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ON ALMOST PSEUDO RICCI SYMMETRIC MANIFOLDS

SUMMARY

The main concern of this thesis is to investigate an n—dimensional almost pseudo Ricci
symmetric manifold (M, g) whose Ricci tensor S satisfies the condition

(V28)(X.Y) = [A(Z) + B(Z)|S(X,Y) + A(X)S(Y,Z) + A(Y)S(X,Z)

where A and B are two non-zero 1 —forms and V denotes the operator of the covariant
differentiation with respect to the metric g. Such a manifold is called almost pseudo
Ricci symmetric manifold and denoted by A(PRS),,.

In the first Chapter, some significant definitions and notions which will be used in the
next chapters are expressed. Also, some definitions and notions are given in order to
identify the Riemannian manifold.

In the second Chapter, a historical overview of the important role of symmetric spaces
in differential geometry is given. Especially, Cartan dealt with classification of those
spaces and established Riemannian symmetric spaces. A Riemanian manifold is called
locally symmetric if VR = 0, where R is the Riemannian curvature tensor of (M, g).
The class of Riemannian symmetric manifolds is a natural generalization of the class
of manifolds of constant curvature. If the Ricci tensor S of (0,2) of the manifold is
non-zero and satisfies the condition

(V28)(X,Y) =2A(Z)S(X,Y)+AX)S(Y,Z) +A(Y)S(X,Z)

where V denotes the Levi-Civita connection and A is a non-zero 1—form such that
g(X,p) = A(X) for all vector fields X,p, then this manifold is called pseudo Ricci
symmetric manifold and is denoted by (PRS),. Pseudo Ricci symmetric manifold
was introduced by Chaki. Chaki and Kawaguchi generalized pseudo Ricci symmetric
manifold as almost pseudo Ricci symmetric manifolds such that

(VzS)(X,Y) =[A(Z)+B(Z2)|S(X,Y)+AX)S(Y,Z2)+A(Y)S(X,Z).
If A = B, then A(PRS), reduces to (PRS),. So, a pseudo Ricci symmetric manifold is
a particular case of A(PRS),.

In the third Chapter, an almost pseudo Ricci symmetric manifold admitting W, —Ricci
tensor has been analyzed. Our aim is to examine of some properties of these manifolds
and find theorems related by these properties. In this Chapter, firstly, W, —curvature
tensor on manifold (M, g) n > 3 is given by

Wo(X,Y,Z,U)=R(X,Y,Z,U)+

S0 2)S(,0) ~ gV, 2)S(C,U)]

n—
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After that, W, —flat A(PRS),, is investigated. Then, the contracted W, —curvature tensor
type of (0,2) is called W>—Ricci tensor and denoted by W(X,Y) as follow

Wy(X,Y) =

n r
L[S Y) - Le(X, 7))
In this Chapter, A(PRS), admitting non-zero W, —Ricci tensor is studied. A necessary
and sufficient condition is found for W, —curvature tensor to be divergence-free. After
that, the conditions for which the W, —Ricci tensor of type (0,2) is recurent, Codazzi
type and covariantly constant are examined. The obtained results are written as
theorems. Finally, an example of the existence of these manifolds satisfying special
conditions is given.

The last Chapter is concerned with an almost pseudo Ricci symmetric spacetime.
Under some conditions, we determine the properties of this spacetime. In the first
part of this section, it is considered that our spacetime is a perfect fluid. In the second
part, using the results obtained in the first part, we prove that our spacetime reduces to
an Einstein, quasi-Einstein or 1—FEinstein space with some assumptions. In addition,
we show that a dust and a radiation fluid with almost pseudo Ricci symmetric tensor
are vacuum.
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HEMEN HEMEN PSEUDO RICCI SIMETRIK MANIFOLDLAR HAKKINDA

OZET

Bu tez calismasinda, Riemann manifoldunun genellestirilmisi olan hemen hemen
pseudo Ricci simetrik manifoldu incelenmistir. Bu tez ¢alismasinin temel amaci

(V28)(X.Y) = [A(Z) +B(Z)|S(X,Y) + A(X)S(Y,Z) + A(Y)S(X,Z)

bagintisim saglayan (0,2) tipindeki S Ricci tensoriiniin baz1 6zel kogullar altinda
durumunu incelemektir. Burada A ve B, 1—formlar, p and Q, g(X,p) = A(X) ve
g(X,0) = B(X) ile tamimlanan A ve B seklindeki 1 —formlar tarafindan iiretilen vektor
alanlar1 olup, V kovaryant tiirevi ifade etmektedir.

Bu tez calismasi, 4 ayr1 boliimden olusmaktadir. Ik béliimde, Riemann manifoldunun
genel bir tanimi verilmigtir. Bir M bir manifoldu iizerinde

<> x(M)xxy(M) — C*(M,R)

doniisiimii 2—lineer, simetrik ve pozitif tanimli ise, bu doniisiime M iizerinde Riemann
metrigi veya metrik tensorii denir. Uzerinde Riemann metrigi tamimlanmis manifolda
Riemann manifoldu adi verilir. Bu boliimde ayrica, Riemann manifoldu iizerinde bazi
vektor alanlarina ait temel tanimlar ve kavramlar verilmistir.

Tez caligmasinin ikinci boliimiinde, ilk olarak, simetrik manifoldlarin diferansiyel
geometrideki oneminden bahsedilmistir ve bu manifoldlarin tarihsel ge¢misi hakkinda
detayl bilgi verilmistir. Diiz olmayan, pseudo Ricci simetrik Riemann manifoldunun
(0,2) tipindeki S Ricci tensorii

(V28)(X,Y) = 24(Z)S(X,Y) +A(X)S(Y,Z) +A(Y)S(X,Z)

ifadesini saglar ve (PRS), ile gosterilir. Bu baginti Chaki tarafindan bulunmus ve
Chaki ve Kawaguchi tarafindan hemen hemen pseudo Ricci simetrik manifoldu olarak
genellestirilerek, A(PRS), ile gosterilmigtir. Bu bolimde, soz edilen manifoldlarla
ilgili calismalar detayl olarak verilmistir.

