prime divisors, then there would be at least three maximal subgroups
(containing the corresponding Hall subgroups). Hence |G| = p%’. Obviously,
maximal subgroups must be normal and hence G = P x Q is nilpotent group where
P and Q are Sylow p- and Sylow g- subgroups respectively. Observe that if H < P
and K < Q, then HK < G as G is the direct product of P and Q. However, since
any maximal subgroup of a p-group is normal, P and Q have exactly one maximal
subgroups meaning both are cyclic groups of prime power order and in turn G is also
a cyclic group. It can be easily observed that 3-valency condition is equivalent to the

3-connectedness for such groups.
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Case IlI: G has at least three maximal subgroups. Let M; be maximal subgroups, X;
be subgroups containing A, and Y; be subgroups containing B for 1 < i < 3. Then
(A, X;,M;,Y;,B), 1 <i< 3, are three independent paths between A and B. Of course, in

case of a coincidence the corresponding paths can be shortened accordingly. [

Corollary 5.13. Let G be a finite supersolvable group with x(G) < 3. Then the number
of prime divisors of |G| is at most three. Moreover, if there are exactly three distinct

prime divisors, then |G| is square-free.

Proof. Obviously, if there are more than three distinct prime divisors of |G|, then
G satisfies 3-valency condition, hence is 3-connected as well. Let |G| = p®gPrY
where p,q,r distinct prime numbers and o > 2. Let A be a minimal subgroup.
If A is a p-subgroup, then A is properly contained in a Sylow p-subgroup, by a
Hall {p,q}-subgroup, and by a Hall {p,r}-subgroup. If A is a g-subgroup, then A
is contained in Hall {p,q}-subgroup, by a Hall {q,r}-subgroup and by a maximal
subgroup containing the corresponding Hall {g,r}-subgroup. Similarly, there are at

least three proper subgroups containing A whenever A is a r-subgroup. [

By Corollory 5.7, we know that if G is a supersolvable group such that k(G) < 3,
then £(G) is at most 5. Moreover, by using Corollory 5.13 (and ignoring the /(G) < 2

cases), we may reduce the possible cases for the order of G into the following list

Table 5.1 : Possible orders of a finite supersolvable group G with x(G) < 3.

G| = j G| =p‘3‘, G| =pz,
|G| =p I |G| =pa |G| = p°q,
G| =p’¢*, |G|=p*s*, |G|=pqr.

Actually, we may still eliminate some further cases.

Lemma 5.14. Let G be a finite supersolvable group with k(G) < 3. Then the order of

G must equal to one of the following

p*(0<a<4), pq, p*¢* p’q, per, pq

where p,q, and r are distinct prime numbers. Moreover, if G is nilpotent, then |G| #

p*q?; and if G is nilpotent and of order p’q, then G is cyclic.
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Proof. By Lemma 5.12 we know that G is 3-connected, if 3-valency condition holds.
Since G is supersolvable group, any minimal subgroup is contained in at least /(G) —2

proper subgroups. Thus, /(G) < 5. This eliminates the first column of Table 5.1.

Let G be a nilpotent group of order p?¢*> and let A be a minimal subgroup of G.
Obviously, G is an abelian group and the normal subgroup A of G is contained in a
subgroup of order pg, by a subgroup of order p>q and by the Sylow subgroup. Hence,

G satisfies 3-valency condition.

Let G be a nilpotent group of order p>q. Then the Sylow g-subgroup Q of G is a
normal subgroup and any minimal subgroup of order p is contained in a subgroup of
order p?, by a subgroup of order p>, and by a subgroup of order pg. Suppose that Q is
not contained in more than two proper subgroups. However, this is possible only if the

Sylow p-subgroup P is normal and P = Z ;. Thus, G is cyclic as well. 0

Lemma 5.15. Let G be a finite p-group. Then k(G) < 3 if and only if one of the
following holds.

1. |G| = p® (0 < o < 3) and neither G = Qg nor G = Zp, X Ly, X Lp.
2. G is a group of order p* such that

(a) G= Zp4, or
(b) ®(G) = Z,» and G % Qi6, or

(¢c) ®(G) 2L, x Ly, Z(G) < D(G) and

G % (a,b,c|d® =b>=1,ab=ba,a® =3 ,bcb™' = c*,aca™ = cb™").
In particular, all p-groups of order > p* are 3-connected.

Proof. Obviously, |G| = p? implies I'(G) consists of isolated vertices, hence it cannot

be connected. So, let’s assume |G| > p?.

