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LATTICE SOLITONS
IN CUBIC-QUINTIC MEDIA

SUMMARY

Solitons are localized nonlinear waves and occur in many branches of physics. Their
properties have provided fundamental understanding of complex nonlinear systems.
There has been considerable interest in studying solitons in lattices that can be
generated in nonlinear optical materials. In nonlinear optics, the propagation of
electromagnetic waves in photorefractive materials with intrinsic nonlinear resonance
can be modelled by the nonlinear Schrédinger (NLS) equation containing both cubic
and quintic terms. Recently, particular attention is drawn to nonlinear waves in
parity-time (P‘7') symmetric potentials.

In this thesis, the existence and stability properties of optical solitons on periodic
and certain P7 -symmetric lattices are investigated. The governing equation for the
physical model is the cubic-quintic nonlinear Schrédinger (CQNLS) equation with an
external potential:

i, + Au+ ot|u*u+ Blul*u+Vu=0. (1)

Here, u corresponds to the complex-valued, slowly varying amplitude of the electric
field in the x (or xy) plane propagating in the z-direction, Au corresponds to diffraction,
V is an external optical potential (i.e. lattice), & and 3 are coefficients of the cubic and
quintic nonlinearities, respectively.

First, solutions to the CQNLS equation with two dimensional periodic potential Vy for
N=4

2
Vo | NS i reos 22 ,m
VN(x;y):]V% Zez(xcoszT—i-ycosZT) : 2)
n=0

one dimensional P‘7T -symmetric potential
Vi (x) = V(x) 4 iW (x) = [Vo sech?(x) + V; sech* (x)] + i[Wo sech(x) tanh(x)]  (3)
and two dimensional P‘7 -symmetric potential
Vor (x,y) =V (x,y) +iW(x,y)
— {Vpsech?(x) sech?(y) + V; sech*(x) sech*(y)

+V, [sech2 (x)+ sech? (y) — sech? (x) sech? ]}
+ i{Wp[sech(x) tanh(x) + sech(y) tanh(y)]}

“4)

are obtained analytically whenever possible.  Then, numerical solutions are
calculated by means of the ’Spectral Renormalization Method’ or ’Pseudo-Spectral
Renormalization Method’. It is observed that the numerical solutions are in good
agreement with the analytical solutions.
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Next, the stability properties of the obtained solitons are investigated. Linear stability
analysis is conducted by linear spectrum analysis and linear evolution, whereas
nonlinear stability analysis is conducted by nonlinear evolution. A split-step Fourier
method is used for both evolutions.
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KUBIK-KUINTIK ORTAMLARDA
KAFES SOLITONLARI

OZET

Solitonlar; dogrusal olmayan dalga yayilimi, biyolojik sistemler ve dogrusal olmayan
optik gibi matematigin uygulama buldugu alanlarda ortaya konulan modellerin
coziimlerinde elde edilen kararli yapilar olarak karsimiza g¢ikarlar. Bulunduklar
sistemdeki dogrusalsizligin (nonlineerligin) ve ayrilmanin (dispersiyonun) denge-
lenmesiyle olusan bu dalgalar - solitonlar - ilerlerken kendi yapilarim1 korurlar ve
birbirleriyle olan etkilesimleri elastiktir.

Schrodinger denklemi, dalga-parcacik ikiligi gibi kuantum etkilerinin gecerli oldugu,
atom ve atom alti parcaciklardan olusan kuantum sistemlerdeki fiziksel sistemin
zamana bagli degisimini tarif eden bir matematiksel denklemdir. Ismini denklemi
ortaya koymus olan ve bu alandaki calismalarindan &tiirii Nobel Fizik Odiilii’ne layik
goriilen Erwin Schrodinger’den alan bu diferansiyel denklem, klasik mekanikteki
Newton’un Ikinci Yasast’nin kuantum mekanigindeki karsilig1 olarak diisiiniilebilir.

Dogrusal olmayan Schrodinger (NLS) denklemi ise, Schrodinger denkleminin teorik
fizikteki dogrusal olmayan cesididir ve optik kablolarda veya dalga kilavuzlarinda
151810 yayilmasi gibi dogrusal olmayan, ayirgan (dispersif) ortamlarda yavasca degisim
gosteren tek renkli (monokromatik) dalgalarin ilerlemesini betimleyen evrensel bir
denklemdir.

Hem {iciincii dereceden (kiibik) hem de besinci dereceden (kuintik) dogrusal olmayan
terim iceren Schrodinger (CQNLS) denklemi, bir¢ok fiziksel durumu betimler ve
ozellikle de optikte karsimiza cikar. Dogrusal olmayan optikte CQNLS denklemi,
elektromanyetik dalganin 151k kiran (fotorefraktif) maddelerde yayilimini betimler.
Kiibik-kuintik dogrusalsizligin nedeni madde i¢indeki 6z rezonanstir.

Iki boyutlu kiibik NLS denkleminin soliton tipi g¢oziimlerinin patladig1 yani
cOziimiin genliginin, sonlu zamanda ya da mesafede sinirsizca biiylimeye bagsladigi
bilinmektedir. Fiziksel problemlerin ¢éziimiinde en temel sorunlardan biri ¢éziimlerin
kararliligidir.  Optik problemlerinde bu, veri iletiminin uzun mesafelere saglikl
olarak yapilabilmesi baglaminda onem tasir. Son on yilda literatiirde, iki boyutlu
NLS denkleminin ¢6ziimlerinin patlamasini engelleyecek yontemler tartisilmaktadir.
Gosterilmistir ki, NLS denklemine eklenen bir potansiyel terimi, ki bu fiziksel ortamda
diizenege eklenecek olan bir kafes (latis) ile karsilamaktadir, belli parametreler
rejiminde dalga tipi ¢oziimiin kararli hale gelmesini miimkiin kilmaktadir. Bunun yani
sira, sisteme eklenen potansiyel, dalganin bi¢iminde, genliginde ve iletim siiresinde
degisiklikler yapabilmektedir. Dolayisiyla, fiziksel sistem diizeneginde ¢esitli yollarla
olusturulabilen kafeslerin optik problemlerinin ¢oziimiinde ve ¢oziimlerin kararlilig1 ve
yapisinin ayarlanmasi baglaminda 6nemli uygulama alanlar1 vardir. Her ne kadar tek
boyutlu NLS denkleminin ¢oziimleri kararli olsa da tek boyutlu ¢coziimlerin yapist ve
ozellikleri de iki boyutta oldugu gibi, sisteme eklenecek olan kafesler ile ayarlanabilir.
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Bu kafesler laboratuvar ortaminda lazer ismlarinin birbiriyle etkilestirilmesi veya
diizenege eklenecek olan kristal ya da yar1 kristaller ile olusturulmaktadir.

Bu tezde, kiibik-kuintik dogrusalsizlik barindiran ortamlarda temel kafes solitonlarin
varlig1 ve ozellikleri incelenmistir. Bu amacla ele alinan fiziksel model, asagidaki
CQNLS denklemidir:

i, + Au+ otfuPu+ Blul*u+Vu=0. 5)

Burada u karmagik degerli fonksiyonu, x (veya xy) diizleminde olup z ekseni boyunca
yayilan alanin yavasca degisen genligine, Au kirinima, V ise dig potansiyele (yani
kafese) karsilik gelmektedir. @ ve P sirasiyla kiibik ve kuintik dogrusalsizlik
katsayilaridir ve bunlarin pozitif olmasi odaklanmaya, negatif olmasi ise odaktan
sapmaya karsilik gelmektedir.

Tezde ilk olarak, gerekli fiziksel altyapr olusturulup Maxwell denklemlerinden
yola cikilarak kullanilacak esas denklem olan CQNLS denklemi tiiretilmistir.
Ardindan temelini kuantum mekaniginden alan parite-zaman (P‘7) simetrisi kavrami
aciklanmistir.

Kuantum mekaniginde bir sistemin toplam enerjisi Hamiltonyen operatoriiyle ifade
edilebilir. Hermisyen olmadiklar1 halde, P‘7 simetrisine sahip bazi Hamiltonyenlerin
de tiim 6zdegerlerinin gercel olabildigi gosterilmistir. Bu agidan, P7 simetrisi son
zamanlardaki arastirmalarda sikc¢a yer almaktadir.

Tezde, N = 4’e kars1 gelen

2
N-1 27n 27n )

VN(x,y) _ ]% Z ei(xcosT—O—ycosT
n=0

(6)

2 boyutlu periyodik potansiyel,
Vi (x) = V(x) 4 iW (x) = [Vosech? (x) 4 V| sech*(x)] + i[Wy sech(x) tanh(x)]  (7)
ile tanimlanan P7 simetrisine sahip 1 boyutlu potansiyel ve
Vor (x,y) =V (x,y) +iW(x,y)
— {Vpsech? (x) sech?(y) + V; sech*(x) sech*(y)

+ V5 [sech?(x) + sech?(y) — sech?(x) sech®(y)]}
+ i{Wp[sech(x) tanh(x) + sech(y) tanh(y)] }

®)

ile tanimlanan P7 simetrisine sahip 2 boyutlu potansiyel ele alinmigtir. Burada V;
(i=0,1,2) ve Wy katsayilar potansiyellerin sirasiyla gercel ve karmagik kisimlarinin
derinliklerini temsil etmektedir.

Son potansiyelin 6zel (kasitll) olarak bu sekilde secilmesiyle; tek basina integre
edilebilir olmayan (2+1) boyutlu CQNLS denkleminin, bu potansiyel altinda analitik
¢Oziimleri elde edilebilmistir.

Ayrica yapilan calismada, dogada kristallerin yukaridaki matematik modellemenin
aksine tam simetrik olmadiklarindan, yani atomik boyutta da olsa bazi kusurlar
icerebileceklerinden, kafes yapisindaki bu kusurlar1 modelleyen bir yapr da
kullanilmasgtir.
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Analitik ¢oziim elde edilemeyen durumlarda, tez kapsaminda gelistirilmis olan
"Spektral Yeniden Normallestirme’ ve ’Sozde Spektral Yeniden Normallestirme’
yontemleri kullanilarak sayisal ¢oziimler aranmistir. Temelde bir Fourier yinelemesi
olan bu yontemlerde, ¢oziimler u = fe*? doniisiimii sonras1 Fourier uzayinda
gergeklestirilen bir 6zyinelemenin yakinsamasiyla elde edilmektedir.

Tezde sirasiyla potansiyelsiz (1+1) boyutlu CQNLS denkleminin p > 0 yayilma sabiti
olmak iizere

N N
\/a + (\ fa? + ?ﬁu) cosh(2,/11x)

yapisindaki, P‘7 simetrisine sahip potansiyelli (1+1) boyutlu CQNLS denkleminin

€))

u(x,z) =

2
2—Vo+ 1%
u(x,2) =\ ——————

sech(x) exp (i [z 4 % arctan(sinh(x))} > (10)

yapisindaki ve P7 simetrisine sahip potansiyelli (2+1) boyutlu CQNLS denkleminin

2
[2—Vo+ %°
u(x,y,z) = %sech(x) sech(y) an

ol (l- {zz R {aretan(sinh(x)) + arctan(Sinh()’))] })

yapisindaki analitik ¢oziimleri elde edilmigtir.

Ote yandan potansiyelsiz (1+1) boyutlu CQNLS denkleminin, P77 simetrisine
sahip potansiyelli (1+1) boyutlu CQNLS denkleminin, potansiyelsiz (2+1) boyutlu
CQNLS denkleminin, periyodik potansiyelli (2+1) boyutlu CQNLS denkleminin, PT
simetrisine sahip potansiyelli (2+1) boyutlu CQNLS denkleminin, ‘7 simetrisine
sahip ancak kusur iceren potansiyelli (2+1) boyutlu CQNLS denkleminin ve son
olarak da P‘7 simetrisine sahip ancak kusur iceren potansiyelli (2+1) boyutlu kiibik
doyurulabilir NLS denkleminin ¢oziimleri yukarida bahsedilen sayisal yontemlerle
elde edilmistir.

Elde edilen sayisal ¢coziimlerle analitik ¢éziimlerin uyum sagladigi goriilmiistiir.

Sonrasinda, elde edilen solitonlarin kararhiliklar: incelenmistir. Dogrusal kararlilik
icin, probleme karsilik gelen dogrusallastirilmis operatoriin 6zdegerlerinin incelendigi
dogrusal spektrum analizi ve kiiciik bir sarsim (pertiirbasyon) ile birlikte ¢oziimiin
dogrusallastirilip ilerletilmesinin incelendigi dogrusal evrim analizi yapilmistir.
Dogrusal olmayan kararlilhik i¢in ise kiiciik bir sarsim ile birlikte ¢oziimiin
ilerletilmesinin incelendigi dogrusal olmayan evrim analizi yapilmistir. Her iki evrim
analizi i¢in de parcali-adimli (split-step) Fourier yontemi gelistirilip kullanilmustir.
Baz1 durumlarda ise elde edilen solitonlarin giicleri (enerjileri) hesaplanip bunlarin
degisiminden yola ¢ikilarak kararlilik hakkinda yorumlar yapilmigtir.
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1. INTRODUCTION

In the last decade, optical solitons have become essential for studying solitons’
interactions and most of the progress on soliton phenomena owes them as complicated
experiments can be conducted with ease in a laboratory environment that offers precise
control over almost every parameter. Furthermore, the ability to sample the waves
directly as they propagate and the availability of numerous material systems that are
fully characterized by a set of simple equations result in a field in which theory and

experiments make rapid progress.

Solitons are localized nonlinear waves and occur in many branches of physics []1].
Their properties have provided fundamental understanding of complex nonlinear
systems [2]. There has been considerable interest in studying solitons in lattices that
can be generated in nonlinear optical materials [3]]. In periodic lattices, solitons can
typically form when their propagation constant is within certain regions, so-called
gaps. Recently, particular attention is drawn to nonlinear waves in complex potentials,
especially the so-called parity-time (P‘7 ) symmetric potentials [4]. P7 -symmetric
systems have been realized in optical models governed by nonlinear Schrodinger
(NLS) type equations and on top of that, analytical solutions were obtained for the

one dimensional case [3]].

In optics, the propagation distance z takes place of the time variable ¢ of quantum
mechanics. In this regard, NLS type equations are used to model P7-symmetric
structures [6]]. In nonlinear optics, the propagation of electromagnetic waves in
photorefractive materials with intrinsic nonlinear resonance can be modelled by the
NLS equation containing both cubic and quintic terms [/]. Cubic-quintic nonlinear
Schrodinger (CQNLS) equation with external real potentials is studied in [8] and it
is reported that it may stabilize solitons that are unstable in free space. Recently, one
dimensional CQNLS equation with a trapping potential represented by a delta-function

is investigated by means of the rigorous theory of orbital stability of Hamiltonian



systems [9]. In [10]], two-dimensional solitons in a coupled model which combines

the cubic-quintic nonlinearity and 27 -symmetry were reported.

Localized solitary waves, or shortly solitons, form in nonlinear media as a result of
the balance between the self-trapping and linear diffraction [11]]. Optical solitons on
PT -symmetric lattices have been widely studied [[12]. However, most of the studies
focus on one-dimensional cases (e.g. [13]]) or investigate only the cubic nonlinearity

(e.g. [14]D.

Numerous theoretical studies deal with periodic or perfectly symmetric potentials.
In real life however, atomic crystals can have various irregularities such as defects
and dislocations [15]. In general, when the lattice periodicity is slightly perturbed,
the band-gap structure and soliton properties also become slightly perturbed, hence

solitons are expected to exist much the same in the perfectly periodic case.