Calismanin ti¢iincii boliimiinde ise, ilk olarak, 1970 yilinda Pokhariyal and Mishra
tarafindan (M",g), (n > 3) manifoldu iizerinde

Wa(X.Y,Z,U) = R(X,Y.Z,U) + n—il[g(X,Z)S(Y,U) oV, 2)S(X,U)]

bagintist ile tanimlanan W,—egrilik tensoriiniin genel 6zellikleri yer almaktadir. Bu
boliimde, hemen hemen pseudo Ricci simetrik manifoldu goz oniine alinmigtir. Daha
sonra, daraltilmis W, —tensorii

Wy(X,Y) =

T [S(XY) — g(X, )]
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seklinde bulunmus ve W, ifadesiyle gosterilmistir. Manifoldumuz W,—diiz kabul
edildiginde, Ricci tensorii

S(X,Y)=—-g(X,Y)

,

n

bagintisin1 gerceklemektedir. Bu ifadeler kullanilarak
(n—1)(n+2)rA(Z) =0

denklemi bulunmustur. Bu takdirde, r # 0 oldugundan A(Z) = 0 olmaldir.
Dolayisiyla, bu manifold, B formu tarafindan iiretilen rekiirant manifolda indirgen-
mektedir. Bu boliimde ayrica, hemen hemen pseudo Ricci simetrik manifoldu i¢in

(Vzr) = [A(Z) +B(2)]r +2A(02)
bagmtist bulunmustur. Bu bagint1 kullanilarak, divW, ifadesi

n n—1
— I

divWV(Y) = J(2A(QY) +rA(Y)) + B(QY) ~ ~B(Y)]

seklinde elde edilmistir. W, tensériiniin diverjansimin sifir oldugu durumda, -3
ve 5 degerleri S Ricci tensoriiniin p ve Q dzvektorlerine gore ozdegerleri oldugu
ispatlanmigtir. Ayrica, W5 tensorii rekiirant ve Codazzi tipinde tensor alanlar1 olarak
kabul edilmesi halinde, A ve B formlari icin sonuclar bulunmustur. Eger W, tensorii
genellestirilmis rekiirant ise, yani

(VZW2)(X,Y) = a(Z)W2(X,Y) +¥(Z)g(X,Y)

bagitis1 mevcutsa, ¥(Z) = 0 zorunda oldugu elde edilmistir. Bu ise, manifoldun W,
Ricci tensoriiniin genellestirilmis rekiirant olamayacagini gostermigtir. Daha sonra, r
skaler egriligi sabit ve W>—Ricci tensoriiniin de kovaryant tiirevinin sifir oldugu kabul
edilerek teoremler elde edilmistir. Bu durumda,

(VzS)(X,Y)=0

ifadesinin saglandig1 gosterilmistir. Bu ¢alismanin devaminda ise, A ve B formlari
arasinda -
A(QZ) = -5 A(2) + B(2)]

bagintisinin mevcut oldugu bulunmustur. Eger, gz oniine alinan manifoldun r skaler
egriligi sabit ve W, tensorii Codazzi tipinde ise, A ve B formlan tarafindan iiretilen
vekor alanlart arasindaki aginin

1

0= arccos(—ﬂ

)

oldugu elde edilmistir. Bu boliimiin sonunda, skaler egrilige sabit olan, egrilige sahip
hemen hemen pseudo Ricci simetrik manifolda 6rnek verilmistir.

Calismanin son boliimiinde, hemen hemen pseudo Ricci simetrik uzay-zaman ig¢in
ozel bir durum incelenmigtir. Boliimiin i1lk kisminda, uzay-zaman kavramlarinin
tarih boyunca aragtirilmsina duyulan gereksinim hakkinda bilgi verilmistir. Daha
sonra, genel relativistik uzay-zamani, (—,+,+,+) isaretli g metrik tensorli (M, g)
Lorentz manifoldu olarak alinmistir. Birinci boliimde, ilk olarak miikemmel akiskan
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ele alinmistir. Kozmolojik sabit icermeyen Einstein alan denkleminin tanimi ve
milkemmel akigkan icin enerji momentum tensorii 7° nin tanimi verilmistir. Bu
durumda, x yercekimi sabiti, o enerji yogunlugu, p izotropik basing olmak iizere,
Ricci tensori

S(X.Y) = k(0 + PACOA(Y) + (kp+ 3)g(X.Y)
ve skaler egrilik
r=x(c—3p)

olarak bulunur. Bu ifadeler kullanilarak, 4— boyutlu, hemen hemen pseudo
Ricci simetrik uzay-zamanimizda kozmolojik sabit icermeyen miikemmel akigkana
ait Einstein alan denklemini saglamasi icin gerek ve yeter kosul olarak, enerji
yogunlugunun tiirevinin, 1—form A tarafindan {iiretilen vektor alanina dik olmast,
bunun sonucu olarak, ¢ + p = 0 olmas1 gerektigi gosterilmigtir. Daha sonra,
4—boyutlu hemen hemen pseudo Ricci simetrik uzay-zamanimizda miikemmel
akiskan icin, eger enerji yogunlugunun tiirevi 1—form A tarafindan iiretilen vektor
alanina dik ise, uzay-zamanimizin Einstein uzayina indirgendigi bulunmustur. Ayrica,
kozmolojik sabit icermeyen Einstein alan denkleminin izotropik basing ve A, 1 —formu
tarafindan iiretilen vektor alan1 arasindaki iligki incelenmistir. Daha sonra, A, 1 —formu
tarafindan tiretilen vektor alaninin diverjansi

3(c—p)

divA = — 2
M 20+ p)

seklinde bulunmustur. Basin¢ icermeyen, uzay-zaman modeli géz Oniine alinirsa,
enerji momentum tensorii
T(X,Y)=0cA(X)A(Y)

formundadir. Basing icermeyen, hemen hemen pseudo Ricci symmetric uzay-zamanda
o = 0 olmak zorunda oldugu ispatlanmigti.  Bu sonug, 7'(X,Y) = 0 olmak
zorunda oldugunu da gostermistir. Boylece, basing icermeyen hemen hemen pseudo
Ricci simetrik uzay-zamanin bos oldugunu gostermistir.  Bu boliimiin sonunda,
uzay-zamanimiz radyoaktif akigkan olarak se¢ilmis ve enerji momentum tensorii

T(X,Y) = p[4A(X)A(Y) +g(X,Y)]
ifadesi olarak gtz oniine alinmistir. Boylece,
—6kpA(Z) =0

oldugu elde edilmistir. Bu sonug¢, p = 0 olmast gerektigini gostermistir.  Yani,
T(X,Y) = 0 olmak zorundadir. Bu durumda, hemen hemen pseudo Ricci simetrik
ve kozmolojik sabit icermeyen Einstein alan denklemine sahip bir uzay-zamanda
eger radyoaktif akigkan goz Oniine alanirsa, uzaym bos uzaydan ibaret olacagi
ispatlanmustir.
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1. INTRODUCTION

1.1 Basic Definitions

1.1.1 Riemannian manifold

Let M be a manifold if at each point p € M, there is a bilinear, symmetric and positive

definite tensor, g =<, > defined on 7,M such that
g : TyMxT,M — R

then g is called the Riemannian metric or Riemannian tensor. Thus, M is called a

Riemannian manifold [1].

