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OPTICAL SOLITONS FOR THE HIGHER-ORDER CUBIC-QUINTIC
NONLINEAR SCHRODINGER EQUATION
WITH A &7-SYMMETRIC POTENTIAL

SUMMARY

In nature, most of the systems are nonlinear and as a result of this fact, those
systems are modeled by nonlinear systems of equations. Some of the most remarkable
progress in nonlinear science is observed in wave propagation phenomena. Often,
research on a given nonlinear system begins by investigating a one-dimensional partial
differential equation (PDE) as an approximation to an experimental system in optics,
fluid dynamics, plasma physics and biology. Many of these nonlinear equations have
known nonlinear wave type solutions and some are commonly referred to as soliton
solutions. Solitons are localized waves that collide elastically, suffering only a shift in
phase. The history of solitons dates back to 1834, the year in which John Scott Russell
observed a wave form propagated for several kilometers in a shallow canal of Scotland
without being distorted. Solitons represent the solutions of nonlinear wave-type partial
differential equations, including sine-Gordon, Korteweg-de Vries (KdV) and nonlinear
Schrédinger (NLS) equations.

In this thesis, we explore the theoretical and numerical analysis of optical solitons
of a higher order cubic quintic nonlinear Schrédinger equation (CQNLS) with a
fourth-order dispersion term (40D) in a &7 -symmetric potential.

In Chapter 1, the historical background of optical soliton research is briefly given. The
application areas and the mechanism of the NLS 40D equation are discussed, and the
general properties of &2.7 -symmetric potentials are argued. In this chapter, the aim of
the thesis, literature review and hypothesis of the thesis are given, respectively.

In Chapter 2, spectral renormalization method (SR), the numerical method which is
used to obtain localized soliton solutions is explained. The modification of this method
is given in order to apply to CQNLS equation with a fourth order dispersion term
and an external potential. Then, the Split-step Fourier method is given for nonlinear
stability analysis.

Chapter 3 is dedicated to (1+1)D 40D cubic-quintic NLS equation without an external
potential. Exact and numerical solution of the equation are analyzed and the produced
results are shown by some graphs. Lastly, the nonlinear stability of the soliton solutions
are investigated for various parameters of the considered equation and the results are
compared.

Chapter 4 includes studies of exact soliton solution of the (1+1)D 40D cubic-quintic
NLS equation with a &2.7 -symmetric potential. This &2.7 -symmetric potential is
introduced and for different values of parameters, soliton solutions are found in this
potential. For this various values of parameters of the equation, exact and numerical
results are compared, the effect of the eigenvalue of the numerical solutions are figured
out and the maximum amplitude of the solitons are discovered. For final, the nonlinear
stability of the produced solitons are demonstrated in terms of various parameters.
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Result of this dissertation are summarized in Chapter 5. In this thesis,
MATLABR2010a computer programme is used and all of the results are produced
by the use of this programme.
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27 -SIMETRIK BiR POTANSIYEL iCEREN DOGRUSAL OLMAYAN
YUKSEK MERTEBE KUBIK-KUINTIiK SCHRODINGER DENKLEMINDE
OPTIK SOLITONLAR

OZET

Dogada pek ¢ok olgu, nonlineer (dogrusal olmayan) denklem sistemleriyle modellenir.
Nonlineer bilimsel arastirmalar konusundaki en onemli gelismeler nonlineer dalga
yayilimi problemleri konusunda 6ne ¢ikmaktadir. Siklikla, verilen bir nonlineer
sistemin arastirilmasina, optik, akigskanlar mekanigi, plazma fizigi ve biyolojideki
iligkili deneysel sistemin bir yaklagimi olarak, bir boyutlu bir kismi tiirevli diferansiyel
denklemin ¢6ziimiiniin elde edilmesiyle baglanir. Bu tip denklemlerin ¢ogunun,
bilinen nonlineer dalga tipi ¢oziimleri vardir ve bunlarin bir kismi da soliton olarak
isimlendirilmistir. Solitonlar, elastik carpigmalar yapan ve ¢arpisma sonrasi formunu
koruyarak sadece faz kaymasi goriinen lokalize dalga coziimleridir.  Solitonun
gecmisi 1834 yilina dayanir. Bu tip lokalize ve formunu koruyarak kilometrelerce
ilerleyen bir dalga ilk kez John Scott Russell tarafindan iskocya’da dar ve si18
bir kanalda gozlemlenmistir. Russell daha sonra bu dalgay1 "solitary wave-yalniz
dalga" olarak isimlendirmistir. Nonlineer dalgalarin modellenmesinde kullanilan
sine-Gordon, Korteweg-de Vries (KdV) ve nonlinear Schrodinger (NLS) gibi kismi
tiirevli diferansiyel denklemlerin soliton tipi ¢oziimleri kabul ettikleri uzun yillardir
bilimsel literatiirde gosterilmistir.

Evrende oOlciilebilen biitiin fiziksel gozlemlerin sonuglari, reel biiyiikliiklerle ifade
edilebilir.

Kuantum mekaniginde biitiin operatorlerin (6rnegin Hamiltonyen) 6zdegerlerinin reel
olmalar1 gerekir ve reel spektrumu garanti edebilmek i¢in kullamilan operatorler
Hermityen (kendine es) olamlidir. Fakat son yillarda yapilan bazi ¢alismalarda bu
gerekliligin zayiflatilabilecegi gézlendigi gibi ve operatorlerin uzay-zaman simetrisini
(& T -simetri) saglamasi durumunda, Hermityen olmayan operatorlerinde biitiiniiyle
reel spektrum yaratabilecegi gosterilmistir.

Bu caligmada kullandigimiz potansiyel de &2.7 -simetrik olma 6zelligi tasimaktadir,
yani V(x) = V*(—x) iliskisini saglar. Kullanilan &.7 -simetrik potansiyel agagidaki
bir kompleks yapida tanimlanmustir:

Ver =V (x) +iW (x) (1

Burada V(x) ve W (x), sirasiyla, &2.7 -simetrik kompleks potansiyelin reel ve imajiner
kisimlaridir. Potansiyelin reel kismu ¢ift fonksiyon 6zelliine sahipken, imajiner kismi
tek fonksiyondur.

Bu calismada, asagida ifade edilen, dordiincii mertebeden dispersiyon terimi ve bir dis
potansiyel iceren dogrusal olmayan kiibik-kuintik nonlineer Schrodinger denkleminin
soliton ¢oziimlerinin sayisal olarak varlig1 ve kararlilik (stabilite) analizleri incelenmis
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ve sonuclar kesin ¢oziimlerle karsilastiriimigtir.
iuz+uxx+a|u|2u+yuxxxx+ﬁ|u|4u+VPTu:0 (2)

Verilen denklemde u kompleks degerli tiirevlenebilir fonksiyonu, u,, kirilimi
modelleyen terimi, o tliglincli mertebeden dogrusal olmayan terimin katsayisini, Y
terimi dordiincii mertebeden dispersiyon teriminin katsayisini ,3 besinci mertebeden
dogrusal olmayan terimin Kkatsayisim ve Vpr 2.7 -simetrisi Ozelligi saglayan
potansiyeli temsil eder. Bu tezin amaci, &7 -simetrisi 6zelligi saglayan potansiyelin
ve dordiincli mertebe dispersiyon teriminin (Uyy), soliton ¢oziimiinde ve bu
coziimlerin kararliliginda yarattid1 etkiyi gozlemlemektir.

