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ROGUE WAVES
IN THE GENERALIZED
DAVEY-STEWARTSON SYSTEM

SUMMARY

In this study, we investigate the rogue waves in the generalized Davey-Stewartson
system, derived in acoustics,

iU = Uge + Vil + VoUey + u(B10g + BaOy)v + X|ulu,
11V + Caatny = —2(510¢ + B20y) Jul?,

where u is the complex envelope function, v is the mean field, ¢ is the time
coordinate and (£, ) denotes for spatial coordinates. This system can be
classified in two categories depending on the relationship between the coefficients:
the generalized Davey-Stewartson I (GDSI) (or the elliptic-hyperbolic generalized
Davey-Stewartson) system if 72 — 4y, < 0 and ajjase < 0, and the
generalized Davey-Stewartson II (GDSII) (or the hyperbolic-elliptic generalized
Davey-Stewartson) system if 73 — 4y; > 0 and ajjags > 0. On the other
hand, if the terms ug,, v, and (|u|?), vanish in the equation, the generalized
Davey-Stewartson system becomes the Davey-Stewartson equations whose rogue
wave solutions are obtained in previous studies. In these studies, for the rogue
wave solution, the Hirota direct method via determinants of matrices is used and,
according to the solution function and graph, the rogue wave is sub-named as a
fundamental rogue wave, a multi-rogue wave and a higher-order rogue wave.

In this thesis, we specifically focus on elliptic-hyperbolic generalized
Davey-Stewartson system and derive their rogue wave solutions by the same
method for the Davey-Stewartson equations. Specifically, the flow of the thesis is
as follows:

In Chapter 1, we start with the nonlinear Schrodinger system, which is the origin
of the Davey-Stewartson system, and describe some sub-groups of the nonlinear
Schrodinger system. Then, we move to the generalized Davey-Stewartson system
and share the equations derived in different media. After that we introduce a
rogue wave, specially discussing its definition, the reasons for its occurrence and
the classification of it.

In Chapter 2, we inform briefly Hirota direct method by giving the definition
of bilinear operator and explaining the bilinearization techniques. Then soliton
solutions of the nonlinear Schrodinger equation are established by this method.

In Chapter 3, we deal with the generalized Davey-Stewartson system and derive
the rogue wave solution for elliptic-hyperbolic case using the direct method along
with determinants. We first obtain rational solutions which form rogue waves.
Then rogue wave solutions are shared as fundamental rogue waves, multi-rogue
waves and higher-order rogue waves. The graphics of solutions are also interpreted
in terms of the properties observed.

Xix



In chapter 4, conclusion part, we discuss and summarize the findings.
Additionally, we observe that the blow up solution leading to the exploding rogue
wave which can be derived from the multi-rogue wave or higher order rogue wave
solution of the hyperbolic-elliptic system.
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GENELLESTIRILMIS
DAVEY-STEWARTSON SIiSTEMINDE
DEV DALGALAR

OZET

Bu caligmada, akustikte tiiretilen genellegtirilmis Davey-Stewartson (GDS)
sistemindeki dev dalgalar1 arastirdik;

iuC = Ug¢ + Y1 Unn + YoUen + U(ﬂlag + /8287,)’0 + X|U|2u,
1V + Qgany = —2(510g + B20,) Jul?, (1)

Burada u karmasik zarf fonksiyonu, v reel ortalama alan, { zaman koordinati
ve (&, n) uzaysal koordinatlar1 belirtmektedir. Bu sistem katsayilar arasi iligkiye
bagh olarak iki gruba ayrilabilir: Ilki 72 — 4y, < 0 ve ajjag; < 0 durumudur ki
genellegtirilmis Davey-Stewartson I (GDSI) veya eliptik-hiperbolik GDS sistemi
olarak adlandirilir. Digeri ise ’y% — 4y > 0 ve ajjasy > 0 esitsizliklerinin
saglanmasi durumundaki sistemdir. Bu denklem hiperbolik-eliptik GDS olarak
adlandirihr ve GDSII ile gésterilir. Ote yandan, (1) denkleminde wug,, v, ve (Jul?) ;
terimleri yoksayildiginda GDS sistemi, Davey-Stewartson (DS) sistemine doniisiir.