Case I: |G| = p>. First, suppose that ®(G) # 1. If all maximal subgroups of G are
cyclic, then G has a unique minimal subgroup and its intersection graph is complete.
However, I'(Z ) has two vertices whereas I'(Qg) has four, thus only the latter is
3-connected among them. If there exists a maximal subgroup M = Z, x Z,, then

any minimal subgroup X of M which is different from ®(G) is not contained in any
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maximal subgroup other than M, as (X, ®(G)) uniquely determines M. That is, G does
not satisfy 3-valency condition in such case. Now, suppose that ®(G) is trivial, i.e.
G is isomorphic to the elementary abelian group of rank 3. By the Correspondence
Theorem, any minimal subgroup is contained in p + 1 maximal subgroups. Also,
since any two maximal subgroups of a p-group intersects non-trivially (by the Product
Formula), maximal subgroups form a complete subgraph in I'(G). Therefore, G is

3-connected in this case.

Case II: |G| = p*. Recall that the rank of a p-group is the dimension of G/®(G)
as a vector space over the field of p-elements. If the rank of G is four or three, i.e.
®(G) = 1 or Z,, then for any minimal subgroup X we may form ®(G)X which is
contained in at least p + 1 maximal subgroups of G. Clearly, G is 3-connected in this
case. On the other hand, if the rank of G is one, i.e. G = Zp4, then I'(G) has exactly
three vertices and hence cannot be 3-connected. Now we shall confine ourselves to the

case G is of rank two.

Suppose that ®(G) = Z,». If G has a unique minimal subgroup then it is isomorphic

B
to the quaternion group Q16 and its intersection graph is complete, hence 3-connected
as well. Let us assume there exists a minimal subgroup X of G which is different from
the minimal subgroup P of ®(G). Notice that P is a necessarily normal subgroup of
G. Then the only maximal subgroup containing X is M := ®(G)X as any maximal
subgroup contains ®(G). This in turn implies that PX is the only subgroup of order

p? containing X, since P is the Frattini subgroup of M. Therefore G does not satisfy

3-valency condition in such a case, hence it is not 3-connected.

Suppose that @(G) = Zj, x Zj. If G is abelian, then it is isomorphic to Z 2 X Z > and
any minimal subgroup is contained in the Frattini subgroup, hence it is 3-connected. If
G is not abelian, then either Z(G) = ®(G) or Z(G) < ®(G). This is because, any cyclic
extension of a central subgroup is abelian and Z(G) intersects any normal subgroup
non-trivially whenever G is a p-group. Let Z(G) = ®(G). Then a minimal subgroup P
is normal in G if and only if P is a subgroup of ®(G). We show that G is 3-connected
in such a case. Let P, 1 <i < p+ 1 be minimal subgroups of ®(G) and let X,Y be
two arbitrary minimal subgroups that are not contained in ®(G). We show that there
are at least three independent paths between any pair of minimal subgroups. Clearly,

this holds if the endpoints are P, and P; for any i # j. Let A; ;= P,X for 1 <i<p+1.
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Since X £ ®(G) and |A;| = p?, AiNA; =X for i # j. Then, we may form three
internally independent paths (X,A|,M,P;), (X,A3,N,P,), and (X,As,T,P;) between X
and P, where M,N, and T are mutually distinct maximal subgroups. Let B; := P;Y for
1 <i<p+1. Clearly, (X,A;,B;,Y), 1 <i< p+1 are independent paths between X
and Y.

Let Z(G) < ®(G). Obviously, Z := Z(G) is the unique minimal normal subgroup
of G. Observe that any subgroup Y of order p or p?> which is not a subgroup of
®(G) is contained in exactly one maximal subgroup M. Otherwise, there exist two
distinct maximal subgroups such that their intersection strictly contains ®(G) which is
impossible. Moreover, the Frattini subgroup ¥ N®(G) of M must be a normal subgroup
of G, as it is fixed by the inner automorphisms of G. Hence Z =Y N®(G). Also, if
Y =7, x Z,, then there exists a subgroup X of order p which is not contained in ®(G).
Clearly, Y = ZX is the only subgroup of order p* containing X. Therefore, G does not
satisfy 3-valency condition in such case. Let us assume any subgroup Y of order p?
different from ®(G) is cyclic. By the above argument, the unique minimal subgroup
of Y is Z and there are no minimal subgroups of G which is not contained in ®(G).
Clearly, G is 3-connected in this case. Now we show that under these conditions G is

unique up to isomorphism.

(I) There exists a maximal subgroup A which is abelian, moreover A = Z > X Z.
By the N/C Lemma (see Theorem 1.16), Ng(®(G))/Cq(®(G)) = G/Cs(P(G)) can
be embedded into Aut(®(G)) = Z, x Z, which is of order (p?> — 1)(p? — p). Then
C6(P(G)) = @(G) implies p? | |Aut(®(G))| and this is impossible. Also, since the
center of G is a proper subgroup of ®(G), then Cg(P(G)) is not the whole group
G either. Thus, A := Cg(®(G)) is an abelian subgroup of order p*; and since any
maximal subgroup Y of A different from ®(G) is cyclic, A = Z 2 X Z).