1.1.2 Connections on manifolds

Let M be a smooth manifold. A covariant differentiation or a connection on M is an
operator V that assigns to each pair of C* vector fields X and Y and a scalar function

f on domain U that satisfies the following properties for X,Y,Z € x(U), [2]

° Vx(Y+Z):VxY—|—VXz
o Vx.vyZ=VxZ+VyZ
° Vsz = fVxZ

o Vx(fZ) = (Xf)ZY + fVxZ.

1.1.3 Torsion tensor
Let X,Y be vector fields on a Riemannian manifold M. Then the vector field
7(X,Y)=VxY —VyX — [X,Y]

defines a tensor field T of type (0,2) [3]. Thus, this tensor is called torsion tensor and

for any 1—form ¢, we have

T(¢7X7Y) = (])(”L'(X,Y))

1



1.1.4 Affine connection
An affine connection on V on a smooth manifold M is a mapping
Vi x(M)xx (M) — x (M)

(X,Y) — VyY

subject to the properties :

° VfX—i—gYZ = fVXZ+gVYZ
° Vx(OCY —I—ﬁZ) =aVyxY —|—BVXZ

o Vx(fY)=fVxY+(Xf)Y (Leibniz Rule)

where X,Y,Z € (M) and f, g be linear functions, [4].

If the torsion vanishes, then the affine connection is called torsion-free, in a word, for
all X, Y
VxY —VyX =[X,Y]

holds.

1.1.5 Levi-Civita connection

Let M be a Riemannian manifold. There exists an affine connection V on M that is

compatible with g and symmetric. Then, it satisfies the condition
Z(g(X.Y)) = g(VzX,Y) +g(X,VzY)

for vector fields X,Y,Z. An affine connection which is torsion-free and compatible

with the metric g is called the Levi — Civita connection or Riemannian connection, [2].

1.1.6 Riemannian curvature tensor
Let M be a Riemannian manifold and y (M) denote the space of C* vector fields on M.
The Riemannian curvature tensor is the map

R:x(M)Xx(M)Xx (M) — x(M)

2



defined by
R(X,Y)Z=VxVyZ—-VyVxZ—Vx y)Z

forall X,Y,Z € x(M) [5]. Clearly, we have the antisymmetry in X and Y :
R(Y,X)Z=—-R(X,Y)Z.
Using metric g, we can change a (0,3)—tensor to a (0,4)—tensor such that
R(X,Y,Z,W) = g(R(X,Y,Z),W).

Also, the Riemannian curvature tensor satisfies the following rules:

* R(X,Y,Z,W)=-R(Y,X,Z,W)=R(Y.X,W.Z)
* R(X,Y,Z,W)=R(Z,W.X.Y)

e R(X,Y)Z+R(Z,X)Y+R(Y,Z)X=0 (I. Bianchi Identity).

1.1.7 Covariant derivative of tensor fields
Let @ € T"(M). The covariant derivative of ¢ is a tensor of order (r+ 1) given by

(Vyo)(X1,X2,.... X)) =Y (@(X1,X2,.., X)) — (Vv X1, X2, ... X)) — ...

O(X1,X2,...., VY X, 1, X)) — 0(X1, X2, ..., X1, V¥ X,)

where X,Y be vector fields on M [6].

1.2 Some Special Tensor Fields and Vector Fields

1.2.1 Ricci tensor

Let M be a manifold with an affine connection V and R be the curvature tensor of V.
The Ricci tensor Ric of the connection is a tensor field of type (0,2) assigning to the
vector fields X and Y. Then the function Ric(X,Y) the value of which at p € M is the
trace of the linear mapping
T,M —T,M
Zp = R(Zp, X(p):Y (p))

where Z, € T,M [7].



1.2.2 Torse-forming vector field

A vector field ¥ in a Riemannian manifold M is called torse-forming if it satisfies
Vxy =pX+aX)y

where X € TM, « is a linear form and p is a scalar function [8]. In local transcription,

this reads
y'i=p&i+y'e (1.1)
where y" and o; are the components of the vector fields generated by y and o and 8";

is Kronecker symbol.

Torse-forming vector field y is called

e recurrent, if p =0

e concircular, if o; is a gradient covector (i.e., 04 = ot i)

e convergent, if it is concircular, and p = const.exp(o)

1.2.3 Codazzi type tensor field

LetM be a smooth Riemannian manifold. A tensor field T of type (0,2) is called

Codazzi type if it satisfies Codazzi equation
(VxT)(Y,Z) = (VyT)(X,Z) (1.2)

for every vector fields X,Y,Z, [9]

1.3 Some Special Riemannian Manifolds

1.3.1 Recurrent manifold

A non-flat Riemannian manifold M is called recurrent manifold if its curvature tensor

satisfies the condition
(VwR)(X,Y,Z,U) = a(W)R(X,Y,Z,U) (1.3)

for a non-zero 1—form «, [10].



1.3.2 Generalized recurrent manifold

A non-flat, n—dimensional Riemannian manifold M, (n > 2) is called a generalized

recurrent manifold if its curvature tensor R of type (0,4) satisfies the condition
(VxR)(Y,Z,W,U) = a(X)R(Y,Z,W.U) + B(X)G(Y,Z,W,U) (1.4)
where G(Y,Z,W,U) = g(Y,U)g(Z,W) — g(Y,W)g(Z,U) and «,B are non-zero

1—forms, [11].

1.3.3 Ricci recurrent manifold

A non-flat Riemannian manifold M is called a Ricci-recurrent manifold if its Ricci

tensor S satisfies the condition
(VxS)(Y,Z) =A(X)S(Y,Z) (1.5)

where V is the Levi-Civita connection of the Riemannian metric g and A is a 1—form

on M, [12].