Bu tezde, ozellikle GDSI sistemindeki dev dalgalar incelendi. Dev dalgalar,
eskiden beri {izerinde durulan bir arastirma konusudur. Bu dalgalar aniden
maksimum genlikle olusup aniden kaybolan dalgalar olarak tanimlanmaktadir.
Okyanusta, plazmada, akustikte ve optikte dev dalgalara rastlanmis ve
matematiksel olarak modellenmistir. Dev dalgalar ilk olarak Peregrine tarafindan
dogrusal olmayan Schrédinger denkleminin ¢6ziimii sirasinda bulunmus ve ¢o6ziim
Peregrine solitonu olarak adlandirilmigtir. Sonraki caligmalarda dev dalgalarin
olusumuna yonelik sebepler arastirilmis ve dogrusal olmama durumunun
yanisira, degisimsel kararsizhigin da etkisinin oldugu sonucuna ulagilmigtir.
Degisimsel kararsizlik giiclii tagiyici dalga ve kenar bantlarimin etkilesimi sonucu
olugmaktadir. Dev dalgalarin olusum sebebinin yanisira matematikgiler dev
dalgalarin siniflandirilmasi ile ilgili de ¢aligmalar yiiriitmiiglerdir. Ohta ve Yang
okyanusta olusan dev dalgalar {izerinde ¢alismis ve DS denklemlerine odaklanarak
olugan, dev dalgalar1 3 simifa ayirmigtir: Temel dev dalga, ¢oklu dev dalga ve
yiiksek mertebe dev dalga. Temel dev dalga, dogru formunda olusur ve (z,y)
diizlemi boyunca ilerler. Ara zamanlarda genligi maksimuma ulasip, sonrasinda
dalga kaybolur ve duragan bir yap1 ortaya c¢ikar. Coklu dev dalga, birden fazla
temel dev dalganin birlesiminden olusur. Ara bir zamanda bu dalgalar birbiriyle
etkilegir ve dalgalarin kesigim alani maksimum genlige sahip olur. Sonrasinda
dalgalar birbirinden ayrilmaya baglar ve ayr1 ayri maksimum genlige ulagir.
Zaman ilerledikce de dalgalar kaybolur ve duragan bir yap1 ortaya ¢ikar. Yiiksek
mertebe dev dalgalar, temel dev dalgalar ve ¢oklu dev dalgalardan farkli bir yapi
gosterirler. Ciinkii dalgalar tamamen ortadan kaybolmaz ve duragan bir yapi
elde edilmez. Dalgalarin ufak bir pargasi hala belirgindir.
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Mevcut ¢aligmada da Ohta ve Yangin yontemine baglh kalinarak dev dalga
simiflandirmasi kullanilmig ve olusan dev dalgalarin zamana bagl degisimi
aciklanmaya ¢alisilmistar.

Dev dalga c¢Ozlimii igin Oncelikle Hirota direkt yontemi kullanilarak
eliptik-hiperbolik GDS sisteminin

_ VI G 25
B+ E b
doniigiimii ile bilineer formu
(=iD¢ + D + 71D} + 72 De D, )GF =0,
(a1 D§ + anDy)(FF) = =2|G” + 2F?, (2)

§4+ 1+ —5——5— (810 + B20,)logF,

4y
B3 + B

elde edilmigtir. Burada G karmagik degerli ve F' reel degerli fonksiyonlardir.
Ayrica bilineer formdaki katsayilar arasindaki bagintilar

g = 451 5am gy = /32 5171 Qa2 = —m1 (52 5171)
522 + 5%71 52 ain 5171 52 + 61’71

ile verilmektedir. Daha sonra, N X N boyutlu 7,, = det (m( )) determinant olmak
iizere, GDSI denkleminin rasyonel ¢oziimleri F' = 7y ve G = 7 i¢in bulunmustur.
p; karmasgik bir sabit olmak {izere 7,, determinantinin girdileri agagida verilen ifade
yardimi ile hesaplanmaktadir.

