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Bakırtaş for standing behind me throughout this project. With her support, I took
the opportunity to work on one of the most modern and excellent subjects of applied
mathematics. I am grateful to her and I will always be. I would also like to thank
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OPTICAL SOLITONS FOR THE HIGHER-ORDER CUBIC-QUINTIC
NONLINEAR SCHRÖDINGER EQUATION

WITH A PT -SYMMETRIC POTENTIAL

SUMMARY

In nature, most of the systems are nonlinear and as a result of this fact, those
systems are modeled by nonlinear systems of equations. Some of the most remarkable
progress in nonlinear science is observed in wave propagation phenomena. Often,
research on a given nonlinear system begins by investigating a one-dimensional partial
differential equation (PDE) as an approximation to an experimental system in optics,
fluid dynamics, plasma physics and biology. Many of these nonlinear equations have
known nonlinear wave type solutions and some are commonly referred to as soliton
solutions. Solitons are localized waves that collide elastically, suffering only a shift in
phase. The history of solitons dates back to 1834, the year in which John Scott Russell
observed a wave form propagated for several kilometers in a shallow canal of Scotland
without being distorted. Solitons represent the solutions of nonlinear wave-type partial
differential equations, including sine-Gordon, Korteweg-de Vries (KdV) and nonlinear
Schrödinger (NLS) equations.

In this thesis, we explore the theoretical and numerical analysis of optical solitons
of a higher order cubic quintic nonlinear Schrödinger equation (CQNLS) with a
fourth-order dispersion term (4OD) in a PT -symmetric potential.

In Chapter 1, the historical background of optical soliton research is briefly given. The
application areas and the mechanism of the NLS 4OD equation are discussed, and the
general properties of PT -symmetric potentials are argued. In this chapter, the aim of
the thesis, literature review and hypothesis of the thesis are given, respectively.

In Chapter 2, spectral renormalization method (SR), the numerical method which is
used to obtain localized soliton solutions is explained. The modification of this method
is given in order to apply to CQNLS equation with a fourth order dispersion term
and an external potential. Then, the Split-step Fourier method is given for nonlinear
stability analysis.

Chapter 3 is dedicated to (1+1)D 4OD cubic-quintic NLS equation without an external
potential. Exact and numerical solution of the equation are analyzed and the produced
results are shown by some graphs. Lastly, the nonlinear stability of the soliton solutions
are investigated for various parameters of the considered equation and the results are
compared.

Chapter 4 includes studies of exact soliton solution of the (1+1)D 4OD cubic-quintic
NLS equation with a PT -symmetric potential. This PT -symmetric potential is
introduced and for different values of parameters, soliton solutions are found in this
potential. For this various values of parameters of the equation, exact and numerical
results are compared, the effect of the eigenvalue of the numerical solutions are figured
out and the maximum amplitude of the solitons are discovered. For final, the nonlinear
stability of the produced solitons are demonstrated in terms of various parameters.

xvii



Result of this dissertation are summarized in Chapter 5. In this thesis,
MATLABR2010a computer programme is used and all of the results are produced
by the use of this programme.
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PT -SİMETRİK BİR POTANSİYEL İÇEREN DOĞRUSAL OLMAYAN
YÜKSEK MERTEBE KÜBİK-KUİNTİK SCHRÖDINGER DENKLEMİNDE

OPTİK SOLİTONLAR

ÖZET

Doğada pek çok olgu, nonlineer (doğrusal olmayan) denklem sistemleriyle modellenir.
Nonlineer bilimsel araştırmalar konusundaki en önemli gelişmeler nonlineer dalga
yayılımı problemleri konusunda öne çıkmaktadır. Sıklıkla, verilen bir nonlineer
sistemin araştırılmasına, optik, akışkanlar mekaniği, plazma fiziği ve biyolojideki
ilişkili deneysel sistemin bir yaklaşımı olarak, bir boyutlu bir kısmi türevli diferansiyel
denklemin çözümünün elde edilmesiyle başlanır. Bu tip denklemlerin çoğunun,
bilinen nonlineer dalga tipi çözümleri vardır ve bunların bir kısmı da soliton olarak
isimlendirilmiştir. Solitonlar, elastik çarpışmalar yapan ve çarpışma sonrası formunu
koruyarak sadece faz kayması görünen lokalize dalga çözümleridir. Solitonun
geçmişi 1834 yılına dayanır. Bu tip lokalize ve formunu koruyarak kilometrelerce
ilerleyen bir dalga ilk kez John Scott Russell tarafından İskoçya’da dar ve sığ
bir kanalda gözlemlenmiştir. Russell daha sonra bu dalgayı "solitary wave-yalnız
dalga" olarak isimlendirmiştir. Nonlineer dalgaların modellenmesinde kullanılan
sine-Gordon, Korteweg-de Vries (KdV) ve nonlinear Schrödinger (NLS) gibi kısmi
türevli diferansiyel denklemlerin soliton tipi çözümleri kabul ettikleri uzun yıllardır
bilimsel literatürde gösterilmiştir.

Evrende ölçülebilen bütün fiziksel gözlemlerin sonuçları, reel büyüklüklerle ifade
edilebilir.

Kuantum mekaniğinde bütün operatörlerin (örneğin Hamiltonyen) özdeğerlerinin reel
olmaları gerekir ve reel spektrumu garanti edebilmek için kullanılan operatörler
Hermityen (kendine eş) olamlıdır. Fakat son yıllarda yapılan bazı çalışmalarda bu
gerekliliğin zayıflatılabileceği gözlendiği gibi ve operatörlerin uzay-zaman simetrisini
(PT -simetri) sağlaması durumunda, Hermityen olmayan operatörlerinde bütünüyle
reel spektrum yaratabileceği gösterilmiştir.

Bu çalışmada kullandığımız potansiyel de PT -simetrik olma özelliği taşımaktadır,
yani V (x) = V ∗(−x) ilişkisini sağlar. Kullanılan PT -simetrik potansiyel aşağıdaki
bir kompleks yapıda tanımlanmıştır:

VPT =V (x)+ iW (x) (1)

Burada V (x) ve W (x), sırasıyla, PT -simetrik kompleks potansiyelin reel ve imajiner
kısımlarıdır. Potansiyelin reel kısmı çift fonksiyon özelliğine sahipken, imajiner kısmı
tek fonksiyondur.

Bu çalışmada, aşağıda ifade edilen, dördüncü mertebeden dispersiyon terimi ve bir dış
potansiyel içeren doğrusal olmayan kübik-kuintik nonlineer Schrödinger denkleminin
soliton çözümlerinin sayısal olarak varlığı ve kararlılık (stabilite) analizleri incelenmiş
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ve sonuçlar kesin çözümlerle karşılaştırılmıştır.

iuz +uxx +α|u|2u+ γuxxxx +β |u|4u+VPT u = 0 (2)

Verilen denklemde u kompleks değerli türevlenebilir fonksiyonu, uxx kırılımı
modelleyen terimi, α üçüncü mertebeden doğrusal olmayan terimin katsayısını, γ

terimi dördüncü mertebeden dispersiyon teriminin katsayısını ,β beşinci mertebeden
doğrusal olmayan terimin katsayısını ve VPT PT -simetrisi özelliği sağlayan
potansiyeli temsil eder. Bu tezin amacı, PT -simetrisi özelliği sağlayan potansiyelin
ve dördüncü mertebe dispersiyon teriminin (uxxxx), soliton çözümünde ve bu
çözümlerin kararlılığında yarattığı etkiyi gözlemlemektir.