Boliim 1°de, optik solitonlarla ilgili ¢aligmalarin tarihsel gelisimlerinden kisaca s6z
edilmis ve dordiincii mertebeden dispersiyon terimi ve 2.7 -simetrik potansiyel
iceren, dogrusal olmayan kiibik ve kiibik-kuintik Schrodinger denklemlerinin yapisi
ve uygulama alanlar1 anlatilmistir.  Bunlarin yani sira, bu bdoliimde, denklemin
¢oziimiinde kullanilmis olan sayisal analiz yontemleri de agiklanmistir. Ayrica analitik
ve sayisal olarak dordiincii mertebe dispersiyon terimi iceren NLS denkleminin
soliton ¢oziimlerini inceleyen caligsmalardan da bahsedilmistir. Calismada kullanilan
P T -simetrik potansiyelin tanimi verilmis, fiziksel anlami ve saglamasi gereken
ozellikler agiklanmigtir. Bu boliimde, CQNLS denkleminin soliton tipi ¢éziimlerinin
elde edilmesinde kullanilan spektral renormalizasyon (SR) metodunun literatiirde
kullanildig1 problemlerden bahsedilmis, metodun temel yaklagimi anlatilmigtir. Tezin
amaci, gerekli literatiir taramasi ve tezin hipotezi sirasiyla verilmistir.

Boliim 2’de Ablowitz ve Musslimani’nin ortaya koydugu Spektral Renormalizasyon
(SR) yonteminden ve yontemin temel prensiplerinden bahsedilmistir. Bu sayisal
yontemin bir modifikasyonu ile dis potansiyel iceren ve dordiincii mertebeden
dispersiyon terimi bulunan CQNLS denkleminin sayisal ¢oziimleri elde edilmistir.
Bu yontemde, denkleme u(x,z) = f(x)e’** formunda bir ¢oziim aranmis olup f(x)
kompleks degerli fonksiyonu Fourier uzayinda iteratif olarak ¢oziilmiistiir. Daha sonra,
elde edilen solitonlarin stabilite analizi icin Ayrik adimli Fourier metodu (Split-step
Fourier Method) kullanilmustir.

Bolim 3, asafidaki gibi verilen potansiyelsiz halde, (14+1) boyutlu dordiincii
mertebeden bir dispersiyon terimi iceren, kiibik-kuintik NLS denklemine ayrilmistir:

luz+auxx+’u‘2u+’}/uxxxx+ﬁ|u|4l/l:0 (3)

Literatiirde, kuintik terimin ihmal edildigi halde, (f=0) bu denklemin analitik
¢Oziimleri belli parametreler i¢in

_ (302 2 x 4o
M<x7 Z) = W sech (W) eXp (ZEZ) (4)

formunda elde edilmis ve soliton tipi ¢oziimler incelenmistir. Bu boliimde, sayisal
algoritmamizin dogrulugunu test etmek amaciyla, elde edilen bu kesin ¢oziim ve SR
algoritmasindan elde edilen sayisal ¢oziimlerin {iist iiste diistiigii gosterilmistir. Bu
¢Oziimlerde dordiincii mertebeden dispersiyon teriminin soliton yapilari iizerindeki
etkisi arastirilmig ve son olarak bu solitonlarin stabiliteleri incelenmistir.
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Bolim 4, (1+1) boyutlu dordiincii mertebeden dispersiyon terimi ve 2.7 -simetrik
potansiyel iceren kiibik-kuintik NLS denkleminin sayisal ¢oziimlerini ve kararhilik
analizlerini icermektedir. Bu boliimde, calismada kullanilan &2.7 -simetrik potansiyel
tanimlanmig ve farkli parametreler altinda bu potansiyel altinda analitik ¢oziimleri
iiretebilmek igin u(x,z) = f(x)e/Het8W) coziim onerisi yapilmugtir. Burada f(x) ve
g(x) heniiz yapist belli olmayan reel degerli fonksiyonlar olarak kabul edilmisgtir.
Bu coziim oOnerisi denklemde yerine konarak elde edilen c¢oziimler kesin ¢dziimle
kargilastirilmig ve kullanilan &2.7 -simetrik potansiyelin yapisi agsagida verilen sekilde
elde edilmistir:

Ver = [V sech? (x)+ Vosech? (x)] +i[Ws sech’ (x) tanh(x)]. 5)

Potansiyelde bulunan katsayilarin soliton ¢oziimiine nasil etki ettigi sayisal olarak
incelenmis ve sonuglar tartisilmistir. Ayrica dispersiyon teriminin katsayist olan ()
ve 0zdeger (1) ile maksimum genlik arasindaki iligkiler yine sayisal olarak incelenmis
ve sonuglar grafiklerle gosterilmistir. Sayisal ¢oziimleri elde etmek i¢in kullanilan
spektral renormalizasyon metodu ile elde edilen soliton ¢coziimleri, ¢esitli parametreler
icin analitik ¢oziim ile karsilastirilmistir. Daha sonra, bu solitonlarin stabilite analizi
icin Ayrik adimli Fourier metodu (Split-step Fourier Method) kullanilmis ve elde
edilen sonuclar grafikler lizerinde gosterilmistir. Son olarak, dispersiyon teriminin ()
ve 0zdegerlerin (1) solitonun kararlilig1 tizerindeki etkisi incelenip bulunan sonuclar
grafiklerle gosterilmis ve sonuglar yorumlanmugtir.

Boliim 5°de tezde elde edilen tiim sonuclar ayrintili olarak aciklanmigtir. Potansiyelsiz
denklemde ve bir dis potansiyel iceren denklemdeki sonuglar 6zetlenip, sisteme
eklenen dis potansiyelin etkisi tartisilmistir. Ayrica onceki boliimlerden elde edilen
sonuclar 1s181inda dispersiyon terimi ¥y ve O6zdeger u’niin de ¢oziimler iizerindeki
etkileri de bu boliimde tartigilmistir.