n - , A, A . . W
mz(‘j) = Zcik(p'i&pi )"y (P50 + (1) =) T
k=0 =0 ! pi +1;
Y B + Bim ( 1 _ Di )f
' 2 pi(Be+ Biyn) B2 Biym
N \/B§+B1271( 1 L P )n+p?+p{2<
2y pi(Be+ Biy/n)  Ba— Byt v—1

Bu rasyonel ¢oziimlerin tiiretilmesinde

VB3 + Bin (_g L] n)

7508, - Biy) Nan
. VB3 + Bin (_ e L n)
- 252 +51ﬁ) Naz
iC iC
Ty = —— T2 = 7,

2 2

dontigiimiiyle (2) formuna indirgenen yardimer bilineer form kullanilmigtir.

(Dy, D, —2)FF = —2|G|?
(D} — D,,)GF =0
(D}  + D, ,)GF =0.
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Bulunan rasyonel ¢éziimler kullanilarak temel, ¢coklu ve yiliksek mertebe dev dalga
¢oziimleri olugturularak zamana bagh degisimleri grafiklerle ifade edilmistir ve
grafiklerde gozlemlenen 6zellikler yorumlanmigtir. Sonug olarak DS sisteminde
oldugu gibi GDSI sisteminde de ayni tipte dev dalgalar gozlemlenebilmigtir.

Bu tez, 4 ayr1 bolimden olusmus olup, girig boliimiinde genellestirilmis
Davey-Stewartson sisteminin igerdigi dogrusal olmayan Schrédinger denkle-
minden bahsedilmistir.  Ardindan genellestirilmis Davey-Stewartson sistemi
igin elastik ve akustik ortamlarda tiiretilmis denklem ornekleri paylagilmigtir.
Sonrasinda dev dalgalarin olusumu ile ilgili aragtirmalara yer verilmistir ve
dev dalgalarin olusum sebepleri ve olusabilecek dev dalga cegitleri iizerinde
durulmustur.

Ikinci boliimde, dev dalga ¢oziimlerinin bulunmasinda kullanilacak olan Hirota
direkt yontemi iizerinde durulmustur. Oncelikle Hirota bilineer operatorii
tanimlanmig ve Hirota bilineer formu elde etmek i¢in uygulanabilecek 3 (log-
aritmik, bi-logaritmik ve rasyonel doniigiimler) tip doniigiimden bahsedilmigtir.
Sonrasinda 6rnek olarak bu yontemle dogrusal olmayan Schrédinger denkleminin
1-soliton ve 2-soliton ¢oziimleri verilmigtir.

Uciineti  boliimde  akustikte tiiretilmis olan eliptik-hiperbolik ~genellestir-
ilmig Davey-Stewartson sistemi verilmig ve birimsiz biiyiikliikteki degisken
doniimiisiiyle boyutsuzlagtirilmigtir. Sonra Hirota bilineer formu bulunarak belli
katsay1 kisitlari altinda GDSI sistemindeki dev dalga ¢oziimleri elde edilmigtir.
(ozlimler matris determinantlari iizerinden bulunmustur. Daha sonra her bir
dev dalga tiirti i¢in (Temel dev dalga, ¢oklu dev dalga ve yiiksek mertebe dev
dalga) zamana bagh ¢oziim grafigi ¢izilmis ve dev dalgalarin ne tiir 6zelliklere
sahip oldugundan bahsedilmistir.

Sonug béliimiinde ise elde edilen sonuglar 6zetlenmigtir. Ayrica hiperbolik-eliptik
genellestirilmis Davey-Stewartson sisteminde goriilen ve ¢oklu dev dalga
¢ozlimleri veya yiiksek mertebe dev dalga ¢oziimlerinden tiireyen 6zel durumlarda
ortaya c¢ikan patlama yapan dev dalgalara da vurgu yapilmigtir. Bir ornek
iizerinden patlama yapan dev dalga aciklanmigtir.
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1. INTRODUCTION

Waves exist all around us and the most obvious examples being sound, light
and water waves. They are generally modelled mathematically using partial
differential equations (PDE), and constitute a time evolution phenomenon. Thus,
they can occur in various scientific and engineering disciplines such as fluid
mechanics, structural mechanics, optics, quantum mechanics, electromagnetism,
solid mechanics, etc. Moreover, most people have a general notion of what a
wave is, based on their everyday experience. Thus, the term ’wave’ is not an
easy concept to define. On the other hand, the mathematical model covers the
fundamental theory of both linear and non-linear waves. One of the important
differences between these is that in non-linear systems shock waves appear. The
nonlinear Schrondinger (NLS) equation is a well-known example for non-linear

waves.