Bölüm 1’de, optik solitonlarla ilgili çalışmaların tarihsel gelişimlerinden kısaca söz
edilmiş ve dördüncü mertebeden dispersiyon terimi ve PT -simetrik potansiyel
içeren, doğrusal olmayan kübik ve kübik-kuintik Schrödinger denklemlerinin yapısı
ve uygulama alanları anlatılmıştır. Bunların yanı sıra, bu bölümde, denklemin
çözümünde kullanılmış olan sayısal analiz yöntemleri de açıklanmıştır. Ayrıca analitik
ve sayısal olarak dördüncü mertebe dispersiyon terimi içeren NLS denkleminin
soliton çözümlerini inceleyen çalışmalardan da bahsedilmiştir. Çalışmada kullanılan
PT -simetrik potansiyelin tanımı verilmiş, fiziksel anlamı ve sağlaması gereken
özellikler açıklanmıştır. Bu bölümde, CQNLS denkleminin soliton tipi çözümlerinin
elde edilmesinde kullanılan spektral renormalizasyon (SR) metodunun literatürde
kullanıldığı problemlerden bahsedilmiş, metodun temel yaklaşımı anlatılmıştır. Tezin
amacı, gerekli literatür taraması ve tezin hipotezi sırasıyla verilmiştir.

Bölüm 2’de Ablowitz ve Musslimani’nin ortaya koyduğu Spektral Renormalizasyon
(SR) yönteminden ve yöntemin temel prensiplerinden bahsedilmiştir. Bu sayısal
yöntemin bir modifikasyonu ile dış potansiyel içeren ve dördüncü mertebeden
dispersiyon terimi bulunan CQNLS denkleminin sayısal çözümleri elde edilmiştir.
Bu yöntemde, denkleme u(x,z) = f (x)eiµz formunda bir çözüm aranmış olup f (x)
kompleks değerli fonksiyonu Fourier uzayında iteratif olarak çözülmüştür. Daha sonra,
elde edilen solitonların stabilite analizi için Ayrık adımlı Fourier metodu (Split-step
Fourier Method) kullanılmıştır.

Bölüm 3, aşağıdaki gibi verilen potansiyelsiz halde, (1+1) boyutlu dördüncü
mertebeden bir dispersiyon terimi içeren, kübik-kuintik NLS denklemine ayrılmıştır:

iuz +αuxx + |u|2u+ γuxxxx +β |u|4u = 0 (3)

Literatürde, kuintik terimin ihmal edildiği halde, (β=0) bu denklemin analitik
çözümleri belli parametreler için

u(x,z) =

√
3α2

10γ
sech2

(
x√

20γ/α

)
exp
(

i
4α2

25γ
z
)

(4)

formunda elde edilmiş ve soliton tipi çözümler incelenmiştir. Bu bölümde, sayısal
algoritmamızın doğruluğunu test etmek amacıyla, elde edilen bu kesin çözüm ve SR
algoritmasından elde edilen sayısal çözümlerin üst üste düştüğü gösterilmiştir. Bu
çözümlerde dördüncü mertebeden dispersiyon teriminin soliton yapıları üzerindeki
etkisi araştırılmış ve son olarak bu solitonların stabiliteleri incelenmiştir.
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Bölüm 4, (1+1) boyutlu dördüncü mertebeden dispersiyon terimi ve PT -simetrik
potansiyel içeren kübik-kuintik NLS denkleminin sayısal çözümlerini ve kararlılık
analizlerini içermektedir. Bu bölümde, çalışmada kullanılan PT -simetrik potansiyel
tanımlanmış ve farklı parametreler altında bu potansiyel altında analitik çözümleri
üretebilmek için u(x,z) = f (x)ei(µz+g(x)) çözüm önerisi yapılmıştır. Burada f (x) ve
g(x) henüz yapısı belli olmayan reel değerli fonksiyonlar olarak kabul edilmiştir.
Bu çözüm önerisi denklemde yerine konarak elde edilen çözümler kesin çözümle
karşılaştırılmış ve kullanılan PT -simetrik potansiyelin yapısı aşağıda verilen şekilde
elde edilmiştir:

VPT = [V1sech2(x)+V2sech4(x)]+ i[W3sech3(x) tanh(x)]. (5)

Potansiyelde bulunan katsayıların soliton çözümüne nasıl etki ettiği sayısal olarak
incelenmiş ve sonuçlar tartışılmıştır. Ayrıca dispersiyon teriminin katsayısı olan (γ)
ve özdeğer (µ) ile maksimum genlik arasındaki ilişkiler yine sayısal olarak incelenmiş
ve sonuçlar grafiklerle gösterilmiştir. Sayısal çözümleri elde etmek için kullanılan
spektral renormalizasyon metodu ile elde edilen soliton çözümleri, çeşitli parametreler
için analitik çözüm ile karşılaştırılmıştır. Daha sonra, bu solitonların stabilite analizi
için Ayrık adımlı Fourier metodu (Split-step Fourier Method) kullanılmış ve elde
edilen sonuçlar grafikler üzerinde gösterilmiştir. Son olarak, dispersiyon teriminin (γ)
ve özdeğerlerin (µ) solitonun kararlılığı üzerindeki etkisi incelenip bulunan sonuçlar
grafiklerle gösterilmiş ve sonuçlar yorumlanmıştır.

Bölüm 5’de tezde elde edilen tüm sonuçlar ayrıntılı olarak açıklanmıştır. Potansiyelsiz
denklemde ve bir dış potansiyel içeren denklemdeki sonuçlar özetlenip, sisteme
eklenen dış potansiyelin etkisi tartışılmıştır. Ayrıca önceki bölümlerden elde edilen
sonuçlar ışığında dispersiyon terimi γ ve özdeğer µ’nün de çözümler üzerindeki
etkileri de bu bölümde tartışılmıştır.

Bu tezde MATLABR2010a bilgisayar programı kullanılmış ve bütün çözümler bu
program ile elde edilmiştir.
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1. INTRODUCTION

In the field of optics, a soliton denote to any optical field that does not change its

shape during propagation because of the sensitive balance between linear and nonlinear

effects in the medium [1]. Interest in optical solitons has grown steadily in recent

years. The field has considerable potential for technological applications, and it

presents many exciting research problems both from a fundamental and an applied

point of view. Over the past thirty-five years, soliton research has been conducted in

fields as diverse as particle physics, molecular biology, quantum mechanics, geology,

meteorology, oceanography, astrophysics and cosmology [2]. NLS equation is usually

defined by the nonlinear dynamics of pulses on a picosecond time-scale. This equation

is developed by Erwin Schrödinger in 1927. A considerable amount of research work

has been devoted to the study of nonlinear Schrödinger equations with a variety of

nonlinearities. Several methods, numerical and analytical, have been effectively used

to handle these problems [3]. The inverse scattering method, Lax pair, Backlund

transformation are some of these methods. These works and results have important

scientific values and application prospects such as transmitting digital signals over

long distances. Mathematical and numerical analysis of the considered equation with

application areas can be found in the reference [2]. Nonlinear Schrödinger equation is

usually define as the propagation of an optical pulse in optical materials is given as

iuz +uxx +α|u|2u = 0. (1.1)

In optics, u corresponds to the differentiable complex valued, slowly varying amplitude

of the electric field; uxx corresponds to diffraction; z is a scaled propagation distance;

the coefficients α represents the cubic nonlinearities of the medium.