Bu tezde MATLABR?2010a bilgisayar programi kullanilmig ve biitiin ¢oziimler bu
program ile elde edilmistir.
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1. INTRODUCTION

In the field of optics, a soliton denote to any optical field that does not change its
shape during propagation because of the sensitive balance between linear and nonlinear
effects in the medium [1]. Interest in optical solitons has grown steadily in recent
years. The field has considerable potential for technological applications, and it
presents many exciting research problems both from a fundamental and an applied
point of view. Over the past thirty-five years, soliton research has been conducted in
fields as diverse as particle physics, molecular biology, quantum mechanics, geology,
meteorology, oceanography, astrophysics and cosmology [2]. NLS equation is usually
defined by the nonlinear dynamics of pulses on a picosecond time-scale. This equation
is developed by Erwin Schrodinger in 1927. A considerable amount of research work
has been devoted to the study of nonlinear Schrodinger equations with a variety of
nonlinearities. Several methods, numerical and analytical, have been effectively used
to handle these problems [3]. The inverse scattering method, Lax pair, Backlund
transformation are some of these methods. These works and results have important
scientific values and application prospects such as transmitting digital signals over
long distances. Mathematical and numerical analysis of the considered equation with
application areas can be found in the reference [2]. Nonlinear Schrodinger equation is

usually define as the propagation of an optical pulse in optical materials is given as
itz + e + ot|u)?u = 0. (1.1)

In optics, u corresponds to the differentiable complex valued, slowly varying amplitude
of the electric field; u,, corresponds to diffraction; z is a scaled propagation distance;

the coefficients o represents the cubic nonlinearities of the medium.

The dynamics of pulses with widths smaller than 1 picosecond can not be governed
by the cubic NLS equation. For example, in a solid state laser, pulses are generated
shorter than 10 femtoseconds and the approximation of the standard NLS equation
breaks down. In order to describe the dynamics in such systems, we need higher

order dispersion terms. One needs to consider the third order (30D) dispersion for

1



performance enhancement along trans-oceanic and trans-continental distances. Also,
for short pulse widths where the group velocity dispersion changes, within the spectral
bandwidth of the signal, can no longer be neglected, one needs to take into account the

presence of fourth order (40OD) dispersion [4].

In this thesis, we investigate higher order (we refer to fourth-order dispersion (40D)
term), cubic-quintic nonlinear Schrodinger equation with a &2.7 -symmetric optical

potential given below:
iuz+uxx—|—Oﬂ\ulzu—i—)/uxxxx+[3\u]4u+VpTu:0. (1.2)

Here 7y is a fourth-order diffraction coupling constant taken as a negative constant value

and Vpr is a .7 -symmetric external potential (lattice).

The aim of this thesis is to find the exact and the numerical solutions of the equation
1.2 and discover the effect of the fourth order dispersion term 7., on the soliton

solutions and their stabilities.

In order to investigate the evolution of the ultrashort optical pulses for NLS equation
with fourth order dispersion term 40D without any potential and compare with our
numerical method, we used the results obtained in [5]. In this study by Karlsson
and Ho0k, both second and fourth order dispersion terms are taken into account
and an exact soliton type solution is given. In this work, the effect of the fourth
order dispersion on the shape and stability of the soliton is investigated. Also, in [6]
and [7], the dynamics and interactions of bright solitons in an optical fiber with fourth
order dispersion are investigated. In [8], 40D cubic-quintic nonlinear Schrodinger
equation with potential is solved through the extended elliptic sub-equation method.
As a consequence, many types of exact traveling wave solutions are obtained which
including bell and kink profile solitary wave solutions, triangular periodic wave

solutions and singular solutions.

Any measurement of a physical observable in our universe obviously yields a real
quantity. Eigenvalues of operators are observable in quantum mechanics. Therefore,
all the eigenvalues of operators are need to be real for the reality. All observables
corresponded to eigenvalues of Hermitian (i.e. self adjoint) operators was postulated
to guarantee a real spectrum. In fact, a Hermitian Hamiltonian ensures a real energy

spectrum. Instead only space time reflection symmetry or &2.7 -symmetry, weaker

2



version of Hermicity axiom which requires that the Hamiltonian has seen considerable
attention in the past decade [9—12]. In addition to this, threshold value above which the
spectrum becomes complex are determined in many cases. 2.7 -symmetric is defined
by means parity operator P and the time operator 7' whose actions are givenby P : p —
—p,xX — X,i — —Ii, where p is the momentum operator, £ is the position operator and i is
the imaginary unit [13].The PT operator and satisfies the commutativity PTH = HPT,
namely V (x) = V*(—x) and a Hamiltonian H = p? 4V (x) has the same eigenfunctions
then it is said to be .7 -symmetric [14]. If the same eigenfunctions are not shared
then we can speak of broken &.7 -symmetry. &?.7 symmetric structures have been
realized in optical models governed by NLS type equations in which the propagation
distance z replaces time in quantum mechanics [10].

We will consider the case of 40D cubic-quintic nonlinear Schrédinger equation with a

P T - symmetric potential defined as
Vor =V (x) +iW (x) (1.3)

where V(x) and W(x) are the real and imaginary components of the complex
& T -symmetric potential, respectively. Here, the real part of a &7 potential
is a even, symmetric function whereas the imaginary component should be odd,
anti-symmetric. In Figure 1.1, the real and the imaginary parts of the &2.7 -symmetric

potential that is derived in Chapter 4 is plotted.
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Figure 1.1 : Real and imaginary parts of &?.7 -symmetric potential plotted on top of
each other.



In this thesis, to obtain numerical solutions for 40D cubic-quintic nonlinear
Schrodinger equation with and without external potential, we will use spectral
renormalization method. To transform the considered equation into Fourier space and
find out a nonlinear integral equation coupled to an algebraic equation is the main idea
of this method. Implementation procedure of this method to the nonlinear Schrédinger

equation explained in Chapter 2.

1.1 Purpose of Thesis

In this thesis, we aim to investigate the effect of the external potential and
fourth-order dispersion term on the soliton solutions of the 40D cubic-quintic
nonlinear Schrodinger equation with &7 -symmetric potential and find an exact
soliton type solution to this model equation. The cases of 40D cubic-quintic nonlinear
Schrodinger equation without a potential and with a special type of &.7 -symmetric

potential are compared to understand this effect.

1.2 Literature Review

Since their applications to telecommunication and ultrafast signal routing systems,
optical solitons have been the objects of extensive theoretical and experimental studies
in recent years [15]. They evolve from a nonlinear change in the refracive index of
a material induced by the light intensity distribution [16]. Nonlinear Schrodinger
equation (NLS) is the main nonlinear equation governing the pulse evolution in the

picosecond regime [17].

Nonlinear Schrodinger (NLS) equation is usually denoted by the nonlinear evolution
of short pulses in an optical fiber. This equation represents the mathematical models
of different physical problems [18]. The mechanism and structure of the soliton
interaction are explained both analytically and numerically in [19]. In [19,20], decay
problem of the ps degenerate soliton and the effect of the frequency down shift are
investigated. In addition to this, wave propagation in nonlinear media [21], surface

waves on deep waters [22] are denoted by nonlinear Schrodinger equation.