NLS is a dispersive nonlinear PDE, so there is a balance between dispersive and
nonlinear effects. Due to this, solutions of NLS are solitons. It was derived from
another nonlinear differential equation called Korteweg deVries (KdV) [1]. Since
many years, the NLS equation has been used to analyze physical phenomena in
a variety of field of physics such as optics, acoustics, fluids and electromagnetism
etc. The importance of NLS Equations has been emphasized in several fields
such as superconductivity, superfluidity and electromagnetism since 1950 [2].
Apart form its essence in physics, mathematically, weakly nonlinear dispersive
and energy-preserving systems may turn to the NLS equation. Therefore, Benney

and Newell (1967) characterize the NLS equations as universially accepted |2].

Ablowitz and Prinari explain the NLS system in two types: Continuous or
discrete. Discrete NLS (dNLS) system consists of Discrete (1+1) and scalar
discrete (2+1) dimensional sytems [2]|. For instance,

_ 1

iAny + E(A”“ — 24, + Ap1) +7|APA, = 0. (1.1)

1



is an example of ANLS equation where A, is complex wave amplitude, ~ is an

anharmonic parameter and n = 0,4+1,+2,4£3,.. or n = 1,2,3, ...,k for which

An+k — ATL [3, 4]

On the other hand, continuous NLS system includes, scalar (1+1) dimensional
and multi-dimensional systems, vector (141) dimensional and multi-dimensional
systems, and special equations, that is, Benny-Rockes and Davey-Stewartson

(DS) equations.

The scalar multi-dimensional NLS equation is given by
iA; + AL AE2]APA =0, (1.2)

where A is the complex amplitude of the wave propagation in (R™ x R) and
Ay = M2, + 7202, + -+ WO: beside ¢ is the time coordinate and

TpTp)

(21, x9, -+, xy,) is the spatial coordinate. Similarly, the equation

1A + At ge + VALY + X(|A1’2 + ‘Az\z)Al =0,

iAs s+ Agge + YAzyy + X(JAL2 4+ |A2]?) Ay =0 (1.3)

can be considered as a vector (2+1) dimensional system. System (1.3) is known
as the coupled NLS system and occurs if two short transverse waves co-exist in a

medium.

Another continuous model for NLS type equation is the DS equations. The

simplest form of the DS equations is that

1Ay + A + Ay = X]AFA + BAQ,,
Qa:a: + any = (|A|2)wa (14)

where A is complex wave amplitude and @ is real field. It can be divided into two
type: DSI and DSII equations when the respective sign of the coefficients (7, «)
in (1.4) are (+, —) and (—, +).

In this study, we consider the expanded form of the DS system (1.4). In the
recent studies, there are two expended forms corresponding to the derivation in
different media. However both authors call the expanded system the generalized

DS system.



In the first study, Generalized Davey-Stewartson (GDS) equation was derived in

acoustics [5]. The equation was given as

1 At = Vlle:c + 722Ayy + 712Aa:y + X |A’2A + A(ﬁlax + 6281/)@’

allew + O-/QQny = _2(6181: + BQay)lAFa (15)

where A is the complex envelope function and () is the mean field. The GDS
equation is classified in two types depending on the relationship between the
coefficients. (1.5); is elliptic if 43, — 4711722 < 0, meanwhile (1.5), is hyperbolic
if ajjape < 0. Thus the GDS system for 72, — 4711722 < 0 and ajjae < 0
may be called the elliptic-hyperbolic GDS (GDSI) system and is reduced to the
DSI equations when 715 = 2 = 0. At the same time, (1.5); is hyperbolic
if 72, — 4911722 > 0, and (1.5)y is elliptic if ajia, > 0. In this situation,
the GDS equations for 72, — 4711722 > 0 and ajjae > 0 may be called the
hyperbolic-elliptic GDS (GDSII) system and is reduced to the DSII equations
when 15 = 5 = 0.