The dynamics of pulses with widths smaller than 1 picosecond can not be governed

by the cubic NLS equation. For example, in a solid state laser, pulses are generated

shorter than 10 femtoseconds and the approximation of the standard NLS equation

breaks down. In order to describe the dynamics in such systems, we need higher

order dispersion terms. One needs to consider the third order (3OD) dispersion for
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performance enhancement along trans-oceanic and trans-continental distances. Also,

for short pulse widths where the group velocity dispersion changes, within the spectral

bandwidth of the signal, can no longer be neglected, one needs to take into account the

presence of fourth order (4OD) dispersion [4].

In this thesis, we investigate higher order (we refer to fourth-order dispersion (4OD)

term), cubic-quintic nonlinear Schrödinger equation with a PT -symmetric optical

potential given below:

iuz +uxx +α|u|2u+ γuxxxx +β |u|4u+VPT u = 0. (1.2)

Here γ is a fourth-order diffraction coupling constant taken as a negative constant value

and VPT is a PT -symmetric external potential (lattice).

The aim of this thesis is to find the exact and the numerical solutions of the equation

1.2 and discover the effect of the fourth order dispersion term γuxxxx on the soliton

solutions and their stabilities.

In order to investigate the evolution of the ultrashort optical pulses for NLS equation

with fourth order dispersion term 4OD without any potential and compare with our

numerical method, we used the results obtained in [5]. In this study by Karlsson

and Höök, both second and fourth order dispersion terms are taken into account

and an exact soliton type solution is given. In this work, the effect of the fourth

order dispersion on the shape and stability of the soliton is investigated. Also, in [6]

and [7], the dynamics and interactions of bright solitons in an optical fiber with fourth

order dispersion are investigated. In [8], 4OD cubic-quintic nonlinear Schrödinger

equation with potential is solved through the extended elliptic sub-equation method.

As a consequence, many types of exact traveling wave solutions are obtained which

including bell and kink profile solitary wave solutions, triangular periodic wave

solutions and singular solutions.

Any measurement of a physical observable in our universe obviously yields a real

quantity. Eigenvalues of operators are observable in quantum mechanics. Therefore,

all the eigenvalues of operators are need to be real for the reality. All observables

corresponded to eigenvalues of Hermitian (i.e. self adjoint) operators was postulated

to guarantee a real spectrum. In fact, a Hermitian Hamiltonian ensures a real energy

spectrum. Instead only space time reflection symmetry or PT -symmetry, weaker
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version of Hermicity axiom which requires that the Hamiltonian has seen considerable

attention in the past decade [9–12]. In addition to this, threshold value above which the

spectrum becomes complex are determined in many cases. PT -symmetric is defined

by means parity operator P̂ and the time operator T̂ whose actions are given by P̂ : p̂→

−p̂, x̂→ x̂, i→−i, where p̂ is the momentum operator, x̂ is the position operator and i is

the imaginary unit [13].The P̂T̂ operator and satisfies the commutativity P̂T̂ Ĥ = ĤP̂T̂ ,

namely V (x) =V ∗(−x) and a Hamiltonian Ĥ = p̂2+V (x) has the same eigenfunctions

then it is said to be PT -symmetric [14]. If the same eigenfunctions are not shared

then we can speak of broken PT -symmetry. PT symmetric structures have been

realized in optical models governed by NLS type equations in which the propagation

distance z replaces time in quantum mechanics [10].

We will consider the case of 4OD cubic-quintic nonlinear Schrödinger equation with a

PT - symmetric potential defined as

VPT =V (x)+ iW (x) (1.3)

where V (x) and W (x) are the real and imaginary components of the complex

PT -symmetric potential, respectively. Here, the real part of a PT potential

is a even, symmetric function whereas the imaginary component should be odd,

anti-symmetric. In Figure 1.1, the real and the imaginary parts of the PT -symmetric

potential that is derived in Chapter 4 is plotted.
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Figure 1.1 : Real and imaginary parts of PT -symmetric potential plotted on top of
each other.
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In this thesis, to obtain numerical solutions for 4OD cubic-quintic nonlinear

Schrödinger equation with and without external potential, we will use spectral

renormalization method. To transform the considered equation into Fourier space and

find out a nonlinear integral equation coupled to an algebraic equation is the main idea

of this method. Implementation procedure of this method to the nonlinear Schrödinger

equation explained in Chapter 2.

1.1 Purpose of Thesis

In this thesis, we aim to investigate the effect of the external potential and

fourth-order dispersion term on the soliton solutions of the 4OD cubic-quintic

nonlinear Schrödinger equation with PT -symmetric potential and find an exact

soliton type solution to this model equation. The cases of 4OD cubic-quintic nonlinear

Schrödinger equation without a potential and with a special type of PT -symmetric

potential are compared to understand this effect.

1.2 Literature Review

Since their applications to telecommunication and ultrafast signal routing systems,

optical solitons have been the objects of extensive theoretical and experimental studies

in recent years [15]. They evolve from a nonlinear change in the refracive index of

a material induced by the light intensity distribution [16]. Nonlinear Schrödinger

equation (NLS) is the main nonlinear equation governing the pulse evolution in the

picosecond regime [17].

Nonlinear Schrödinger (NLS) equation is usually denoted by the nonlinear evolution

of short pulses in an optical fiber. This equation represents the mathematical models

of different physical problems [18]. The mechanism and structure of the soliton

interaction are explained both analytically and numerically in [19]. In [19, 20], decay

problem of the ps degenerate soliton and the effect of the frequency down shift are

investigated. In addition to this, wave propagation in nonlinear media [21], surface

waves on deep waters [22] are denoted by nonlinear Schrödinger equation.

In fibers, NLS 4OD equation represent the mathematical model of the optical pulses

in a picosecond time scale [6]. To find out analytical and numerical solutions of
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the considered equation, many studies and researches have been done. Biswas an

coworkers used the solitary wave ansatz to produce exact solution of the NLS 4OD

equation in [23]. To obtain exact solutions, the method of tanh and the method

of sine− cos are applied to the considered 4OD NLS equation [3]. Also in [24],

the nonlinear Schrödinger equation with third and fourth order dispersion terms is

investigated and analytical results are obtained. Various type of exact solitons for the

fourth-order dispersive cubic-quintic nonlinear Schrödinger equation are given in [25].

In [26], the effect of nonlinearity in novel PT -symmetric potential for 4OD

cubic nonlinear Schrödinger equation are investigated. Numerical solutions of 4OD

cubic-quintic nonlinear Schrödinger equation with a PT -symmetric potential are

investigated by means of spectral renormalization method in [27]. This method is

essentially a Fourier iteration method and in this thesis, the method is modified so

that it can be applied to the (1+1)-dimensional 4OD cubic-quintic NLS equation. This

method can be effectively used to obtain localized solution of KDV equation [28],

dispersion-managed systems [29], discrete diffraction-managed systems [30, 31] and

NLS equation [32]. Also, (2+1)D and (1+1)D NLS equation with an external potential

was solved by using the spectral renormalization method and the produced results are

shown in [33, 34] and [27], respectively.