In an optical fiber, the cubic nonlinearity typically generates the classic NLS equation.
Nevertheless, a Kerr nonlinearity cannot sufficiently represent the field-induced
change in the refractive index in case of short pulses and a high pulse power. In
these circumstances, a saturation term is introduced which leads to the saturable
NLS equation. [16] The cubic-saturable NLS equation has many applications in
nonlinear optics and its exact bright and dark soliton solutions are obtained in the

one dimensional (1D) case [17].

1.1 Purpose of Thesis

In this thesis, the existence and stability of optical solitons on periodic and certain
type of P7 -symmetric lattices will be investigated. The governing equation for the

physical model is the CQNLS equation with an external potential:

i, + Au+ otfulPu+ Blul*u+Vu=0. (1.1)

In optics, u corresponds to the complex-valued, slowly varying amplitude of the
electric field in the x or xy-plane propagating in the z-direction, Au corresponds to

diffraction, V is an external optical potential, o and 8 are real constants.

The solution to the CQNLS equation above with an external potential will be obtained

analytically whenever possible; then, numerically by spectral methods. As the external
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potential V, the following periodic and P‘T -symmetric lattices will be considered:

2
Vo |\ s 220 4y cos 22
VN(X,y) - m n;()el(xcog VIR ) )
Vog (x) =V (x)+iW(x)
= [V sech?(x) + V; sech* (x)] 4 i[Wp sech(x) tanh(x)] ,

Vor (x,y) =V (x,y) +iW (x,y) (1.2)

= {Vpsech?(x)sech?(y) 4V, sech* (x) sech* (y)
+V; [sech2 (x) + sech?(y) — sech?(x) sech? "]}

+ i{Wp[sech(x) tanh(x) + sech(y) tanh(y)]} .

For the solution of the CQNLS equation, a fixed-point spectral computational method
will be employed which uses the ansatz u(x,z) = f(x)e’** where u is the propagation

constant (eigenvalue) and solves it iteratively in the Fourier space.

To study the effect of the cubic-saturable nonlinearities and potential defects on
the existence and stability properties of lattice solitons on the maximum of the
PT -symmetric potential, another physical model is used. The propagation of a light
beam along the z-axis of the medium composed from alternating domains with cubic
and saturable nonlinearities is described by the following (2+1) dimensional NLS
equation with an external ‘7 -symmetric potential:

uf?

iu, +Au+ +Vesu=0, (1.3)

1+ s|ul?
where u = u(x,y, z) is the envelope proportional to the electric field, z is the propagation
distance, Au = uyy + u,, corresponds to diffraction, s is the saturation coefficient [13]
and Vpr(x,y) is the external potential. It is to be noted that s = O represents a Kerr
medium. To investigate different cubic-saturable media, we will let the saturation

parameter s vary between 0 and 1.

For the solution of the cubic-saturable NLS equation, a pseudo-spectral method will

be introduced.

Then, the numerical existence of fundamental solitons on the periodic and
PT -symmetric lattices will be shown and the band-gap structures will be found for

varying parameters.



Finally, the linear and nonlinear stability properties of the solitons will be investigated.

1.2 Literature Review

Solitons arise as the solutions of a widespread class of weakly nonlinear dispersive

partial differential equations (PDEs) describing physical systems. [[19]

In optics, the term soliton (also called an optical mode) is used to refer to any optical
field that does not change during propagation due to a delicate balance between

nonlinear and linear effects in the medium.

A crystal is a structure arranged in an orderly repeating pattern extending in all three
spatial dimensions. Patterns are located upon the points of a lattice, which is an array
of points repeating periodically in three dimensions. A structure that is ordered but
non-periodic (i.e. lacks any translational symmetry) is called a quasicrystal. The

Penrose is a quasicrystal, for instance and has a rotational symmetry. [20]

Recently, Freedman et al. observed solitons in Penrose and other quasicrystal lattices

generated by the optical induction method [21]].

The Fourier transform of a continuous, smooth and absolutely integrable function is

explained in detail in [22].

Although higher dimensional NLS models are not integrable, they possess stationary
solutions which are unstable on propagation. Maybe the most fascinating issue related
to the higher dimensional NLS is that for a wide range of initial conditions, the system
evolution shows collapse [23]]. Wave collapse occurs where the solution tends to
infinity in finite time (distance). Collapse was theoretically predicted for the (2+1)D
NLS equation back in the 1960’s [24]. It is known that there exist solutions which
have a singularity in finite time and are extremely sensitive to the addition of small
perturbations to the equation and there has been much interest in the determination of
the structure of this singularity [25,26]. In another study ( [27]), the existence and
nonlinear stability properties of the fundamental Penrose lattice solitons for N = 7 are
investigated and some Penrose-7 solitons are found to be unstable depending on the

location, eigenvalue and potential depth.

Optical spatial solitons and their interactions in Kerr and saturable media have been

elucidated in detail in [28]]. In [29], the numerical existence of an optical lattice soliton
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in saturable media is demonstrated by means of the Spectral Renormalization Method.
Numerical existence of vortex solitons are also reported in saturable media in [30]. It
is well known that the nonlinear saturation suppresses the collapse of the fundamental

solitons in two and three dimensions [31,32].

Spectral Renormalization Method is essentially a Fourier iteration method. The idea
of this method was proposed by Petviashvili in [33]]. Later, this method is improved by
Ablowitz et al. and applied to (2+1)D NLS equation [34]].

In [35]], Vakhitov and Kolokolov proved a necessary condition for the linear stability
of the soliton f(x,u). Key analytical results on nonlinear stability were obtained in
[36,[37]]. They proved that the necessary conditions for nonlinear stability are the slope
and the spectral condition. Furthermore, it is well known that a necessary condition
for collapse in the two dimensional (2D) cubic NLS equation is that the power of the

beam exceeds the critical power P, ~ 11.7 [38]].

The fundamental solitons of the NLS equation can become unstable in two ways:

focusing instability and drift instability [39].
(1+1)D CQNLS equation is investigated and solved in [40-43].

Existence of localized modes supported by the P‘7 -symmetric nonlinear lattices is

reported in [44].

1.3 Hypothesis

Properties of the (1+1)D cubic NLS equation are well-known. There are also studies
about the (14+1)D CQNLS equation and (2+1)D cubic NLS equation. Yet, not much is
known about the (2+1)D CQNLS equation, let alone with an external ‘7 -symmetric

potential.

We expect to obtain numerical solutions for all the cases which will be investigated
in this thesis. These numerical solutions are supposed to agree with their analytical

counterparts, provided that they exist.

We hypothesize that the obtained solitons would not be stable in most cases, especially

by the presence of a defect in the potential or quintic nonlinearity.






2. DERIVATION OF THE CQNLS EQUATION

To begin with, here are some preliminaries from electromagnetics. [45],46]
Permeability :

The electromagnetic permeability, denoted by u, is the measure of the ability of a

material to support the formation of a magnetic field within itself.
Vacuum permeability L:

The magnetic constant Ly, commonly called the vacuum permeability or permeability
of free space, is a baseline physical constant, which is the value of magnetic

permeability in a classical vacuum. Its value is exactly defined by
kg-m
A2s2

y{,:47r-1o—7% =410’ 2.1)

Relative permeability U,

The relative permeability, denoted by p,, is the ratio of the permeability of a specific

medium to the permeability of free space:

w = 22)

M
Mo
Permittivity €:

The electromagnetic permittivity, denoted by &, is the measure of the resistance that is

encountered when forming an electric field in a medium.
Vacuum permittivity &:

The electric constant &, commonly called the vacuum permittivity or permittivity of
free space, is a baseline physical constant, which is the value of the absolute dielectric

permittivity of classical vacuum. Its value is defined by

1
En =
’ Hoco?
_ 1 _ : 2.3)
47-1077 2. (2.99792458-1082)  35950207150m 4% m '

F
~8.8542-107 12—
m



where c is the speed of light in free space (vacuum).
Relative permittivity €.
The relative permeability, denoted by &, is the ratio of the permittivity of a specific

medium to the permittivity of free space:

S
& = 5 . (24)

Refractive index n:

The refractive index of an optical medium, denoted by 7, is a dimensionless number
that describes how light or any other radiation, propagates through that medium. The

refractive index of electromagnetic radiation is given by
n=./€U . (2.5)

Substituting Eq. (2.2), (2.3) and (2.4)) in Eq. (2.3) gives
":m:‘/s%'%: elce? = /B o . 2.6)

Wavenumber k:

The wavenumber k, also called the angular or circular wavenumber, is the number of

wavelengths per 27 units of distance:

T .
A v v

where f is the frequency, @ is the angular frequency and v is the speed of the wave. If

a wave at the speed of light in vacuum is considered, then its wavenumber is given by

ko= 2.8)
co

Electric field ﬁ:

The electric field, denoted by ﬁ, is a vector field. The field vector at a given point
is defined as the force vector per unit charge that would be exerted on a stationary
test charge at that point. An electric field is generated by electric charge, as well as
by a time-varying magnetic field. The SI units of this field are newtons per coulomb
(N/C) or equivalently, volts per meter (V /m), which in terms of SI base units are

kg-m/(A-s).



Electric displacement field B:

The electric displacement field, denoted by l_)>, is a vector field that accounts for
the effects of free and bound charge within materials. The SI units of this field are
coulombs per square meter (C/m?), which in terms of SI base units are A - s/m?. For
a linear, homogeneous and isotropic medium, the electric displacement field and the

electric field are proportional:

D=¢F . (2.9)

Electric charge density p:

The electric charge density p is the amount of electric charge per unit volume of space
and is given by the differential
dQ

P=2y (2.10)

where Q is the electric charge. The SI units of the electric charge density are coulombs

per cubic meter (C/m?), which in terms of SI base units are A -s/m>. If p is constant,

Q:///pdV. @2.11)
|4

then Q = pV; if not

Magnetic field ﬁ:

The magnetic field, denoted by ﬁ is a vector field that gives at any given point the

magnetic field strength. The ST units of this field are amperes per meter (A/m).
Magnetic displacement field ﬁ:

The magnetic displacement field, denoted by ?, is a vector field that gives at any given
point the magnetic flux density. The ST units of this field are teslas (7"), which in terms
of SI base units are kg/(A - s®). For a linear, homogeneous and isotropic medium, the

magnetic displacement field and the magnetic field are proportional:

B —uH . 2.12)

Electric current density J:
The electric current density, denoted by J, is the electric current per unit area and is
given by the limit

J=lim —— . (2.13)



The SI units of the electric current density are amperes per square meter (A /m?).
Gauss’ Law (Maxwell’s First Equation):

Gauss’ Law for a D-field states that the net outward normal electric displacement field
flux through any closed surface is equal to the free electric charge enclosed within that

closed surface:

dp — #3 HAS = Qfree - (2.14)
S
Substituting Eq. (2.11)) in Eq. (2.14) gives

#B~7d5=///pf,eedV. (2.15)
S Vv

By the Divergence Theorem, Eq. (2.13) is equivalent to

= = B
/V//V de_/v//pf,eedv, 2.16)

which yields the differential form:
V-D =prec . 2.17)
If the medium is charge-free, then p .. = 0 and
V.D=0. (2.18)
Substituting Eq. (2.9) in Eq. (2.18)) gives

0:?3:?(8?):%?%(??) . (2.19)

It follows from Eq. (2.19), that

(2.20)

Faraday’s Law of Induction (Maxwell’s Third Equation):

Maxwell-Faraday equation states that a time-varying magnetic field is always

accompanied by a spatially-varying, non-conservative electric field and vice versa:

%xﬁ: 0B

\4 —— 2.21
o1 (2.21)

Assuming that the field is monochromatic and harmonic, ? can be written as
B(x,y,5,t) = B (x,y,2) e . (2.22)
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Substituting Eq. (2.22)) in Eq. (2.21) gives

VxE =—Bxyz2) e ®(—io) = io B (2.23)

Ampere’s Circuital Law with Maxwell’s Correction (Maxwell’s Fourth Equation):

Ampere’s Law with Maxwell’s correction states that magnetic fields can be generated
in two ways: by electrical current ("Ampere’s Circuital Law") and by changing electric

fields ("Maxwell’s Correction"):

%
Vad-T7+%2 (2.24)
ot
Substituting Eq. (2.9) in Eq. (2.24) gives
VxH= 7+eai. (2.25)

If the medium is charge-free, then 7 =70 and Eq. (2.25) becomes

xﬁ oF

= g— ) (2.26)
Assuming that the field is monochromatic and harmonic, ﬁ can be written as
ﬁ(x,y,z,t) — E(x,y,z) e o (2.27)
Substituting Eq. in Eq. (2.26) gives
V xH=€E (x,,2) e (—iw) = —ic0 E . (2.28)

Now, let us proceed to derive the CQNLS equation. Substituting Eq. (2.12) in Eq.

(2.23) gives
VxF —inod . (2.29)

Taking the rotational of the both sides of Eq. (2.29) yields
= /= =
x <V X E) —V x (i;uoﬁ) . (2.30)
Expanding Eq. (2.30) results in
= /= =
V(V-E)—Aﬁ:iuw<v xﬁ) . (2.31)
Substituting Eq. (2.20) and (2.28)) in Eq. (2.31) gives
5 (Ve E
v ( ) _AE = euo*E . (2.32)

—&
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Supposing that € changes little over a single optical wavelength, the first term in Eq.
(2.32) can be neglected:

2
_AF = euc(f:;—zﬁ . (2.33)

Substituting Eq. (2.6) and (2.8) in Eq. (2.33)) gives the Helmholtz equation:
AE + (kon)*E =0. (2.34)

Polarizing the electric field along one transverse axis makes the Helmholtz equation
scalar. Hence, E will be replaced by E in Eq. (2.34). This scalar approximation
is satisfied if n does not vary strongly in the medium, which is the case in many
applications in nonlinear optics. Consider the refractive index as the sum of a constant

index and a small variation
n=ng+An , An<ng (2.35)

and the electric field as a slowly varying wave envelope along the propagation direction

b4
E(x,y,2) = u(x,y,2) ekonoz. (2.36)
[47] Then,
n* =ny> + (An)2 + 2n0An & ny” + 2npAn
Exx = uxy eikonoz
Eyy = uyy el
| (2.37)
E. = (u. + ikonou) e’*om*
E,, = (uzz + 2ikonou, — koznozu) etkonoz
AE = Ey+Ey+E,;= (uxx + Uy + Uz + 2ikonou, — k02n02u) etkonoz
Using Eq. (2.37) in the scalar form of Eq. (2.34)) yields
(thx + thyy + e + 2ikonou + 2ko*noAn u) €*0"0* =0, (2.38)
Omitting the small term u, and multiplying Eq. (Z.38) by e~ 007 gives
Dikonou; + ey + tyy + 2ko*noAn u =0 . (2.39)
Introducing the change of variable
z
— 2.40
™ 2kong (240)
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and using

~ uz
— s 3 = 241
Uz = Uz 2 2kono ( )
in Eq. (2.39) yields
iUz + Uy + ttyy + 2ko*noAn u =0 .. (2.42)
In a non-Kerr, nonlinear medium, An = f(|u|?). [48] By taking
1
2 2 4
ul”) = olu|”+Blu > 243
F(0) = e (el + Bl 243)
and dropping the tilde from Z for convenience, the CQNLS equation is obtained:
it + gy + ttyy + Ot|u*u+ Blultu=0. (2.44)
On the other hand, taking
1 Jul?
2
ul”) = (2.45)
F(lul’) 2ko’ny <1—}—s|u!2>
and dropping the tilde yields the cubic-saturable NLS equation:
ey Lty gy (2.46)
iyt + Uty + — = .
‘ YU s|ul?
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3. OPTICAL LATTICES

Optical lattices are formed by the interference of counter-propagating laser beams,
creating a spatially periodic polarization pattern. The resulting potentials can be

modelled mathematically. For instance, the potential

V N-1 . 2rn 27n 2
]7% Z et(xcos T—i—ycosT) (3.1)
n=0

VN(x7y) =

for N = 4 yields a periodic lattice which corresponds to a 2D crystal structure. [18] Its

contour image, contour plot and cross section are displayed in Figure [3.1]

3.1 P7T-Symmetry

Any measurement of a physical observable in our universe obviously yields a real
quantity. In quantum mechanics, observables correspond to eigenvalues of operators.