In fibers, NLS 40D equation represent the mathematical model of the optical pulses

in a picosecond time scale [6]. To find out analytical and numerical solutions of



the considered equation, many studies and researches have been done. Biswas an
coworkers used the solitary wave ansatz to produce exact solution of the NLS 40D
equation in [23]. To obtain exact solutions, the method of tanh and the method
of sine — cos are applied to the considered 40D NLS equation [3]. Also in [24],
the nonlinear Schrodinger equation with third and fourth order dispersion terms is
investigated and analytical results are obtained. Various type of exact solitons for the

fourth-order dispersive cubic-quintic nonlinear Schrédinger equation are given in [25].

In [26], the effect of nonlinearity in novel &.7-symmetric potential for 40D
cubic nonlinear Schrodinger equation are investigated. Numerical solutions of 40D
cubic-quintic nonlinear Schrodinger equation with a &.7 -symmetric potential are
investigated by means of spectral renormalization method in [27]. This method is
essentially a Fourier iteration method and in this thesis, the method is modified so
that it can be applied to the (1+1)-dimensional 40D cubic-quintic NLS equation. This
method can be effectively used to obtain localized solution of KDV equation [28],
dispersion-managed systems [29], discrete diffraction-managed systems [30, 31] and
NLS equation [32]. Also, (2+1)D and (1+1)D NLS equation with an external potential
was solved by using the spectral renormalization method and the produced results are

shown in [33,34] and [27], respectively.

1.3 Hypothesis

The effect of the external potential and its type on the existence and stability
of fundamental solitons is crucial. Higher order dispersion affects the maximum
amplitude and the shape of the soliton solution of the model equation. The existence
and stability of the soliton solutions, are greatly affected by this higher order dispersive

term.






2. NUMERICAL METHODS

2.1 Spectral Renormalization Method

It is known that various techniques have been used to compute localized solutions (i.e.,
soliton solutions) to nonlinear evolution equations. Numerical solutions to Eq. (1.1) are
investigated by using the Spectral renormalization method. The method is essentially

a Fourier iteration method that was proposed by Petviashvili in [35].

Later, Ablowitz and Musslimani advanced this method [36] a generalized numerical
scheme for computing solitons in nonlinear wave guides (SR). To transform the
governing equation Fourier space and find a nonlinear nonlocal integral equation
coupled to an algebraic equation is the essence of the method. The coupling gets

under control the numerical scheme from diverging.

The optical mode is then obtained from an iteration scheme, which converges rapidly.
This method is useful to apply to a large class of problems which include higher order

nonlinear terms with different homogenetic.

In this section, we have given the numerical solution to the NLS 40D cubic-quintic
equation with an external potential in Eq. (1.2) and this solution will be obtained by

the spectral renormalization method.

The method is modified so that it can be applied mainly to the (1+1)D NLS 40D

cubic-quintic equation with &7 -symmetric potential as follows:

iuZ—Htxx—i—Oc]u|2u+}/uxxxx+[3|u]4u+VpTu:O. 2.1



Using the ansatz u(x,z) = f(x)e’** where f(x) is a complex-valued function and u is

the propagation constant (or eigenvalue), we have following expressions:
u, = ip fe't
Upy = f xxeiuz

_ iuz
MXXX)C - f XXXX e 'u

| 2.2)
u* = fe M2

ul? =111

ul* =1f1*

Substituting the set of the terms in Eq. (2.2) into Eq. (2.1), the following nonlinear

equation for f is obtained

After simplifying these equations we get

—Wf + feet O f2f + Y oee+ BIFI 4+ Vorf =0. (2.4)

After applying Fourier transformation to Eq. (2.4)

F{—ufy+ F{fu} + F{alf]*f}+
F Y feer} + FBIFI Y+ F {Ver f} = F{0}.

where .# denotes Fourier transformation and considering the properties of this

(2.5)

transformation, we have Eq. (2.6)

—uf + (—ik)?f+ P {| £} + V(=iko) '] 26)
+BF{IfI fH+ Z{V+iW)f} =0 '

where 7 (f) = f and k, are Fourier variables. Solving Eq. (2.6) for the f yields

aZ{|fI*f} +BZUSfI fL+ F{(V +iW)f}
[,Ll + kx2 - ka4]

f= 2.7

In order to find f(x), this equation could be indexed and utilized but the scheme does
not converge. At this point, we should make acquainted with a new field variable
f(x) = Aw(x) with A € R™ where A is a parameter to be determined. The system with
the new variable can be written as
a Z{| WA PwA + BZ{ W | A[*WA + Z{(V +iW)Aw}
1+ ke* — vkt
8

AW =

(2.8)



simplifying this equation, we get

aZ {|wl|Alw} + BZ{wl*|A[*w} + F{(V +iW)w}
1+ k* — vkt

(2.9

W=

For finding out w, Eq. (2.9) can be utilized in an iterative method. In order to succeed

this, we can calculate w using the following iteration approach:

_ AP F{walwa} + BIAZ ([ wal wa} + F LV +iW)w, )

Wnt1 , neN (2.10)
! M+ kx2 - ykx4
with the initial condition taken as a Gaussian type function
2
wop=e * (2.11)

where our convergence criterions are |w, 1 —w,| < 10712, Multiplying both sides of

Eq. (2.9) by (u + ky? — ykx4) and we obtain
(0 + ke — v = Ao F ([w*w} + A BZ {w|*w} + F{(V +iW)w}. (2.12)
When we take all terms of Eq. (2.12) to the left side, we lead to following equation

(1 + K = vk — (AP {wPw} — AP BF{w*w} = F{(V+iW)w} =0.
(2.13)
Multiplying Eq. (2.13) by the conjugate of w, i.e. by w* yields

(L +k2— vk MW = A P Z {|w|*wiw* — A BZ {|w|*'wiw* — Z{(V +iW)w}w* =0.
(2.14)

Furthermore, integrating Eq. (2.14) leads to
/ (L + k2 =yl w2k — A2 / o F {|w]Pw i dk

[ prtitwpita [ v wwpiak=0 219

or in a more compact form

[ [V W (k= el

o oo (2.16)
+|/u2/ o F {|w]Pwhi*dk + w“/ B.F {|w|'whw*dk = 0.

Eq. (2.16) is a fourth order polynomial of A in the form P(A) = aA* 4+ bA? 4 c then A

can be calculated exactly by the imposing following formula:

—b+ Vb? —4ac
)Ll;z =+

2a

(2.17)




where

a=p /_29{|w|4w}w*dk (2.18)
b= a/m F{|w|*whw*dk (2.19)
c=— / T TV AW (1 k2 — 7). (2.20)

The required soliton will be f(x) = A(wx) = A.Z~!(W) when the iteration

convergence.

In Fig. 2.1, the soliton obtained by the method described above is plotted on top of the
real and the imaginary parts of the specific &7.7 -symmetric potential which is derived

in Chapter 4.