1.3 Hypothesis

The effect of the external potential and its type on the existence and stability

of fundamental solitons is crucial. Higher order dispersion affects the maximum

amplitude and the shape of the soliton solution of the model equation. The existence

and stability of the soliton solutions, are greatly affected by this higher order dispersive

term.
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2. NUMERICAL METHODS

2.1 Spectral Renormalization Method

It is known that various techniques have been used to compute localized solutions (i.e.,

soliton solutions) to nonlinear evolution equations. Numerical solutions to Eq. (1.1) are

investigated by using the Spectral renormalization method. The method is essentially

a Fourier iteration method that was proposed by Petviashvili in [35].

Later, Ablowitz and Musslimani advanced this method [36] a generalized numerical

scheme for computing solitons in nonlinear wave guides (SR). To transform the

governing equation Fourier space and find a nonlinear nonlocal integral equation

coupled to an algebraic equation is the essence of the method. The coupling gets

under control the numerical scheme from diverging.

The optical mode is then obtained from an iteration scheme, which converges rapidly.

This method is useful to apply to a large class of problems which include higher order

nonlinear terms with different homogenetic.

In this section, we have given the numerical solution to the NLS 4OD cubic-quintic

equation with an external potential in Eq. (1.2) and this solution will be obtained by

the spectral renormalization method.

The method is modified so that it can be applied mainly to the (1+1)D NLS 4OD

cubic-quintic equation with PT -symmetric potential as follows:

iuz +uxx +α|u|2u+ γuxxxx +β |u|4u+VPT u = 0. (2.1)
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Using the ansatz u(x,z) = f (x)eiµz where f (x) is a complex-valued function and µ is

the propagation constant (or eigenvalue), we have following expressions:

uz = iµ f eiµz

uxx = fxxeiµz

uxxxx = fxxxxeiµz

u∗ = f e−iµz

|u|2 = | f |2

|u|4 = | f |4.

(2.2)

Substituting the set of the terms in Eq. (2.2) into Eq. (2.1), the following nonlinear

equation for f is obtained

−µ f eiµz + fxxeiµz +α| f |2 f eiµz + γ fxxxxeiµz +β | f |4 f eiµz +VPT f eiµz = 0. (2.3)

After simplifying these equations we get

−µ f + fxx +α| f |2 f + γ fxxxx +β | f |4 f +VPT f = 0. (2.4)

After applying Fourier transformation to Eq. (2.4)

F{−µ f}+F{ fxx}+F{α| f |2 f}+
F{γ fxxxx}+F{β | f |4 f}+F{VPT f}= F{0}.

(2.5)

where F denotes Fourier transformation and considering the properties of this

transformation, we have Eq. (2.6)

−µ f̂ +(−ikx)
2 f̂ +αF{| f |2 f}+ γ(−ikx)

4 f̂
+βF{| f |4 f}+F{(V + iW ) f}= 0

(2.6)

where F ( f ) = f̂ and kx are Fourier variables. Solving Eq. (2.6) for the f̂ yields

f̂ =
αF{| f |2 f}+βF{| f |4 f}+F{(V + iW ) f}

[µ + kx
2− γkx

4]
(2.7)

In order to find f (x), this equation could be indexed and utilized but the scheme does

not converge. At this point, we should make acquainted with a new field variable

f (x) = λw(x) with λ ∈ R+ where λ is a parameter to be determined. The system with

the new variable can be written as

λ ŵ =
αF{|w|2|λ |2wλ +βF{|w|4|λ |4wλ +F{(V + iW )λw}

µ + kx
2− γkx

4 (2.8)
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simplifying this equation, we get

ŵ =
αF{|w|2|λ |2w}+βF{|w|4|λ |4w}+F{(V + iW )w}

µ + kx
2− γkx

4 (2.9)

For finding out w, Eq. (2.9) can be utilized in an iterative method. In order to succeed

this, we can calculate ŵ using the following iteration approach:

ŵn+1 =
α|λ |2F{|wn|2wn}+β |λ |4F{|wn|4wn}+F{(V + iW )wn}

µ + kx
2− γkx

4 , n∈N (2.10)

with the initial condition taken as a Gaussian type function

w0 = e−x2
(2.11)

where our convergence criterions are |wn+1−wn| < 10−12. Multiplying both sides of

Eq. (2.9) by (µ + kx
2− γkx

4) and we obtain

(µ + kx
2− γkx

4)ŵ = |λ |2αF{|w|2w}+ |λ |4βF{|w|4w}+F{(V + iW )w}. (2.12)

When we take all terms of Eq. (2.12) to the left side, we lead to following equation

(µ + kx
2− γkx

4)ŵ−|λ |2αF{|w|2w}− |λ |4βF{|w|4w}−F{(V + iW )w}= 0.

(2.13)

Multiplying Eq. (2.13) by the conjugate of ŵ, i.e. by ŵ∗ yields

(µ+kx
2−γkx

4)|w|2−|λ |2αF{|w|2w}ŵ∗−|λ |4βF{|w|4w}ŵ∗−F{(V +iW )w}ŵ∗= 0.

(2.14)

Furthermore, integrating Eq. (2.14) leads to∫
∞

−∞

(µ + kx
2− γkx

4)|w|2dk−|λ |2
∫

∞

−∞

αF{|w|2w}ŵ∗dk

−|λ |4
∫

∞

−∞

βF{|w|4w}ŵ∗dk−
∫

∞

−∞

F{(V + iW )w}ŵ∗dk = 0 (2.15)

or in a more compact form

−
∫

∞

−∞

[
−F{(V + iW )w}ŵ∗+(µ + kx

2− γkx
4)|w|2

]
dk

+|λ |2
∫

∞

−∞

αF{|w|2w}ŵ∗dk+ |λ |4
∫

∞

−∞

βF{|w|4w}ŵ∗dk = 0.
(2.16)

Eq. (2.16) is a fourth order polynomial of λ in the form P(λ ) = aλ 4 +bλ 2 + c then λ

can be calculated exactly by the imposing following formula:

λ1;2 =±

√
−b±

√
b2−4ac

2a
(2.17)
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where

a = β

∫
∞

−∞

F{|w|4w}ŵ∗dk (2.18)

b = α

∫
∞

−∞

F{|w|2w}ŵ∗dk (2.19)

c =−
∫

∞

−∞

[−F{(V + iW )w}ŵ∗+(µ + kx
2− γkx

4)|w|2]dk. (2.20)

The required soliton will be f (x) = λ (wx) = λF−1(ŵ) when the iteration

convergence.

In Fig. 2.1, the soliton obtained by the method described above is plotted on top of the

real and the imaginary parts of the specific PT -symmetric potential which is derived

in Chapter 4.
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Figure 2.1 : Numerically obtained soliton on top of the real and imaginary parts of
PT -symmetric potential.

2.2 Nonlinear Stability Analysis

If a soliton is considered as nonlinearity stable, then it should preserve its shape,

location and maximum amplitude during direct simulations. To analyse the nonlinear

stability of solitons, we directly compute Eq. (1.2) over a long distance. In order to do

this, split-step Fourier method is employed to advance in z [37].

10



3. CQNLS 4OD EQUATION WITHOUT AN EXTERNAL POTENTIAL

3.1 Exact and Numerical Solutions

3.1.1 Exact solution

Current fiber manufacturing strategies provide experimentalists with fibers having an

intensive range of dispersive behavior. We realize that not only the second order

dispersion is important, but also its curvature (fourth order dispersion, 4OD) and

slope (third order dispersion, 3OD) become significant when studying ultrashort pulses

in optic fibers. In particular, at the frequency of ω0 of minimum/maximum group

velocity dispersion, the third order dispersion (3OD) vanishes and 4OD turns into

the subsequent higher-order dispersion. This phenomenon is studied by Karlsson and

Höök [5] for positive third order dispersion and it was discovered that pulses in such

media will always loose power with the aid of radiation. But, the case of negative 4OD

dispersion leads one to new solitary wave structures. The exact stationary solution of

4OD NLS with negative fourth order dispersion is given as well in above stated work.