2. RIEMANNIAN MANIFOLD WITH W,—CURVATURE TENSOR

2.1 W,—Curvature Tensor

In 1970, Pokhariyal and Mishra [13] introduced a new tensor, called W, , in a
Riemannian manifold and studied their properties. According to them [13], a Wo—

curvature tensor on a manifold (M, g), (n > 3) is defined by

Wo(X,Y,Z,U) =R(X,Y,Z,U) + 11[g(X,Z)S(Y,U)—g(Y,Z)S(X,U)]. 2.1)

n—

After that, W,—curvature tensor on some special manifolds has been examined by
many authors such as Taleshian and Hosseinzadeh [14], Ozen Zengin [15], Hui [16],
Mallick and De [17], etc.

2.2 W,—flat Riemannian Manifold

In this section, we denote the contracted W, —curvature tensor which is type of (0,2)

as W5 and call it W, —Ricci tensor.

Now, contracting (2.1) over X and U, we obtain the contracted W, tensor, i.e.,
W>—Ricci tensor

Wy(X,Y) =

[SXY) — —g(x.¥)]. 22)

n—1

If we assume that our manifold is W, —flat, then from (2.2),

S(X,Y) = ~g(X.Y). (2.3)

Thus, this manifold reduces Einstein manifold.






3. ALMOST PSEUDO RICCI SYMMETRIC MANIFOLDS

3.1 The Importance of Symmetric Manifolds

In the late twenties, because of the important role of symmetric spaces in differential
geometry, Cartan [18], obtaining a classification of those spaces, established

Riemannian symmetric spaces.

Let (M, g) be an n-dimensional Riemannian manifold with the metric g and let V be the
Levi-Civita connection of (M,g). A Riemanian manifold is called locally symmetric
[18]if VR =0, where R is the Riemannian curvature tensor of (M, g). This condition of
locally symmetric is equivalent to the fact that every point p € M, the locally geodesic
symmetry F(p) is an isometry [19]. The class of Riemannian symmetric manifolds is

very natural generalization of the class of manifolds of constant curvature.

In the last five decades, the notion of locally symmetric manifolds have been
weakended by many authors in several ways by extending to special manifolds such
as conformally symmetric manifolds by Chaki and Gupta [20], recurrent manifolds
introduced by Walker [21], conformally recurrent manifolds by Adati and Miyazawa
[22], conformally symmetric Ricci-recurrent spaces by Roter [23], pseudo-Riemannian
manifolds with recurrent concircular curvature tensor by Olszak and Olszak [24],
semi-symmetric manifolds by Szabo [25] ,pesudo symmetric manifolds by Chaki
[26], weakly symmetric manifolds by Tamassy and Binh [27], projective symmetric

manifolds by Soos [28], etc.

The Einstein equations [19], imply that the energy-momentum tensor is of vanishing
divergence. This requirement is satisfied [28] if the energy- momentum tensor is
covariant-constant. In the paper [28], Chaki and Ray had shown that a general
relativistic spacetime with covariant-constant energy-momentum tensor is Ricci
symmetric, that is, VS = 0 where § is the Ricci tensor of the spacetime. If however
VS = 0, then such a spacetime may be called pseudo Ricci symmetric. It can be

said that the Ricci symmetric condition is only a special case of the pseudo Ricci
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symmetric condition. It is, therefore, meaningful to study the properties of pseudo

Ricci symmetric spacetimes in general relativity.

3.2 Almost Pseudo Ricci Symmetric Manifolds

Let Q be the symmetric endomorphism corresponding to the Ricci tensor as indicated
below

S(X,Y)=g(0X,Y)
for all vector fields X and Y.

A non-flat Riemannian manifold is called pseudo Ricci symmetric and denoted by
(PRS), if the Ricci tensor S of type (0,2) of the manifold is non-zero and satisfies the

condition, [29]
(Vz8)(X,Y)=2A(Z)S(X,Y)+A(X)S(Y,Z)+A(Y)S(X,Z) 3.1
where V denotes the Levi-Civita connection and A is a non-zero 1—form such that

g(X,p) =A(X) (3.2)

for all vector fields X, p being the vector field corresponding to the associated 1—form
A. If in (3.1), the 1—form A = 0, then the manifold reduces to Ricci symmetric

manifold or covariantly constant
(Vz8)(X,Y)=0. 3.3)

The notion of pseudo Ricci symmetry is different from that of R. Deszcz [30].

So, pseudo Ricci symmetric manifolds have some importance in general theory of
relativity. By this motivation, Chaki and Kawaguchi [31] generalized pseudo Ricci
symmetric manifold and introduced the notion of almost pseudo Ricci symmetric

manifold as
(VzS)(X,Y) = [A(Z) + B(Z)|S(X,Y) + A(X)S(Y,Z) + A(Y)S(X,Z) (3.4)

where A and B are two non-zero 1—forms and V denotes the operator of the covariant
differentiation with respect to the metric g. In such a case, A and B are called
the associated 1—forms and an n—dimensional manifold of this kind is denoted by
A(PRS),.
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If B = A, then the equation (3.3) reduces to (3.1), that is, A(PRS), reduces to a pseudo
Ricci symmetric manifold [29]. Thus, pseudo Ricci symmetric manifold is a particular
case of A(PRS),. In 1993, Tamassy and Binh [32] introduced the notion of weakly
Ricci symmetric manifold which is the generalization of pseudo Ricci symmetric
manifold in the sense of Chaki. It may be mentioned that an A(PRS), is not a particular

case of a weakly Ricci symmetric manifold introduced by Tamassy and Binh [32].

Let g(X,p) = A(X) and g(X,Q) = B(X) for all X. Then p,Q are called basic vector

fields of the manifold corresponding to the associated 1—forms A and B, respectively.

Almost pseudo Ricci symmetric manifolds on some structures have been studied by
many authors such as De and Gazi [33], Shaikh, Hui and Bagewadi [34], De, Ozgﬁr
and De [35], Hui and Ozen Zengin [36], De and Mallick [37], De and Pal [38], Kirik
and Ozen Zengin [39], etc.

3.3 W,—flat A(PRS),

Assuming that our manifold (M,g) is A(PRS), admitting W, curvature tensor, from
(2.3), we get
1

(Vzr)g(X,Y). (3.5)

(V2S)(X.Y) =
Putting (3.4) in (3.5), we obtain
(Vzr)g(X,Y) =r[(A(Z) + B(Z))s(X,Y) +A(X)g(Y,Z) +A(Y)s(X,Z)].  (3.6)

Contracting (3.6) over X and Y, then we have

n(Vzr) =r((n+2)A(Z)+nB(Z)). 3.7)

Again, contracting (3.6) over X and Z, then we have
(Vzr) = rl(n+2)A(Z) + B(Z)]. (3.8)
Comparing (3.7) and (3.8), we get
Fl(n+2)A(Z) +nB(Z)] = nr{(n+2)A(Z) + B(Z)].