(II) A := C;(P(G)) is the unique abelian group of order p*, moreover M = Zp X Lp
for any maximal subgroup M different from A. Suppose that there exists an abelian
subgroup B = Z,, x Z,, different from A. Then, as (A,B) = G and AN B = ®(G),
the center Z of G contains ®(G) which is a contradiction. Therefore, any maximal
subgroup M other than A is isomorphic to Z > X Z), since any non-Frattini subgroup

of order p? is cyclic.
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(IIT) G has a presentation
{a,b,c | a” = bP = 1,ab =ba,a’ = *P . beb™ = P aca™ = chPb”)

for some suitable values of the prime p and integers k,m,n. Let a,b € A and c € M
such that a,c are of order p? and b is of order p. Clearly, those elements generate G

and we have ab = ba, a?,cP € Z, and beb™ ! = P ag (b,c) 27, X Z,. Moreover,

D

any conjugate of ¢ can be written as ¢?bP for some integers ¥, B; and since acPa~! =

c? = ¢"P where y=r (mod p), we have r = 1.

(IV) p = 3. We want to show that for p > 3, there is an element g of order p such that
g ¢ ®(G). Then the subgroup generated by this element is a minimal one and it is not
contained in the Frattini subgroup contrary to our assumption. Thus, we shall deduce
p = 3. Using the above relations, we may obtain bP¢? = ¢7bPcBY and ac® = *ab™u

where y = ¢(zx(x—Dn+am)p, Clearly ac* ¢ ®(G) for p { x. By some further computation

(ac®)P = P{+s(p=Dp(p+Dam} ooy 3 p(p=Dny 3 p(p=1) — cop{l+5(p=Dp(p+Dan} gp.
However, this formula implies that (ac=%)? = 1 for p # 3.

(V) Without loss of generality we may take k = 1,m = O,n = —1. Suppose that
p =3. Clearly, k € {—1,1} and m,n € {—1,0,1}. However, n = 0 implies that
Cs({c)) is an abelian group of order p* (compare with (I)). As Cs({c)) is different
from A, this contradicts with (II). Moreover, using the relation presented in (IV),
we see that (ack)® = 3=%) " Therefore, n and k have opposite parity, as otherwise,
{ack) would be a minimal subgroup which is not contained in ®(G). Thus, there
are totally six distinct triples (k,m,n) that we shall consider. If triples (ky,m,n;)
and (kp,mp,ny) yields isomorphic groups, we simply write (ky,m,n;) ~ (ko,ma,ny).
Now substituting a~! for a yields an automorphism of G showing that (1,0, —1) ~
(—-1,0,1), (1,-1,—1) ~ (—1,1,1), and (1,1,—1) ~ (—1,—1,1). Also, it can be
verified that the automorphisms @: a — a,b + b,c +— ¢ and y: a — ab,b — b,c
b~'cb yields (1,0,—1) ~ (—1,1,1) and (1,0,—1) ~ (1,1,—1) respectively. Hence,

we have
(1,0,—1) ~ (1,—=1,—1) ~ (1,1,—1) ~ (=1,0,1) ~ (=1,1,1) ~ (—1,—1,1)

Conversely, it can be verified that a group with this presentation is of order 81 and all
minimal subgroups are contained in ®(G). For the classification of groups of order p*,

the reader may refer to [26, p. 140].
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Proof of Theorem 5.3. Tt can be easily verified that nilpotent groups of order p*q do
not satisfy the 3-valency condition. (This is also a consequence of Lemma 5.11.) Also,
a nilpotent group of order pgr is cyclic and does not satisfy the 3-valency condition.

Then the first part of the Theorem follows from Lemmas 5.12, 5.15, and 5.14.

For the second part we argue as follows. Let A and B be two distinct minimal subgroups
of a finite solvable group G such that there are at least four distinct prime divisors of
|G|. Suppose that A and B are of same order, say p. LetA,, A,, and A, be some maximal
Hall subgroups of G containing A such that their indexes is a power of prime numbers
g, r, and s respectively. Also, let By, B,, and By be some maximal Hall subgroups
containing B. (Of course, [G : By] = g% for some integer ¢, and so on.) By the
Product Formula (A,Ay,B,,B), (A,A,,Bs,B), and (A,Ay, By, B) are three independent

paths between A and B. Similar arguments can be applied if |A| # |B]. O
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6. CONCLUSIONS AND RECOMMENDATIONS

In this theses we confine the study of intersection graphs to the class of finite groups.
However, the definition applies for any abstract group and we may still employ
combinatorial arguments for large classes of infinite groups albeit their nature is
quite different. As a first step toward this direction we might consider the finiteness
conditions in infinite groups and especially (subgroup) growth phenomenon in groups

(see [38)).