In this chapter, we will use the spectral renormalization method to solve 4OD

cubic/cubic-quintic NLS equation without an external potential and investigate the

soliton properties in order to compare the analytical solution given in [5] with the

numerical solution we obtain. We also inspect the effect of the fourth order dispersion

term via the usage of the numerical method (SR).

The cubic-quintic nonlinear Schrödinger equation with a fourth order dispersion term

(4OD) is given as follows:

iuz +αuxx + |u|2u+ γuxxxx +β |u|4u = 0 (3.1)

where u = u(x,z) is a complex-valued function and x,z ∈ R. Eq. (3.1) for only cubic

nonlinearity case, (without the quintic term, corresponding to (β = 0) was introduced
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in [5] and exact stationary solution of this equation is given as follows

u(x,z) =

√
3α2

10γ
sech2

(
x√

20γ/α

)
exp
(

i
4α2

25γ
z
)

(3.2)

When this solution is compared to the NLS-soliton, it is seen that this solution has

no free parameter, and it cannot be given a relative velocity (frequency offset). It

should be considered that, this type of fixed parameter solutions have been discovered

earlier [38, 39]. Moreover, the particular solution Eq. (3.2) could thoroughly belong

to a class of solutions with an amplitude-width relation similar to that of the NLS

soliton [5]. These solutions should have the equal sech2-shape as the pulse in Eq. (3.2).

Eq. (3.1) is also investigated in [40] and [41] in connection with the theory of optical

solitons in gyro-tropic media and the nonlinear fiber optics.

3.2 Numerical Illustrations

We will numerically investigate the soliton solution of Eq. (3.1) for various values of

γ (40D term’s coefficient) and the propagation constant µ in this subsection.

In Fig. 3.1, we show the exact soliton solution and the numerically obtained soliton

solution of Eq. (3.1) and it can clearly be seen from this figure that our numerical

algorithm converges to the exact solution for the parameters γ =−1, µ = 1.
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Figure 3.1 : Exact and numerical solutions of 4OD NLS equation on top of each
other for γ =−1,µ = 1

So as to investigate the effect of the eigenvalue and the fourth order dispersion on the

soliton properties, we plotted solitons for diverse values of γ and µ .
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To observe the effect of the eigenvalue µ , we fixed the coefficient of the 4OD

dispersion as γ = −1 and then increased the eigenvalue to µ = 4 in Fig. 3.2. From

this figure, we can clearly see that the maximum amplitude of the soliton comparing to

γ =−1,µ = 1 case increases, namely to max| f |= 1.003 and the soliton becomes more

vertical. Another interesting result is revealed by this figure: the tails of the soliton

differs from the previous case. This phenomenon was also observed by Karpman

in [40]. They called these solitons as "solitons with oscillating tails".

−20 −15 −10 −5 0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

 

 

1.551392
|f|

Figure 3.2 : Numerically obtained higher order mode for γ =−1, µ = 4.

In Fig. 3.3, we still increase the eigenvalue to µ and this time we take µ = 7. This figure

shows that, the tails become more pronounced and the maximum amplitude increases

to max| f |= 1.82.
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Figure 3.3 : Numerically obtained higher order mode for γ =−1, µ = 7.
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In the next figures, to observe the effect of the increasing eigenvalue γ , we decreased

the effect of the 4OD dispersion by setting µ = 1 and slowly increased the coefficient

γ to γ =−0.9, γ =−0.2 and γ = 0 respectively.
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Figure 3.4 : Numerically obtained higher order mode for γ =−0.9, γ =−0.2 and
γ = 0.

In Fig. 3.4, we observe a small increment in the maximum amplitude of the soliton

comparing to larger 4OD effect case shown in Fig. 3.1 but the shape of the soliton

is nearly the same with that figure and we observe the effect of β to the maximum

amplitude of the 4OD equation. For this we choose gradually increased the coefficient

γ to γ =−0.9, γ =−0.2 and γ = 0 respectively.

3.3 Nonlinear Stability

In this section, we will numerically see how the shape and the maximum amplitude of

a higher order soliton effect its nonlinear stability properties. In order to investigate

this, obtained solitons are computed over a long distance and the shapes, maximum

amplitudes and locations during the evolution is monitored. We investigated the

previously obtained solitons in the same order.

First we took the soliton solution that is shown in Fig. 3.1 and evolved it for z = 1.

The results are demonstrated in Fig. 3.5. From this figure, one can clearly conclude

that this soliton is nonlinearly unstable as it does not preserve its shape and maximum

amplitude during the evolution.
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Figure 3.5 : Nonlinear instability of a higher order soliton for γ =−1,µ = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Figure 3.6, we show a nonlinearly unstable higher order soliton obtained for γ =−1,

µ = 4. It is seen that, around z= 0.2, the maximum amplitude starts to decrease swiftly

and then starts to increase slowly around z = 0.6 as a result of the deterioration in the

shape of the soliton.

In Figure 3.7, we show a nonlinearly unstable higher order soliton obtained for

γ = −1,µ = 9. It is seen from the figure that, around z = 0.1, a sharp decrease

in the maxiumum amplitude is observed and it is revelaed from the figure that the

soliton couldn’t preserve its shape and is subjected to deterioration immediately after

the evolution starts.
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Figure 3.6 : Nonlinear instability of a higher order soliton for γ =−1,µ = 4;(a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In this section, we also investigate the effect of γ (the coefficient of the higher order

dispersion term) to the higher order soliton. To obtain that, we will fix the eigenvalue

to µ = 1 and change the constant γ to see how it effects the maximum amplitude of the

higher order soliton.

In Figure 3.8, we investigated the case given in Figure 3.5 for the constant γ = −0.9.

When we change the constant γ form -1 to -0.9, the maximum amplitude increases

slightly during the evolution and it can clearly seen from the graphic that this soliton

is still nonlinearly unstable.

In Figure 3.9, we take the constant γ = −0.5 and continue to investigate how the

soliton changes during the evolution. We can observe from the graphic that the

maximum amplitude of higher order soliton increase swiftly.
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Figure 3.7 : Nonlinear instability of a higher order soliton γ =−1,µ = 9; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Figure 3.10, when the constant γ approach to zero, the maximum amplitude of the

soliton continues to increase and it starts to change its location during the evolution.

When we come to the Figure 3.11 for final, we take the constant γ = 0 to observe

soliton’s shape and the maximum amplitude. We have seen from the previous figures

that the value of constant γ increases the maximum amplitude of the soliton when it

approaches to zero. If we take γ = 0, the maximum amplitude keeps increasing during

the evolution and this time, this indicates blow up which we can be clearly seen in

Figure 3.11.
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Figure 3.8 : Nonlinear stability of a higher order soliton for γ =−0.9,µ = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

Figure 3.9 : Nonlinear instability of a higher order soliton for γ =−0.5,µ = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.
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Figure 3.10 : Nonlinear instability of a higher order soliton for γ =−0.2,µ = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.