Thus, we have
(n+2)(n—1)rA(Z) = 0.
11



Since r # 0, we have from the above equation it must be A(Z) = 0. Thus, we have the

following theorem:

Theorem 3.3.1 W,—flat A(PRS), reduces to a Ricci recurrent manifold with the

recurrence vector field generated by the 1—form B.

3.4 A(PRS), Admitting Non-zero W, —Ricci Tensor

Now, we assume that our manifold A(PRS), is of non-zero W, —curvature tensor. By

taking the covariant derivative of (2.2), we get

(VW)X = " ((V28)(X.¥) ~ L (Vor)(x.Y)]. (3.9)

n— n
If we contract (3.4) over X and Y, then we obtain
(Vzr) =1A(Z)+B(Z)|r+2A(QZ). 3.10)

By putting (3.4) and (3.10) in (3.9), we find

(VZW2)(X,Y) = % [A(Z)+B(Z)]S(X,Y) + A(X)S(Y,Z) +A(Y)S(X,Z)

~ LIAZ)+ BZ)lg(X.Y) - SA02)g(X.Y)}. @G

n
Now, contracting (3.11) over X and Z,

aiW(v) = ("

)(2A(QY) + rA(Y)) + B(QY) — %B(Y)]. (3.12)

By considering the tensor W as divergence free, from (3.12), it can be obtained that

n n—1

((

)(2A(QY) +rA(Y)) + B(QY) — %B(Y)] =0. (3.13)

n—1

If  is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q where
g(X,0) = B(X), then —5 is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector p where g(X,p) = A(X). Conversely, if the equation (3.13) holds then

from (3.12), W, must be divergence-free.
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Thus, we have the following theorem:

Theorem 3.4.1 For an A(PRS),, a necessary and sufficient condition the contracted

Ws curvature tensor Wo be divergence free is that —5 and 1 be eigenvalues of the

Ricci tensor S corresponding to the eigenvectors p and Q where g(X,p) = A(X) and
g(X,0) =B(X), respectively.

Let W5 be recurrent, i.e., from (1.3)
(VZW2)(X,Y) = a(Z)W2(X,Y) (3.14)
where « is a 1 —form.

Using (2.2) and (3.11) in (3.14), it can be found that

o(Z2)[S(X,Y)— ;lg(X,Y)] =[A(Z)+B(2)|S(X,Y)+A(X)S(Y,Z)+A(Y)S(X,Z)
~TA@) +B@)Je(X ¥) - 2AQ2)5(x.Y) (3.19)

If we contract (3.15) over X and Z, then we get

(n—1)

n

a(0Z) — ga(z) - 2A(QZ) +rA(Z)] + B(QZ) — 23(2). (3.16)

This leads to the following theorem.

Theorem 3.4.2 Let us assume that A(PRS), be of recurrent Wy—Ricci tensor with
the recurrence vector field generated by the 1— form a. If 1 is an eigenvalue of the
Ricci tensor S corresponding to the eigenvectors both Q and |1 where g(X,0Q) = B(X),
g(X,u) = o(X) then —7% is an eigenvalue of the Ricci tensor S corresponding to the

eigenvector p where g(X,p) = A(X).

If we take a(Z) = A(Z) in (3.16), we find

2—n

(

JA(QZ) - A(Z)r = B(QZ) — ~-B(2).

If - is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q then 5™~
is an eigenvalue of the Ricci tensor S corresponding to the eigenvector p. Thus we

have the following theorem:
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Theorem 3.4.3 In an A(PRS),, let us consider that Wy—Ricci tensor is recurrent with
the recurrence vector field generated by the 1—form A. A necessary and sufficient
condition i be an eigenvalue of the Ricci tensor S corresponding to the eigenvector
Q where g(X,Q) = B(X) is that 5 (n > 2) be an eigenvalue of the Ricci tensor S
corresponding to the eigenvector p where g(X,p) =A(X).

Now, by taking o(Z) = B(Z) in (3.16) then we obtain

A(0Z) = —%A(Z). (3.17)

If we differentiate the equation (3.17), then we can find
(VxA)(QZ) = —%[(er)A(Z) +r(VxA)(Z)]. (3.18)
By using (3.4), (3.10) and (3.17) in (3.18), we get
|A|A(Z)r =0.

Since r # 0 then from the above equation A(Z) must be 0. Thus, we have the following

theorem:

Theorem 3.4.4 An A(PRS), admits recurrent Wo—Ricci tensor which is recurrent with

the recurrence vector field generated by the 1— form B does not exist.

Let us assume that W is generalized recurrent. Thus, from (1.4)

(VZW2)(X,Y) = a(Z)W2(X,Y) + 1(Z)g(X,Y).

Using (2.2) and (3.11) in the above equation, we have

n

T [SY) = S g(X )]+ ¥(2)g(X.Y) = - [(A(Z) + B(2))S(X,Y)
+AX)S(Y,Z)+A(Y)S(X,Z)
—~(A(2)+B(2))3(X.Y)

2
- ~A(QY)) (3.19)

Contracting (3.19) over X and Y,
ny(Z) =0.

Hence, y(Z) = 0. Thus, we have the following theorem :
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Theorem 3.4.5 An A(PRS), admits generalized Wy—Ricci tensor does not exist.

If  is constant, then (3.9) reduces to

n

(VZW2)(X,Y) = ——(VzS)(X,Y). (3.20)

n—

Using (3.4) and (3.20), we get

(VW) (X,Y) = ——[(A(Z) + B(Z))S(X,Y) +A(X)S(Y,Z) + A(Z)S(X,Y)]. (3.:21)

n—1
If W, is Codazzi type, from (1.2) and (3.21), it is easy to see that

B(Z)S(X,Y)—B(Y)S(X,Z) =0.

Contracting the above equation over X and Y , we find
B(Z)r=B(QZ). 3.22)

In this case, we have the following theorem :

Theorem 3.4.6 In an A(PRS), admitting constant scalar curvature, if Wo—Ricci

tensor is Codazzi type then r is an eigenvalue of the Ricci tensor S corresponding

to the eigenvector Q where g(X,0) = B(X).