Hence, the reality requires all the eigenvalues of operators to be real.

Consider the Hamiltonian operator H which is the sum of the kinetic energy operator

T and potential energy operator V:

)
[\S}

H=T+V="—4V(® (3.2)

o
3

where p is the momentum operator, m is the mass and x is the position operator.

Real eigenvalues of correspond to a real energy spectrum. To guarantee a
real spectrum, it was postulated that all observables corresponded to eigenvalues of
Hermitian (i.e. self adjoint) operators by recalling the result from linear algebra
that Hermitian matrices have all real spectra. In fact, a Hermitian Hamiltonian
ensures a real energy spectrum. However, Bender et al. investigated non-Hermitian
Hamiltonians and found out that many of them have entirely real spectra provided that
they have the so-called parity-time symmetry property [49]]. Furthermore, they showed
in many cases a threshold value above which the spectrum becomes complex. This
threshold is the boundary between the P‘7 -symmetric and broken symmetry phases

and in literature, the transition is referred to as spontaneous ‘7 -symmetry breaking.
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(b) _ . .

0.8}
06}

0.4

x=y
Figure 3.1 : (a) Contour image, (b) Contour plot, (c) Cross section of the potential in
Eq. (3.I) with Vp = 1.

X X

PT -symmetry is defined by means of the parity operator P and time (reversal)

operator 7 whose actions are given as follows:

P:p——p,x— % (P(ay+bo))(x) = ay(—x) +bP(—x) o

~

T:p——D,X—>X,i——I (T(ay+b9))(x)=a"y*(x)+b"¢"(x)
where the raised asterisk (*) denotes the complex conjugate [50,51]]. A Hamiltonian
is said to be P‘7 -symmetric if it has the same eigenfunctions as the ‘7 operator and
satisfies the commutativity
PTH=HPT . (3.4)
On one hand,

p2

(TH) (73,0) = (07) (£ x) + V) e )

=P <(_2—51)2f*(x,t)+v*(x)f*(x,t)) (3.5)

and on the other hand,
(HPT) (f(x,1)) = (HP) (f*(x,1))
=H(f"(—x,1)) (3.6)

p2

= %f*(—x,t) +V(x) [ (=x.1) .

One speaks of broken P7 -symmetry if Eq. (3.4) is satisfied but the same
eigenfunctions are not shared. P‘7 -symmetric structures have been realized in optical

models governed by NLS type equations by which the propagation distance z replaces

16



time in quantum mechanics [6]. The necessary (but not sufficient) condition in Eq.

(3.4) implies
~2
Gos P
HPT =—+V
5 TV
= V(x)=V*"(—x). (3.7)
~2
soh P
PTH="—+4+V*(—
5 TV (=)
Consider the complex potential
Vo (x) =V (x) +iW (x) (3.8)
where VW € R". As
Vor*(—x) =V*(—x) —iW*(—x) =V(—x) —iW(—x) , (3.9)

the real part of the potential, V (x) must be an even function and the complex part of

the potential, W (x) must be an odd function so that Eq. (3.7) holds [52].

3.2 PT -Symmetric Lattices

In this thesis, we will consider the following 1D ‘T -symmetric potential
Vi (x) = V(x) 4+ iW (x) = [Vosech? (x) 4 V; sech* (x)] + i[Wo sech(x) tanh(x)] (3.10)

and 2D P‘T -symmetric potential
Vor (x,y) =V (x,y) +iW(x,y)
— {Vpsech?(x) sech?(y) + V; sech*(x) sech*(y)
+ Va[sech?(x) + sech?(y) — sech?(x) sech?(y)] } G1D
+ i{Wy[sech(x) tanh(x) + sech(y) tanh(y)] }

where V; (i = 0,1,2) and W, represent the depths of the real and imaginary parts of
the potentials, respectively. Note that for both potentials, V is an even, real-valued

function and W is an odd, real-valued function.

In Figure [3.2] and [3.3] contour plots and cross sections of the 1D and 2D

PT -symmetric potentials are displayed, respectively.

The potential in Eq. (3.10) can be seen as an extension of the so-called complexified
Scarf II potential [53]]

[Vosech?(x)] + i[Wo sech(x) tanh (x)] (3.12)
17



(a) (b)

» ) (c) _ .- (d)
0.5
] ! | 05L . .
« 5 1 . -10 5 [} 5 10
X

Figure 3.2 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the potential in Eq. (3.10) with
Vo=Vi=Wy=1.

© f— @

o

% .
X=y X=y

Figure 3.3 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the potential in Eq. (3.11)) with
Vo=2,Vi=V,=Wy=1.

for a Kerr medium to a cubic-quintic nonlinear medium whereas the potential in Eq.

(3.11) can be regarded as an extension of the 2D Scarff P7 -symmetric potential [[14]]
[Vosech? (x) sech?(y)] + i[Wp sech(x) tanh (x) sech?(y)] (3.13)

for Kerr medium (i.e. B = 0) to a cubic-quintic nonlinear medium. Both potentials are
particularly of interest due to their physical significance [54]]. Furthermore, they will
conveniently provide analytical solutions which will be obtained in Section [6.2.1] and

[7.3.1}

3.3 P -Symmetric Lattices with Defects

So far, we have assumed that the P‘7 -symmetric optical lattices we will use, are
perfect, i.e. they can be represented precisely with our mathematical model. In reality,
crystals are neither ideal nor infinitely large. These deviations from the ideal structure

are called lattice defects.
Before we introduce the defects, let us consider the following 2D lattice
VO, (x,y) = VO(x,y) +iW (x,y) = Vo |2cos(x) + 2 cos(y)|* + iW [sin(2x) +sin(2y)] ,
(3.14)
18
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Figure 3.4 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the potential in Eq. (3.14)) with

Vo = 0.04 and W, =0.1.

>

which satisfies the necessary condition for P7 -symmetry Vpq (x,y) = Vor*(—x,—y)
as V9(x,y) is an even, real-valued function and W (x,y) is an odd, real-valued function.
Indeed,
VO(—x,—y) = Vo |2cos(—x) +2cos(—y)|* = Vp[2cos(x) +2cos(y)|* = VO(x,y)
W(—x,—y) = Wy [sin(—2x) + sin(—2y)] = Wp [—sin(2x) —sin(2y)] = =W (x,y) .
(3.15)

The real and imaginary parts of the potential in Eq. (3.14) with Vy = 0.04 and Wy = 0.1
are depicted in Figure [3.4(a) and [3.4{(c); and their diagonal cross sections are plotted
in Figure [3.4(b) and [3.4(d), respectively. As it can been seen from these figures, the

potential is completely symmetric.

By means of a phase function given by

-7
6 (x,y) = arctan <y ) 4 arctan <y—|—

X X

T
) (3.16)
[S5]], one can engender a positive or negative defect on the lattice in the following
way:
VQ)(I(X,)’) = V(xay) + lW(xvy)

o ? _ (3.17)
:Vo‘Zcos(x)+2cos(y)+e’ x’y‘ + iWp [sin(2x) +sin(2y)] .

First, consider the plus sign in Eq. (3.16) which will create the positive defect.

Vi (%,y) =Vo 2c0s(x) +2cos(y) +exp (i {arctan (y ; ”) + arctan (”;”)D

+ iWp [sin(2x) + sin(2y)]

2

(3.18)
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(b) (©) (d)

0 10 X 10 0 10
xX=y xX=y
Figure 3.5 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)

Cross section of the imaginary part of the potential in Eq. (3.18)) with

Vo =0.04 and Wy = 0.1.

is also P‘T -symmetric as V™ (x,y) is an even, real-valued function and W (x,y) is an

odd, real-valued function. Indeed,

V+(_x7 _y)
2
i s o2 (27
2
— Vp [2cos(x) +2cos(y) +exp (l- [arctan (y+ n) A (y n)D
X X
2
= Vo |2cos(x) +2cos(y) +exp <i {arctan (y n) + arctan <y—|— ﬂ)})
X X
=Vi(xy).
(3.19)

The real and imaginary parts of the P‘7 -symmetric potential in Eq. (3.18) with a
positive defect, Vo = 0.04 and Wy = 0.1 are depicted in Figure [3.5((a) and [3.5(c); and
their diagonal cross sections are plotted in Figure [3.5(b) and [3.5(d), respectively. As
it can been seen from these figures, the real part of the potential is not symmetric

anymore; moreover, it has a global maximum at the center instead of a local one.

Then, consider the minus sign in Eq. (3.16) which will create the negative defect.

2

Vi (%) =Vo |2cos(x) +2cos(y) +exp (l' {arctan (y £ ﬂ) —arctan <y+ ﬂ)D
X

X

+ iWp [sin(2x) + sin(2y)]
(3.20)
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is also P7 -symmetric as V~ (x,y) is an even, real-valued function and W (x,y) is an

odd, real-valued function. Indeed,
Ve (—X y Y )

2cos(—x) +2cos(—y) +exp (i {arctan (—y — 7r> — arctan (—y+ 71:)] )
—x —x
2
2cos(x) +2cos(y) +exp (i [arctan (y * ﬂ) — arctan (y ﬂ>] >
X x
y+7m y—T
2cos(x) 4+ 2cos(y) +cos | arctan — arctan
X x
+isin (arctan (y i 7r> — arctan (y — 7r> )
X x
y—T y+7m
2cos(x) 4+ 2cos(y) +cos | arctan — arctan
X

—isin | arctan ( ) — arctan

[2005 (x) +2cos(y) + cos <arctan <y 7[) — arctan (y—i— ﬂ))
X

—isin | arctan (

2
=V

=V

=W

=W

+isin | arctan

—isin (arctan

2cos(x) +2cos(y) +cos (arctan (y — 7r> — arctan (y * 7t> )
x

X
) -7 T
+isin (arctan (y > — arctan (y + )
X
T

X
2cos(x) +2cos(y) +exp (i [arctan (y —

=V (x,y).

=V

=V

=
N——
|
=
(@]
ol
o
=}
7N
<
= |+
S
N———
| I
N——

(3.21)

The real and imaginary parts of the 7 -symmetric potential in Eq. (3.20) with a
negative defect, V) = 0.04 and Wy = 0.1 are depicted in Figure [3.6(a) and [3.6{c); and
21
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Figure 3.6 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the potential in Eq. (3.20) with
Vo =0.04 and Wy =0.1.
their diagonal cross sections are plotted in Figure [3.6(b) and [3.6(d), respectively. As

it can been seen from these figures, the real part of the potential is not symmetric

anymore; moreover, it has a local maximum at the center but of smaller value.
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4. SPECTRAL METHODS

In this chapter, the main numerical methods, that are used in this thesis to obtain soliton

solutions, will be explained.

4.1 Spectral Renormalization Method

Spectral Renormalization Method is basically a Fourier iteration method proposed by
Petviashvili in [33]]. Later, this method is improved by Ablowitz et al. and applied
to NLS equation [34]. Here, the method is modified so that it can be applied to the
(2+1)D CQNLS equation.

Numeric solutions to Eq. (I.1) with a ‘7 -symmetric potential Vo =V +iW are

sought by means of the above mentioned method. As we are looking for soliton

solutions, we use the ansatz u(x,y,z) = f(x,y)e'*?, where ( lim  f(x,y) =0 and the
400

2

propagation constant i > 0, in Eq. (I.I) which gives

—Wf+ fot fy FalfPfHBIfF f+(V+iW)f=0. (4.1)

After applying Fourier transformation (), one obtains

Fe af (fPH)+BF (A1) +F(V+iW)f)
B u+kZ 4 k2

where k, and ky are the corresponding Fourier transform variables. This equation could

, 4.2)

be indexed and utilized as an iteration to find f, but the scheme does not converge.

Nonetheless, introducing a new field variable f(x,y) = Aw(x,y) with A € RT gives

oA (Iww) + BAF (wl*w) + F ((V +iW)w)
WA k2 4k '

When indexed, Eq. (4.3) can be utilized in an iterative method in order to find w. For

W=

4.3)

this purpose, W can be calculated using the following iteration scheme:

alzf(]wn\zwn) —|—[37L4T(|wn|4wn) + F(V+iW)wy)
o= 44
Wil TN e (44

22
¥ =Y and where

with the initial condition taken as a Gaussian type function wy = e~
the convergence criterions are W, —W,_1| < 1071? and that the obtained numerical

solution satisfies Eq. (T.1)) with an absolute error less than 1075,
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However, A is unknown and hence must be calculated for each iteration. After
multiplying Eq. @#3) by (u + k2 + kyz)v@* and integrating over the entire space, one

gets
14/ /ﬁgr(ywy“w)w*dkuzf /a?(]w!zw)w*dk

—o00 —00 —00 —o00

4.5)

oo oo

[ [+ W) = (et + )=

—00 —00

This is nothing but a fourth degree polynomial of the form P(1) = aA*+bA% +c¢ =0,

from which A can easily be solved analytically by employing the following formula:

—b++Vb%—4ac
Aty = > (4.6)

where
b— a/ /7(|w\2w)w*dk, 4.7

Once convergence is reached, the desired soliton is f(x,y) = A7 ~1 ().

This method is configured in a similar manner so that it can be applied to the (1+1)D
CQNLS equation, in the absence of the second spatial coordinate y. Furthermore, V

and W can be taken as zero, when working without a potential.

4.2 Pseudo-Spectral Renormalization Method

The idea of the Spectral Renormalization Method is to transform the governing
equation into Fourier space and determine a convergence factor in order to get a
convergent fixed-point iteration method. This method is successful if the governing
equation contains nonlinearity with constant homogeneity. However, many physical
systems have nonlinearities with different homogeneities such as cubic-saturable

nonlinearity.

The convergence factor (A) in the Spectral Renormalization Method for the CQNLS

equation can be directly calculated from the governing equation. However, the
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convergence factor for the cubic-saturable case cannot be explicitly obtained from
the governing equation, hence a standard nonlinear algebraic solver should be used
in order to calculate it at each iteration. To overcome this issue, we introduce the
Pseudo-Spectral Renormalization Method [56] where the convergence factor can be

explicitly obtained even in the cubic-saturable case.

The idea behind the Pseudo-Spectral Renormalization Method is simple, yet it is a
very successful method, especially owing to its speed and accuracy. This method can

be applied to any nonlinear system for computing self-localized solitons.

To describe the method, we begin by considering the cubic saturable NLS equation
given by Eq. (T.3). Localized wave solutions u(x,y,z) = f(x,y)e'** satisfy

Hii

—1+S|f|2+vmf=0. (4.8)

—Uf+ foxt+ fiy +

This is a nonlinear eigenvalue problem for f and p > 0 that is supplemented with

the boundary condition lim f(x,y) = 0. By applying the Fourier transform to the

X,y) ke
linear part and taking its inverse Fourier transform, one gets
1 2, 12\ 3 i _
—F (U k) f )+ 1+syf|2+V”f_0' (4.9)

In order to get a convergent iteration scheme, define a new variable as f(x,y) =
Aw(x,y) where A # 0 is to be determined. Then, w satisfies

AL wl?w

-1 2, 12\A
F {(“+kx+ky)w}+1+s\/uz\w\2

+Voqrw=0. (4.10)
Multiplying by the denominator and grouping yields

AW (145 Vo) w—s F H{(u+k+ k)W =F {1 +kf +k5)W} — Virw.
(4.11)
By multiplying by the complex conjugate of w, i.e. by w* and integrating over the

entire space, the explicit expression of the convergence factor is found as

I

Hg

(F (1 +KE + K} — Virw) w*dxdy

8

A= —— (4.12)
J I (s Ver)w—s 7 {(n+kg +k)w}] [w]>w*dxdy
Solving for the first w in Eq. (4.10) yields
_ 1 || |w|*w
1
= V. . 4.13
v=7 (u+k§+k§)7<1+swzyw|2+ v @1
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w can be obtained by iterating Eq. (.13) as

1 7( |2l W *wi
(kg +h5) 7 N+ s wl?