Figure 3.11 : Nonlinear instability of a higher order soliton for γ = 0,µ = 1; (a)
Numerically produced higher order soliton (blue dashes) on top of the
solution after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.
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In this chapter, as a result of the numerical observations, we conclude that:

(i) The higher order solitons obtained for 4OD NLS equation may have oscillating tails

and these solitons are found to be nonlinearly unstable;

(ii) The higher order solitons obtained for 4OD cubic-quintic NLS equation are found

to be nonlinearly unstable for the cases when the effect of the 4OD effect is either

small or the eigenvalue is µ is small (even if the 4OD effect is large).
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4. CQNLS 4OD EQUATION WITH AN EXTERNAL POTENTIAL

4.1 Exact and Numerical Solutions

4.1.1 Exact solution

Exact solutions provide to understand the structure of the complex nonlinear physical

phenomena which are related to wave propagation in a higher-order CQNLS equation

with PT -symmetric potential.

Consider the following (1+1)D 4OD cubic-quintic NLS equation with a

PT -symmetric potential:

iuz +uxx +α|u|2u+ γuxxxx +β |u|4u+VPT u = 0. (4.1)

If we take u = 0 then we find a trivial solution of Eq. (4.1). For finding non-zero

solutions, set u 6= 0. Dividing Eq. (4.1) by u and by use of Eq. (1.3) leads to

i
uz

u
+

uxx

u
+α|u|2 + γ

uxxxx

u
+β |u|4 +V + iW = 0. (4.2)

The following ansatz is used to get non-zero stationary solitons:

u(x,z) = f (x)ei(µz+g(x)) (4.3)

where f (x) and g(x) are real-valued functions different than zero, u is a function of

x and z to be determined and µ is the propagation constant. Taking derivatives of

Eq. (4.3) with respect to z and x, results in following equations,

uz = f (x)iµei(µz+g(x)) (4.4)

uxx = [ f ′′(x)+2i f ′(x)g′(x)+ i f (x)g′′(x)− f (x)(g′(x))2]ei(µz+g(x)) (4.5)

|u|2 = f (x)ei(µz+g(x)) f (x)e−i(µz+g(x)) = ( f (x))2 (4.6)

uxxxx = [ f ′′′′(x)+4i f ′′′(x)g′(x)+6i f ′′(x)g′′(x)+4i f ′(x)g′′′(x)+ i f (x)g′′′′(x)

−6 f ′′(x)(g′(x))2−12 f ′(x)g′(x)g′′(x)−3 f (x)(g′′(x))2−4 f (x)g′(x)g′′′(x)

−4i f ′(x)(g′(x))3−6i f (x)(g′(x))2g′′(x)+ f (x)(g′(x))4].

(4.7)
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Substituting Eq. (4.4)-Eq. (4.7) into Eq. (4.2) yields

[−µ +α f 2(x)+
f ′′(x)
f (x)

+ γ
f ′′′′(x)

f
− (g′(x))2−6γ

f ′′(x)
f (x)

(g′(x))2 + γ(g′(x))4

−3γ(g′′(x))2−12γ
f ′(x)
f (x)

g′(x)g′′(x)−4γg′(x)g′′′(x)+β ( f (x))4 +V (x)]

+i[−4γ
f ′(x)
f (x)

(g′(x))3 +4γ
f ′(x)
f (x)

g′′′(x)+2
f ′(x)
f (x)

g′(x)+6γ
f ′′(x)
f (x)

g′′(x)

+4γ
f ′′′(x)
f (x)

g′(x)+g′′(x)−6γ(g′(x))2g′′(x)+ γg′′′′(x)+W (x)] = 0.

(4.8)

To obtain soliton solutions, we used the following ansatz

f (x) = f0sechp(x), g′(x) = g0sechq(x) (4.9)

where f0 and g0 are non-zero real constants and p ∈ N. We need to calculate the

derivatives of the functions f and g to equate simple form of Eq. (4.8). By using

Eq. (4.9) we obtain

f ′(x) =− f0 p tanh(x)sechp(x) (4.10)

f ′′(x) =− f0 p(1+ p)sechp+2(x)+ f op2sechp(x) (4.11)

f ′′′(x) = f0[−p3 +(p3 +3p2 +2p)sech2(x)]sechp(x) tanh(x) (4.12)

f ′′′′(x) = f0[p4− (2p4 +6p3 +8p2 +4p)sech2(x)

+(p4 +6p3 +11p2 +6p)sech4(x)]sechp(x)
(4.13)

g′(x) = g0sechq(x) (4.14)

g′′(x) = g0qsechq(x) tanh(x) (4.15)

g′′′(x) = g0q2sechq(x)−g0(q2 +q)sechq+2(x) (4.16)

g′′′′(x) =−g0q3sechq(x) tanh(x)+g0(q3 +3q2 +2p)sechq+2(x) tanh(x). (4.17)

Substituting Eq. (4.10)-Eq. (4.17) into Eq. (4.8) we obtain

−µ + p2 + γ p4 + sech2(x)[−p2− p−2γ p4−6p3−8p2−4p]

+sech4(x)[γ(p4 +6p3 +11p2 +6p)]+ sech2p(x)(α f0
2)+ sech4p(x)(β f0

4)

+sech2q(x)[−g0
2−6γg0

2 p2−7γg0
2q2−12γg0

2 pq]+ sech4q(x)[γg0
4]

+sech2q+2(x)[6γg0
2 p2 +6γg0

2 p+7γg0
2q2 +4γg0

2q+12γg0
2 pq]+V

+i[sechq(x) tanh(x)[−2pg0−qg0−4γ p3g0−6γ p2qg0− γ p3g0]

+sechq+2(x) tanh(x)[4γ(p3 +3p2 +2p)g0 +6γ(p2 + p)qg0 +4γ p(q2 +q)g0

+γ(p3 +3p2 +2p)g0]+ sech3q(x) tanh(x)[4γ pg0
3 +6γqg0

3]+W ] = 0.

(4.18)

22



When we split Eq. (4.18) into real and imaginary parts, we get the expressions for the

real and imaginary parts of the PT -symmetric potential as we can see below:

Real Part

The real part of the Eq. (4.18) can be written as,

(−µ + p2 + γ p4)+ sech2(x)[−p2− p− γ(2p4 +6p3 +8p2 +4p)]

+sech4(x)[γ(p4 +6p3 +11p2 +6p)]+ sech2p(x)(α f0
2)+ sech4p(x)(β f0

4)

+sech2q(x)[−g0
2−6γg0

2 p2−7γg0
2q2−12γg0

2 pq]

+sech4q(x)[γg0
4]+ sech2q+2(x)[6γg0

2 p2 +6γg0
2 p

+7γg0
2q2 +4γg0

2q+12γg0
2 pq]+V = 0.