Now, if we assume that r is constant and W is covariantly constant. Then from (2.2)
(VzS)(X,Y)=0. (3.23)
Using (3.23) in (3.4), we have

(V28)(X.Y) = [A(Z) + B(Z)|S(X,Y) + A(X)S(Y,Z) + A(Y)S(X, Z).

Contracting the above equation over X and Y, we get
[A(Z)+B(Z)]r+2A(QZ) = 0. (3.24)
Finally, we obtain from (3.24)
A(QZ) = —%[A(Z) +B(Z)]. (3.25)

Hence, we have the following theorem:
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Theorem 3.4.7 If an A(PRS), admitting constant scalar curvature and covariantly
constant Wy —Ricci tensor then the Ricci tensor of this manifold is covariantly constant

and the 1—forms A and B are related by
r
A(QZ) = —5[A(Z) + B(2)].
Let us assume that 7 is constant and W5 is Codazzi type. If we take the covariant
derivative of (3.22), then we get
(VxB)(QZ) = r(VxB)(Z). (3.26)
By using (3.4) and contracting over X and Z in (3.26), we find
r|IB|(3<A,B>+|B|) =0 3.27)
where <, > is the inner product. Since r # 0 and |B| # 0 in (3.27), we obtain
B
<A,B>= —|3—|. (3.28)
We know that < A,B >= |A||B|cos8, from (3.28), we get
1 T
|A|cos® = —= where —<06<m.
3 2
Therefore, we can state the following theorem:
Theorem 3.4.8 If an A(PRS), with the constant scalar curvature tensor is of Codazzi
type Wo—Ricci tensor then the angle between the vector fields generated by the 1-
forms A and B is
0= arccos(—m).

Thus, 6 € (5, 7] where |A| is the length of the vector field generated by the 1—form A.

3.5 An Example For The Existence A(PRS), Admitting W,— Curvature Tensor

In this section, we want to construct an example of an four-dimensional almost pseudo

Ricci symmetric manifold with constant scalar curvature and W, —Ricci tensor.
In local coordinates, let us consider a Riemannian metric g on R* with coordinates (x1 ,
X2, 3, 1 by
ds* = gijdx‘dx’) = & (dx")? + & (dx?)? + (dx®)? 4 (sinx®)? (dx*)?. 3.29)
16



Then the only non vanishing components of the Christoffel symbols and curvature

tensors are, respectively,
1
Fh = F%z =7 F?M = —sinx’cosx, 1—13 = cotx’, (3.30)
and
Ry = —(sin’)?, Riys=—1 (3.31)

and the components obtained by the symmetry properties. The non-vanishing

components of the Ricci tensors are
S33=—1, Sy =—(sinx>)% (3.32)

It can be shown that the scalar curvature r of (9?4, g) is —2. By using (2.2), (3.29) and

(3.32), we get the only non-vanishing components of W are

- 2 r 2 — A 2

By taking the covariant derivatives of each of W; j1n (3.33), we find that W, ik = 0 for

all i, j, k. This shows that W;; are covariantly constant.

In this case, by taking the covariant derivatives of S33 and S44 and by using (3.32), we

obtain that S;; , = O for all i, j, k.

Let us choose the 1 —forms A and B as

4

A=t T 4 (3.34)

and

B= —&" T _ e+, (3.35)

Now, by taking the derivatives of (3.34) and (3.35), we get

KA i=12
m:{ﬁﬂﬂi:14 (3.36)

and

i = (3.37)

L S 1))
et =34,
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With the help of (3.29), (3.32), (3.36) and (3.37), the equations

AR, = —§(A1+Bl)
A’Ry = —§(A2+Bz)
ARy = —§(Ag+B3)
A'Ryy = —g(A4+B4)

are satisfied.

From these results, it is clear that (R*,g) given by (3.29) is an A(PRS)4 satisfying

Theorem 3.4.7. Thus, we can state the following theorem :

Theorem 3.5.1 Let us consider a Riemannian metric g on R* given by
ds* = gijdx'dx’ = & (dx")? + & (dx?)? + (dx*)? + (sinx®)? (dx*)?.

Assume that this manifold is an A(PRS)4 with the constant scalar curvature and
covariantly constant W; j tensor. If we choose the 1— forms A and B related to this

manifold as

1 2 3 4 1 2 3 4
A= 4" and B=—"T" 427,

then Theorem 3.4.7 holds.

18



4. ON ALMOST PSEUDO RICCI SYMMETRIC SPACETIMES

Astronomers have struggled with basic questions about the size and age of the universe
for thousand of years. At the beginning of the twentieth century, the astronomer
Edwin Hubble made a critical discovery that soon led to reasonable answers to
these equations. Those measurements marked the first evidence that our universe is
expanding. This discovery caused a profound revolution in our in view of the universe,
and understanding the source of its expansion is arguably the most dominant question

in cosmology today.

In recent years, the standard cosmological model has dramatically improved our
understanding of the universe by emerging as a particular solution of the Einstein
field equations. It is built on several fundamental assumptions and principles; such
as cosmological principle is particularly important. It states that our current universe
is homogeneous and isotropic, that is, there is neither a preffered place nor direction,
at least approximately on large scales. Although this mode has been successful in
explaining the majority of the current observations, such as the current expansion of
the universe and the spectrum of the cosmic microwave background [40] it lack of
the fundamental justification. In fact, the theory of quantum mechanics [41] states
that the early universe (just after the universe was born in the big bang) should have
been extremely inhomogeneous and anisotropic due to quantum fluctuations that yield
the creation of the fundamental particles and eventually to the formation of different
kinds of matter distributions such as galaxies, stars and planets. Hence, fundamental
questions a rise about how much primordial homogeneities evolved and why they are
essential absent in the present universe on large scales that any consistent cosmological

model must be able to answer.

This can be understood by the assumption of an extremely short, but particularly
violent, phase of expansion just after the big bang, called inflation. This basic idea
is that during this phase initial inhomogeneities are effectively smoothed out, and

from the point of view of any local observer, the universe rapidly becomes essentially
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homogeneous and isotropic. However, there is theoretical evidence, [42], [43] that
some assumptions of this model lead to significant drawbacks as important phenomena
are ignored. In fact, it is conceivable that some inhomogeneities caused by quantum
fluctuations would trigger the formation of primordial black holes [44] during the
evolution of the universe. Therefore, if such phenomenon was better understood and
taken into account, then it could be obtained more general and realistic cosmological

models.