—1
Wni1 =F

+VTTW,1>] ,neN 4.14)

with the initial condition chosen as a Gaussian type function wy = e Ao is
taken as 1 and the other A, are calculated by Eq. (4.12). The iteration continues until
lWn —wy—1] < 10712 and the obtained numerical solution fn = Auwy, satisfies Eq.
with an absolute error less than 10712, Convergence is usually obtained quickly when

the mode is strongly localized in the gap.
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5. STABILITY ANALYSIS

Obtaining a soliton is usually not enough, especially if it suffers from collapse or blows
up in finite time. Thus, it is of great importance to analyze the stability of the obtained
solitons. In this chapter, it will be explained how the linear and nonlinear stability

properties of the obtained solitons are analyzed.

5.1 Split-Step Method

The split-step method is a numerical method, in which the equation is split into two

pieces and integrated consecutively to obtain the numerical solution at the next step.

The method will be first explained and illustrated for linear equations and then for

nonlinear equations.

5.1.1 Split-Step Method for Linear Equations
Consider a linear PDE for u(x,y,z) which can be written as

u, = (L+M)u (5.1)

where L and M are linear operators independent of z. The exact solution of Eq. (5.1))

at z = h can be formally written as

u(x,y,h) = "EMy(x, y,0) (5.2)

where 4 is the step size in z-direction. On the other hand, the formal solutions of the

two split equations

u; = Lu
(5.3)
u, =Mu
at z = h can be written as
u(x,y,h) = e"u(x,y,0)
5.4

u(x,y,h) = ehMu(xay70> )
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respectively. If the original equation (5.1)) is hard or even impossible to solve but the
split equations (5.3) are easily solvable, then the solution of the original equation can

be approximated by consecutive splits

MIAM) o bahM janhL by 1hM jan thL  bihM ,aihL (5.5)

where a; and b; (i = 1...n) are constant coefficients of the splitting scheme which
determine the order of the method. If the difference between the right and left side

of Eq. (5.3) is of order O(h"*!), then the method is of n'" order (accurate in z).

Taking a; = by = 1 and all the other coefficients zero, yields the following first order

splitting scheme
eh(L+M) ~ ehMehL (56)

as the difference between

1 1
Ml — (1 +hM + 5th2+0(h3)) (1 + hL+ 5h2L2+0(h3))

1 1

= 1+hL+§h2L2+hM+h2ML+§h2M2+0(h3) (5.7
1 1

= 1-+hL+hM+ §h2L2 + 5h2M2 +hWML+O(h?)

and

1
M) — 1 4 p(L+ M)+ EhZ(L+M)2 +0(h)

(5.8)
1 1 1 1
=1+hL+hM+ 5thZ + EhZLM—i— EhZML+ EhZM2 +O0(h?)
is
1 2 2
S (ML—LM) = O(i?) . (5.9)

Taking a; = a; = %, b1 = 1 and all the other coefficients zero, yields the following

second order splitting scheme

N(LAM) 1hL M e%hL (5.10)

~ e2
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as the difference between

1 1
o3hL hM LS HL

1 1 1 1 1
= (1 + AL+ gthZ + &h3L3 + 0(h4)) : (1 +hM + §h2M2 + 6h3M3 + O(h4))

1 1 1
A1+ 2hL+ K212+ —WL3 n
( +5hL+ 3 + 73 +0(h*)

1 1 1 1 1 1
14+hM+ §h2M2 + IPMP + —hL+ —h* LM + ~h3LM? + —h*L?

_ 6 2 2 4 8
- 1 1
“BrPM+ —rr+on*
*3 T +0(i)
1 1 1
A\ 1+ zhL+ P22+ —RL3+o(n*
( Tty T +0(r)
— 14+ 1hL+ lthz + ih3L3 +hM + l]’leL—l— lh3ML2 + 1hZM2 + lh3M2L
2 8 48 2 8 2 4
1 1 1 1 1 1 1
M3+ ZhL+ R+ — R+ ZR2LM + W LML+ P LM?
*% tahkty Vi ) Y. aib
1 1 1 1
WL+ —RL+-PrM+ —n+on?
*3 16 *3 T +0(r")

1
= 1+h(L+M) +§h2(L2+LM+ML+M2)

1 1 1 1 1 1 1
W (L3 4+ —L*M + LML+ ~ML?* + ~M*L + ~LM?* + —M3) + O(h*
+ (6 i +7 4 +3 W +2 Y+ 0(h)

(5.11)

and
1 1
MEM) = 1 (L + M)+ 5hz(LJrM)2 + gh3(L+M)3 +0(h")
1
= 1 +h(L+M)+ EhZ(L2 +LM +ML+M?)

1
- 8h3 (L + L*M + LML+ LM?* + ML? + MLM + M*L+ M?) 4+ O(h*)
(5.12)

is
h3(—iL2M+ Lome— L+ L Lvim iLM2) =0(I). (5.13)
24 12 24 12 6 12 N B

In the literature, the latter splitting is known as Strang splitting named after Gilbert

Strang [57].

Note that the differences found in Eq. (5.9) and (5.13)) are

1 1
Eh2 (ML—LM) = 2 [hM, hL] (5.14)
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and

m( YRR V) L V) L UL Ve LY V7 YO 1LM2)
24 12 24 12 6 12
o h
=15 — (M*L—2MLM + LM?) — o — (L*M —2LML+ ML?) (5.15)
P ) ) = L, g i) — e )
12 24 12 ’ 24570
respectively, where [ - , - ] is the Lie bracket. These could have been also derived

using the Baker—Campbell-Hausdorff formula [58]]

In(eXe") =X +Y + % [X,Y]+ 1—12 (X, [X, Y]] + [V, [V, X]]) +... (5.16)

Higher order schemes can be constructed by taking symmetric product of lower order
schemes with the help of this formula. A fourth order split-step scheme is given for

instance by taking

e
%,02:a3:—c,b1:b3:C,b2:1—2CWhel‘eC—

2 23

and all the other coefficients zero. Owing to its high order, this fourth order split-step

(5.17)

a) =a4 =

scheme will be utilized in our stability analysis.

Below, split-step method using Strang splitting will be illustrated with a simple linear

example.

Consider the problem u, = 3u with the initial condition u(0) = 1. It can be easily found
that its exact solution is u(z) = . Consider the splitting u, = u +2u, i.e. L= 1 and

M=2.

1. Solving u, = u with u(0) = 1 yields u(z) = ¢*. Advancing half step gives u(%h) =
erh,
2. Solving u, = 2u with u(0) = e2h yields u(z) = e2he?. Advancing one step gives

u(h) = e2heh = 3h,

3. Solving u, = u with u(0) = el yields u(z) = e3he, Advancing half step gives

u(%h) = e3herh = ¢3h,

That is, after one iteration of Strang splitting, one obtains u(h) = ¢*". As L and M were

commutative operators in this example, the splitting yielded the exact solution.
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5.1.2 Split-Step Method for Nonlinear Equations

Consider a nonlinear PDE for u(x,y,z) which can be written as
u;,=(M+N)u (5.18)

where M and N are operators independent of z and at least one of them, say N
is nonlinear. A common practice in the literature is to use the split-step schemes
developed for the linear equations also for the nonlinear ones. Their use is trivial,
however their order is not. In his book, Yang verifies that each of the three schemes

given in the previous section have the same order in the nonlinear case [47]].

Below, split-step method using Strang splitting will be illustrated with a simple

nonlinear example.

Consider the problem u, = u?> — u with the initial condition «(0) = 0.8. It can be easily
4
found that its exact solution is u(z) = :
et +4

Let M = —uand N = u?.

1. Solving u, = —u with u(0) = 0.8 yields u(z) = 0.8e*. Advancing half step gives
w(Lh) =0.8¢~ 2",
4

2. Solving u, = u* with u(0) = 0.8¢~2" yields u(z) = T Advancing one step
S5e2" — 4z
4

gives u(h) = ———.
Sez —4h

4 4e™*
3. Solving u; = —u with u(0) = ——— yields u(z) = le—. Advancing half
A Sez" —4h Sez" —4h
1

step gives u(5h) = ————.
? Seh — dheth

4

That is, after one iteration of Strang splitting, one obtains u(z) = —_—
Set —4zert

Conversely, let M = u?> and N = —u.

4
1. Solving u, = u? with u(0) = 0.8 yields u(z) = ———. Advancing half step gives

A 5—4z
1
Ipy=_—"_.
u2h) =535
2. Solvi ith u(0) ields u(z) = —_ Advanci ¢
. olvin = —Uu Wi u = 1€1ds = . vancing one Ste
&t ; 525 VO T 5T, 8 P
4e~
ives u(h) = .
gives u(h) Y
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Figure 5.1 : Exact solution of the equation 1, = u> — u in comparison with the

numerical solutions obtained by means of split-step method using Strang
splitting with step size (a) h =1 and (b) h = 0.1.

i ields u(z) 4 Advancing half
ields u(z) = . Advanci
5-217 YT gt (2h—5)eh g

3. Solving u, = u? with u(0) =

, —4
step gives u(th) = ht ThS)er

4
274+ (22— 5)e?’

The three different equations obtained for u(z) are plotted for the interval [0;1] in

That is, after one iteration of Strang splitting, one obtains u(z)

Figure[5.1(a). As it can be seen from the graph, numerical solutions are only valid in a
small neighborhood of the initial value. Thus, the step size is chosen as # = 0.1 and the
calculations above are repeated ten times in order to reach the solution at z = 1. The
resulting graph is seen in Figure[S.I(b) where the numerical solutions are very close to

the exact solution.

5.2 Nonlinear Stability

A soliton is considered nonlinearly stable if it conserves its shape, location and
maximum amplitude during direct simulations. To study their nonlinear stability,
obtained solitons are computed over a long distance. For this purpose, split-step

Fourier method is employed to advance in z.

The split-step Fourier method is a pseudo-spectral numerical method for solving
nonlinear PDEs like the NLS equation due to its easy implementation and speed

compared to other methods, notably finite difference methods [59]. It is actually
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a split-step method whose linear step is taken in the frequency domain while the
nonlinear step is taken in the time domain. The name comes from the Fourier and
inverse Fourier transforms which are necessary for going back and forth between these

domains.

Consider Eq. (I.I)) which can be rewritten as
uy = i(Oex + Oy u+ i(tlul* + Blul* + Vi u (5.19)

and hence can be split as in Eq. (5.18) with the linear operator M = i(dy + dyy) and

the nonlinear operator N = i(ot|u|* + B |u]* + V).

The linear step u, = Mu is solved by means of Fourier transform. Taking the Fourier
transform of both sides of

u; = i(Oxx + dyy)u (5.20)

gives
B, =i ((—ikx)z n (—iky)2> = —i(k2+k2)a . (5.21)
This is nothing but an ordinary differential equation (ODE) of # and its exact solution

is given by
= Cre T oy (e ) (5.22)
The nonlinear step u;, = Nu, i.e.
u, = i(ot|u)® + Blul* + Vior Ju (5.23)

has the exact solution

U= C2€i(a|“|2+ﬁ|”|4+vfrr)z ) (5.24)

Having found solutions to both parts, the split-step Fourier method can now be

employed for the CQNLS equation by using any splitting scheme.

5.3 Linear Stability

Linear stability will be investigated by acquiring and analyzing the linear spectrum

and/or by evolving the linearized solitons.
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5.3.1 Linear Spectrum

Linear stability spectrum or short, linear spectrum are the eigenvalues of the linear

stability operator of a soliton. These eigenvalues give information about the linear

stability of a soliton.

Consider the following (2+1)D NLS equation having general type of nonlinearities:

i1 (X, 2) + U (%,7,2) + 1ty (%, 9, 2) + F (|u(x,y,2) [ ua(x,,2)

+ Vo (x,y)u(x,y,z) =0

(5.25)

where F(-) € Rand F(0) = 0. As explained before, Eq. (5.25) admits soliton solutions

of the form u(x,y,z) = f(x,y) e'**. Substituting

u, = ipLfe'
Uxx = fxx eiuz
Uyy = fyy e

u? = wu* = fetifte M = ff* = |f?

in Eq. (5.25) and multiplying by e~*#< gives

_“f+fxx+fyy+F(’f|2)f+ Ver f=0.

To analyze the linear stability, the soliton solution is perturbed as follows

u(x,3,2) = [ £(,) + 85, )e 4" (x,)e% | b
where g and £ are perturbation eigenfunctions and o is the eigenvalue.
u, = (Ggecz + G*h*ec*z +inf+ i,uge"z + l-‘uh*ea*z) oMz
Uy = <fxx + g€’ + h;xeo*z> e

o o* ]
Uy = (fyy + gyye’ + h;ye Z) e'He

uf? = e = (f—{—geaz —}-h*ec*z) Mz (f* 4 gt " —|—hecz> oz
= [f 4 g €% T+ fhe" + fge + gg"el TN
+ ghe®® 4 f*h*e® 4 g*h*e*® 4 hi*eloH0 )z
~ |f]*+ <g*e‘7*Z + heaz> f+ (gecyZ + h*eo*z> f*
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(5.27)

(5.28)

(5.29)

(5.30)



Using linear Taylor expansion F (x4 k) = F(x) +hF’(x) + O(h?),

F(l) = F (I7P+ (5767 +0e%) 4 (g7 40077 1))

~F(fP)+ [ (g7 +he) £+ (e +1%e %) £ FU(I£12) (5:31)

Hence,

F(Jufyue ™

= F(f)f + (8¢ 4+ he) £+ (geo e <) | 2] F(1£1P)
+F(|f*)ge”
I [<gg*e(c+o*)z+ghezcz)f+( 26207 4 gpte (6+0%)z > } (\f’ )
+E(fP)hre
n Kg*h*ezo*q |h|2e(a+o*)z>f+ <gh*e(6+0*)z+(h*)2620'*z> f*} F’(|f|2)

~ F(fP) £ +5e% + e

PP [(Ph1fPg) o (g +17Ph") e

(5.32)
Substituting Eq. (5.28)), (5.29) and (5.32)) into Eq. gives
i ((Tgec’Z + 0" h e P inf +inge®t + i,uh*ec*z> eHe
—%(fm—kgme“?+h;e“”>ewz
+ (fyy + gyye® + h;yea*z> et
(5.33)

F(|f’2) [f+ge‘72_|_h*eo*z]
FFSP) (70t 1Pg) e 4 (£ 4P ) e
+w70+ﬂ“+wﬁﬂdwzu

+ ei,uz

Grouping the terms and multiplying by e~"#Z yields
1S+t oyt F(FP)f + Vr f |
+ |iog— g+ gut g+ PSP g+ (£2h+11Pg) F/(1fP) +Vorg| e
o |io " — i 4 H+ Iy F(SP+ (127 + PR ) F(f1) 4 Varh'] e
=0.

(5.34)
Here, the first bracket is identically zero as f is a solution (see Eq. (5.27)). For Eq.