—Ifl

2.5r real [

imag

N

0.5¢ I
L
L)
1

: —{.
[}

-

-20 -10 0 10 20
X

Figure 2.1 : Numerically obtained soliton on top of the real and imaginary parts of
& T -symmetric potential.

2.2 Nonlinear Stability Analysis

If a soliton is considered as nonlinearity stable, then it should preserve its shape,
location and maximum amplitude during direct simulations. To analyse the nonlinear
stability of solitons, we directly compute Eq. (1.2) over a long distance. In order to do

this, split-step Fourier method is employed to advance in z [37].

10



3. CQNLS 40D EQUATION WITHOUT AN EXTERNAL POTENTIAL

3.1 Exact and Numerical Solutions

3.1.1 Exact solution

Current fiber manufacturing strategies provide experimentalists with fibers having an
intensive range of dispersive behavior. We realize that not only the second order
dispersion is important, but also its curvature (fourth order dispersion, 40D) and
slope (third order dispersion, 30D) become significant when studying ultrashort pulses
in optic fibers. In particular, at the frequency of @y of minimum/maximum group
velocity dispersion, the third order dispersion (30D) vanishes and 40D turns into
the subsequent higher-order dispersion. This phenomenon is studied by Karlsson and
Hook [5] for positive third order dispersion and it was discovered that pulses in such
media will always loose power with the aid of radiation. But, the case of negative 40D
dispersion leads one to new solitary wave structures. The exact stationary solution of

40D NLS with negative fourth order dispersion is given as well in above stated work.

In this chapter, we will use the spectral renormalization method to solve 40D
cubic/cubic-quintic NLS equation without an external potential and investigate the
soliton properties in order to compare the analytical solution given in [5] with the
numerical solution we obtain. We also inspect the effect of the fourth order dispersion

term via the usage of the numerical method (SR).

The cubic-quintic nonlinear Schrodinger equation with a fourth order dispersion term

(40D) is given as follows:
iuz~|—ocuxx+|u|2u+7uxxxx—|—ﬁ\u|4u:0 (3.1)

where u = u(x,z) is a complex-valued function and x,z € R. Eq. (3.1) for only cubic

nonlinearity case, (without the quintic term, corresponding to (8 = 0) was introduced

11



in [5] and exact stationary solution of this equation is given as follows
30

2
w(x,2) = 1| 22 sech o ) 3.2)

X
0y 2 (—\/m> exp (lmz
When this solution is compared to the NLS-soliton, it is seen that this solution has
no free parameter, and it cannot be given a relative velocity (frequency offset). It
should be considered that, this type of fixed parameter solutions have been discovered
earlier [38,39]. Moreover, the particular solution Eq. (3.2) could thoroughly belong
to a class of solutions with an amplitude-width relation similar to that of the NLS

soliton [5]. These solutions should have the equal sec 42-shape as the pulse in Eq. (3.2).

Eq. (3.1) is also investigated in [40] and [41] in connection with the theory of optical

solitons in gyro-tropic media and the nonlinear fiber optics.

3.2 Numerical Illustrations

We will numerically investigate the soliton solution of Eq. (3.1) for various values of

Y (40D term’s coefficient) and the propagation constant u in this subsection.

In Fig. 3.1, we show the exact soliton solution and the numerically obtained soliton
solution of Eq. (3.1) and it can clearly be seen from this figure that our numerical

algorithm converges to the exact solution for the parameters y = —1, u = 1.

1.003233 [=—1]

Figure 3.1 : Exact and numerical solutions of 40D NLS equation on top of each

otherfory=—-1,u =1

So as to investigate the effect of the eigenvalue and the fourth order dispersion on the

soliton properties, we plotted solitons for diverse values of y and u.
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To observe the effect of the eigenvalue u, we fixed the coefficient of the 40D
dispersion as ¥ = —1 and then increased the eigenvalue to 4 = 4 in Fig. 3.2. From
this figure, we can clearly see that the maximum amplitude of the soliton comparing to
y= —1,u = 1 case increases, namely to max|f| = 1.003 and the soliton becomes more
vertical. Another interesting result is revealed by this figure: the tails of the soliton
differs from the previous case. This phenomenon was also observed by Karpman

in [40]. They called these solitons as "solitons with oscillating tails".
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Figure 3.2 : Numerically obtained higher order mode for y = —1, u = 4.

In Fig. 3.3, we still increase the eigenvalue to ¢t and this time we take 1 = 7. This figure
shows that, the tails become more pronounced and the maximum amplitude increases

to max|f| = 1.82.
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Figure 3.3 : Numerically obtained higher order mode for y= —1, u =7.
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In the next figures, to observe the effect of the increasing eigenvalue Y, we decreased
the effect of the 40D dispersion by setting 4 = 1 and slowly increased the coefficient

ytoy=—0.9, y=—0.2 and y = O respectively.

—y=-0.9
1F —y=-0.2{{
—vy=0
0.8
§ 0.6
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0 L
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Figure 3.4 : Numerically obtained higher order mode for y = —0.9, y= —0.2 and
Y=0.

In Fig. 3.4, we observe a small increment in the maximum amplitude of the soliton
comparing to larger 40D effect case shown in Fig. 3.1 but the shape of the soliton
is nearly the same with that figure and we observe the effect of B to the maximum
amplitude of the 40D equation. For this we choose gradually increased the coefficient

ytoy=—0.9, y= —0.2 and y = O respectively.

3.3 Nonlinear Stability

In this section, we will numerically see how the shape and the maximum amplitude of
a higher order soliton effect its nonlinear stability properties. In order to investigate
this, obtained solitons are computed over a long distance and the shapes, maximum
amplitudes and locations during the evolution is monitored. We investigated the

previously obtained solitons in the same order.

First we took the soliton solution that is shown in Fig. 3.1 and evolved it for z = 1.
The results are demonstrated in Fig. 3.5. From this figure, one can clearly conclude
that this soliton is nonlinearly unstable as it does not preserve its shape and maximum

amplitude during the evolution.
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Figure 3.5 : Nonlinear instability of a higher order soliton for y = —1,u = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Figure 3.6, we show a nonlinearly unstable higher order soliton obtained for y = —1,
u =4. Itis seen that, around z = 0.2, the maximum amplitude starts to decrease swiftly
and then starts to increase slowly around z = 0.6 as a result of the deterioration in the

shape of the soliton.

In Figure 3.7, we show a nonlinearly unstable higher order soliton obtained for
Yy=—-1L,u=9. Itis seen from the figure that, around z = 0.1, a sharp decrease
in the maxiumum amplitude is observed and it is revelaed from the figure that the
soliton couldn’t preserve its shape and is subjected to deterioration immediately after

the evolution starts.
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Figure 3.6 : Nonlinear instability of a higher order soliton for y = —1,u = 4;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In this section, we also investigate the effect of y (the coefficient of the higher order
dispersion term) to the higher order soliton. To obtain that, we will fix the eigenvalue
to 1 = 1 and change the constant Y to see how it effects the maximum amplitude of the
higher order soliton.

