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ON ALMOST PSEUDO RICCI SYMMETRIC MANIFOLDS

SUMMARY

The main concern of this thesis is to investigate an n−dimensional almost pseudo Ricci
symmetric manifold (M,g) whose Ricci tensor S satisfies the condition

(∇ZS)(X ,Y ) = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

where A and B are two non-zero 1−forms and ∇ denotes the operator of the covariant
differentiation with respect to the metric g. Such a manifold is called almost pseudo
Ricci symmetric manifold and denoted by A(PRS)n.

In the first Chapter, some significant definitions and notions which will be used in the
next chapters are expressed. Also, some definitions and notions are given in order to
identify the Riemannian manifold.

In the second Chapter, a historical overview of the important role of symmetric spaces
in differential geometry is given. Especially, Cartan dealt with classification of those
spaces and established Riemannian symmetric spaces. A Riemanian manifold is called
locally symmetric if ∇R = 0, where R is the Riemannian curvature tensor of (M,g).
The class of Riemannian symmetric manifolds is a natural generalization of the class
of manifolds of constant curvature. If the Ricci tensor S of (0,2) of the manifold is
non-zero and satisfies the condition

(∇ZS)(X ,Y ) = 2A(Z)S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

where ∇ denotes the Levi-Civita connection and A is a non-zero 1−form such that
g(X ,ρ) = A(X) for all vector fields X ,ρ, then this manifold is called pseudo Ricci
symmetric manifold and is denoted by (PRS)n. Pseudo Ricci symmetric manifold
was introduced by Chaki. Chaki and Kawaguchi generalized pseudo Ricci symmetric
manifold as almost pseudo Ricci symmetric manifolds such that

(∇ZS)(X ,Y ) = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z).

If A = B, then A(PRS)n reduces to (PRS)n. So, a pseudo Ricci symmetric manifold is
a particular case of A(PRS)n.

In the third Chapter, an almost pseudo Ricci symmetric manifold admitting W2−Ricci
tensor has been analyzed. Our aim is to examine of some properties of these manifolds
and find theorems related by these properties. In this Chapter, firstly, W2−curvature
tensor on manifold (M,g) n > 3 is given by

W2(X ,Y,Z,U) = R(X ,Y,Z,U)+
1

n−1
[g(X ,Z)S(Y,U)−g(Y,Z)S(X ,U)].
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After that, W2−flat A(PRS)n is investigated. Then, the contracted W2−curvature tensor
type of (0,2) is called W2−Ricci tensor and denoted by W 2(X ,Y ) as follow

W 2(X ,Y ) =
n

n−1
[S(X ,Y )− r

n
g(X ,Y )].

In this Chapter, A(PRS)n admitting non-zero W2−Ricci tensor is studied. A necessary
and sufficient condition is found for W2−curvature tensor to be divergence-free. After
that, the conditions for which the W 2−Ricci tensor of type (0,2) is recurent, Codazzi
type and covariantly constant are examined. The obtained results are written as
theorems. Finally, an example of the existence of these manifolds satisfying special
conditions is given.

The last Chapter is concerned with an almost pseudo Ricci symmetric spacetime.
Under some conditions, we determine the properties of this spacetime. In the first
part of this section, it is considered that our spacetime is a perfect fluid. In the second
part, using the results obtained in the first part, we prove that our spacetime reduces to
an Einstein, quasi-Einstein or η−Einstein space with some assumptions. In addition,
we show that a dust and a radiation fluid with almost pseudo Ricci symmetric tensor
are vacuum.

xvi



HEMEN HEMEN PSEUDO RICCI SİMETRİK MANİFOLDLAR HAKKINDA

ÖZET

Bu tez çalışmasında, Riemann manifoldunun genelleştirilmişi olan hemen hemen
pseudo Ricci simetrik manifoldu incelenmiştir. Bu tez çalışmasının temel amacı

(∇ZS)(X ,Y ) = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

bağıntısını sağlayan (0,2) tipindeki S Ricci tensörünün bazı özel koşullar altında
durumunu incelemektir. Burada A ve B, 1−formlar, ρ and Q, g(X ,ρ) = A(X) ve
g(X ,Q) = B(X) ile tanımlanan A ve B şeklindeki 1−formlar tarafından üretilen vektör
alanları olup, ∇ kovaryant türevi ifade etmektedir.

Bu tez çalışması, 4 ayrı bölümden oluşmaktadır. İlk bölümde, Riemann manifoldunun
genel bir tanımı verilmiştir. Bir M bir manifoldu üzerinde

<,>: χ(M)xχ(M)−→C∞(M,ℜ)

dönüşümü 2−lineer, simetrik ve pozitif tanımlı ise, bu dönüşüme M üzerinde Riemann
metriği veya metrik tensörü denir. Üzerinde Riemann metriği tanımlanmış manifolda
Riemann manifoldu adı verilir. Bu bölümde ayrıca, Riemann manifoldu üzerinde bazı
vektör alanlarına ait temel tanımlar ve kavramlar verilmiştir.

Tez çalışmasının ikinci bölümünde, ilk olarak, simetrik manifoldların diferansiyel
geometrideki öneminden bahsedilmiştir ve bu manifoldların tarihsel geçmişi hakkında
detaylı bilgi verilmiştir. Düz olmayan, pseudo Ricci simetrik Riemann manifoldunun
(0,2) tipindeki S Ricci tensörü

(∇ZS)(X ,Y ) = 2A(Z)S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

ifadesini sağlar ve (PRS)n ile gösterilir. Bu bağıntı Chaki tarafından bulunmuş ve
Chaki ve Kawaguchi tarafından hemen hemen pseudo Ricci simetrik manifoldu olarak
genelleştirilerek, A(PRS)n ile gösterilmiştir. Bu bölümde, söz edilen manifoldlarla
ilgili çalışmalar detaylı olarak verilmiştir.