Due to the simplicity of its definition intersection graphs can be related with many
other notions in mathematics. Actually, one of the motivations for us to study those
objects is to gain a new perspective into looking old contents. In this chapter we present

two such headings with potential problems.

6.1 Word Problem

In [39] Dehn introduced the identity [word] problem together with the transformation
[conjugacy] problem and the isomorphism problem. For a finitely generated group G,
the word problem is the problem of finding an algorithmic procedure that can decide
whether two given words on the same generators are identical. This question can be

related with the construction of the intersection graph.

Let G = (g1,82,---,8n) (possibly with some relators which we omit to write) and let
H,,H, < G be two ‘known’ subgroups. Here by the word ‘known’ we mean that we
know a generator set for H; and for H;. Elements of each subgroup can be expressed
in terms of their generators which in turn are some words on g1, g2,...,g,. Therefore,
there are words w; € H; and wy € H, such that w; 22 1 2 w5 and wlwz_1 = 1 if and only

if {H,H,} is an edge in I['(G). Besides the word problem we propose the following

Subgroup intersection problem: The problem of finding an algorithmic procedure that

can decide whether two given subgroups intersect non-trivially.

Following questions are natural in this context.
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Question 1. Is there any finitely generated group in which the subgroup intersection

problem is solvable whereas the word problem is not?

Question 2. Is there any finitely generated group in which the word problem is solvable

whereas the subgroup intersection problem is not?

6.2 Graphs of (Sub)groups

Intersection graphs can be seen as particular instances of graphs of groups introduced
by Serre [40]. Let us begin with the somewhat less standard definition of graphs which
is again due to Serre: A graph is an ordered quadruple I' = (E,V;1,A) where E is
a set of edges, V is a nonempty set of vertices disjoint from E, 1 is a mapping of E
onto V, called the incidence function, and A is an involutory permutation of E, called
the dart-reversing involution. Note that in this setting edges have an orientation. A
morphism of graphs f: (E,V;1,A) — (E',V';1', A7) is a function f: ELIV — E'UV’
such that it takes edges to edges and vertices to vertices, i.e. fE CE’, fV CV’, and it
is incidence preserving in the sense f1 =t’f and fA = A’ f. Defining the composition

of morphisms in the obvious way yields the category Grph.

A graph of groups over a graph I' = (V, E;1,4) is an assignment of a vertex group
G, to each vertex v € V and an edge group G, to each edge e € E with injective
homomorphisms @, and ¢, from G, to the G, and Gy, respectively. Here
of course G, = G, for every e € E. An intersection graph I'(G) of a group G is a
particular instance for a graph of groups. This can be readily seen by observing in
I'(G) every edge can be identified with the intersection group of subgroups that its end
points represents. And canonical inclusions can serve as boundary monomorphisms.

In this setting I'(G) might be called graph of subgroups of G.

Fundamental group of a graph of groups can be defined as the fundamental group of
the union of “vertex” spaces and “edge” spaces having vertex groups and edge groups
as fundamental groups respectively and gluing maps induces monomorphisms of the
edge groups into vertex groups. Let G; = (S| | R1) and G, = (S, | Ry) be two groups
and H; < G| and H, < G, be two subgroups along with an isomorphism ¢ : H; — Hj.

Then the amalgamated free product of G| and G, along ¢ is the group given by
Gy *g G, =G xg Gy = <Sl LSy ’ RiURy L {hl(P_l(/’ll) | h € H1}>
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where H is an abstract group isomorphic to H;, j = 1,2. Another similar construction
is this: Let G = (S | R) be a group and Kj,K, be two subgroups together with an
isomorphism y: K| — K3. Then the HNN extension of G relative to y is the group
given by

Gry = Grg = (S,t | RU{thkit 'y~ (ky) | k€ K1 })

where ¢ is a new symbol (called the stable letter) and K is an abstract group isomorphic
to K;, j = 1,2. Fundamental groups of graphs of groups can be constructed as the

iterations of the amalgamated free products and HNN extensions.
Martin R. Bridson formulated the following question.

Question 3. Let (I'(G)) be the fundamental group of the graph of subgroups of I'(G),
where G is a finite group. By a result of Karass, Pietrowski, and Solitar [41], (') is
virtually free, i.e. it has a free subgroup of finite index. Now, consider G as a graph of
groups with a single vertex and no edge. Then the canonical inclusions from the vertex
and edge groups of I'(G) to G extends to a homomorphism from 7(I'(G)) to G. Is the

kernel of this homomorphism the lowest index free subgroup of 7(I'(G))?
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