In the other study, Babaoglu and Erbay derived Generalized Davey-Stewartson

Equaion in elastic medium with (2+1) dimensional waves propagation [6]:

: k?
1Ay + pAge + 1Ay = Q\AFA + %(73621@ + 71Q2,)A,

(cg = 1) Qe — 3Quyy — (€1 — &2)Q2ay = 1k (|A]")z,

(052; - Cg)QZ,m - C%QQ,yy —(cf - Cg)Qny = 71k2(|A|2)yv (1.6)
where A is the complex amplitude of the free short transverse wave mode and
@1 and (), are free long longitudinal and long transverse wave modes. The
coefficients denote for ¢, as group velocity of transverse waves; ¢; as phase speed
of longitudinal wave and ¢y as phase speed of transverse wave; k as the wave

number and w as the frequency. System (1.6) is reduced to the DS system under

the transformation Q = Q1. + Q2 — M|A[?/(c] — c}).

Exact solutions which have specific properties, such as shock wave, homoclinic
structures, rouge waves, etc, is one of the biggest resource areas in the nonlinear
wave theory. The solutions of NLS type equations can usually be found by two
methods: Inverse-Scattering Transform and Direct Method. In this study, we
deal with GDS equations (1.5) in acoustics and investigate the rogue waves by

using direct method with determinants.

3



Before focusing on rogue waves, we need to explain what a soliton is since they
are related. Soliton is defined as a solitary wave maintaining its shape after the
collision with a wave of the same type. They were first observed by John Scott
Russel in 1834 and investigated mathematically by Korteweg deVries in 1895 by

modeling shallow water waves through KdV equation.

Rogue waves are called freak waves or giant waves which "appear from nowhere
and disappear without a trace" (|7], p.1), [8]. The reason for obtaining this
kind of waves could be due to the fact that initial conditions might grow up
exponentially and reach very high amplitudes. Peregrine was the first one
obtaining fundamental rogue wave in the NLS equation 14; + A, + 2|A|?A =0
in 1983 |9, 10]. The solution is also called Peregrine soliton. The interesting issue
was for Peregrine soliton was that it had both spatial and temporal localizations

as follows [9):

2 _ 2 p(t) = &
A= v er (7)
where
p(t) = %52 + (2t)?, §=1x—2at. (1.8)

where [ and « are real constants.

According to previous research, rogue waves may appear in oceans, in plasma
[11], in acoustics [12] and also in the field of optics as found in 2007 [13]. In fact
that the criteria for considering a wave as rogue wave is to determine the ratio
of the amplitude of the wave height to significant wave height [8]. If the ratio is
greater than 2 then the wave is called as rogue wave. However, there were the

cases for which the ratio was not satisfied [8].

Many studies dealt with the reasons of obtaining rogue waves. It might depend
on linear or nonlinear mechanisms but a study showed that due to the large
amplitudes of rogue waves, the nonlinearity has an important contribution [8].
Peregrine and other researchers considered modulational instability to be the
reason for the formation of the rogue waves |9, 14, 15]. Zakharov and Ostrovsky
explained the occurrence of modulation instability as a result of interaction of

two waves; one is strong carrier harmonic wave and the other is sidebands [16].

4



In a study about how rogue waves are formed in oceans, one dimensional
NLS equation was considered and the reason of rogue waves in the ocean were
considered as Akhmediev Breathers which is the name of modulational instability
in water waves. [15]. Therefore, when the collision of two ’Akhmediev breathers’
was investigated, the highest amplitude was obtained [7]. In another study [8] in
hyrodynamics, researchers investigated the source of rogue waves and analyzed
modulation instability, naming the modulation instability as Benjamin-Feir
instability. When optical systems were analyzed in terms of forming rogue waves,
it was investigated that modulational instabilities were convective rogue waves
that occurred in optical systems and in order to define this term we need first to
define absolute instability. "An instability is absolute if the dispersion relation
has an unstable saddle point and the saddle point satisfies the pinching condition.
An instability is convective if it is not absolute." ([8], p.7) Based on the definition
given above, convective instability was considered as the instability which is not

absolute [8].