Çalısmanın üçüncü bölümünde ise, ilk olarak, 1970 yılında Pokhariyal and Mishra
tarafından (Mn,g), (n > 3) manifoldu üzerinde

W2(X ,Y,Z,U) = R(X ,Y,Z,U)+
1

n−1
[g(X ,Z)S(Y,U)−g(Y,Z)S(X ,U)]

bağıntısı ile tanımlanan W 2−eğrilik tensörünün genel özellikleri yer almaktadır. Bu
bölümde, hemen hemen pseudo Ricci simetrik manifoldu göz önüne alınmıştır. Daha
sonra, daraltılmış W 2−tensörü

W 2(X ,Y ) =
n

n−1
[S(X ,Y )− r

n
g(X ,Y )]

xvii



şeklinde bulunmuş ve W 2 ifadesiyle gösterilmiştir. Manifoldumuz W 2−düz kabul
edildiğinde, Ricci tensörü

S(X ,Y ) =
r
n

g(X ,Y )

bağıntısını gerçeklemektedir. Bu ifadeler kullanılarak

(n−1)(n+2)rA(Z) = 0

denklemi bulunmuştur. Bu takdirde, r 6= 0 olduğundan A(Z) = 0 olmalıdır.
Dolayısıyla, bu manifold, B formu tarafından üretilen rekürant manifolda indirgen-
mektedir. Bu bölümde ayrıca, hemen hemen pseudo Ricci simetrik manifoldu için

(∇Zr) = [A(Z)+B(Z)]r+2A(QZ)

bağıntısı bulunmuştur. Bu bağıntı kullanılarak, divW 2 ifadesi

divW 2(Y ) =
n

n−1
[(

n−1
n

)(2A(QY )+ rA(Y ))+B(QY )− r
n

B(Y )]

şeklinde elde edilmiştir. W 2 tensörünün diverjansının sıfır olduğu durumda, − r
2

ve r
2 değerleri S Ricci tensörünün ρ ve Q özvektörlerine göre özdeğerleri olduğu

ispatlanmıştır. Ayrıca, W 2 tensörü rekürant ve Codazzi tipinde tensör alanları olarak
kabul edilmesi halinde, A ve B formları için sonuçlar bulunmuştur. Eğer W 2 tensörü
genelleştirilmiş rekürant ise, yani

(∇ZW 2)(X ,Y ) = α(Z)W 2(X ,Y )+ γ(Z)g(X ,Y )

bağıntısı mevcutsa, γ(Z) = 0 zorunda olduğu elde edilmiştir. Bu ise, manifoldun W 2
Ricci tensörünün genelleştirilmiş rekürant olamayacağını göstermiştir. Daha sonra, r
skaler eğriliği sabit ve W2−Ricci tensörünün de kovaryant türevinin sıfır olduğu kabul
edilerek teoremler elde edilmiştir. Bu durumda,

(∇ZS)(X ,Y ) = 0

ifadesinin sağlandığı gösterilmiştir. Bu çalışmanın devamında ise, A ve B formları
arasında

A(QZ) =− r
2
[A(Z)+B(Z)]

bağıntısının mevcut olduğu bulunmuştur. Eğer, göz önüne alınan manifoldun r skaler
eğriliği sabit ve W 2 tensörü Codazzi tipinde ise, A ve B formları tarafından üretilen
vekör alanları arasındaki açının

θ = arccos(− 1
3|A|

)

olduğu elde edilmiştir. Bu bölümün sonunda, skaler eğriliğe sabit olan, eğriliğe sahip
hemen hemen pseudo Ricci simetrik manifolda örnek verilmiştır.

Çalışmanın son bölümünde, hemen hemen pseudo Ricci simetrik uzay-zaman için
özel bir durum incelenmiştir. Bölümün ilk kısmında, uzay-zaman kavramlarının
tarih boyunca araştırılmsına duyulan gereksinim hakkında bilgi verilmiştir. Daha
sonra, genel relativistik uzay-zamanı, (−,+,+,+) işaretli g metrik tensörlü (M,g)
Lorentz manifoldu olarak alınmıstır. Birinci bölümde, ilk olarak mükemmel akışkan
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ele alınmıştır. Kozmolojik sabit içermeyen Einstein alan denkleminin tanımı ve
mükemmel akışkan için enerji momentum tensörü T ’ nin tanımı verilmiştir. Bu
durumda, κ yerçekimi sabiti, σ enerji yoğunluğu, p izotropik basınç olmak üzere,
Ricci tensörü

S(X ,Y ) = κ(σ + p)A(X)A(Y )+(κ p+
r
2
)g(X ,Y )

ve skaler eğrilik
r = κ(σ −3p)

olarak bulunur. Bu ifadeler kullanılarak, 4− boyutlu, hemen hemen pseudo
Ricci simetrik uzay-zamanımızda kozmolojik sabit içermeyen mükemmel akışkana
ait Einstein alan denklemini sağlaması için gerek ve yeter koşul olarak, enerji
yoğunluğunun türevinin, 1−form A tarafından üretilen vektör alanına dik olması,
bunun sonucu olarak, σ + ρ = 0 olması gerektiği gösterilmiştir. Daha sonra,
4−boyutlu hemen hemen pseudo Ricci simetrik uzay-zamanımızda mükemmel
akıskan için, eğer enerji yoğunluğunun türevi 1−form A tarafından üretilen vektör
alanına dik ise, uzay-zamanımızın Einstein uzayına indirgendiği bulunmuştur. Ayrıca,
kozmolojik sabit içermeyen Einstein alan denkleminin izotropik basınç ve A, 1−formu
tarafından üretilen vektör alanı arasındaki ilişki incelenmiştir. Daha sonra, A, 1−formu
tarafından üretilen vektör alanının diverjansı

divA =
3(σ − p)
2(σ + p)

şeklinde bulunmuştur. Basınç içermeyen, uzay-zaman modeli göz önüne alınırsa,
enerji momentum tensörü

T (X ,Y ) = σA(X)A(Y )

formundadır. Basınç içermeyen, hemen hemen pseudo Ricci symmetric uzay-zamanda
σ = 0 olmak zorunda olduğu ispatlanmıştır. Bu sonuç, T (X ,Y ) = 0 olmak
zorunda olduğunu da göstermiştir. Böylece, basınç içermeyen hemen hemen pseudo
Ricci simetrik uzay-zamanın boş olduğunu göstermiştir. Bu bölümün sonunda,
uzay-zamanımız radyoaktif akışkan olarak seçilmiş ve enerji momentum tensörü

T (X ,Y ) = p[4A(X)A(Y )+g(X ,Y )]

ifadesi olarak göz önüne alınmıştır. Böylece,

−6κ pA(Z) = 0

olduğu elde edilmiştir. Bu sonuç, p = 0 olması gerektiğini göstermiştir. Yani,
T (X ,Y ) = 0 olmak zorundadır. Bu durumda, hemen hemen pseudo Ricci simetrik
ve kozmolojik sabit içermeyen Einstein alan denklemine sahip bir uzay-zamanda
eğer radyoaktif akışkan göz önüne alanırsa, uzayın boş uzaydan ibaret olacağı
ispatlanmıstır.
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1. INTRODUCTION

1.1 Basic Definitions

1.1.1 Riemannian manifold

Let M be a manifold if at each point p ∈M, there is a bilinear, symmetric and positive

definite tensor, g =<,> defined on TpM such that

g : TpMxTpM→ℜ

then g is called the Riemannian metric or Riemannian tensor. Thus, M is called a

Riemannian manifold [1].