In Figure 3.8, we investigated the case given in Figure 3.5 for the constant y = —0.9.
When we change the constant ¥ form -1 to -0.9, the maximum amplitude increases
slightly during the evolution and it can clearly seen from the graphic that this soliton
is still nonlinearly unstable.

In Figure 3.9, we take the constant ¥ = —0.5 and continue to investigate how the
soliton changes during the evolution. We can observe from the graphic that the

maximum amplitude of higher order soliton increase swiftly.
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Figure 3.7 : Nonlinear instability of a higher order soliton y = —1,u =9; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Figure 3.10, when the constant y approach to zero, the maximum amplitude of the

soliton continues to increase and it starts to change its location during the evolution.

When we come to the Figure 3.11 for final, we take the constant Y = O to observe
soliton’s shape and the maximum amplitude. We have seen from the previous figures
that the value of constant ¥ increases the maximum amplitude of the soliton when it
approaches to zero. If we take y = 0, the maximum amplitude keeps increasing during
the evolution and this time, this indicates blow up which we can be clearly seen in

Figure 3.11.
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Figure 3.8 : Nonlinear stability of a higher order soliton for y = —0.9,u = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.
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Figure 3.9 : Nonlinear instability of a higher order soliton for y = —0.5,u = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.
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Figure 3.10 : Nonlinear instability of a higher order soliton for y = —0.2,u = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.
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Figure 3.11 : Nonlinear instability of a higher order soliton for y=0,u = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.

19



In this chapter, as a result of the numerical observations, we conclude that:

(7) The higher order solitons obtained for 40D NLS equation may have oscillating tails
and these solitons are found to be nonlinearly unstable;

(ii) The higher order solitons obtained for 40D cubic-quintic NLS equation are found
to be nonlinearly unstable for the cases when the effect of the 40D effect is either

small or the eigenvalue is u is small (even if the 40D effect is large).
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4. CQNLS 40D EQUATION WITH AN EXTERNAL POTENTIAL

4.1 Exact and Numerical Solutions

4.1.1 Exact solution

Exact solutions provide to understand the structure of the complex nonlinear physical
phenomena which are related to wave propagation in a higher-order CQNLS equation

with & .7 -symmetric potential.

Consider the following (1+1)D 40D cubic-quintic NLS equation with a

& T -symmetric potential:
iuz—i—uxx—i—Oc]u|2u—|—}/uxxxx+ﬁ]u]4u+VpTu:O. 4.1)

If we take u = O then we find a trivial solution of Eq. (4.1). For finding non-zero

solutions, set u # 0. Dividing Eq. (4.1) by u and by use of Eq. (1.3) leads to

ol R BtV =0 4.2

The following ansatz is used to get non-zero stationary solitons:
u(x,2) = f(x)e et (4.3)

where f(x) and g(x) are real-valued functions different than zero, u is a function of
x and z to be determined and u is the propagation constant. Taking derivatives of

Eq. (4.3) with respect to z and x, results in following equations,

u; = f(x) iuei(“z+g(x)) 4.4)
e = [1"(x) +2if (x)¢'(x) +if ()€" (x) = (x)(g (x))*] e/ W80 (4.5)
u? = e 20 () 540 — (1)) “6)

uxxxx — [f//// (x) + 4l-f/// (X)g/ (x) + 6if// (x)g// (X) + 4lf/ (x)glll (X) + l-f(x)g//// (.Xf)
—6f"(x)(g'(x))2 — 12 (x)g' (x)g" (x) — 3 (x)(g" (x))* — 4f (x)g' (x)g" (x) (4.7)

—4if'(x)(g' (x))* = 6if (x)(g'(x))?8" (x) + F(x) (g ().
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Substituting Eq. (4.4)-Eq. (4.7) into Eq. (4.2) yields

f”(x) f////(x)_ "ON2 — 67— (o ()2 e
o T T WP -6y (6 ) v ()
1)

—37(g" ()% — 12777 (x)g" (x) — 478’ (x)g" (x) + B (f(x))* +V (x)]

f(x)
f/<x) / 3 f/(x) s f/(x) /(x f”(x) "(x
) (&%) +4y— 8" ( )+2f(x)g( )+6Yf(x) g (x)
X)

=+ a2 + /)

(4.8)

+i[—4y

£
f(x)

To obtain soliton solutions, we used the following ansatz

F0 8

Ay (0) +8 (x) = 67(8 (0)) %" (x) + 78" (x) + W (x)] = 0.

f(x) = fosech?(x), g'(x) = gosech?(x) (4.9)

where fp and go are non-zero real constants and p € N. We need to calculate the
derivatives of the functions f and g to equate simple form of Eq. (4.8). By using

Eq. (4.9) we obtain

f'(x) = — foptanh(x)sech” (x) (4.10)
f"(x) = —fop(1+ p)sechP2(x) + fop®sec hP (x) (4.11)
(%) = fol—p> + (p* 4+ 3p* + 2p)sec h* (x)] sec h¥ (x) tanh(x) (4.12)
" (x) = folp* = (20 +6p° +8p* +4p) sech’ (x) wis
+(p* +6p> + 11p* +6p) sech*(x)] sech” (x) .
g (x) = gosech?(x) (4.14)
g" (x) = gogsec h(x) tanh(x) (4.15)
g" (x) = gog®sechd(x) — go(q* + q)sec h9 2 (x) (4.16)

g"(x) = —gog’sech?(x) tanh(x) + go(q°> 4+ 3¢* + 2p)sec h92(x) tanh(x). (4.17)
Substituting Eq. (4.10)-Eq. (4.17) into Eq. (4.8) we obtain

—u+ p* +yp* -+ sech® (x)[—p* — p—2yp* — 6p° — 8p” — 4p]
+sech* (x)[y(p* +6p° + 11p* +6p)] +sech™ (x) (et fo*) +sech™ (x) (B fo*)
+sech™ (x)[—go” — 6780 p* — T7g0°q" — 12780” pq] + sech™ (x)[ygo*]
+sech™ 2 (x)[6Yg0° P + 6Y80° P+ TY80°q" + 4780 q + 12780 pg] +V (4.18)
+i[sech?(x) tanh (x) [~2pgo — gg0 — 4Yp> 30 — 6Yp*q80 — P’ 80]
+sech??(x) tanh(x)[4y(p* + 3p” +2p)go + 6Y(p” + p)ago +4Yp(¢* + 9)go

+}/(p3 +3p>+ 2p)go] + sec 4 (x) tanh(x) [4}/ng3 + 6)/qg03] +W]=0.
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When we split Eq. (4.18) into real and imaginary parts, we get the expressions for the

real and imaginary parts of the &2 .7 -symmetric potential as we can see below:

Real Part
The real part of the Eq. (4.18) can be written as,
(=t +p* +yp*) +sech?(x)[-p* — p — ¥(2p* +6p° +8p” +4p)]
+sech? (x)[y(p* +6p° + 11p? +6p)] +sech™ (x)(afo”) +sech™ (x) (B fo")
+sech’ (x)[—go” — 680" " — T¥20°4" — 12¥80° pd]
+sech® (x)[ygo*] + sech?? 2 (x) [6yg0> p* + 6Yg0>p

+77802¢% +4v802q + 127802 pg] +V = 0.