Other than the source of rogue waves, recently, Ohta & Yang investigated rogue
waves in the DSI and DSII equations and they found that rational solution of
the equations are responsible for forming rogue waves under specific conditions
[17, 18]. Also, they classified rogue waves in three forms: Fundamental Rogue
Waves, Multi-rogue Waves and Higher-Order Rogues Waves. Fundamental Rogue
waves are in the forms of lines and go in the direction of (z, y) plane and therefore,
they are also called line rogue waves. In the intermediate times the amplitude
of this wave reaches its maximum. Multirogue waves are the interaction of
multiple fundamental rogue waves. In this type of waves, in the intermediate
times fundamental rogue waves interact with each other and disappear into the
background again. On the other hand, in the intermediate times higher-order
rogue waves act as follows: different than multi rogue waves, these waves cannot
approach to the constant background uniformly as ¢ — co. Only some parts of

the waves approach to the constant background uniformly.

In the current study, the rogue wave solutions for the elliptic-hyperbolic
GDS system (GDSI) in acoustics is obtained via direct method along with

determinants. Specifically, in Chapter 2, we introduce the Hirota Direct method



that is, the definition of bilinear operator, the bilinearization techniques and
obtain a solution of Nonlinear Schrédinger Equation by direct method. In
Chapter 3, we deal with the GDSI system (1.5) and summarize the rogue
waves solution method by determinants along with direct method which was
demonstrated by Ohta and Yang [17, 18]. After that the rogue wave solutions
for the elliptic-hyperbolic GDS (GDSI) equation derived in acoustics, is shared in
terms of the classification, fundamental rogue wave, multi rogue wave and higher
order rogue wave. In Chapter 4, that is the conclusion part, we discuss and
summarize the findings. Additionally, we discuss that the blow up solution of the
hyperbolic-elliptic GDS (GDSII) system leads to exploding rogue wave which can

be derived from the multi-rogue wave or higher order rogue wave solution.



2. HIROTA DIRECT METHOD

In this chapter, Hirota Direct Method will be explained with its properties and
it wil be applied to (1+1) scalar NLS equation.

2.1 Hirota Direct Method

Hirota Direct Method was introduced by Ryogo Hirota in 1971 for finding soliton
solutions to integrable nonlinear differential equations. This method operates by
first linearizing the nonlinear differential equations and then solving the bilinear
form via various methods such as via perturbation, via Wronskian determinants of
block matrices [19, 20]. There are many methods for solving nonlinear differential
equations. However, this method became superior to other methods by being
algebraic rather than analytic and helping to get solutions in a quick way for

instance for KdV, modified KdV (mKdV), sine-Gordon and NLS equations [21].

2.1.1 Hirota D-Operator and Its Properties

In order to bilinearize a nonlinear differential equation, a differential operator D

was introduced:

DD} [fg] = (0n — 0p)*(8y — 0y)(f (2, )9 (2", 4 ) |w=ay=y-  (2.1)

We can write some of the Hirota derivatives based on the given expression as

follows:

D:c(fg) = (aa: - ax’)(f<m7y)g(l‘/vy/)”w’:a:,y’:y = fxg - fgaza
Di(fg) = (ar - ar’)Q(f(xa y)g<I,7 y,))|$’=r,y’=y = fez9 — 2f29: + [ Gua,



D;(fg) = (0x = 0w)*(f(2,1)9(2",y/))|o'=s.—y
D;Dy(fg) = (0x—0w)(0y — Oy)(f(z,9)9(2",y'))|or=2,y=y

fxy.g - fﬂcgy - fygac + fgacy' (22)

In addition, Hirota D-operator has the following properties derived from the

definition:
Dy(ff) =0,
D3(fg) = (=1)"Dg(gf),
82log(F) = w (2.3)

2F?

2.1.2 Bilinearization Methods

In order to obtain Hirota bilinear form from nonlinear differential equations, three

kinds of transformations could be maintained:

2.1.2.1 Logarithmic Transformation

The logarithmic transformation of a nonlinear differential equation can be done
in the following way: Let A be the solution of a nonlinear differential equation.