1.1.2 Connections on manifolds

Let M be a smooth manifold. A covariant differentiation or a connection on M is an

operator ∇ that assigns to each pair of C∞ vector fields X and Y and a scalar function

f on domain U that satisfies the following properties for X ,Y,Z ∈ χ(U), [2]

• ∇X(Y +Z) = ∇XY +∇X Z

• ∇X+Y Z = ∇X Z +∇Y Z

• ∇ f X Z = f ∇X Z

• ∇X( f Z) = (X f )ZY + f ∇X Z.

1.1.3 Torsion tensor

Let X ,Y be vector fields on a Riemannian manifold M. Then the vector field

τ(X ,Y ) = ∇XY −∇Y X− [X ,Y ]

defines a tensor field T of type (0,2) [3]. Thus, this tensor is called torsion tensor and

for any 1−form φ , we have

T (φ ,X ,Y ) = φ(τ(X ,Y ))

1



.

1.1.4 Affine connection

An affine connection on ∇ on a smooth manifold M is a mapping

∇ : χ(M)xχ(M)→ χ(M)

(X ,Y ) 7→ ∇XY

subject to the properties :

• ∇ f X+gY Z = f ∇X Z +g∇Y Z

• ∇X(αY +βZ) = α∇XY +β∇X Z

• ∇X( fY ) = f ∇XY +(X f )Y (Leibniz Rule)

where X ,Y,Z ∈ χ(M) and f ,g be linear functions, [4].

If the torsion vanishes, then the affine connection is called torsion-free, in a word, for

all X ,Y

∇XY −∇Y X = [X ,Y ]

holds.

1.1.5 Levi-Civita connection

Let M be a Riemannian manifold. There exists an affine connection ∇ on M that is

compatible with g and symmetric. Then, it satisfies the condition

Z(g(X ,Y )) = g(∇ZX ,Y )+g(X ,∇ZY )

for vector fields X ,Y,Z. An affine connection which is torsion-free and compatible

with the metric g is called the Levi−Civita connection or Riemannian connection, [2].

1.1.6 Riemannian curvature tensor

Let M be a Riemannian manifold and χ(M) denote the space of C∞ vector fields on M.

The Riemannian curvature tensor is the map

R : χ(M)Xχ(M)Xχ(M)→ χ(M)

2



defined by

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z

for all X ,Y,Z ∈ χ(M) [5]. Clearly, we have the antisymmetry in X and Y :

R(Y,X)Z =−R(X ,Y )Z.

Using metric g, we can change a (0,3)−tensor to a (0,4)−tensor such that

R(X ,Y,Z,W ) = g(R(X ,Y,Z),W ).

Also, the Riemannian curvature tensor satisfies the following rules:

• R(X,Y,Z,W)=-R(Y,X,Z,W)=R(Y,X,W,Z)

• R(X,Y,Z,W)=R(Z,W,X,Y)

• R(X,Y)Z+R(Z,X)Y+R(Y,Z)X=0 (I. Bianchi Identity).

1.1.7 Covariant derivative of tensor fields

Let ϕ ∈ T r(M). The covariant derivative of ϕ is a tensor of order (r+1) given by

(∇Y ϕ)(X1,X2, ...,Xr) =Y (ϕ(X1,X2, ...,Xr))−ϕ(∇Y X1,X2, ...,Xr)− ...

ϕ(X1,X2, ...,∇Y Xr−1,Xr)−ϕ(X1,X2, ...,Xr−1,∇Y Xr)

where X ,Y be vector fields on M [6].

1.2 Some Special Tensor Fields and Vector Fields

1.2.1 Ricci tensor

Let M be a manifold with an affine connection ∇ and R be the curvature tensor of ∇.

The Ricci tensor Ric of the connection is a tensor field of type (0,2) assigning to the

vector fields X and Y. Then the function Ric(X ,Y ) the value of which at p ∈M is the

trace of the linear mapping

T pM→ T pM

Zp→ R(Zp,X(p);Y (p))

where Zp ∈ TpM [7].

3



1.2.2 Torse-forming vector field

A vector field ψ in a Riemannian manifold M is called torse-forming if it satisfies

∇X ψ = ρX +α(X)ψ

where X ∈ T M, α is a linear form and ρ is a scalar function [8]. In local transcription,

this reads

ψ
h
,i = ρδ

h
i +ψ

h
αi (1.1)

where ψh and αi are the components of the vector fields generated by ψ and α and δ h
i

is Kronecker symbol.

Torse-forming vector field ψ is called

• recurrent, if ρ = 0

• concircular, if αi is a gradient covector (i.e.,αi = α ,i)

• convergent, if it is concircular, and ρ = const.exp(α)

1.2.3 Codazzi type tensor field

LetM be a smooth Riemannian manifold. A tensor field T of type (0,2) is called

Codazzi type if it satisfies Codazzi equation

(∇X T )(Y,Z) = (∇Y T )(X ,Z) (1.2)

for every vector fields X ,Y,Z, [9]

1.3 Some Special Riemannian Manifolds

1.3.1 Recurrent manifold

A non-flat Riemannian manifold M is called recurrent manifold if its curvature tensor

satisfies the condition

(∇W R)(X ,Y,Z,U) = α(W )R(X ,Y,Z,U) (1.3)

for a non-zero 1−form α, [10].

4



1.3.2 Generalized recurrent manifold

A non-flat, n−dimensional Riemannian manifold M, (n > 2) is called a generalized

recurrent manifold if its curvature tensor R of type (0,4) satisfies the condition

(∇X R)(Y,Z,W,U) = α(X)R(Y,Z,W,U)+β (X)G(Y,Z,W,U) (1.4)

where G(Y,Z,W,U) = g(Y,U)g(Z,W ) − g(Y,W )g(Z,U) and α,β are non-zero

1−forms, [11].

1.3.3 Ricci recurrent manifold

A non-flat Riemannian manifold M is called a Ricci-recurrent manifold if its Ricci

tensor S satisfies the condition

(∇X S)(Y,Z) = A(X)S(Y,Z) (1.5)

where ∇ is the Levi-Civita connection of the Riemannian metric g and A is a 1−form

on M, [12].

5
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2. RIEMANNIAN MANIFOLD WITH W2−CURVATURE TENSOR

2.1 W2−Curvature Tensor

In 1970, Pokhariyal and Mishra [13] introduced a new tensor, called W2 , in a

Riemannian manifold and studied their properties. According to them [13], a W2−

curvature tensor on a manifold (M,g), (n > 3) is defined by

W2(X ,Y,Z,U) = R(X ,Y,Z,U)+
1

n−1
[g(X ,Z)S(Y,U)−g(Y,Z)S(X ,U)]. (2.1)

After that, W 2−curvature tensor on some special manifolds has been examined by

many authors such as Taleshian and Hosseinzadeh [14], Özen Zengin [15], Hui [16],

Mallick and De [17], etc.