(5.34) to hold true, the factors of the exponentials must be zero simultaneously. Hence,

one has on one hand

i0g— g+ ut g+ F(f)g+ (fh+1Pe) F(fP) +Vorg=0 (535
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which can be rewritten as
gut gt [FUSP) +F ()1 = 1t-Vor | g+ F(IfP)f2h = —iog  (5.36)
and on the other hand
iG™h* — Wh* + B+ hy + F (| f7)h" + (f2g* + yf|2h*> F'(If]*) +Vorh* =0 (5.37)
which can be rewritten as
Bt by 4 [FUSP) 4+ FUSPISP = st Vor | I 4+ F/(1f12) 28" = —ic™h". (5.38)
Taking the conjugate of Eq. (5.38)) gives
Bty + |[FSP) + F (PSP = p4Vir | i+ F(FP)(F7) g = ioh.  (539)
Multiplying Eq. by —1 gives
=y = |[FUSP)+ PSP = 1 4-Vir | h=F(FP) (2) g = —ioh. (5.40)

Writing Eq. (5.36) and (5.40) in matrix form yields

L L 8| _ 8
,{_Lz* —Ll*}{h}_o{h} (5.41)

where

Ly = O+ Oy + F(If17) + F'(|f)f1> = 1+ Vior

) (5.42)
L=F'(f)f*.
For the cubic-quintic nonlinearity,
F(x) = ox+ Bx*
(5.43)
F'(x)=a+2Bx.
Using Eq. (5.43) in Eq. (5.42) yields
Ll :&xx+ayy+2a|f|2+3ﬁ|f|4_“+VTT (5 44)
Ly=oaf*+2Bf*.
For only the cubic nonlinearity, Eq. (5.44)) reduces to
Ly = axx‘i‘&yy‘|’205|f|2 —u + Vg
(5.45)

L, = af?
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by taking B = 0. For only the quintic nonlinearity, Eq. (5.44)) reduces to

Ly :axx+ayy+3ﬁ|f‘4—.u+‘/?¢

(5.46)
Ly=2Bff"
by taking oo = 0. If the soliton and potential are real, i.e. f, Vor € R, Eq. (5.41)
becomes
| L1 L 8| _ 8
{_Lz _Lth]_a{h (5.47)
where
Ly = 9xx+3yy+204f2+3ﬁf4—#+vm
(5.48)
L, = (sz —|—2ﬁf4 .

Similar analysis can be done for the (1+1)D CQNLS equation, in the absence of the
second spatial coordinate y. Furthermore, Vps can be taken as zero, when working

without a potential.

To investigate the linear stability of the lattice solitons in cubic-saturable media, we

perturb the solutions to Eq. (1.3) and linearize them in a similar manner to get

1% b=l
with
[FPQ2+slf)
L :axx+ayy+W—H+V?T
P (5.50)
SR EROEE

In any case, the eigenvalues ¢ can be calculated numerically by some eigenvalue
algorithm (see [47]). If any of the calculated eigenvalues in the spectrum has a positive
real part, then the soliton will blow up as z grows due to the exponential term of the
perturbation in Eq. (5.28), in other words the soliton is linearly unstable. If however
the spectrum only consists of pure imaginary eigenvalues, the perturbations will only

cause oscillations and in this case, one can speak of linear stability [60].

5.3.2 Linear Evolution

To analyze the linear stability, the soliton solution to Eq. (5.23]) is perturbed as follows

u(x,y,2) = [f(x,y) +eg(x,,2)] ™ (5.51)
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where € < 1. Henceforth, one has
u; = [eg: + (f +eg)ip] e = [inf +e(ing +g:)] e
e = (frx + €8ux) € (5.52)
tyy = (fyy + €8yy) €7
and
= = (f+ eg) (" + eg)e
= [ +efe +ef g+eeg’ (5.53)
= /1P +e(fg" +"8) +0(e).

Linearizing Eq. (5.53)) with respect to € yields

ul? = |f*+e(fg"+ f"e) - (5.54)
Using linear Taylor expansion F (x+h) = F(x) + hF'(x),
F(lu?) =F(f*+e(fe" + fg))
= F(f1") +e(fe + 1) F(fP) -
Substituting Eq. (5.31), (5.52)) and (5.53)) into Eq. (5.23) gives

—uf+ 8(_“57 + igz) + for + €8x +fyy + €8yy
e |F(fP)g+F (P2 + (1171 Pg| tee=0. (5.56)
+F(|f1)f +Vorf+€Vorg

(5.55)

Grouping the terms and multiplying by e ~** yields

[—1f+ ft i+ F(fP)f + Vo f

¢ |ige— g+ gut g+ F(FP)g+F (1)1 28"+ F/(11P)If g+ Vire| = 0.
(5.57)

Here, the first bracket is identically zero as f is a solution (see Eq. (9.27))). For Eq.

(5.57) to hold true, the second bracket must be equal to zero, too. Hence, one has

ig, —Ug+gut+ay FF(fPe+F (f13) e +F (f1D)If1Pe+Verg =0 (5.58)

which can be rewritten as

8 = i(gu+ ) +i |~ + F(fP) + F (PSP +Ver | g +iF' ()12 (5:59)

and can be hence split as
I) g;=i(d+yy)g
. 2 101 £12\] £]2 ol (] 12y 2 %
1) g =i |~ + F(fP) +F (PSP +Vor | g +iF (11P) %
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The first step is solved by means of Fourier transform:
g=g! <éle—i(kx2+ky2)z) (5.61)
as explained in Section[5.2] To solve the second step, first consider the equation
2. =Ag+Bg" with g(0) =C; . (5.62)

Expressing g as the sum of its real and imaginary parts, i.e. ¢ = Re(g)+iIm(g) and
substituting this in Eq. (5.62) results in

[Re(g)], +i[Im(g)], = [(A+B)Re(g)] +i[(A — B) Im(g)] (5.63)
with
[Re(g)] (0) = Re(C2) and [Im(g)] (0) = Im(Cy) (5.64)

For Eq. to hold true, the real and imaginary parts must be equal to each other,

respectively. That is, one obtains the following two equations

[Re(g)], = (A+B)Re(g) with [Re(g)] (0) = Re(Cy)

[Im(g)], = (A —B)Im(g) with [Im(g)] (0) = Im(Cy) oo
whose solutions are
Re(g) = Re(Cy)e! 5%
Im(g) = Im(Cy)eB)7 | (00
respectively. Hence, the solution of Eq. (5.62) is given by
g =Re(Cy)e B 4 iIm(Cy)eAB) (5.67)
Using this result, the solution of the second step in Eq. (5.60)) is obtained as
g :Re(cz)ei[*H+F(|f\2)+F’(\f\z)(\f|2+f2)+vw]z
I (Cy) el HAFUSPAF () UFP =)+ Ver ]2 (:68)
For the cubic-quintic nonlinearity,
F(x) = ox+ Bx?
F'(x) = o +2Bx . >0
Using Egq. in Eq. yields
g =Re(Cy)e![THHaCUT+F)+3BIA 421 2+ Ver |2
(5.70)

- iIm(Cy ) el [THra I P =3B 211 4 V]2
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For only the cubic nonlinearity, Eq. (5.70) reduces to

g = Re(Cy)el[THFaCUP++2 P P 4Var 2 o j1m ()l [-R+a QU =f2) 211 Vs |2

(5.71)
by taking 3 = 0. For only the quintic nonlinearity, Eq. (5.70) reduces to

g = Re(Cy) e[ H3BUI RSP 4Ver 2 iy ()l -H 3BT 20722 4Ver e (5,70

by taking o = 0.

In any case, g can be evolved using a splitting scheme. We will use the fourth order
split-step scheme given in in our analysis. If g stays almost the same during a
long distance evolution along the z-direction, one can speak of linear stability of the
soliton. If however, the amplitude of g starts to grow continuously leading to a blow

up, the soliton is said to be linearly unstable.
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6. SOLITONS OF THE (1+1)D CQNLS EQUATION

This chapter deals with the soliton solutions of the (1+1)D CQNLS equation.

6.1 CQNLS without Potential

First, the (1+1)D CQNLS equation is considered without any potential.

6.1.1 Analytical Solutions

Consider the following (1+1)D CQNLS equation:
i (x,2) + (%, 2) + 0tfue(x, 2) Pu(,2) + Blu(x, 2)[*u(x,2) = 0. (6.1)

To obtain real-valued soliton solutions, the following ansatz is used:

u(x,z) = f(x)e** where EI:B f(x)=0and u >0. (6.2)
X oo
Substituting
Uz = i‘ufemz
e = [ (6.3)

ul? = feefee = f?

into Eq. yields

(—uf+s"+af +Bf) et =0. (6.4)
Multiplying Eq. (6.4) by 2f"e "1 gives
2f' 1" —2uff 203 f + 2B f =0. (6.5)
Integrating Eq. (6.5) with respect to x yields
(PP =uf+3f+ gfﬁ =C1. (6.6)

The localization conditions lim f(x) =0and lim f’(x) = 0 require the integration
Xx—rtoo X—> oo

constant Cj to be zero:

B

(P =uf+ 3+ 50 =0. 67)
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Substituting

) == e f=y
y s (6.8)
Yy T
d fl=-2
and f >
into Eq. (6.7) yields
-3
_ o _ _
yT(y')z—uy oy 2+§y ’=0. (6.9)
Multiplying Eq. (6.9) by 4y* gives
4
(y’)2—4uy2+2ocy+?ﬁ =0. (6.10)

Eq. (6.10) is a separable ODE of first order as follows:

d 4
_y:i\/4uy2—2ocy——ﬁ. (6.11)
dx 3

Separating the variables x and y, one obtains

1
+2/fdx = dy . (6.12)
2_ay_ B

Integrating both sides of Eq. (6.12), i.e.
1
iZ\/ﬁ/dx = /
[y2_ oy B

o B o
\/yz——y——ﬂ——

dy (6.13)

results in

+2,/fx+1InC=1n (6.14)

2u 3u 4u

considering the auxiliary calculation

i \/yz_ﬁy_ﬁﬂ_g‘_mc,
i
(6.15)

where InC is an integration constant. Exponentiating both sides of Eq. (6.14) gives

oy o % B @ ]
Ce \/y 2/Jy 3u+y - (6.16)
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Squaring Eq. (6.16)) yields

(6.17)
a a> B o B a
=22 - 2= LAY O N N I
Yo e T Y T 2w 3u<y 2u>
Multiplying Eq. (6.16) by % gives
2
X et & [ & B a o 6.18
2u 2,u\/y 2uy 3u 2,uy suz (©6.18)

Adding Eq. (6.17) and (6.18) side by side, one obtains

2
Creiny gy o * B, s @ B 6
e +2u e y 2Hy Ton2 3H+y y 2Hy 31 (6.19)

After regrouping Eq. (6.19), one gets

2
otV L * o2y | @ B N o B 6.20
¢ +2u ¢ i 16u2+3u Y\ g 4/,LJr y 2uy 3u (6.20)

and after substituting Eq. (6.16) in here, one obtains

2
CReTHVix C ﬁCeﬂ\/ﬁx + OC_ + E =2y Cet2Vhr (6.21)
2u l6u?  3u
Solving for y yields
1 o> B o
— —cetrvmx [ 2 P\ -l 2y 6.22
Y=t +<32u2+6u> < T (22

Substituting Eq. (6.22) back in Eq. (6.8), one obtains

1

f= : (6.23)
\/%Ceﬁ\/ﬁx + <% + %) C—leF2Vir 4 %
The localization condition 0 = xgrilm flx) = \/W requires the integration
constant C to be positive:
C>0. (6.24)
Under the condition in Eq. (6.24), the localization condition 0 = lim f(x) =
X—Foo
- 1 requires
g d)emg
16
a2+?[3u>0, (6.25)
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which also implies that & and 8 cannot be zero at the same time:

(a,B) # (0,0) . (6.26)

Considering Eq. (6.26) and combining the conditions on u in Eq. (6.2) and (6.25)
yield

0<u Jif B0

2 (6.27)
,if B <O

o<u< S
16|B]

given that « is non-zero. If o =0, B and u must be positive. For convenience, the

coefficients of the exponential terms in Eq. (6.23) can be set equal to each other:

1 a B {
C=|75+—)C . 6.28
2 <é%@+6u) (029
Solving for C yields
‘ " 2_6[3“ 6.29
- 4u (629)

Note that this choice of C is compatible with Eq. (6.24) and (6.23). Substituting Eq.
(6.29) in Eq. (6.23) yields

- 1
a2+ Bu 42 /fix 4 T2/ o
(6.30)
_ 2
\/a + (\ fa?+ 1?6[3/1) cosh(2,/11x)
Hence, an exact solution of Eq. (6.1) is
2 ,
u(x,z) = vH et (6.31)

%"* (e 8B ) comoymo

(ct. [47]).

As it can be seen from Eq. (6.30), the existence of a real soliton solution depends
on the values of the coefficient of the cubic nonlinearity «, the coefficient of the
quintic nonlinearity 8 and the propagation constant u. Is the coefficient of nonlinearity
positive, then there is a so-called self-focusing nonlinearity. Is the coefficient of

nonlinearity negative, then there is a so-called self-defocusing nonlinearity. The
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coefficients o and 3 may be negative, zero or positive, so there are 9 different cases

to investigate. The propagation constant i will be considered positive as set up in Eq.
(©.2).
1) Self-defocusing cubic, self-defocusing quintic case:

In this case, a<0 and 8<0. The condition in Eq. (6.25) becomes a? — %6 1By >

0 and holds true if u < 1367‘;‘. However, since B < 0 and cosh(2,/mx) > 1,
<\ [+ 13—6[3/.L> cosh(2,/tx) < |ot| for small values of x. For instance for x = 0,

o+ (w/oc2+13—6ﬁ,u) cosh(2,/fix) = — |a| + /a2 + 2 Bu < 0. That is, there exists

no real soliton solution for positive p values.
2) Self-defocusing cubic case:
In this case, ¢ < 0 and 8 = 0. So, Eq. (6.30)) becomes

) 2,/ _ 2\ /1 . 6.32
! V/—laf+]afcosh(2,/fix) \/|a|(005h(2\/ﬁx)_1) -

Since o # 0 and cosh(2\/ﬁx) > 1, f looks like a soliton except at x = O where it tends

to infinity. Hence, no real soliton solution exists in this case.
3) Self-defocusing cubic, self-focusing quintic case:

In this case, @ < 0 and B > 0. Since > 0, the condition in Eq. (6.30) holds true.

Moreover, since 8 > 0 and cosh(2,/tx) > 1, (,/oﬂ—i—%ﬁu) cosh(2,/tx) > |o|.

That is, there exist real soliton solutions for all positive tt values.
4) Self-defocusing quintic case:

In this case, o« = 0 and B < 0. Since B < 0, the condition in Eq. (6.30) never holds

true. That is, there exists no real soliton solution for positive i values.
5) Linear case:

In this case, & =0 and 8 = 0. So, Eq. becomes

(f)? = s, (6.33)

After taking the square root of both sides, the following linear ODE of first order is

obtained
fl==%vuf, (6.34)
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whose solutions are

f=CetVHr, (6.35)

The localization condition 0 = liril f(x) = Ce*VE* requires the integration constant
X—
C to be zero. So, the linear case has the trivial zero solution, which is obviously not a

soliton.
6) Self-focusing quintic case:

In this case, o =0 and 8 > 0. So, Eq. (6.30) becomes

(6.36)

e \/ Vi
/B cosh(2,/1ix)

Since B > 0 and cosh(2,/fx) > 1, there exist real soliton solutions for all positive i

values.
7) Self-focusing cubic, self-defocusing quintic case:

In this case, & > 0 and 8 < 0. As in the self—defocusing cubic, self-defocusing quintic
case, the condition in Eq. (6.30) holds true if u < 16| ﬁ‘ Given this and since o > 0

and cosh(2,/1x) > 1, a+ (\ [a?+ %6[3#) cosh(2,/pfx) > 0. That is, there exist real

2
soliton solutions for 0 < u < 3%‘

8) Self-focusing cubic case:
In this case, o > 0 and B = 0. So, Eq. (6.30) becomes

v 2V . (6.37)
Vol +]a|cosh(2y/1rx) \/|Oc] cosh(2,/fix) + 1)

f=

Since & # 0 and cosh(2,/11x) > 1, there exist real soliton solutions for all positive i

values.
9) Self-focusing cubic, self-focusing quintic case:

In this case, @ > 0 and $ > 0. Since 8 > 0, the condition in Eq. (6.30) holds true.
Moreover, since o > 0 and cosh(2,/1x) > 1, a+ (, [ o2+ ?ﬁu) cosh(2,/fx) > 0.