(4.19)

The real part of the PT -symmetric potential is found as

V (x) =V0 +V1sech2(x)+V2sech4(x)+V3sech2p(x)+V4sech4p(x)

+V5sech2q(x)+V6sech4q(x)+V7sech2q+2(x)
(4.20)

where

V0 =−µ + p2 + γ p4 (4.21)

V1 =−p2− p− γ(2p4 +6p3 +8p2 +4p) (4.22)

V2 = γ(p4 +6p3 +11p2 +6p) (4.23)

V3 = α f0
2 (4.24)

V4 = β f0
4 (4.25)

V5 =−g0
2−6γg0

2 p2−7γg0
2q2−12γg0

2 pq (4.26)

V6 = γg0
4 (4.27)

V7 = 6γg0
2 p2 +6γg0

2 p+7γg0
2q2 +4γg0

2q+12γg0
2 pq (4.28)

We set µ = p2 + γ p4 to get rid of coefficient V0 for the sake of simplicity and we can

see in the following form that V (x) is indeed an even function

V (−x) =V1sech2(−x)+V2sech4(−x)+V3sech2p(−x)+V4sech4p(−x)

+V5sech2q(−x)+V6sech4q(−x)+V7sech2q+2(−x)

=V1sech2(x)+V2sech4(x)+V3sech2p(x)+V4sech4p(x)

+V5sech2q(x)+V6sech4q(x)+V7sech2q+2(x)

=V (x).

(4.29)
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Now, V (x) can be simplified by equating the powers of sech(x). Considering the case

of p = q = 1, then Eq. (4.20) can be rewritten as following form,

V (x) = [2+20γ−α f0
2 +25γg0

2 +g0
2]sech2(x)

−(24γ +β f0
4 +35γg0

2 + γg0
4)sech4(x)

(4.30)

Then we take γ =−0.2 to find out even function V (x), we get

V (x) =−(2+α f0
2 +4g0

2)sech2(x)+(0.2g0
4−β f0

4 +7g0
2 +4.8)sech4(x). (4.31)

where

V1 =−2−α f0
2−4g0

2 (4.32)

V2 = 0.2g0
4−β f0

4 +7g0
2 +4.8. (4.33)

Considering the case of f0 = 1, g0 = 1 we finally obtain the real part of the

PT -symmetric potential as,

V (x) =−(α +6)sech2(x)+(−β +12)sech4(x). (4.34)

Imaginary Part

The complex part of the Eq. (4.18) can be written as

sechq(x) tanh(x)[−2pg0−qg0−4γ p3g0−6γ p2qg0−4γ pq2g0− γq3g0]

+sechq+2(x) tanh(x)[4γ(p3 +3p2 +2p)g0 +6γ(p2 + p)qg0 +4γ p(q2 +q)g0 (4.35)

+γ(p3 +3q2 +2q)g0]+ sech3q(x) tanh(x)[4γ pg0
3 +6γqg0

3]+W (x) = 0

Then the imaginary part of the PT -symmetric potential is obtained as

W (x) =W0sechq(x) tanh(x)+W1sechq+2(x) tanh(x)+W2sech3q(x) tanh(x) (4.36)

where

W0 = g0[2p+q+ γ(4p3 +6p2q+4pq2 +q3)] (4.37)

W1 =−γg0[4p3 +12p2 +8p+6p2q+10pq+4pq2 +q3 +3q2 +2q] (4.38)

W2 =−γg0
3[4p+6q]. (4.39)

We can see in the following form that W(x) is indeed an odd function.

W (−x) =W0sechq(−x) tanh(−x)+W1sechq+2(−x) tanh(−x)
+W2sech3q(−x) tanh(−x)

=W0sechq(x)(− tanh(x))+W1sechq+2(x)(− tanh(x))
+W2sech3q(x)(− tanh(x))

=−W (x).

(4.40)
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Considering the case of p = q = 1, then we can rewritten Eq. (4.36) as following form,

W (x) = 3g0(5γ +1)sech(x) tanh(x)− γg0(10g0
2 +50)sech3(x) tanh(x) (4.41)

by taking γ =−0.2 we get

W (x) = 2g0(g0
2 +5)sech3(x) tanh(x). (4.42)

where

W3 = 2g0(g0
2 +5). (4.43)

If we choose note that g0 = 1 into Eq. (4.42) leads one to

W (x) = 12sech3(x) tanh(x). (4.44)

Attention should be paid in case of p = q = 1, by considering Eq. (4.30) and Eq. (4.41)

the analytical solution of the problem can begin with

u(x,z) = f0 sech(x)ei[µz+g0 arctanh(x)sinh(x)]. (4.45)

Consequently, Eq. (1.2), with the real and the imaginary parts in Eq. (4.31) and

Eq. (4.42) can be given as

VPT = [V1sech2(x)+V2sech4(x)]+ i[W3sech3(x) tanh(x)]. (4.46)

Eq. (4.46) can be seen as an extension of the so-called complexified Scarf II potential

[V0sech2(x)+ iW0sech(x) tanh(x)] for Kerr media with cubic nonlinearity.

4.1.2 Numerical illustrations

In this section, we will show obtained results with graphics for various values of µ,γ, f0

and g0 respectively. As we see in Fig. 4.1 and Fig. 4.2, one of the most important things

that affects the maximum amplitude of the soliton is the selection of f0. In Fig. 4.1,

we plot the real and imaginary parts of the functions f and V under the parameters

f0 = 1.5, g0 = 1, γ = −0.2 and µ = 1. In order to show the effect of the f0 on the

maximum amplitude of the soliton, in Fig. 4.2 and Fig. 4.3, we use the same parameters

as in the Fig. 4.1 for 0≤ f0 ≤ 1.55. The relation between the considered quantities is

almost linear as it is seen in Fig. 4.2.
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Figure 4.1 : Real and imaginary part of the soliton and potential for f0 = 1.5, g0 = 1,
µ = 1 and γ =−0.2.

Figure 4.2 : Numerically obtained solitons for various values of f0 for µ = 1,
γ =−0.2 and g0 = 1.

In Fig. 4.4 , the effect of the 4OD constant γ to the maximum amplitude and to the

shape of the PT -symmetric potential are revealed.
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Figure 4.3 : Numerically obtained solitons for various values of f0 for µ = 1,
γ =−0.2 and g0 = 1.
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Figure 4.4 : Numerically obtained solitons for various values of γ for µ = 1, f0 = 1
and g0 = 1.

In Fig. 4.5, we demonstrate the effect of the eigenvalue µ on the numerical solution f

and PT -symmetric potential.
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Figure 4.5 : (a) Real and imaginary parts of numerical solution f with µ = 3, (b) real
and imaginary parts of numerical solution f with µ = 4, (c) | f | for µ = 3

and µ = 4, (d) absolute values of PT -symmetric potential for µ = 3
and µ = 4, by considering γ =−0.2, f0 = 1 and g0 = 1.

4.2 Nonlinear Stability

If solitons preserve their shape, position and maximum amplitude during direct

simulations then they are called nonlinearly stable in the field of optics. We evolved

solitons over a long distance to search out their nonlinear stability. To do this, we

advanced in z with split-step Fourier method.

Numerically generated soliton of the (1+1)D 4OD NLS equation with a

PT -symmetric potential, nonlinear evolution of the soliton, the view from top

to |u(x,z)| and maximum values of |u| along with the z is plotted in this figures,

respectively. It can be easily seen that the solitons shape and the maximum amplitude

decay with variable z. To plot Fig. 4.6 we used the parameters µ = 1, γ =−0.9, f0 = 1

and g0 = 1. In this figure, |umax| = 0.99 is the maximum amplitude of soliton and its

getting decays up.

28



For the stability of the acquired solutions, the dispersion coefficient γ is an another

important parameter. Dispersion coefficient γ is extremely important for decaying

constant and amplitude of the |umax| and they depends exceedingly on γ . In Fig. 4.7

we demonstrate the case of γ = −0.5 and we fixed the other parameters are as in the

Fig. 4.6. We also deal with the effect of potential depth on the maximum amplitude.