2.2 W2−flat Riemannian Manifold

In this section, we denote the contracted W2−curvature tensor which is type of (0,2)

as W 2 and call it W2−Ricci tensor.

Now, contracting (2.1) over X and U, we obtain the contracted W2 tensor, i.e.,

W2−Ricci tensor

W 2(X ,Y ) =
n

n−1
[S(X ,Y )− r

n
g(X ,Y )]. (2.2)

If we assume that our manifold is W2−flat, then from (2.2),

S(X ,Y ) =
r
n

g(X ,Y ). (2.3)

Thus, this manifold reduces Einstein manifold.
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3. ALMOST PSEUDO RICCI SYMMETRIC MANIFOLDS

3.1 The Importance of Symmetric Manifolds

In the late twenties, because of the important role of symmetric spaces in differential

geometry, Cartan [18], obtaining a classification of those spaces, established

Riemannian symmetric spaces.

Let (M,g) be an n-dimensional Riemannian manifold with the metric g and let ∇ be the

Levi-Civita connection of (M,g). A Riemanian manifold is called locally symmetric

[18] if ∇R= 0, where R is the Riemannian curvature tensor of (M,g). This condition of

locally symmetric is equivalent to the fact that every point p ∈M, the locally geodesic

symmetry F(p) is an isometry [19]. The class of Riemannian symmetric manifolds is

very natural generalization of the class of manifolds of constant curvature.

In the last five decades, the notion of locally symmetric manifolds have been

weakended by many authors in several ways by extending to special manifolds such

as conformally symmetric manifolds by Chaki and Gupta [20], recurrent manifolds

introduced by Walker [21], conformally recurrent manifolds by Adati and Miyazawa

[22], conformally symmetric Ricci-recurrent spaces by Roter [23], pseudo-Riemannian

manifolds with recurrent concircular curvature tensor by Olszak and Olszak [24],

semi-symmetric manifolds by Szabo [25] ,pesudo symmetric manifolds by Chaki

[26], weakly symmetric manifolds by Tamassy and Binh [27], projective symmetric

manifolds by Soos [28], etc.

The Einstein equations [19], imply that the energy-momentum tensor is of vanishing

divergence. This requirement is satisfied [28] if the energy- momentum tensor is

covariant-constant. In the paper [28], Chaki and Ray had shown that a general

relativistic spacetime with covariant-constant energy-momentum tensor is Ricci

symmetric, that is, ∇S = 0 where S is the Ricci tensor of the spacetime. If however

∇S 6= 0, then such a spacetime may be called pseudo Ricci symmetric. It can be

said that the Ricci symmetric condition is only a special case of the pseudo Ricci

9



symmetric condition. It is, therefore, meaningful to study the properties of pseudo

Ricci symmetric spacetimes in general relativity.

3.2 Almost Pseudo Ricci Symmetric Manifolds

Let Q be the symmetric endomorphism corresponding to the Ricci tensor as indicated

below

S(X ,Y ) = g(QX ,Y )

for all vector fields X and Y.

A non-flat Riemannian manifold is called pseudo Ricci symmetric and denoted by

(PRS)n if the Ricci tensor S of type (0,2) of the manifold is non-zero and satisfies the

condition, [29]

(∇ZS)(X ,Y ) = 2A(Z)S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z) (3.1)

where ∇ denotes the Levi-Civita connection and A is a non-zero 1−form such that

g(X ,ρ) = A(X) (3.2)

for all vector fields X ,ρ being the vector field corresponding to the associated 1−form

A. If in (3.1), the 1−form A = 0, then the manifold reduces to Ricci symmetric

manifold or covariantly constant

(∇ZS)(X ,Y ) = 0. (3.3)

The notion of pseudo Ricci symmetry is different from that of R. Deszcz [30].

So, pseudo Ricci symmetric manifolds have some importance in general theory of

relativity. By this motivation, Chaki and Kawaguchi [31] generalized pseudo Ricci

symmetric manifold and introduced the notion of almost pseudo Ricci symmetric

manifold as

(∇ZS)(X ,Y ) = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z) (3.4)

where A and B are two non-zero 1−forms and ∇ denotes the operator of the covariant

differentiation with respect to the metric g. In such a case, A and B are called

the associated 1−forms and an n−dimensional manifold of this kind is denoted by

A(PRS)n.
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If B = A, then the equation (3.3) reduces to (3.1), that is, A(PRS)n reduces to a pseudo

Ricci symmetric manifold [29]. Thus, pseudo Ricci symmetric manifold is a particular

case of A(PRS)n. In 1993, Tamassy and Binh [32] introduced the notion of weakly

Ricci symmetric manifold which is the generalization of pseudo Ricci symmetric

manifold in the sense of Chaki. It may be mentioned that an A(PRS)n is not a particular

case of a weakly Ricci symmetric manifold introduced by Tamassy and Binh [32].

Let g(X ,ρ) = A(X) and g(X ,Q) = B(X) for all X . Then ρ,Q are called basic vector

fields of the manifold corresponding to the associated 1−forms A and B, respectively.

Almost pseudo Ricci symmetric manifolds on some structures have been studied by

many authors such as De and Gazi [33], Shaikh, Hui and Bagewadi [34], De, Özgür

and De [35], Hui and Özen Zengin [36], De and Mallick [37], De and Pal [38], Kırık

and Özen Zengin [39], etc.

3.3 W2−flat A(PRS)n

Assuming that our manifold (M,g) is A(PRS)n admitting W2 curvature tensor, from

(2.3), we get

(∇ZS)(X ,Y ) =
1
n
(∇Zr)g(X ,Y ). (3.5)

Putting (3.4) in (3.5), we obtain

(∇Zr)g(X ,Y ) = r[(A(Z)+B(Z))g(X ,Y )+A(X)g(Y,Z)+A(Y )g(X ,Z)]. (3.6)

Contracting (3.6) over X and Y, then we have

n(∇Zr) = r[(n+2)A(Z)+nB(Z)]. (3.7)

Again, contracting (3.6) over X and Z, then we have

(∇Zr) = r[(n+2)A(Z)+B(Z)]. (3.8)

Comparing (3.7) and (3.8), we get

r[(n+2)A(Z)+nB(Z)] = nr[(n+2)A(Z)+B(Z)].

Thus, we have

(n+2)(n−1)rA(Z) = 0.
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Since r 6= 0, we have from the above equation it must be A(Z) = 0. Thus, we have the

following theorem:

Theorem 3.3.1 W2−flat A(PRS)n reduces to a Ricci recurrent manifold with the

recurrence vector field generated by the 1−form B.