That is, there exist real soliton solutions for all positive u values.

The results of these 9 cases are summarized in Figure
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Figure 6.1 : Existence of analytical solutions of the (1+1)D CQNLS equation without
any potential.

6.1.2 Numerical Solutions

Solutions are also obtained numerically using Spectral Renormalization Method.

Figure [6.2]represents selected solitons in different media, namely in:

(a) self-defocusing cubic, self-focusing quintic

(b) self-focusing quintic

(c) self-focusing cubic, self-defocusing quintic

(d) self-focusing cubic

(e) self-focusing cubic, self-focusing quintic

media. No soliton could be obtained for the other cases, as expected. The red numbers

by the peak of solitons in Figure[6.2] mark their maximum amplitudes.

It is to be noted that the numerical solutions are in perfect agreement with the analytical
ones. This validates our numerical method and is very important for the cases where

an analytical solution does not exist.

6.2 CQNLS with a P7 -Symmetric Potential

Now, the (1+1)D CQNLS equation is considered with a P -symmetric potential.
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Figure 6.2 : Numerlcal solutions ( fyumericar) Of the (1+1)D CQNLS equation without

any potential in comparison with the corresponding analytical solutions

(fanatyticar) in different media: (@) « = -1, =1,(b) a =0,8 =1, (c)
o=4P=—-1,daoa=1,=0,c)a=1,=1.

6.2.1 Analytical Solutions

Consider the following (1+1)D CQNLS equation with a P‘7 -symmetric potential:
it (0, ) + it (¥, 2) + @u(,2) Pulx, 2) + Blulx, 2)[ u,2)
(6.38)
+ [V (x) +iW (x)]u(x,z) =0.
Here, V (x) is an even, real-valued function and W (x) is an odd, real-valued function by

the definition of P7 -symmetry. Clearly, u(x,z) = 0 is a trivial solution of Eq. (6.38).
To obtain non-zero solutions, set u(x,z) # 0. Dividing Eq. (6.38) by u(x,z) yields

+@+a| P4 Blul*+V+iw =0. (6.39)
To obtain stationary solutions, the following ansatz is used:
u(x,z) = f(x) eHets)] (6.40)

where f(x) and g(x) are real-valued functions different than zero function. Substituting
this along with
= iufeltte) — iy
ey = [f "2if'd +ifg" — f (8')2] elthere) (6.41)
u|? = feiate) pemiluate) — 42
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into Eq. (6.39) yields
—u+f7—(g')2+af2+ﬁf4+V} +i {szg

To obtain soliton solutions, the following ansatz is used

—l—g"—i—W] =0.

f(x) = fosech”(x) where fo € R\{O}andpecZ.

Substituting

f" = fopsech”~!(x) (—sech(x)tanh(x)) = f (—ptanh(x))

£ = (=ptanh(x)) + f (—psech(x)) =  [p? = (p + p)sceh’ (x)]
into Eq. yields

[_u +p? — (p*+ p)sech®(x) — (&) + aufoPsech? (x) + B fosech*” (x) + V]

+i[—2ptanh(x)g’ +¢"+ W] =0.

Using the following ansatz
g’ (x) = go sech?(x) where go € R\{0} and g € Z
and substituting it along with
g" = gogsech?™ ! (x) (—sech(x) tanh(x)) = —gogsech?(x) tanh(x)
into the complex part of Eq. (6.45)) gives
—(2p+q)gosech?(x) tanh(x) +W = 0.
Hence, the complex part of the PT -symmetric potential is to be taken as
W (x) = Wpsech?(x)tanh(x) with Wy = (2p+¢)go -

W(x) is indeed an odd function as

W (—x) = Wpsech?(—x) tanh(—x) = Wpsech?(x) (—tanh(x)) = —W(x) .

Substituting Eq. (6.46)) into the real part of Eq. (6.45) gives
—u+ p* — (p*+ p)sech’ (x) — go”sech™(x)
+ afy?sech? (x) + B fo*sech*” (x) +V = 0.

Hence, the real part of the P‘7 -symmetric potential can be taken as

V (x) = Vo + Visech® (x) + Vasech?” (x) + Vasech?? (x) + Vysech?(x)
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(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)



with

Vo=p—p’

Vi=—Bf’

Vo = —atfo? (6.53)
Vs = g0’

Va=p(p+1).

For simplicity, set 4 = p? to get rid of the coefficient V. V(x) is indeed an even
function as

V(—x) = Visech® (—x) 4 Vasech?” (—x) + Vssech?¥ (—x) + Visech?(—x)

(6.54)
= Visech*” (x) + Vasech?” (x) + Vasech®?(x) 4 Vysech?(x) = V (x) .
In conclusion, the general soliton solution of Eq. with
V(x) = —B fo*sech® (x) — a fy>sech? (x) + go>sech?(x) + p(p + 1)sech? (x)
(6.55)
W (x) = (2p + q)gosech?(x) tanh(x)
is given as
A p i [pzz—FgO [ sech?(x) dx]
u(x,z) = fosech?’(x) e : (6.56)

Now, V (x) can be simplified by equating the powers of sech(x). The four powers 4p,
2p, 2q and 2 can be equated in 4C4 + 4C3 + % = 1+4+ 3 = 8 different ways:
D{4p=2p=2g=2} = 0:
This case is not possible.
D{4p,2p=2¢q=2} = p=g=1:

Vx)= (—ch02 +80° + 2) sech?(x) + (—Bf04) sech*(x)

W (x) = 3gosech(x) tanh(x) (6.57)

M(X,Z) _ fosech(x)ei[z+g0 arctan(sinh(x))]
3){2p,4p=29=2} = p=3,9=1:

V(x)= (—choz) sech(x) + (—Bfo4 +g0>+ %) sech? (x)

W (x) = 2gosech(x) tanh(x) 6.58)
u(x,z) = fo\/mei[%goarctan(sinh(x))]

H{2q,4p=2p=2} = O
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This case is not possible.
5{2,4p=2p=2q} = p=q=0:
V(x) = (—Bfo* — afo’ +g0°)
W(x)=0
u(x,z) = u(x) = foe'$**
This case is of no interest as the solution is not a function of z anymore.
6){4p=2p,2q=2} = p=0,9g=1:
V(x) = (=B fo* — &fo*) + (g0%) sech’(x)
W (x) = gosech(x) tanh(x)
u(x’ Z) _ u(x) = foeigoarctan(sinh(x))
This case is of no interest as the solution is not a function of z anymore.
N{4p=2q,2p=2} = p=1,9g=2:
V(x)= (—ch02 +2) sech? (x (—ﬁf04 + goz) sech*(x)
W (x) = 4gosech?(x) tanh(x)
u(x,z) = fosech(x)e/lrgotanh(x)]

8) {4p=2,2p=2q} = p=q=17:
V() = (- a0 seeh(n) + (~BAs*+ ) ek
W(x) = %go sech(x) tanh(x)

u(x,2) = fo sech(x)exp([ g0 / /sech(x) de

In this case, the solution contains an elliptic integral.

We will consider the P‘T -symmetric potential in the second case for o # 0:

V(x) = Vpsech? (x) + Visech*(x)
W (x) = Wpsech(x) tanh(x)
where

Vo = —af02+g02—i—2
2
18 — 9V, + W2
Vi— B = —B( )

104
W() = 3g0 .
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This choice turns out to give the potential in Eq. (3.10) along with the exact solution
to Eq. (6.38). It follows from Eq. (6.64) that

F 2—V0—|—WT()2
0= o (6.65)

80= 73

and hence the exact solution is obtained as

2—Vo+ M

u(x,z) = sech(x) exp (i [z+ % arctan(sinh(x))} > . (6.66)

For only cubic nonlinearity, i.e. if B = 0, Eq. (6.63) reduces to Eq. (3.12):

V(x) = Vosech?(x) , W (x) = Wpsech(x)tanh(x) . (6.67)

6.2.2 Numerical Solutions

Numerical solutions to Eq. (6.38)) with the ‘7 -symmetric potential in Eq. (3.10) are
sought by means of the Spectral Renormalization Method. The propagation constant
is fixed to u = 1 by the choice of the potential. To investigate different potentials, we

let the potential depths V and W, vary between 0 and 7.

For the numerical results in self-focusing cubic, self-defocusing quintic media, we set

o =1, B = —1 and let the potential depths V; and Wy vary between 0 and 5.

A typical field profile of an obtained soliton is shown in Figure [6.3] One can see
the real parts of the soliton obtained numerically and analytically in the self-focusing
cubic, self-defocusing quintic case for Vp = 0.7 and Wy = 0.3 in Figure [6.3(a), their
complex parts in Figure [6.3(b) and phases in Figure [6.3|c). Hereon, one can observe

that the numerical solution coincides with the analytical solution.

All the numerically obtained solitons are shown in Figure [6.4(a) where the stars
represent solitons corresponding to A in the Spectral Renormalization Method (see Eq.
(#.6)) whereas the pluses represent solitons corresponding to A;. One can notice that
solitons corresponding to different A’s are disjoint; i.e. there are no bistable solitons.
The dashed line is the threshold for fj to be real (see Eq. (6.63))); in self-focusing cubic

media, solitons may exist below it (and indeed, they do).

For the numerical results in self-focusing cubic, self-focusing quintic media, we set

o = B = 1 and let the potential depths V; and W,y vary between 0 and 4.
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Figure 6.3 : (a) Real part, (b) complex part and (c) phase of the soliton obtained for
a=1,=-1,Vy =0.7,Wy = 0.3. (d) Real part, (¢) complex part and
(f) phase of the soliton obtained for @ = 8 = 1,Vy = 1.4,W = 0.1. (g)
Real part, (h) complex part and (i) phase of the soliton obtained for
a==-1,Vy=3,Wy=0.1. (j) Real part, (k) complex part and (1)
phase of the soliton obtained for « = —1,8 =1,V =2.7,Wy =0.3. In
all cases, numerically obtained soliton is plotted with a dashed blue line
whereas analytically obtained soliton is plotted with a green line.
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Figure 6.4 : (a) Numerically obtained solitons of the (1+1)D CQNLS equation with a
PT -symmetric potential for varying potential depths in the
self-focusing cubic, self-defocusing quintic case (o =1, B = —1), (b)
Numerically obtained, nonlinearly stable (marked as green circles) and
nonlinearly unstable (marked as red crosses) solitons, (¢) Analytically
obtained, nonlinearly stable (marked as green circles) and nonlinearly
unstable (marked as red crosses) solitons.
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Figure 6.5 : (a) Numerically obtained solitons of the (1+1)D CQNLS equation with a
PT -symmetric potential for varying potential depths in the
self-focusing cubic, self-focusing quintic case (@ = 8 = 1), (b)
Numerically obtained, nonlinearly stable (marked as green circles) and
nonlinearly unstable (marked as red crosses) solitons, (c¢) Analytically
obtained, nonlinearly stable (marked as green circles) and nonlinearly
unstable (marked as red crosses) solitons.
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Figure 6.6 : (a) Numerically obtained solitons of the (1+1)D CQNLS equation with a
PT -symmetric potential for varying potential depths in the
self-defocusing cubic, self-defocusing quintic case (o = = —1), (b)
Numerically obtained, nonlinearly stable (marked as green circles) and
nonlinearly unstable (marked as red crosses) solitons, (c¢) Analytically
obtained, nonlinearly stable (marked as green circles) and nonlinearly
unstable (marked as red crosses) solitons.

A typical field profile of an obtained soliton is shown in Figure [6.3] One can see

the real parts of the soliton obtained numerically and analytically in the self-focusing

cubic, self-focusing quintic case for Vp = 1.4 and Wy = 0.1 in Figure [6.3(d), their

complex parts in Figure [6.3](¢) and phases in Figure [6.3(f). Hereon, one can observe

that the numerical solution coincides with the analytical solution.

All the numerically obtained solitons are shown in Figure [6.5(a) where the stars
represent solitons corresponding to A;. Like in the self-focusing cubic, self-defocusing
quintic case, solitons exist below the dashed line. One can notice that no soliton
corresponding to A, is found. It is also remarkable that there exists no soliton solution

if the potential is pure imaginary (i.e. when V) = 0).

For the numerical results in self-defocusing cubic, self-defocusing quintic media, we

set & = 3 = —1 and let the potential depths V) and W,y vary between 0 and 7.

A typical field profile of an obtained soliton is shown in Figure[6.3] One can see the
real parts of the soliton obtained numerically and analytically in the self-defocusing
cubic, self-defocusing quintic case for Vo = 3 and Wy = 0.1 in Figure [6.3(g), their
complex parts in Figure [6.3[h) and phases in Figure [6.3(i). Hereon, one can observe

that the numerical solution coincides with the analytical solution.

All the numerically obtained solitons are shown in Figure [6.6(a) where the pluses

represent solitons corresponding to A,. The dashed line is the threshold for fj to be
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Figure 6.7 : Numerically obtained solitons of the (1+1)D CQNLS equation with a
PT -symmetric potential for varying potential depths in the
self-defocusing cubic, self-focusing quintic case (o = —1, B = 1), (b)
Numerically obtained, nonlinearly stable (marked as green circles) and
nonlinearly unstable (marked as red crosses) solitons, (c¢) Analytically
obtained, nonlinearly stable (marked as green circles) and nonlinearly
unstable (marked as red crosses) solitons.
real; in self-defocusing cubic media, solitons may exist above it (and indeed, they do).

One can notice that no soliton corresponding to A; is found.

For the numerical results in self-defocusing cubic, self-focusing quintic media, we set

o = —1, B =1 and let the potential depths V; and Wy vary between 0 and 5.

A typical field profile of an obtained soliton is shown in Figure[6.3] One can see the real
parts of the soliton obtained numerically and analytically in the self-defocusing cubic,
self-focusing quintic case for Vo = 2.7 and Wy = 0.3 in Figure [6.3]j), their complex
parts in Figure [6.3|k) and phases in Figure [6.3(1). Hereon, one can observe that the

numerical solution coincides with the analytical solution.

All the numerically obtained solitons are shown in Figure [6.7| where the stars represent
solitons corresponding to A; whereas the pluses represent solitons corresponding to A;.
One can notice that solitons corresponding to different A’s are disjoint; i.e. there are
no bistable solitons. Like in the self-defocusing cubic, self-defocusing quintic case,

solitons exist above the dashed line.

6.2.3 Nonlinear Stability

A soliton should preserve its shape, location and maximum amplitude during direct
simulations in order to be considered as nonlinearly stable. To study their nonlinear

stability, obtained solitons are computed over a long distance. For this purpose,
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split-step Fourier method is employed to advance in z. The solitons are then plotted

from z = 0 to z = 100 at each integer value of z.

The results of the nonlinear stability analysis of the numerically and analytically
obtained solitons in self-focusing cubic, self-defocusing quintic media (@ = 1, B =
—1) are shown in Figure [6.4(b) and [6.4(c) respectively, where the circles represent
stable solitons whereas the crosses represent unstable ones. The dotted line is again
the threshold for fy to be real. It can be seen that the numerical findings are in good
agreement with the analytical results, that the majority of the solitons are unstable and
that stable solitons are predominantly obtained either for smaller values of W, or close

to the threshold curve.