The gravitational evolution of celestial bodies may be modeled by the Einstein field
equations. There is a system of ten highly coupled partial differential equations
expressing an equivalence between matter and geometry. These equations are
extremely difficult to solve in general and so simpler cases have to be treated to gain
an understanding into how certain types of matter behave under the influence of the
gravitational field. For example, the most studied configuration of a matter distribution

is that of a static spherically symmetric perfect fluid.

In this section, we concern is concerned with certain investigations in general
relativity by the coordinate free method of differential geometry.  In this
method of study, spacetime of general relativity is regarded as a connected
four dimensional semi-Riemannian manifold (M,g) with Lorentzian metric g with
signature (—,4+,+,+). The geometry of the Lorentzian manifold begins with the
study of the casual character of vectors of the manifold. It is due to this causality
that the Lorentzian manifold becomes a convenient choice for the study of general
relativity. By these equations, it is implied that the energy-momentum tensor is of
vanishing divergence [19]. This requirement is satisfied if the energy-momentum
tensor is covariant-constant [28]. In Ref [28], M.C. Chaki and S. Roy showed that
a general relativistic spacetime with covariant-constant energy-momentum tensor is
Riccl symmetric, that is, V.S = 0 where S is the Ricci tensor of the spacetime. Many
authors have been studied spacetimes with special properties such as spacetimes with
semisymmetric energy momentum tensor by De and Velimirovic [45], M-projectively
flat spacetime by Zengin [46], pseudo Z symmetric spacetime by Mantica and Suh [47],
[48], generalized quasi-Einstein spacetimes by Giiler and Demirbag [49], a spacetime

with pseudo-projective curvature tensor by Mallick, Suh and De, [50], on generalized
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Ricci recurrent manifolds with applications to relativity by Mallick, De and De [51],

generalized Robertson-Walker spacetimes by Arslan et al, [52] and many others.

4.1 Perfect Fluid A(PRS), Spacetimes

It is known that Einstein field equations without cosmological constant can be written

as

S(X.¥) ~ 578(X.¥) = KT(X.Y), .1

where K is the gravitational constant, 7 is the energy momentum tensor for a perfect

fluid given by [53]
T(X,Y)=(c+pAX)A(Y)+pg(X,Y) 4.2)

where o is the energy density and p is the isotropic pressure of the fluid, respectively

and g(X,p)=A(X) for all X, p is the flow vector field of the fluid.

Using (4.2), we can express (4.1) by

S(X,Y) = k(o + p)A(x)A(y)+(xp+§)g(x,Y). 4.3)
Contracting (4.3) over X and Y, then we have
r=x(oc—3p). 4.4)
From (4.3) and (4.4), we obtain

S(X,Y) = x(0 + p)AX)A(Y) + g(c _ple(x.Y). @.5)

If we differentiate the equation (4.5), we can find

(VzS)(X,Y) =K(do +dp)A(X)A(Y) + k(0 + p)[(VZA)(X)A(Y)  (4.6)

+AX)(VZA)(Y)] + 5 (do —dp)g(X.Y).
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Comparing (3.4) with (4.6) and using (4.5), then since k # 0, we get

[A(Z) +B(Z)][(0 + p)AX)A(Y) + %(G —p)g(X,Y)]

F2(0 4 PAKIAW)AEZ) + 5 (0~ p)AK)(Y,2)

+A(Y)g(X,Z)] = (do +dp)A(X)A(Y)
+ (0 +p)[(Vz4)(X)AY) +AX) (VzA)(Y)]

1
+§(d6—dp)g(X,Y). 4.7)
Contracting (4.7) over X and Y, we find
—6pA(Z)+ (0 —3p)B(Z) =do —3dp. 4.8)

If we contract (4.8) over Z, we obtain
6p =do(p)—3dp(p). 4.9)

On the other hand, contracting (4.7) over X and Y,

%A(Z)(G—F?)p) + %B(Z)(G—l—?)p) - %(d6+3dp). (4.10)

And, contracting (4.10) over Z,

—3(c+3p) =do(p)+3dp(p) 4.11)

Hence, from (4.8) and (4.11), it can be seen that
3
do(p) = —5(6+p). 4.12)

If the derivative of o is orthogonal to the vector field generated by the 1—form A then

we have the following theorem:

Theorem 4.1.1 In a perfect fluid A(PRS)y spacetime satisfying Einstein field
equations without cosmological constant, a necessary and sufficient condition the
derivative of the energy density be orthogonal to the vector field generated by the

1-form A is that it must be 6 + p = 0.
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Putting (4.12) in (4.5), we get

S(X,Y)=xog(X,Y). (4.13)

Comparing (4.4) and (4.13), we find S(X,Y) = 7g(X,Y).

Hence, we can state the following theorem:

Theorem 4.1.2 In a perfect fluid A(PRS)4 spacetime, if the derivative of the energy
density is orthogonal to the vector field generated by the 1—form A then this spacetime

reduces to an Einstein space.

In this case, comparing the equations (4.9) and (4.12), we get

1
dp(p) = _E(G+5p)' 4.149)

Thus, we have the following theorem:

Theorem 4.1.3 In a perfect fluid A(PRS)s spacetime satisfying Einstein field
equations without cosmological constant, a necessary and sufficient condition the
derivative of the isotropic pressure be orthogonal to the vector field generated by the

1—form A is that it must be 6 = —5p.

With the help of (4.5) and (4.14), we find

S(X,Y) = ‘“(TGA(X)A(Y) + MTGg(X,Y). 4.15)

This shows us that our spacetime is a quasi-Einstein.

Hence, we have the following theorem:

Theorem 4.1.4 In a perfect fluid A(PRS)y spacetime satisfying Einstein field
equations without cosmological constant, if the derivative of the isotropic pressure is

orthogonal to the vector field generated by the 1—form A then this spacetime reduces

to a quasi-Einstein with the form in S(X,Y) = CA(X)A(Y) + 5%¢(X,Y).
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Now, contracting (4.5) over X, then we obtain

A(QY) = —g(c F3P)A(Y). 4.16)

If we take the covariant derivative of (4.16), we find

(VZA)(QY) = —g(do +3dp)A(Y) — —§<0 +3p)(VZA). 4.17)
Using (3.4), (4.5) and (4.16) in (4.17), we get

20+ 2)AV)AZ)  5(0+3p)AXB(Z) — (0~ p)e(¥.2)

+(o+p)(VZA)(Y) + %(o +3p)A(Y)=0. (4.18)

Contracting over Y and Z in (4.5), we find

6p -+ (0 + p)divA -+ 3[do(p) +3d(p)] = 0. 4.19)

From (4.11) and (4.19),

divA — 26—_ (4.20)

Thus, we have the following theorem :

Theorem 4.1.5 In a perfect fluid A(PRS)y spacetime satisfying Einstein field
equations without cosmological constant, the divergence of the vector field generated

by the 1—form A is divA = %.