3.4 A(PRS)n Admitting Non-zero W2−Ricci Tensor

Now, we assume that our manifold A(PRS)n is of non-zero W2−curvature tensor. By

taking the covariant derivative of (2.2), we get

(∇ZW 2)(X ,Y ) =
n

n−1
[(∇ZS)(X ,Y )− 1

n
(∇Zr)g(X ,Y )]. (3.9)

If we contract (3.4) over X and Y , then we obtain

(∇Zr) = [A(Z)+B(Z)]r+2A(QZ). (3.10)

By putting (3.4) and (3.10) in (3.9), we find

(∇ZW 2)(X ,Y ) =
n

n−1
{[A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

− r
n
[A(Z)+B(Z)]g(X ,Y )− 2

n
A(QZ)g(X ,Y )}. (3.11)

Now, contracting (3.11) over X and Z,

divW 2(Y ) =
n

n−1
[(

n−1
n

)(2A(QY )+ rA(Y ))+B(QY )− r
n

B(Y )]. (3.12)

By considering the tensor W 2 as divergence free, from (3.12), it can be obtained that

n
n−1

[(
n−1

n
)(2A(QY )+ rA(Y ))+B(QY )− r

n
B(Y )] = 0. (3.13)

If r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q where

g(X ,Q) = B(X), then − r
2 is an eigenvalue of the Ricci tensor S corresponding to the

eigenvector ρ where g(X ,ρ) = A(X). Conversely, if the equation (3.13) holds then

from (3.12), W 2 must be divergence-free.
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Thus, we have the following theorem:

Theorem 3.4.1 For an A(PRS)n, a necessary and sufficient condition the contracted

W2 curvature tensor W 2 be divergence free is that − r
2 and r

n be eigenvalues of the

Ricci tensor S corresponding to the eigenvectors ρ and Q where g(X ,ρ) = A(X) and

g(X ,Q) = B(X) , respectively.

Let W 2 be recurrent, i.e., from (1.3)

(∇ZW 2)(X ,Y ) = α(Z)W 2(X ,Y ) (3.14)

where α is a 1−form.

Using (2.2) and (3.11) in (3.14), it can be found that

α(Z)[S(X ,Y )− r
n

g(X ,Y )] = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z)

− r
n
[A(Z)+B(Z)]g(X ,Y )− 2

n
A(QZ)g(X ,Y ) (3.15)

If we contract (3.15) over X and Z, then we get

α(QZ)− r
n

α(Z) =
(n−1)

n
[2A(QZ)+ rA(Z)]+B(QZ)− r

n
B(Z). (3.16)

This leads to the following theorem.

Theorem 3.4.2 Let us assume that A(PRS)n be of recurrent W2−Ricci tensor with

the recurrence vector field generated by the 1− form α . If r
n is an eigenvalue of the

Ricci tensor S corresponding to the eigenvectors both Q and µ where g(X ,Q) = B(X),

g(X ,µ) = α(X) then − r
2 is an eigenvalue of the Ricci tensor S corresponding to the

eigenvector ρ where g(X ,ρ) = A(X).

If we take α(Z) = A(Z) in (3.16), we find

(
2−n

n
)A(QZ)−A(Z)r = B(QZ)− r

n
B(Z).

If r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q then nr

2−n

is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ . Thus we

have the following theorem:
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Theorem 3.4.3 In an A(PRS)n, let us consider that W2−Ricci tensor is recurrent with

the recurrence vector field generated by the 1−form A. A necessary and sufficient

condition r
n be an eigenvalue of the Ricci tensor S corresponding to the eigenvector

Q where g(X ,Q) = B(X) is that nr
2−n (n > 2) be an eigenvalue of the Ricci tensor S

corresponding to the eigenvector ρ where g(X ,ρ) = A(X).

Now, by taking α(Z) = B(Z) in (3.16) then we obtain

A(QZ) =− r
2

A(Z). (3.17)

If we differentiate the equation (3.17), then we can find

(∇X A)(QZ) =−1
2
[(∇X r)A(Z)+ r(∇X A)(Z)]. (3.18)

By using (3.4), (3.10) and (3.17) in (3.18), we get

|A|A(Z)r = 0.

Since r 6= 0 then from the above equation A(Z) must be 0. Thus, we have the following

theorem:

Theorem 3.4.4 An A(PRS)n admits recurrent W2−Ricci tensor which is recurrent with

the recurrence vector field generated by the 1− form B does not exist.

Let us assume that W 2 is generalized recurrent. Thus, from (1.4)

(∇ZW 2)(X ,Y ) = α(Z)W 2(X ,Y )+ γ(Z)g(X ,Y ).

Using (2.2) and (3.11) in the above equation, we have

n
n−1

[S(X ,Y )− r
n

g(X ,Y )]+ γ(Z)g(X ,Y ) =
n

n−1
[(A(Z)+B(Z))S(X ,Y )

+A(X)S(Y,Z)+A(Y )S(X ,Z)

− r
n
(A(Z)+B(Z))g(X ,Y )

− 2
n

A(QY )]. (3.19)

Contracting (3.19) over X and Y,

nγ(Z) = 0.

Hence, γ(Z) = 0. Thus, we have the following theorem :
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Theorem 3.4.5 An A(PRS)n admits generalized W2−Ricci tensor does not exist.

If r is constant, then (3.9) reduces to

(∇ZW 2)(X ,Y ) =
n

n−1
(∇ZS)(X ,Y ). (3.20)

Using (3.4) and (3.20), we get

(∇ZW 2)(X ,Y ) =
n

n−1
[(A(Z)+B(Z))S(X ,Y )+A(X)S(Y,Z)+A(Z)S(X ,Y )]. (3.21)

If W 2 is Codazzi type, from (1.2) and (3.21), it is easy to see that

B(Z)S(X ,Y )−B(Y )S(X ,Z) = 0.

Contracting the above equation over X and Y , we find

B(Z)r = B(QZ). (3.22)

In this case, we have the following theorem :

Theorem 3.4.6 In an A(PRS)n admitting constant scalar curvature, if W2−Ricci

tensor is Codazzi type then r is an eigenvalue of the Ricci tensor S corresponding

to the eigenvector Q where g(X ,Q) = B(X).

Now, if we assume that r is constant and W 2 is covariantly constant. Then from (2.2)

(∇ZS)(X ,Y ) = 0. (3.23)

Using (3.23) in (3.4), we have

(∇ZS)(X ,Y ) = [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z).