(4.19)

The real part of the &.7 -symmetric potential is found as

V (x) = Vo + Visech? (x) + Vasech? (x) + Vasech?” (x) + Vysech®” (x)
+Vssech??(x) 4 Vsech® (x) + Vosech? 2 (x) (*20
where

Vo=—u+p +vyp’ (4.21)
Vi=—p*—p—y(2p* +6p> +8p* +4p) (4.22)
Vo = y(p*+6p° +11p> +6p) (4.23)
V3 = o fp? (4.24)
Va=Bfo* (4.25)
Vs = —go” —6¥80°p” — 7780°d” — 12720°Pq (4.26)
Vs = 780" (4.27)
V7 = 6Y80°p” +6780° P+ TY80° 4% +4Y20°q + 12780° g (4.28)

We set u = p*+ yp* to get rid of coefficient V; for the sake of simplicity and we can

see in the following form that V (x) is indeed an even function

V(—x) = Vysech?(—x) + Vasech*(—x) + Vasech?” (—x) + Vysech*” (—x)
+Vssech??(—x) 4 Vgsech*® (—x) 4 Vysech??+2(—x)
= Vysech?(x) + Vasech? (x) + Vssech?” (x) + Vysech*” (x) (4.29)
+Vssech?d(x) 4 Vgsech® (x) 4 Vosech?4+2 (x)

=V (x).
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Now, V (x) can be simplified by equating the powers of sech(x). Considering the case

of p =g =1, then Eq. (4.20) can be rewritten as following form,

V(x) = [2+20y — afo* +257g0" + g0°]sech? (x)
(4.30)
—(24y+ B fot +35yg0> + }/go“)sech4 (x)

Then we take ¥y = —0.2 to find out even function V (x), we get

V(x) = — (24 afy? +4g0?)sech?(x) + (0.2g0* — B fo* + 7go* +4.8)sech*(x). (4.31)

where

Vi =—2—oafy> —4go’ (4.32)
Vo =0.2g0" — Bfo* +7g0% +4.8. (4.33)

Considering the case of fop = 1, go = 1 we finally obtain the real part of the

P T -symmetric potential as,
V(x) = — (o + 6)sech®(x) 4 (—B + 12)sech*(x). (4.34)

Imaginary Part

The complex part of the Eq. (4.18) can be written as
sech?(x) tanh(x) [~2pgo — g0 — 4¥P’ g0 — 6YP* 480 — 4YP4* 80 — Y4’ 0]
++sech?™?(x) tanh(x)[47(p’ +3p* +2p)go + 67(p* + p)ago +4yp(¢* + 4)g0  (4.35)
+(p° +3¢” +2q)g0] + sech™ (x) tanh (x) [47pgo’ + 67qg0%] + W (x) = 0
Then the imaginary part of the &7.7 -symmetric potential is obtained as
W (x) = Wpsech? (x) tanh(x) + Wysech?"? (x) tanh(x) + Wasec h% (x) tanh(x) ~ (4.36)
where
Wo = go[2p+q + (4P’ +6p*q +4pg” +¢°)] (4.37)
W = —ygo[dp® 4+ 12p* +8p +6p°q + 10pg + 4pg* + ¢° + 3¢* + 2] (4.38)

Wy = —yg0°[4p + 64]. (4.39)

We can see in the following form that W(x) is indeed an odd function.

W (—x) = Wysech?(—x) tanh(—x) 4+ W;sech?"?(—x) tanh(—x)
+Wssech®(—x) tanh(—x)

— Wosech? (x)(— tanh(x)) 4 Wisech? "2 (x)(— tanh(x)) (4.40)
+Wssech®? (x)(— tanh(x))
=—W(x).
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Considering the case of p = g = 1, then we can rewritten Eq. (4.36) as following form,
W (x) = 3g0(57+ 1) sech(x) tanh(x) — 7g0(10g0> + 50) sech®(x) tanh(x)  (4.41)

by taking y = —0.2 we get
W (x) = 2g0(go> + 5)sech? (x) tanh(x). (4.42)

where

W3 = 2g0(g0> +5). (4.43)

If we choose note that gg = 1 into Eq. (4.42) leads one to
W (x) = 12sech®(x) tanh(x). (4.44)

Attention should be paid in case of p = g = 1, by considering Eq. (4.30) and Eq. (4.41)

the analytical solution of the problem can begin with
M(X,Z) — fO Sech(x)ei[/.tergo arctan h(x) sinh(x)]. (4.45)

Consequently, Eq. (1.2), with the real and the imaginary parts in Eq. (4.31) and
Eq. (4.42) can be given as

Vpr = [Visech?(x) 4 Vasech* (x)] + i[Wasech® (x) tanh (x)]. (4.46)

Eq. (4.46) can be seen as an extension of the so-called complexified Scarf II potential

[Vosech? (x) 4 iWpsech(x) tanh(x)] for Kerr media with cubic nonlinearity.

4.1.2 Numerical illustrations

In this section, we will show obtained results with graphics for various values of u, v, fo
and g respectively. As we see in Fig. 4.1 and Fig. 4.2, one of the most important things
that affects the maximum amplitude of the soliton is the selection of fy. In Fig. 4.1,
we plot the real and imaginary parts of the functions f and V under the parameters
fo=15,g0=1,y=—-0.2and u = 1. In order to show the effect of the fy on the
maximum amplitude of the soliton, in Fig. 4.2 and Fig. 4.3, we use the same parameters
as in the Fig. 4.1 for 0 < fy < 1.55. The relation between the considered quantities is

almost linear as it is seen in Fig. 4.2.
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Figure 4.1 : Real and imaginary part of the soliton and potential for fy = 1.5, gg = 1,
u=1and y=—-0.2.
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Figure 4.2 : Numerically obtained solitons for various values of fy for g =1,
Y=—-0.2and go = 1.

In Fig. 4.4 , the effect of the 40D constant y to the maximum amplitude and to the

shape of the .7 -symmetric potential are revealed.
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Figure 4.3 : Numerically obtained solitons for various values of fy for u =1,

Y= —0.2and go = 1.
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Figure 4.4 : Numerically obtained solitons for various values of y for u =1, fo =1
and go = 1.