We can clearly see in Fig. 4.8 the maximum amplitude of the soliton more than the

case of Fig. 4.6. When plotting Fig. 4.8, we use the parameter µ = 1, γ = −0.2,

f0 = 1 and g0 = 1. In Fig. 4.9, with taking γ = 0, we demonstrate the effects of

dispersion coefficient on stability of the soliton solution. As it is shown in Fig. 4.9, if

the change in the maximum amplitude is less than or equal to 10−2, then we can say

that the soliton is more conservative than the case of Fig.4.7 in maximum amplitude

sense.

Figure 4.6 : Nonlinear instability of a higher order soliton for γ =−0.9,µ = 1 f0 = 1
and g0 = 1 with a PT -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after

the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)The
view from top and (d) Maximum amplitude as a function of the

propagation distance z.
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Figure 4.7 : Nonlinear instability of a higher order soliton for γ =−0.5,µ = 1,
f0 = 1 and g0 = 1 with a PT -symmetric potential; (a) Numerically
produced higher order nonlinear soliton (blue dashes) on top of the

solution after the evolution (green solid), (b) Nonlinear evolution of the
soliton, (c)The view from top and (d) Maximum amplitude as a function

of the propagation distance z.

Figure 4.8 : Nonlinear instability of a higher order soliton for γ =−0.2,µ = 1 f0 = 1
and g0 = 1 with a PT -symmetric potential; (a) Numerically produced
higher order nonlinear soliton (blue dashes) on top of the solution after
the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)
The view from top and (d) Maximum amplitude as a function of the

propagation distance z.
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Figure 4.9 : Nonlinear instability of a higher order soliton for γ = 0,µ = 1 f0 = 1 and
g0 = 1 with a PT -symmetric potential; (a) Numerically produced

higher order nonlinear soliton (blue dashes) on top of the solution after
the evolution (green solid), (b) Nonlinear evolution of the soliton, (c)
The view from top and (d) Maximum amplitude as a function of the

propagation distance z.

In this chapter, by using the analytical and the numerical results, we conclude that:

(i) When the dispersion coefficient term γ increases, the maximum amplitude of the

PT -symmetric potential decreases

(ii) Despite the change in the shape of the real and imaginary parts of the solitons,

the maximum amplitude of the soliton is not affected from decrement or increment of

eigenvalue µ ,

(iii) The parameter f0 can directly change the maximum amplitude of the solitons.
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5. CONCLUSION

The aim of this thesis is to study (1+1)D 4OD cubic-quintic NLS equation with and

without an external potential and investigate the existence and nonlinear stability

properties of the soliton type solutions to this equation. First of all, spectral

renormalization method is introduced to obtain numerical solutions and split-step

Fourier method is explained to analyze stability of the fundamental solitons. We

implemented the considered numerical approach to the (1+1)D 4OD cubic-quintic

NLS equations both with and without PT -symmetric potential. In the second place,

we show numerical illustration of the soliton solution of (1+1)D 4OD cubic-quintic

NLS equation without an external potential for different values of γ (40D term’s

coefficient) and the propagation constant µ . The stability analysis of the soliton

solutions is obtain by considering the effects of the γ and µ on the stability.

As a result of the numerical observations, we conclude that:

(i) The higher order solitons obtained for 4OD NLS equation may have oscillating

tails and these solitons are found to be nonlinearly unstable

(ii) The higher order solitons obtained for 4OD cubic-quintic NLS equation are found

to be nonlinearly unstable for the cases when the effect of the 4OD effect is either

small or the eigenvalue is µ is small (even if the 4OD effect is large).

In the final chapter, we obtained numerical results for the case with a PT -symmetric

potential and compared them with exact solutions. Using SR method we showed

numerical illustrations and stability of the obtained solitons for various values of the

problem parameters. The maximum amplitudes of the obtained solitons are discovered

and illustrated with changing values of solitons parameters. We saw how the shape and

maximum amplitude of the produced solitons changed in each case.
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The effect of f0, the eigenvalue µ and the dispersion coefficient term γ on the maximum

amplitude of the solitons are depicted and as a result of the numerical studies, we

conclude that:

(i) When the dispersion coefficient term γ increases, the maximum amplitude of the

PT -symmetric potential decreases

(ii) Despite changing the shape of the real and imaginary parts of the solitons, the

maximum amplitude of the soliton is not affected from decreases or increases of

eigenvalue µ

(iii) The parameter f0 can directly change the maximum amplitude of the solitons.

As we can see in illustrations and results, numerical studies are satisfactory in terms

of accuracy and stability. That means we chose the suitable numerical method for

the solution of (1+1)D 4OD cubic-quintic NLS equation and we reached physically

acceptable solutions. In future, maybe someone try to find stable soliton solutions by

taking different potential parameters V1, V2 and W0 and we can discuss inclusion of

fourth order dispersion to the problem.
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[27] Göksel, I., Antar, N. and Bakırtaş, l. (2015). Solitons of (1+ 1)D cubic-quintic
nonlinear Schrödinger equation with PT -symmetric potentials, Optics
Communications, 354, 277–285.

[28] Kadomtsev, B.B. and Petviashvili, V.I. (1970). Soviet Physics—Doklady, 15, 539.

36



[29] Ablowitz, M.J. and Biondini, G. (1998). Multiscale pulse dynamics in
communication systems with dispersion management, Optic Letters, 23,
1668.

[30] Ablowitz, M.J. and Musslimani, Z.H. (2001). Discrete diffraction managed
spatial solitons, Physical Review Letters, 87, 254102.

[31] Ablowitz, M.J. and Musslimani, Z.H. (2003). Discrete spatial solitons in
a diffraction-managed nonlinear waveguide array: a unified approach,
Physical D, 184, 276.

[32] Ablowitz, M.J. and Musslimani, Z.H. (2003). Dark and gray strong
dispersion-managed solitons, Physical Review E Rapid Communication,
67, 025601.
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APPENDIX A.1

Fourier Transform

For a continuous, smooth and absolutely integrable function f (x) , the integral
transform

F(kx) =
1√
2π

∫
∞

−∞

f (x)ei(kx)xdx (A.1)

is called the Fourier transform of f (x) and conversely, the transform

F(kx) =
1√
2π

∫
∞

−∞

f (x)e−i(kx)xdx (A.2)

is called the inverse Fourier transform of F(kx).

The Fourier transform of f is denoted by F ( f ) = f̂ , the inverse Fourier transform of
f̂ is denoted by F−1( f̂ ) and clearly F−1( f̂ ) = F−1(F ( f̂ )).
Integral transform methods are very useful for solving partial differential equations
because of their properties such as linearity, shifting, scaling, etc.
Suppose that f (x) tends to zero as x tends to infinity. Then,

F
(

f ′(x)
)
=

1√
2π

∫
∞

−∞

f ′(x)ei(kx)xdx =
1√
2π

f (x)ei(kx)
∣∣∣∞
−∞

− ikx

∫
∞

−∞

f (x)eikxxdx

=−ikxF ( f (x)) (A.3)

This result can be extended to obtain the differentiation property of the Fourier
transform:

F ( f ′(x)) = (−ikx)
n( f (x)) = (−ikx)

n f̂ , n ∈ N (A.4)
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Place and Date of Birth : Kadıköy 07/08/1992

Adress :Ünalan Mh. Gülnar Sk. No:7/3 Üsküdar/İstanbul
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