Contracting the above equation over X and Y, we get

[A(Z)+B(Z)]r+2A(QZ) = 0. (3.24)

Finally, we obtain from (3.24)

A(QZ) =− r
2
[A(Z)+B(Z)]. (3.25)

Hence, we have the following theorem:
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Theorem 3.4.7 If an A(PRS)n admitting constant scalar curvature and covariantly

constant W2−Ricci tensor then the Ricci tensor of this manifold is covariantly constant

and the 1−forms A and B are related by

A(QZ) =− r
2
[A(Z)+B(Z)].

Let us assume that r is constant and W 2 is Codazzi type. If we take the covariant

derivative of (3.22), then we get

(∇X B)(QZ) = r(∇X B)(Z). (3.26)

By using (3.4) and contracting over X and Z in (3.26), we find

r|B|(3 < A,B >+|B|) = 0 (3.27)

where <,> is the inner product. Since r 6= 0 and |B| 6= 0 in (3.27), we obtain

< A,B >=−|B|
3
. (3.28)

We know that < A,B >= |A||B|cosθ , from (3.28), we get

|A|cosθ =−1
3

where
π

2
< θ ≤ π.

Therefore, we can state the following theorem:

Theorem 3.4.8 If an A(PRS)n with the constant scalar curvature tensor is of Codazzi

type W2−Ricci tensor then the angle between the vector fields generated by the 1-

forms A and B is

θ = arccos(− 1
3|A|

).

Thus, θ ∈ (π

2 ,π] where |A| is the length of the vector field generated by the 1−form A.

3.5 An Example For The Existence A(PRS)n Admitting W2− Curvature Tensor

In this section, we want to construct an example of an four-dimensional almost pseudo

Ricci symmetric manifold with constant scalar curvature and W2−Ricci tensor.

In local coordinates, let us consider a Riemannian metric g on ℜ4 with coordinates (x1,

x2, x3, x4) by

ds2 = gi jdxidx j = ex1
(dx1)2 + ex2

(dx2)2 +(dx3)2 +(sinx3)2(dx4)2. (3.29)
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Then the only non vanishing components of the Christoffel symbols and curvature

tensors are, respectively,

Γ
1
11 = Γ

2
22 =

1
2
, Γ

3
44 =−sinx3cosx3, Γ

4
43 = cotx3, (3.30)

and

R3
443 =−(sinx3)2, R3

443 =−1 (3.31)

and the components obtained by the symmetry properties. The non-vanishing

components of the Ricci tensors are

S33 =−1, S44 =−(sinx3)2. (3.32)

It can be shown that the scalar curvature r of (ℜ4,g) is −2. By using (2.2), (3.29) and

(3.32), we get the only non-vanishing components of W 2 are

W 11 =
2
3

ex1
, W 22 =

2
3

ex2
, W 33 =−

2
3
, W 44 =−

2
3
(sinx3)2. (3.33)

By taking the covariant derivatives of each of W i j in (3.33), we find that W i j,k = 0 for

all i, j,k. This shows that W i j are covariantly constant.

In this case, by taking the covariant derivatives of S33 and S44 and by using (3.32), we

obtain that Si j,k = 0 for all i, j,k.

Let us choose the 1−forms A and B as

A = ex1+x2
+ ex3+x4

(3.34)

and

B =−ex1+x2
−2ex3+x4

. (3.35)

Now, by taking the derivatives of (3.34) and (3.35), we get

Ai =

{
ex1+x2

, i = 1,2
ex3+x4

, i = 3,4
(3.36)

and

Bi =

{
−ex1+x2

, i = 1,2
−2ex3+x4

, i = 3,4 .
(3.37)
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With the help of (3.29), (3.32), (3.36) and (3.37), the equations

A1R11 = −R
2
(A1 +B1)

A2R22 = −R
2
(A2 +B2)

A3R33 = −R
2
(A3 +B3)

A4R44 = −R
2
(A4 +B4)

are satisfied.

From these results, it is clear that (ℜ4,g) given by (3.29) is an A(PRS)4 satisfying

Theorem 3.4.7. Thus, we can state the following theorem :

Theorem 3.5.1 Let us consider a Riemannian metric g on ℜ4 given by

ds2 = gi jdxidx j = ex1
(dx1)2 + ex2

(dx2)2 +(dx3)2 +(sinx3)2(dx4)2.

Assume that this manifold is an A(PRS)4 with the constant scalar curvature and

covariantly constant W i j tensor. If we choose the 1− forms A and B related to this

manifold as

A = ex1+x2
+ ex3+x4

and B =−ex1+x2
+2ex3+x4

,

then Theorem 3.4.7 holds.
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4. ON ALMOST PSEUDO RICCI SYMMETRIC SPACETIMES

Astronomers have struggled with basic questions about the size and age of the universe

for thousand of years. At the beginning of the twentieth century, the astronomer

Edwin Hubble made a critical discovery that soon led to reasonable answers to

these equations. Those measurements marked the first evidence that our universe is

expanding. This discovery caused a profound revolution in our in view of the universe,

and understanding the source of its expansion is arguably the most dominant question

in cosmology today.

In recent years, the standard cosmological model has dramatically improved our

understanding of the universe by emerging as a particular solution of the Einstein

field equations. It is built on several fundamental assumptions and principles; such

as cosmological principle is particularly important. It states that our current universe

is homogeneous and isotropic, that is, there is neither a preffered place nor direction,

at least approximately on large scales. Although this mode has been successful in

explaining the majority of the current observations, such as the current expansion of

the universe and the spectrum of the cosmic microwave background [40] it lack of

the fundamental justification. In fact, the theory of quantum mechanics [41] states

that the early universe (just after the universe was born in the big bang) should have

been extremely inhomogeneous and anisotropic due to quantum fluctuations that yield

the creation of the fundamental particles and eventually to the formation of different

kinds of matter distributions such as galaxies, stars and planets. Hence, fundamental

questions a rise about how much primordial homogeneities evolved and why they are

essential absent in the present universe on large scales that any consistent cosmological

model must be able to answer.

This can be understood by the assumption of an extremely short, but particularly

violent, phase of expansion just after the big bang, called inflation. This basic idea

is that during this phase initial inhomogeneities are effectively smoothed out, and

from the point of view of any local observer, the universe rapidly becomes essentially
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homogeneous and isotropic. However, there is theoretical evidence, [42], [43] that

some assumptions of this model lead to significant drawbacks as important phenomena

are ignored. In fact, it is conceivable that some inhomogeneities caused by quantum

fluctuations would trigger the formation of primordial black holes [44] during the

evolution of the universe. Therefore, if such phenomenon was better understood and

taken into account, then it could be obtained more general and realistic cosmological

models.

The gravitational evolution of celestial bodies may be modeled by the Einstein field

equations. There is a system of ten highly coupled partial differential equations

expressing an equivalence between matter and geometry. These equations are

extremely difficult to solve in general and so simpler cases have to be treated to gain

an understanding into how certain types of matter behave under the influence of the

gravitational field. For example, the most studied configuration of a matter distribution

is that of a static spherically symmetric perfect fluid.