If the vector field generated by the 1—form A is divergence—free then by the aid of

(4.20), it must be o = p. In this case, we have from (4.5),
S(X,Y) =2xc0A(X)A(Y).
We can say that our spacetime is 11 —Einstein spacetime where n = 2x0.

Let us assume that the vector field generated by the 1—form A is torse-forming vector
field,
(VZA)(X) = AM(Z)A(X) + Bg(X,Z). 4.21)

If we contract (4.21) over X, we get

A(Z) = BA(Z). (4.22)
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Comparing (4.6) and (4.22), it is concluded that

(V28)(X,Y) = x(do +dp)A(X)A(Y) +2x(0 + p)A(X)A(Y)A(Z)
K

T3

(do—dp)g(X,Y). (4.23)
By putting (4.23) in (3.4), we find
K(d6 +dp)AX)A(Y) +2k(0 + p)A(X)A(Y)A(Z) + g(dc —dp)g(X.Y)
— [A(Z) +B(Z)|S(X,Y) +A(X)S(Y,Z) +A(Y)S(X,Z). (4.24)

Since k # 0, from (4.5) and (4.24),

(do +dp)AX)A(Y) + %(dG —dp)g(X,Y) = (o +p)[A(Z) + B(Z)]A(X)A(Y)
1

+5(0 - PA@) + BZJS(XY) + 5(0 — pANIS(X, 2) + AZ)g(X.Y)]. (425)

Now, contracting (4.25) over X and Y,
do —3dp=2(c—2p)A(Z)+ (o0 —2p)B(Z). (4.26)
Contracting (4.26) over Z,
do(p)—3dp=—-20+4p. 4.27)

From (4.9) and (4.27),
oc+p=0.

Thus, we have the following theorem:
Theorem 4.1.6 If the vector field generated by the 1—form A of a perfect fluid
A(PRS)4 spacetime satisfying Einstein field equations without cosmological constant,

then a necessary and sufficient condition the derivative of the energy density be

orthogonal to the vector field generated by the I-form A is that it must be o+ p = 0.
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4.2 A Pressureless Fluid A(PRS)4 Spacetimes

Assuming that our spacetime is a pressureless fluid spacetime (a dust), the energy

momentum tensor is the form
T(X,Y)=0cA(X)A(Y). (4.28)
In this case, from (4.3) and (4.28), we find that
S(X,Y)— gg(X,Y) = kGA(X)A(Y). (4.29)

Contracting (4.29) over X and Y,
r=Ko. 4.30)

In this case, from (4.29) and (4.30), we get

S(X,Y) = kG[A(X)A(Y) + %g(X,Y)]. (4.31)

By taking the covariant derivative of (4.31), it can be found that

(Vz8)(X,Y) = kdo[A(X)A(Y) + %g(X,Y)] +x0[(VZA)(X)A(Y)

+AX)(VZA)(Y)]. (4.32)
By putting (3.4) in (4.32), we obtain

[A(Z)+B(2)]S(X,Y)+A(X)S(Y,Z)+A(Y)S(X,Z) =

kdG[AX)A(Y) + %g(X, Y)]+ ko[(VZA) (X)A(Y) + A(X)(VZA)(Y)]. (4.33)

From (4.31) and (4.33), we find

KGIAX)A(Y) + %g(X,Y)] + KGAX)A(Y)A(Z) + %g(Y, 2)]
+KGA)AK)AZ) + 38(X. 2)] = K(d6)AK)A(Y) + 28(X.7)

+x0[(VZA)(X)A(Y)+A(X)(VZA)(Y)]. (4.34)
Contracting (4.34) over X and Y, we get
o0B(Z) =do. (4.35)
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Then from (4.35), we have
do(p)=0. (4.36)

If the derivative of o is orthogonal to the vector field associated by the 1—form A then
from (4.11) and (4.36), we find
c=0. (4.37)

Thus with the help of(4.28) and (4.37), we conclude that
T(X,Y)=0.

In this case, the spacetime is devoid of the matter. Thus, we can state the following

theorem:

Theorem 4.2.1 An A(PRS)4 dust fluid spacetime satisfying Einstein field equations

without cosmological constant is vacuum.

4.3 A Radiation Fluid A(PRS)4 Spacetimes

Now, we assume that our spacetime is a radiation fluid. Thus, we have
T(X,Y)=p[AAX)A(Y) +g(X.Y)]. (4.38)
In this case, from (4.1) and (4.38), we find

S(X,Y) - % = kp[4A(X)A(Y) +g(X,Y)). (4.39)

Now, contracting (4.39) over X and Y, we get
r=0. (4.40)
Thus, by the aid of (4.39) and (4.40), it can be found that
S(X,Y)=xkp[4A(X)A(Y)+g(X,Y)]. (4.41)
If we take the covariant derivative of (4.41), we obtain
(V2S)(X,¥) = kdpl4A(X)A(Y) + g(X,¥)] +4kp|(VZA) (X)A(Y)

+A(X)(VZA)(Y)]. 4.42)
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By putting (3.4) in (4.42), we get

[A(Z)+B(Z)]S(X,Y) +AX)S(Y,Z) + A(Y)S(X,Z) = (4.43)
Kldp(4A(X)A(Y) +g(X.Y))

+4p((VZA)(X)A(Y) +A(X)(VZA)(Y))].
Contracting (4.43) over X and Y,
[A(Z) + B(Z)]r +2A(QZ) = 0. (4.44)
Using (4.40) and (4.41) in (4.44),
—6KkpA(Z) =0. (4.45)

Thus, it can be obtained from (4.45) that p = 0.

In this case, we get from (4.38), T(X,Y) = 0. Hence, we have the following theorem:

Theorem 4.3.1 An A(PRS)4 radiation fluid spacetime satisfying Einstein field

equations without cosmological constant is vacuum.
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