In Fig. 4.5, we demonstrate the effect of the eigenvalue u on the numerical solution f

and & 7 -symmetric potential.
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Figure 4.5 : (a) Real and irr)l(aginary parts of numerical solution f with u = 3, (b) real
and imaginary parts of numerical solution f with u =4, (c) | f| for u =3
and u = 4, (d) absolute values of &Z.7 -symmetric potential for u =3
and u =4, by considering y = —0.2, fo =1 and go = 1.

4.2 Nonlinear Stability

If solitons preserve their shape, position and maximum amplitude during direct
simulations then they are called nonlinearly stable in the field of optics. We evolved
solitons over a long distance to search out their nonlinear stability. To do this, we
advanced in z with split-step Fourier method.

Numerically generated soliton of the (1+1)D 40D NLS equation with a
& T -symmetric potential, nonlinear evolution of the soliton, the view from top
to |u(x,z)| and maximum values of |u| along with the z is plotted in this figures,
respectively. It can be easily seen that the solitons shape and the maximum amplitude
decay with variable z. To plot Fig. 4.6 we used the parameters u =1, y=—-0.9, fo =1
and go = 1. In this figure, |u;qy| = 0.99 is the maximum amplitude of soliton and its

getting decays up.
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For the stability of the acquired solutions, the dispersion coefficient ¥ is an another
important parameter. Dispersion coefficient ¥ is extremely important for decaying
constant and amplitude of the |u,,,| and they depends exceedingly on 7y. In Fig. 4.7
we demonstrate the case of Y = —0.5 and we fixed the other parameters are as in the
Fig. 4.6. We also deal with the effect of potential depth on the maximum amplitude.
We can clearly see in Fig. 4.8 the maximum amplitude of the soliton more than the
case of Fig. 4.6. When plotting Fig. 4.8, we use the parameter 4 = 1, y = —0.2,
fo=1and go = 1. In Fig. 4.9, with taking y = 0, we demonstrate the effects of
dispersion coefficient on stability of the soliton solution. As it is shown in Fig. 4.9, if
the change in the maximum amplitude is less than or equal to 1072, then we can say
that the soliton is more conservative than the case of Fig.4.7 in maximum amplitude

sense.
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Figure 4.6 : Nonlinear instability of a higher order soliton for y=—-09,u =1 fo =1
and go = 1 with a &.7 -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after
the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)The
view from top and (d) Maximum amplitude as a function of the
propagation distance z.
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fo=1and go = 1 with a &7 -symmetric potential; (a) Numerically
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solution after the evolution (green solid), (b) Nonlinear evolution of the
soliton, (c)The view from top and (d) Maximum amplitude as a function
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Figure 4.8 : Nonlinear instability of a higher order soliton for y=-02,u =1 fo =1
and go = 1 with a .7 -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after

the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)
The view from top and (d) Maximum amplitude as a function of the
propagation distance z.
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Figure 4.9 : Nonlinear instability of a higher order soliton for y=0,u =1 fy =1 and
go = 1 with a &7 -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after
the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)
The view from top and (d) Maximum amplitude as a function of the
propagation distance z.

In this chapter, by using the analytical and the numerical results, we conclude that:

() When the dispersion coefficient term ¥ increases, the maximum amplitude of the
& 7 -symmetric potential decreases

(ii) Despite the change in the shape of the real and imaginary parts of the solitons,
the maximum amplitude of the soliton is not affected from decrement or increment of
eigenvalue u,

(iii) The parameter fj can directly change the maximum amplitude of the solitons.
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S. CONCLUSION

The aim of this thesis is to study (1+1)D 40D cubic-quintic NLS equation with and
without an external potential and investigate the existence and nonlinear stability
properties of the soliton type solutions to this equation. First of all, spectral
renormalization method is introduced to obtain numerical solutions and split-step
Fourier method is explained to analyze stability of the fundamental solitons. We
implemented the considered numerical approach to the (1+1)D 40D cubic-quintic
NLS equations both with and without &7.7 -symmetric potential. In the second place,
we show numerical illustration of the soliton solution of (1+1)D 40D cubic-quintic
NLS equation without an external potential for different values of y (40D term’s
coefficient) and the propagation constant . The stability analysis of the soliton
solutions is obtain by considering the effects of the y and u on the stability.

As a result of the numerical observations, we conclude that:

(i) The higher order solitons obtained for 40D NLS equation may have oscillating
tails and these solitons are found to be nonlinearly unstable

(if) The higher order solitons obtained for 40D cubic-quintic NLS equation are found
to be nonlinearly unstable for the cases when the effect of the 40D effect is either

small or the eigenvalue is u is small (even if the 40D effect is large).

In the final chapter, we obtained numerical results for the case with a 2.7 -symmetric
potential and compared them with exact solutions. Using SR method we showed
numerical illustrations and stability of the obtained solitons for various values of the
problem parameters. The maximum amplitudes of the obtained solitons are discovered
and illustrated with changing values of solitons parameters. We saw how the shape and

maximum amplitude of the produced solitons changed in each case.
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The effect of fy, the eigenvalue u and the dispersion coefficient term 7y on the maximum
amplitude of the solitons are depicted and as a result of the numerical studies, we
conclude that:

(/) When the dispersion coefficient term Y increases, the maximum amplitude of the
P T -symmetric potential decreases

(i) Despite changing the shape of the real and imaginary parts of the solitons, the
maximum amplitude of the soliton is not affected from decreases or increases of
eigenvalue U

(iii) The parameter fy can directly change the maximum amplitude of the solitons.

As we can see in illustrations and results, numerical studies are satisfactory in terms
of accuracy and stability. That means we chose the suitable numerical method for
the solution of (1+1)D 40D cubic-quintic NLS equation and we reached physically
acceptable solutions. In future, maybe someone try to find stable soliton solutions by
taking different potential parameters Vi, V> and Wj and we can discuss inclusion of

fourth order dispersion to the problem.
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APPENDIX A.1 : Fourier Transform
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APPENDIX A.1
Fourier Transform

For a continuous, smooth and absolutely integrable function f(x) , the integral
transform

F( ¢! kx gy (A.1)

xm/f

is called the Fourier transform of f (x) and conversely, the transform

F( e~ i(ke)x (A.2)

xm/f

is called the inverse Fourier transform of F(ky).

The Fourier transform of f is denoted by .% (f) = £ , the inverse Fourier transform of
f is denoted by .Z ! (f) and clearly .Z ! (f) = .F = (Z (f)).

Integral transform methods are very useful for solving partial differential equations
because of their properties such as linearity, shifting, scaling, etc.

Suppose that f(x) tends to zero as x tends to infinity. Then,

F (1) == [0t as = —— e it [ ek
=ik, (/) (A3)

This result can be extended to obtain the differentiation property of the Fourier
transform:

Z(f(x)) = (—ike)"(f(x)) = (—ike)"f,  n€N (A.4)
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