In this section, we concern is concerned with certain investigations in general

relativity by the coordinate free method of differential geometry. In this

method of study, spacetime of general relativity is regarded as a connected

four dimensional semi-Riemannian manifold (M,g) with Lorentzian metric g with

signature (−,+,+,+). The geometry of the Lorentzian manifold begins with the

study of the casual character of vectors of the manifold. It is due to this causality

that the Lorentzian manifold becomes a convenient choice for the study of general

relativity. By these equations, it is implied that the energy-momentum tensor is of

vanishing divergence [19]. This requirement is satisfied if the energy-momentum

tensor is covariant-constant [28]. In Ref [28], M.C. Chaki and S. Roy showed that

a general relativistic spacetime with covariant-constant energy-momentum tensor is

Ricci symmetric, that is, ∇S = 0 where S is the Ricci tensor of the spacetime. Many

authors have been studied spacetimes with special properties such as spacetimes with

semisymmetric energy momentum tensor by De and Velimirovic [45], M-projectively

flat spacetime by Zengin [46], pseudo Z symmetric spacetime by Mantica and Suh [47],

[48], generalized quasi-Einstein spacetimes by Güler and Demirbag [49], a spacetime

with pseudo-projective curvature tensor by Mallick, Suh and De, [50], on generalized
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Ricci recurrent manifolds with applications to relativity by Mallick, De and De [51],

generalized Robertson-Walker spacetimes by Arslan et al, [52] and many others.

4.1 Perfect Fluid A(PRS)4 Spacetimes

It is known that Einstein field equations without cosmological constant can be written

as

S(X ,Y )− 1
2

rg(X ,Y ) = κT (X ,Y ), (4.1)

where κ is the gravitational constant, T is the energy momentum tensor for a perfect

fluid given by [53]

T (X ,Y ) = (σ + p)A(X)A(Y )+ pg(X ,Y ) (4.2)

where σ is the energy density and p is the isotropic pressure of the fluid, respectively

and g(X ,ρ)=A(X) for all X , ρ is the flow vector field of the fluid.

Using (4.2), we can express (4.1) by

S(X ,Y ) = κ(σ + p)A(X)A(Y )+(κ p+
r
2
)g(X ,Y ). (4.3)

Contracting (4.3) over X and Y, then we have

r = κ(σ −3p). (4.4)

From (4.3) and (4.4), we obtain

S(X ,Y ) = κ(σ + p)A(X)A(Y )+
κ

2
(σ − p)g(X ,Y ). (4.5)

If we differentiate the equation (4.5), we can find

(∇ZS)(X ,Y ) =κ(dσ +d p)A(X)A(Y )+κ(σ + p)[(∇ZA)(X)A(Y ) (4.6)

+A(X)(∇ZA)(Y )]+
κ

2
(dσ −d p)g(X ,Y ).
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Comparing (3.4) with (4.6) and using (4.5), then since κ 6= 0, we get

[A(Z)+B(Z)][(σ + p)A(X)A(Y )+
1
2
(σ − p)g(X ,Y )]

+2(σ + p)A(X)A(Y )A(Z)+
1
2
(σ − p)[A(X)g(Y,Z)

+A(Y )g(X ,Z)] = (dσ +d p)A(X)A(Y )

+(σ + p)[(∇ZA)(X)A(Y )+A(X)(∇ZA)(Y )]

+
1
2
(dσ −d p)g(X ,Y ). (4.7)

Contracting (4.7) over X and Y, we find

−6pA(Z)+(σ −3p)B(Z) = dσ −3d p. (4.8)

If we contract (4.8) over Z, we obtain

6p = dσ(ρ)−3d p(ρ). (4.9)

On the other hand, contracting (4.7) over X and Y,

3
2

A(Z)(σ +3p)+
1
2

B(Z)(σ +3p) =
1
2
(dσ +3d p). (4.10)

And, contracting (4.10) over Z,

−3(σ +3p) = dσ(ρ)+3d p(ρ) (4.11)

Hence, from (4.8) and (4.11), it can be seen that

dσ(ρ) =−3
2
(σ + p). (4.12)

If the derivative of σ is orthogonal to the vector field generated by the 1−form A then

we have the following theorem:

Theorem 4.1.1 In a perfect fluid A(PRS)4 spacetime satisfying Einstein field

equations without cosmological constant, a necessary and sufficient condition the

derivative of the energy density be orthogonal to the vector field generated by the

1-form A is that it must be σ + p = 0.
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Putting (4.12) in (4.5), we get

S(X ,Y ) = κσg(X ,Y ). (4.13)

Comparing (4.4) and (4.13), we find S(X ,Y ) = r
4g(X ,Y ).

Hence, we can state the following theorem:

Theorem 4.1.2 In a perfect fluid A(PRS)4 spacetime, if the derivative of the energy

density is orthogonal to the vector field generated by the 1−form A then this spacetime

reduces to an Einstein space.

In this case, comparing the equations (4.9) and (4.12), we get

d p(ρ) =−1
2
(σ +5p). (4.14)

Thus, we have the following theorem:

Theorem 4.1.3 In a perfect fluid A(PRS)4 spacetime satisfying Einstein field

equations without cosmological constant, a necessary and sufficient condition the

derivative of the isotropic pressure be orthogonal to the vector field generated by the

1−form A is that it must be σ =−5p.

With the help of (4.5) and (4.14), we find

S(X ,Y ) =
4κσ

5
A(X)A(Y )+

3κσ

5
g(X ,Y ). (4.15)

This shows us that our spacetime is a quasi-Einstein.

Hence, we have the following theorem:

Theorem 4.1.4 In a perfect fluid A(PRS)4 spacetime satisfying Einstein field

equations without cosmological constant, if the derivative of the isotropic pressure is

orthogonal to the vector field generated by the 1−form A then this spacetime reduces

to a quasi-Einstein with the form in S(X ,Y ) = 4κσ

5 A(X)A(Y )+ 3κσ

5 g(X ,Y ).
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Now, contracting (4.5) over X , then we obtain

A(QY ) =−κ

2
(σ +3p)A(Y ). (4.16)

If we take the covariant derivative of (4.16), we find

(∇ZA)(QY ) =−κ

2
(dσ +3d p)A(Y )−−κ

2
(σ +3p)(∇ZA). (4.17)

Using (3.4), (4.5) and (4.16) in (4.17), we get

−2(σ +2p)A(Y )A(Z)− 1
2
(σ +3p)A(Y )B(Z)− 1

2
(σ − p)g(Y,Z)

+(σ + p)(∇ZA)(Y )+
1
2
(σ +3p)A(Y ) = 0. (4.18)

Contracting over Y and Z in (4.5), we find

6p+(σ + p)divA+
1
2
[dσ(ρ)+3d(ρ)] = 0. (4.19)

From (4.11) and (4.19),

divA =
3(σ − p)
2(σ + p)

. (4.20)

Thus, we have the following theorem :

Theorem 4.1.5 In a perfect fluid A(PRS)4 spacetime satisfying Einstein field

equations without cosmological constant, the divergence of the vector field generated

by the 1−form A is divA = 3(σ−p)
2(σ+p) .