Nonlinear stability and instability regions of the numerically and analytically obtained
solitons in self-focusing cubic, self-focusing quintic media (o« = = 1) are given
in Figure [6.5(b) and [6.5]c) respectively, where the circles represent stable solitons
whereas the crosses represent unstable ones. It can be seen that the numerical findings
are in good agreement with the analytical results, that the majority of the solitons are
unstable and that stable solitons are predominantly obtained either for smaller values

of Wy or close to the threshold curve.

In Figure[6.8] a nonlinearly unstable soliton is shown. It is observed that the maximum

amplitude increases during the evolution which leads to nonlinear instability.

Nonlinear stability and instability regions of the numerically and analytically obtained
solitons in self-defocusing cubic, self-defocusing quintic media (¢ = f = —1) are
given in Figure [6.6(b) and [6.6(c) respectively, where the circles represent stable
solitons whereas the crosses represent unstable ones. It can be seen that the numerical
findings are in good agreement with the analytical results, that the majority of the
solitons are unstable and that stable solitons are predominantly obtained either for

smaller values of Wy or close to the threshold curve.

In Figure [6.9] a nonlinearly stable soliton is depicted. It can be seen that the soliton

conserves its shape and maximum amplitude during the evolution.

The results of the nonlinear stability analysis of the numerically and analytically
obtained solitons in self-defocusing cubic, self-focusing quintic media (¢ = —1, p =

1) are shown in Figure [6.7(b) and [6.7|c) respectively, where the circles represent stable
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Figure 6.8 : (a) Numerically obtained soliton of the (1+1)D CQNLS equation with a
PT -symmetric potential for Vy = 2 and Wy = 1.9 in the self-focusing
cubic, self-focusing quintic case (¢ = 8 = 1), (b) Nonlinear evolution of
the soliton, (c) View from top, (d) Maximum amplitude as a function of
the propagation distance z.
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Figure 6.9 : (a) Numerically obtained soliton of the (1+1)D CQNLS equation with a
PT -symmetric potential for Vo = 3 and Wy = 0.1 in the self-defocusing
cubic, self-defocusing quintic case (¢ = B = —1), (b) Nonlinear
evolution of the soliton, (c) View from top, (d) Maximum amplitude as a
function of the propagation distance z.
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Figure 6.10 : Linear spectrum of the numerically obtained solitons of the (1+1)D
CQNLS equation with a P‘7 -symmetric potential for V) = 1 and
Wy = 0.1 in the self-focusing cubic case (a) & =1, f =0 and
self-focusing cubic, self-defocusing quintic cases: (b)
oa=1,=-02,c)a=1,=-04,(da=1, f=-0.6,(e)
a=1,p=-08Ha=1,p=-1.
solitons whereas the crosses represent unstable ones. It can be seen that the numerical
findings are in good agreement with the analytical results, that the majority of the

solitons are unstable and that stable solitons are predominantly obtained either for

smaller values of Wy or close to the threshold curve.

6.2.4 Linear Stability

In order to observe the effect of the quintic term on the soliton stability, linear spectra
of the solitons are investigated starting with solely the cubic nonlinearity and extending
it by gradually decreasing 3, the coefficient in front of the self-defocusing quintic term.
As it can be concluded from Figure decreasing the value of 8 while keeping the
other parameters the same, has a negative effect on soliton stability in self-focusing
cubic, self-defocusing quintic media. In the case where o = 1 and B = —1, there
are unstable eigenvalues (see Figure [6.10(f)) which lead the soliton to blow-up; an

indicator for linear instability.
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Figure 6.11 : Linear spectrum of the numerically obtained solitons of the (1+1)D
CQNLS equation with a P‘T -symmetric potential for V) = 1 and
Wy = 0.1 in the self-focusing cubic case (a) @ = 1, B =0 and
self-focusing cubic, self-focusing quintic cases: (b) a =1, B =0.2, (¢)
a=1,=04,(da=1,=06,)a=1, =028,
oa=1, =1
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Figure 6.12 : (a) Linear spectrum of the numerically obtained soliton of the (1+1)D
CQNLS equation with a P7 -symmetric potential for V) = 3.6 and
Wp = 0.1 in the self-defocusing cubic, self-focusing quintic case
(a =—1, B =1), (b) Linear evolution of the soliton.
In order to further observe the effect of the quintic term on the soliton stability, linear
spectra of the solitons are investigated starting with solely the cubic nonlinearity and
extending it by gradually increasing f, the coefficient in front of the self-focusing
quintic term. As it can be concluded from Figure [6.11} increasing the value of § while
keeping the other parameters the same, has a negative effect on soliton stability in
self-focusing cubic, self-focusing quintic media. Due to the existence of eigenvalues
with non-zero real parts in their linear spectra, all solitons considered in this medium

(o = B = 1) are found to be linearly unstable.

Due to eigenvalues with non-zero real parts in their linear spectra and instant growth
in their amplitudes during linear evolution, all solitons considered in self-defocusing

cubic, self-defocusing quintic media (o« = B = —1) are found to be linearly unstable.

In Figure [6.12] a linearly unstable soliton is plotted. It can be clearly seen that
two eigenvalues with non-zero real parts exist in the linear spectrum (a) and the
maximum amplitude of the soliton increases instantly during the evolution which
indicates blow-up (b). On the other hand, Figure [6.13] points out the linear instability
of the same soliton but this time obtained analytically. The other solitons considered
in self-defocusing cubic, self-focusing quintic media (o = —1, B = 1) are also found

to be linearly unstable.
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Figure 6.13 : (a) Linear spectrum of the analytically obtained soliton of the (1+1)D
CQNLS equation with a PT -symmetric potential for Vy = 3.6 and
Wo = 0.1 in the self-defocusing cubic, self-focusing quintic case
(a =—1, B =1), (b) Linear evolution of the soliton.
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7. SOLITONS OF THE (2+1)D CQNLS EQUATION

In this chapter, the problem is extended to (2+1)D, where there are not so many results

published in the literature, especially for the quintic case.

7.1 CQNLS without Potential

Consider the following (2+1)D CQNLS equation without any potential:

uz(x,y,z) —|—uxx(x7y,z) +”yy(x7)’az) + a|u(x,y,z)|2u(x,y,z) —|—ﬁ]u(x,y,z)]4u(x,y,z) = O .
(7.1)

Analytical and numerical solutions to its (1+1)D form were shown in Section[6.1]

7.1.1 Numerical Solutions

As Eq. (7.1) does not admit analytical solutions, numerical solutions to Eq. (7.1)
are sought by means of the Spectral Renormalization Method. The values for the

parameters are setas o, € {—1, 0, 1} and u <4.

No soliton is obtained in the

e self-defocusing cubic, self-defocusing quintic medium (o = 8 = —1),
e self-defocusing cubic medium (o = —1, B =0),

e self-defocusing quintic medium (¢ =0, f = —1),

e linear medium (o = 8 = 0) and

e self-focusing cubic, self-defocusing quintic medium (¢ =1, f = —1)
as it was the case in (1+1)D.

For the other media, i.e.

e self-defocusing cubic, self-focusing quintic medium (¢ = —1, B = 1),
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Figure 7.1 : (a) Real and (b) imaginary parts of the soliton obtained numerically for
CQNLS equation with ¢ = 8 = 1 and (c) its contour plot along with the
initial condition (IC).

e self-focusing quintic medium (¢ =0, f = 1),
e self-focusing cubic medium (¢ =1, B =0) and

e self-focusing cubic, self-focusing quintic medium (o = 8 = 1),

solitons are obtained for all the values of u.

An example for those solitons is given in Figure [7.I] The soliton obtained in the
self-focusing cubic, self-focusing quintic case for p = 1 is plotted in Figure[7.1(a). As
it can be seen from Figure [7.I(b), the obtained soliton is real. In Figure [7.1fc), the

contour plots of the initial condition (IC) and the soliton are given.

The results for (2+1)D CQNLS equation are in good agreement with those for (1+1)D
CQNLS equation.

7.2 CQNLS with a Periodic Potential

In this section, a periodic potential is added to the system on the ground of its positive

effect on existence and stability of the solitons.

7.2.1 Numerical Solutions

The solution to the CQNLS equation with the periodic potential in Eq. (3.1) for N =
4 is again found using spectral methods. Solitons are obtained for varying p and

Vo values only when there is a self-focusing cubic and/or quintic nonlinearity in the

equation as expected from the previous results.
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Figure 7.2 : Bistable solitons of the CQNLS equation with a periodic potential
obtained for 4 = 3 and V) = 4.
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Figure 7.3 : (a) Rea)i and (b) imagiynary parts of th; soliton obtained numerically for
CQNLS equation with ¢ =0, = 1,Vy = 1,4 = 4 and (c) its contour
plot along with the initial condition (IC) and periodic potential (V).

One remarkable result is the existence of soliton pairs in the self-focusing cubic,
self-defocusing quintic case (¢ = 1,8 = —0.1). There exist two different solitons
for some propagation constants u at the potential depth Vy = 4, namely for u € [2.8;3]
for the periodic potential. In other words, there are pairs of solitons having different
powers for the same propagation constants. An example of these soliton pairs is given
in Figure This arises, yet not always, due to the dual choice of A in the spectral
method. The soliton corresponding to A;, shown in Figure [7.2(a), has a maximum
amplitude of magnitude 2.1496 and a power of magnitude 9.0736 whereas the soliton
corresponding to A,, shown in Figure[7.2(b), has a maximum amplitude of magnitude
3.1999 and a power of magnitude 40.4428. In the literature, such pairs are referred to

as bistable solitons.

67



Another thing to be noticed is solitons starting to get narrower and taller after a while
although their gap regions seem semi-infinite in the self-focusing cubic, self-focusing
quintic case (¢ = B = 1) and self-focusing quintic case (¢ =0, B = 1) for instance,
which brings up the question of stability. An example of such a narrow soliton is given
in Figure The soliton obtained in the self-focusing quintic case for Vo = 1 and
u =4 is plotted in Figure[7.3(a). One can directly notice how spindly the soliton is.
As it can be seen in Figure [7.3[b), the obtained soliton has no imaginary part. The

contour plots of the initial condition, periodic potential and soliton are given in Figure

[7.3(c).

7.3 CQNLS with a ‘7 -Symmetric Potential

This section is the extension of Section[6.2]to (2+1)D.

7.3.1 Analytical Solutions
Consider the following (2+1)D CQNLS equation with a P‘7 -symmetric potential:

iuz(x,y,z) +uxx<x,yaz) +”yy(X,)’>Z) + a\u(x,y,z)|2u(x,y,z)

+ BluCx,,2)*u(x,,2) + [V (x,y) +iW (x, )] u(x,y,2) = 0. '
The idea is to generalize the solution in Eq. (6.66)) to (2+1)D as follows
u(x,y,2) = fosech(x)sech(y) efHe+solarctan(sinh(x))-arctan(sinh(y))]} (73)
[61]. Writing Eq. in Eq. yields
— 42— (24 go?) (sech?(x) +sech?(y)) —3gpsech(x) tanh(x)
+afy>sech?(x)sech?(y) +i| —3gosech(y)tanh(y) | =0.
+B fo*sech* (x)sech*(y) + V +W
(7.4)
Setting real and complex parts of Eq. equal to zero gives
V = (2+g0%) [sech?(x) + sech?(y)]
— afy?sech®(x)sech?(y) — B fo*sech* (x)sech?(y)
W = 3gq [sech(x) tanh(x) + sech(y) tanh(y)] 7
u=2.
By defining
Vo =2+ WTOZ (7.6)



and using the same coefficients in Eq. (6.64), the potential is obtained as follows:
V(x,y) = (Vo — Vo)sech?(x)sech?(y) + Visech? (x)sech*(y)
+ V3 [sech?(x) + sech?(y)] (7.7)

W (x,y) = Wy [sech(x) tanh(x) + sech(y) tanh(y)] .

It can be easily seen that V(x,y) is an even function and W (x,y) is an odd function.

That is, V (x,y) 4+ iW (x,y) is indeed the P T -symmetric potential given in Eq. (3.T1).

As a result, exact fundamental soliton solutions to Eq. (7.2)) are obtained in the form

of
( >\/2_V°+WT°2 h(x)sech(y)
u(x,y,z) =\ ————= sech(x) sech(y
04 (7.8)

exp (,- {2z I % [arctan(sinh(x)) + arctan(Sinh()’))] })

by choosing suitable values for fj and go.

7.3.2 Numerical Solutions

Numerical solutions to Eq. (7.2) with the ‘7 -symmetric potential in Eq. (3.11)) are
sought by means of the Spectral Renormalization Method. The propagation constant
is fixed to u = 2 by the choice of the potential. To investigate different potentials, we

let the potential depths V and Wy vary between O and 6.

We start the exact and numerical analysis by considering self-focusing cubic and
self-defocusing quintic medium. Figure features the typical field profile of an
obtained soliton. The real part of the numerically obtained soliton in the self-focusing
cubic, self-defocusing quintic case for Vo = 0.1 and Wy = 0.5 is plotted in Figure
[7.4(a) and its complex part in Figure[7.4(d). The analytical solution depicted in Figure
[7.4]b) and [T.4](e), coincides with the numerical solution. This can be seen from their

superposed cross sections in Figure [7.4(c) and [7.4(f).

For the numerical results in self-focusing cubic, self-defocusing quintic media, we fix
o =1, B = —1 and vary the potential depths Vjy and W, between 0 and 4. Obtained
solitons are marked in Figure [7.5((a), where stars indicate the ones obtained using the
first root A; in the fixed point iteration and pluses indicate the ones obtained using the
second root A,. Recall that solitons in self-focusing cubic media may only exist below

the dotted curve that depicts the case fo = 0.
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Figure 7.4 : Real parts of the solitons obtained numerically (a), analytically (b) and
their superposed cross sections (¢) forax =1, = —1,Vy) =0.1,Wy =0.5.
Complex parts of the solitons obtained numerically (d), analytically (e)
and their superposed cross sections (f) for the same case.
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Figure 7.5 : (a) Numerically obtained solitons for & = 1, B = —1 and varying

potential depths, (b) Analytically obtained, nonlinearly stable (marked as
green circles) and nonlinearly unstable (marked as red crosses) solitons.
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Figure 7.6 : (a) Numerically obtained solitons for & = 8 = 1 and varying potential
depths, (b) Analytically obtained, nonlinearly stable (marked as green
circles) and nonlinearly unstable (marked as red crosses) solitons.

(a) (b)
[} [ m
== oyulE
xBEREERY
5 ; caiidisana:
xxHERREREEREREE"
sxssxpippghERaRaRRRAR AR RS
b3 dss st it is it bs sttt isiti ity
: VR
---- LRI R
v . v HERLLE2R02RRRRRRRRORERIET
P e e e e e e e e e L o SEESSENRRSREORREEaRInRES
’ £ gl
21 2
1 1
o * _unstable
0 0
0 1 2 3 4 0 1 2 3 4
WO WO
Figure 7.7 : (a) Numerically obtained solitons for & = 8 = —1 and varying potential

depths, (b) Analytically obtained, nonlinearly stable (marked as green
circles) and nonlinearly unstable (marked as red crosses) solitons.
For the numerical results in self-focusing cubic, self-focusing quintic media, we fix
o = 3 = 1 and vary the potential depths V) and W, between 0 and 4. Obtained solitons
are marked in Figure [7.6(a) with stars. Note that the second root A, in the fixed point
iteration does not yield any soliton in this case and there exists no solitons in case of a

pure imaginary potential, i.e. if Vy = 0.

For the numerical results in self-defocusing cubic, self-defocusing quintic media, we
fix &« = B = —1 and vary the potential depths V) and Wj) between 0 and 6. Obtained
solitons are marked in Figure[7.7(a) with pluses. Recall that solitons in self-defocusing
cubic media may only exist above the dotted curve that depicts the case fo = 0. Note

that the first root A; in the fixed point iteration does not yield any soliton in this case.

For the numerical results in self-defocusing cubic, self-focusing quintic media, we fix

o = —1, B =1 and vary the potential depths V, and Wy between 0 and 5. Obtained
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Figure 7.8 : (a) Numerically obtained solitons for &« = —1, B = 1 and varying

potential depths, (b) Analytically obtained, nonlinearly stable (marked as
green circles) and nonlinearly unstable (marked as red crosses) solitons.
solitons are marked in Figure [7.§((a), where stars indicate the ones obtained using the
first root A; in the fixed point iteration and pluses indicate the ones obtained using the

second root A,.

7.3.3 Nonlinear Stability

Regarding the nonlinear stability of the obtained solitons in self-focusing cubic,
self-defocusing quintic media (o = 1, B = —1), circles in Figure [7.5(b) map stable
solitons whereas the crosses map unstable ones. It can be observed that most solitons
are unstable and that stable solitons are mainly obtained for smaller W values or close

to the threshold curve.

Regarding the nonlinear stability of the obtained solitons in self-focusing cubic,
self-focusing quintic media (& = 8 = 1), circles in Figure [7.6(b) map stable solitons
whereas the crosses map unstable ones. It can be observed that most solitons are

unstable and that stable solitons are mainly obtained close to the threshold curve.

A nonlinearly unstable soliton in self-focusing cubic, self-focusing quintic media is
depicted in Figure It is observed that neither the maximum amplitude nor the

shape is conserved during the evolution; the blow-up can be clearly seen in Figure
[7.9(b) around z = 71.

Regarding the nonlinear stability of the obtained solitons in self-defocusing cubic,

self-defocusing quintic media (o = B = —1), circles in Figure [7.7(b) map stable
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Figure 7.9 : (a) Nonlinear evolution of the numerically obtained soliton for Vj = 1,
Wo=1and o = B = 1 (view from top), (b) Maximum amplitude as a
function of the propagation distance z.

(a)

S
T
L

z=0 z=25 z=50 z=75 z=100
(b)
1.2F T T T T T T T T =
|U | 11F -1
max
1
0.9 u
0.8k I L I L 1 I 1 I .
0 10 20 30 40 50 60 70 80 90 100
Z

Figure 7.10 : (a) Nonlinear evolution of the numerically obtained soliton for Vy = 3,
Wo=0.1and @ = 8 = —1 (view from top), (b) Maximum amplitude as
a function of the propagation distance z.

solitons whereas the crosses map unstable ones. It can be observed that most solitons

are unstable and that stable solitons are mainly obtained for smaller values of Wj.

A nonlinearly stable soliton in self-defocusing cubic, self-defocusing quintic media is
depicted in Figure It is observed that both the maximum amplitude and the shape

are conserved during the evolution.

Regarding the nonlinear stability of the obtained solitons in self-defocusing cubic,

self-focusing quintic media (o = —1, B = 1), circles in Figure [7.8(b) map stable
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Figure 7.11 : Linear spectrum of the numerically obtained solitons for Vj = 2,
Wo=0.1,a=1land (@) B=-5,(b)=-3,c)B=—-1,d)B=1,
(e)B=3,Mp=5
solitons whereas the crosses map unstable ones. It can be observed that most solitons

are unstable and that stable solitons are mainly obtained for smaller values of Wj.

7.3.4 Linear Stability

To find out the impact of the quintic term on the soliton stability, linear spectra of the
solitons are acquired by gradually increasing f3, the coefficient of the quintic term. As
Figure reveals, increasing the value of B without changing the other parameters,
influences soliton stability in self-focusing cubic media adversely. The eigenvalues

with positive real parts in Figure ¢) thru (f) will cause these solitons to blow up.

Linear spectra of all solitons in self-defocusing cubic, self-defocusing quintic media
(o = B = —1) contain eigenvalues with non-zero real parts, hence obtained solitons

are linearly unstable.

Similar to the previous case, linear spectra of all solitons in self-defocusing cubic,

self-focusing quintic media (¢ = —1, B = 1) also contain eigenvalues with non-zero
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real parts. Hence, we can say that the obtained solitons in self-defocusing cubic media

are linearly unstable.

7.3.5 Power Analysis

Soliton power is defined as

[ SIS

P= [ [lut.y.2)Pdxdy (7.9)

—00 —o00

[62]]. In the presence of a dissipative potential, the mass of the particle does not remain
constant and the total power of the soliton evolves according to the equation

d oo oo (o] (o]
d—Z//]u\zdxdy:2/ /W(x,y)|u\2dxdy. (7.10)

—00 — 00 —00 —O0

Here, Eq. (7.10) turns out to be zero, meaning that the power is not varying with
the propagation distance z. In fact, for the solitons given by Eq. (7.8), the power is

explicitly obtained as

7 7 4 Wo?
P=f> / sech?(x)dx / sech®(y)dy = 4fo> = — (2—V0+TO) RNCRTY

—o0 —o0

It is to be noted that the power is a positive quantity and independent of parameter
B, the coefficient of the quintic term. As the power is also independent of z, a stable

soliton’s power stays constant during evolution.

7.4 CQNLS with a P7 -Symmetric Potential with Defects

In this section, we consider the CQNLS in self-focusing cubic, self focusing quintic
media as a model by setting the values oo = 8 = u = 1, Wy = 0.1 and letting Vj vary

between 0 and 4.

7.4.1 Numerical Solutions

For the potential depth Vj = 1, the obtained solitons are depicted in Figure
and on the lattice without defect, with positive defect and with negative defect,
respectively. The cross sections of the solitons are plotted with green curves in the
(b) and (d) parts of these figures whereas the blue curves depict the corresponding
potentials. It can be seen that ceteris paribus, the positive defect decreases the

amplitude of the soliton whereas the negative defect increases it.
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Figure 7.12 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the obtained soliton with Vy = 1
on the lattice without defect.
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Figure 7.13 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the obtained soliton with Vy = 1
on the lattice with positive defect.
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Figure 7.14 : (a) Real part, (b) Cross section of the real part, (c) Imaginary part, (d)
Cross section of the imaginary part of the obtained soliton with Vp = 1
on the lattice with negative defect.
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Figure 7.15 : Numerically obtained solitons of the (2+1)D CQNLS equation with a
PT -symmetric potential with and without defects for varying potential
depths Vj in the self-focusing cubic, self-focusing quintic case
(a=B=1)foru=1and Wy = 1.

7.4.2 Nonlinear Stability

The results of the nonlinear stability analysis of the numerically obtained solitons are
summarized in Figure [7.15] where the color green represents stable solitons whereas
the color red represents unstable ones. It can be seen that adding a defect to the lattice
narrows down the existence region of the solitons and that the negative defect makes
all the solitons nonlinearly unstable in this medium while one can obtain nonlinearly

stable solitons with the positive defect, for different values of the potential depth Vj.

In Figure a nonlinearly stable soliton is depicted. It can be seen that the
soliton conserves its shape and maximum amplitude during the evolution unlike the
nonlinearly unstable soliton shown in Figure [7.17] during whose evolution neither the

maximum amplitude nor the shape is conserved.

7.4.3 Linear Stability

The linear stability of the obtained solitons are investigated by the linear spectrum
analysis and all of them are found to be linearly unstable. The linear spectra of the

solitons given in Figure[7.12] [7.13]and [7.14] are plotted in Figure [7.18] Although these

solitons are all unstable due to the positive real eigenvalues in their linear spectra, it
can be noted that the value of the unstable eigenvalue is smaller with the positive defect
and greater with the negative defect compared to the value of the unstable eigenvalue

without the defect in this medium.

77



(a)

z=0 Z=5 z=10 z=15 z=20 z=25 z=30

(b)

06 L L L L L
0 10 15 20 25 30

5
Z

Figure 7.16 : (a) Nonlinear evolution of the numerically obtained soliton of the
(24+1)D CQNLS equation with a P‘7 -symmetric potential with positive
defect for Vo = 2 and Wjy = 0.1 in the self-defocusing cubic,
self-focusing quintic case (o = 8 = 1) (view from top), (b) Maximum
amplitude as a function of the propagation distance z.
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Figure 7.17 : Nonlinear evolution of the numerically obtained soliton of the (2+1)D
CQNLS equation with a P‘7 -symmetric potential with negative defect
for Vy = 2 and Wy = 0.1 in the self-defocusing cubic, self-focusing
quintic case (o = B = 1) (view from top).
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Figure 7.18 : Linear spectrum of the solitons given in (a) Figure[7.12] (b) Figure m
and (c) Figure
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8. SOLITONS OF THE (2+1)D CUBIC-SATURABLE NLS EQUATION

8.1 Cubic-Saturable NLS with a P7 -Symmetric Potential with Defects

In this section, we present graphs and existence regimes of numerically obtained
solitons of Eq. (1.3) in various saturable media and their stability properties for

different potentials given in Section

8.1.1 Numerical Solutions

For the numerical results, we let the propagation constant y vary between 0 and 10

while changing the value of the saturation coefficient s between O and 1.

Typical field profiles of obtained solitons are shown in Figure [8.1] for different
potentials. In the presence of a positive defect, the maximum amplitude of a soliton is
smaller and in the presence of a negative defect, the maximum amplitude of a soliton

is greater in comparison to the potential without defect.

All the solitons obtained numerically by means of the Pseudo-Spectral Renormaliza-
tion Method explained in Section 4.2| are marked in Figure 8.2| by stars where the blue
lines are the gap boundries for the potential without defect (8 = 0), the green lines for
the potential with positive defect (01, § = 1) and the red lines for the potential with
negative defect (0, 8 = 1). The gap region of the solitons under the potential without
defect is bigger than the gap regions of the solitons under the potential with defects,
as expected. It can be also seen that more solitons are obtained whenever there is no

saturation (s = 0) and no soliton could be obtained if the saturation coefficient s > 0.5.

8.1.2 Nonlinear Stability

In Figure a nonlinearly unstable soliton is shown. It can be clearly seen that the
soliton conserves neither its shape nor its maximum amplitude during evolution. This
is also true for other gap solitons on the P‘7 -symmetric potential with or without

defect if there is no saturation. In saturable media on the other hand, obtained solitons
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Figure 8.1 : Real parts of the numerically obtained solitons (a, e, i) and their diagonal
cross sections superposed on the potential (b, f, j), imaginary parts of the
numerically obtained solitons (c, g, k) and their diagonal cross sections
superposed on the potential (d, h, 1) where s = 0.2, 4 = 1.9 and the
potential has no defect, positive defect and negative defect, respectively.

05 = B T T T T T

#  No defect

#  Positive defect
*  Negative defect

04

03

02~

01

0 S==va— =
0 1 2 3 4 5 6 7 8 9 10

Figure 8.2 : Band-gap regions for the numerically obtained solitons of the (2+1)D
cubic-saturable NLS equation with a P‘7 -symmetric potential without
defect (blue), with positive defect (green) and with negative defect (red).
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P‘T -symmetric potential with negative defect: (a, ¢) View from top, (b)

Maximum amplitude as a function of the propagation distance z.

are nonlinearly stable. An example of a nonlinearly stable soliton is depicted in Figure

[8.4] where the soliton’s shape is well-conserved during evolution.

8.1.3 Power Analysis

Soliton power defined in Section can also be utilized in determining a soliton’s
stability. A necessary condition for the soliton solution u(x,y,z) = f(x,y)e’** to be

stable is that its power increases with increasing propagation constant, i.e.

dP
— >0 8.1
an Y (8.1)

also known as the slope condition [35]]. Furthermore, a necessary condition for collapse
in the 2D cubic NLS equation is that the power of the soliton exceeds the critical power

P~ 11.7 [38].

The powers of the obtained solitons are plotted versus their propagation constants.
As it can be seen in Figure [8.5] the slope condition is satisfied in all the cases. It
is remarkable that the power graphs asymptotically approach the critical power for

increasing values of u when there is no saturation (see Figure [8.5(a-c)).

8.1.4 Linear Stability

Now that the slope condition is satisfied and the critical power is not exceeded, one

may expect stable solitons. However, the linear spectrum analysis reveals the opposite.
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Due to eigenvalues with non-zero real parts in their linear spectra, solitons considered

in Figure and all the other gap solitons are found to be linearly unstable. The

presence or absence of a defect in the lattice does not really affect the linear stability.

However, the presence of saturation in the medium drastically lowers max (Re{c}),

1.e. contributes towards linear stability.
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9. CONCLUSIONS AND RECOMMENDATIONS

The purpose of the study regarding (1+1)D CQNLS equation with PT -symmetric
potential was to investigate the existence and stability properties of solitons of the
(1+1)D CQNLS equation with a P7 -symmetric potential. Firstly, the solutions are
obtained numerically by means of the Spectral Renormalization Method for various
potential depths and in different self-focusing / defocusing cubic-quintic media. It is
shown that the numerical and the analytical results are in good agreement. No bistable
soliton is found in the investigated cases. The linear and nonlinear stability properties
of the numerically and analytically obtained solitons are investigated by means of
linear spectrum analysis and by direct simulations. Stability and instability regions
of the solitons are depicted and it is observed that stable solitons are predominantly

obtained either for smaller values of W, or close to the threshold curve.

In the work regarding (2+1)D CQNLS equation with ‘7 -symmetric potential,
two-dimensional optical solitons of the CQNLS equation with a PT -symmetric
potential along with their stability properties are examined. Primarily, exact soliton
solutions are calculated for the chosen P7 -symmetric potential. Then, solitons are
numerically obtained using our modified Spectral Renormalization Method for various
potential depths and in different self-focusing / defocusing cubic-quintic media. For
various potentials and media, analytical and numerical results regarding the existence
and stability of the fundamental solitons are computed and these are in accord. In any
of the four media investigated in this study, no bistable soliton is observed. Linear
spectrum analysis and direct simulations are employed to discover the stable and
unstable solitons. The results show that most solitons are unstable. However, stable
solitons could be obtained when the depth of the complex part of the PT -symmetric
potential is small. An important finding is that increasing the value of the coefficient of
the quintic term destabilizes solitons in self-focusing cubic media. Moreover, for all the
investigated cases, numerically obtained soliton powers match up with the exact values

and nonlinearly stable solitons’ powers stay constant during evolution as expected.
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To sum up the study regarding (2+1)D CQNLS equation with P‘7 -symmetric potential
possessing defects, a defect in the P7 -symmetric lattice reduces the gap width, a
negative defect causes the solitons to become nonlinearly unstable and all obtained
solitons are linearly unstable independently of the defect, in self-focusing cubic,

self-focusing quintic media.

The purpose of the study regarding (2+1)D cubic-saturable NLS equation with
PT -symmetric potential possessing defects, was to investigate the existence and
stability properties of solitons of the (2+1)D cubic-saturable NLS equation with
PT -symmetric potentials with different types of defects. Solitons are obtained
numerically by means of the Pseudo-Spectral Renormalization Method for various
values of the propagation constant and in different saturable media. It is observed that
increasing the saturation or adding defects to the potential narrows down the gap width.
The linear and nonlinear stability properties of the numerically obtained solitons are
investigated by linear spectrum and direct simulations, respectively. Although the
slope condition is satisfied, the solitons are found to be linearly unstable. On the
other hand, solitons are found to be nonlinearly stable if there is saturation in the
medium. All in all, a defect in the P7 -symmetric lattice reduces the gap width

whereas saturation has a positive effect on the soliton stability.

As a future study, existence and stability properties of dipole and vortex solitons might

be investigated.
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