If the vector field generated by the 1−form A is divergence−free then by the aid of

(4.20), it must be σ = p. In this case, we have from (4.5),

S(X ,Y ) = 2κσA(X)A(Y ).

We can say that our spacetime is η−Einstein spacetime where η = 2κσ .

Let us assume that the vector field generated by the 1−form A is torse-forming vector

field,

(∇ZA)(X) = λ (Z)A(X)+βg(X ,Z). (4.21)

If we contract (4.21) over X , we get

λ (Z) = βA(Z). (4.22)
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Comparing (4.6) and (4.22), it is concluded that

(∇ZS)(X ,Y ) = κ(dσ +d p)A(X)A(Y )+2κ(σ + p)A(X)A(Y )A(Z)

+
κ

2
(dσ −d p)g(X ,Y ). (4.23)

By putting (4.23) in (3.4), we find

κ(dσ +d p)A(X)A(Y )+2κ(σ + p)A(X)A(Y )A(Z)+
κ

2
(dσ −d p)g(X ,Y )

= [A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z). (4.24)

Since κ 6= 0, from (4.5) and (4.24),

(dσ +d p)A(X)A(Y )+
1
2
(dσ −d p)g(X ,Y ) = (σ + p)[A(Z)+B(Z)]A(X)A(Y )

+
1
2
(σ − p)[A(Z)+B(Z)]g(X ,Y )+

1
2
(σ − p)[A(Y )g(X ,Z)+A(Z)g(X ,Y )]. (4.25)

Now, contracting (4.25) over X and Y,

dσ −3d p = 2(σ −2p)A(Z)+(σ −2p)B(Z). (4.26)

Contracting (4.26) over Z,

dσ(ρ)−3d p =−2σ +4p. (4.27)

From (4.9) and (4.27),

σ + p = 0.

Thus, we have the following theorem:

Theorem 4.1.6 If the vector field generated by the 1−form A of a perfect fluid

A(PRS)4 spacetime satisfying Einstein field equations without cosmological constant,

then a necessary and sufficient condition the derivative of the energy density be

orthogonal to the vector field generated by the 1-form A is that it must be σ + p = 0.
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4.2 A Pressureless Fluid A(PRS)4 Spacetimes

Assuming that our spacetime is a pressureless fluid spacetime (a dust), the energy

momentum tensor is the form

T (X ,Y ) = σA(X)A(Y ). (4.28)

In this case, from (4.3) and (4.28), we find that

S(X ,Y )− r
2

g(X ,Y ) = κσA(X)A(Y ). (4.29)

Contracting (4.29) over X and Y,

r = κσ . (4.30)

In this case, from (4.29) and (4.30), we get

S(X ,Y ) = κσ [A(X)A(Y )+
1
2

g(X ,Y )]. (4.31)

By taking the covariant derivative of (4.31), it can be found that

(∇ZS)(X ,Y ) = κdσ [A(X)A(Y )+
1
2

g(X ,Y )]+κσ [(∇ZA)(X)A(Y )

+A(X)(∇ZA)(Y )]. (4.32)

By putting (3.4) in (4.32), we obtain

[A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z) =

κdσ [A(X)A(Y )+
1
2

g(X ,Y )]+κσ [(∇ZA)(X)A(Y )+A(X)(∇ZA)(Y )]. (4.33)

From (4.31) and (4.33), we find

κσ [A(X)A(Y )+
1
2

g(X ,Y )]+κσA(X)[A(Y )A(Z)+
1
2

g(Y,Z)]

+κσA(Y )[A(X)A(Z)+
1
2

g(X ,Z)] = κ(dσ)[A(X)A(Y )+
1
2

g(X ,Y )]

+κσ [(∇ZA)(X)A(Y )+A(X)(∇ZA)(Y )]. (4.34)

Contracting (4.34) over X and Y, we get

σB(Z) = dσ . (4.35)
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Then from (4.35), we have

dσ(ρ) = 0. (4.36)

If the derivative of σ is orthogonal to the vector field associated by the 1−form A then

from (4.11) and (4.36), we find

σ = 0. (4.37)

Thus with the help of(4.28) and (4.37), we conclude that

T (X ,Y ) = 0.

In this case, the spacetime is devoid of the matter. Thus, we can state the following

theorem:

Theorem 4.2.1 An A(PRS)4 dust fluid spacetime satisfying Einstein field equations

without cosmological constant is vacuum.

4.3 A Radiation Fluid A(PRS)4 Spacetimes

Now, we assume that our spacetime is a radiation fluid. Thus, we have

T (X ,Y ) = p[4A(X)A(Y )+g(X ,Y )]. (4.38)

In this case, from (4.1) and (4.38), we find

S(X ,Y )− r
2
= κ p[4A(X)A(Y )+g(X ,Y )]. (4.39)

Now, contracting (4.39) over X and Y, we get

r = 0. (4.40)

Thus, by the aid of (4.39) and (4.40), it can be found that

S(X ,Y ) = κ p[4A(X)A(Y )+g(X ,Y )]. (4.41)

If we take the covariant derivative of (4.41), we obtain

(∇ZS)(X ,Y ) = κd p[4A(X)A(Y )+g(X ,Y )]+4κ p[(∇ZA)(X)A(Y )

+A(X)(∇ZA)(Y )]. (4.42)
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By putting (3.4) in (4.42), we get

[A(Z)+B(Z)]S(X ,Y )+A(X)S(Y,Z)+A(Y )S(X ,Z) = (4.43)

κ[d p(4A(X)A(Y )+g(X ,Y ))

+4p((∇ZA)(X)A(Y )+A(X)(∇ZA)(Y ))].

Contracting (4.43) over X and Y,

[A(Z)+B(Z)]r+2A(QZ) = 0. (4.44)

Using (4.40) and (4.41) in (4.44),

−6κ pA(Z) = 0. (4.45)

Thus, it can be obtained from (4.45) that p = 0.

In this case, we get from (4.38), T (X ,Y ) = 0. Hence, we have the following theorem:

Theorem 4.3.1 An A(PRS)4 radiation fluid spacetime satisfying Einstein field

equations without cosmological constant is vacuum.
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