Then the transformation will be
A =2(log F')yz (2.4)

in this form. As an example, we can bilinearize the KdV equation with this

method: This equation is given as
A, +6AA, + Aypr = 0. (2.5)

For the bilinearizition A = 2(log F),, can be used. First the the solution A was
written in terms of a new variable w as follow: A = w, with w = 2(log F'), Then

the KdV equation integrated once with respect to x and

Wy + 3W2 + Wegy = C (2.6)
8



as ¢ being a constant, is obtained. Then, by the substitution of w into the

equation,
(D + D,D,)FF = cF? (2.7)

can be obtained as the Hirota Bilinear form of KdV Equation.

2.1.2.2 Bilogarithmic Transformation

Another transformation is bilogarithmic transformation which can be done by

the following substitution for the solution A of a nonlinear differential equation:

(). o8

As an example we can use this transformation for the mKdV equation which can

be represented as
A+ 6A%A, + Ager = 0. (2.9)

First A is written in terms of a new variable w as A = fw,. Then the mKdV

equation turns into the following equation:
Way — OW2Was + Wagee = 0. (2.10)
By integrating once with respect to x, we get
Wy — 2W° + Wape = C. (2.11)

Now, we can use the bilogarithmic transformation as w = log(G/F) and obtain

the following bilinear form for mKdV:
(D, + D3)GF = 3\D,GF,

D2GF = \GF. (2.12)

2.1.2.3 Rational Transformation

The rational transformation of a nonlinear differential equation can be done in
the following way: Let A be the solution of a nonlinear differential equation.

Then the transformation will be

(2.13)

© Q@



in this form. As an example, we can bilinearize the KdV equation with rational

transformation. By the substitution of G/F into the equation (2.5),

(D; + D3)GF = 3\D,GF,
D2 —2GF = \F”. (2.14)

can be obtained as the Hirota Bilinear form of the KdV equation.

2.2 Solution of a NLS Equation by Hirota Direct Method via Perturbation

The NLS equation can be taken as follows:
1Ay + Age + 2¢|APA =0, c=+l1, (2.15)

where A is a complex valued function. Via the transformation A = G//F where
G is complex valued and F' is real valued functions, the NLS equation turns out

to the following Hirota Bilinear form:

Py(D)(GF) = (iD; + D?)(GF) = 0,
Py(D)(FF) = DX(FF) = 2¢|G|*. (2.16)

Now we will consider the following expansions for G and F

G = goteq+egp+eg+--,

F = f() + €f1 + 62f2 + 63f3 + - (217)

and plug them in (2.16). This leads to a hierarchy of perturbation equations for

like powers of e:

¢ Py(D)(fogo) =0,
Py(D)(f3) = 2¢|gol*. (2.18)

Thus, for O(€"), we get go = 0 and fy € R. Then, we have

10



2P(D)(fof1) = 0. (2.19)

PQ D f12 + 2f0f2) == 20|gl|2. (220)

Py(D)(2f1f2+2fofs) = 2c(9192 + 9193)- (2.21)

Po(D)(f2+ 2f1 f5 + 2fofa) = 2¢(|gol? + g7g5 + 916%). (2.22)

Note that * denotes the complex conjugate of the related term. For the higher
order perturbation equations, we need to determine the form of ¢g; whether

represents one-soliton or a combination of solitons.

2.2.1 One-Soliton Solution of the NLS Equation

In the previous section, it is obtained that the NLS equation has the trivial
solution (Vacuum soliton) for G = 0 and F' = 1 (also fy = 1). In order to find
one-soliton solution, let us first try g; = G exp(p) where p = pyx + pot + po; and
G1, pand p; (1 =0,1,2) are complex constants. Using (2.19);, we get

(ip2 + p17)Gre! = 0, (2.23)

which implies that gy = ip?. On the other hand, thanks to (2.19),, we find
fize = 0,50 fi =0. Now let us use (2.20)5: The equations

ng,t + 92,22 = 07

foze = c|Gh|? e (2.24)
: |Gy .
imply that go = 0 and f, = ————5 exp(u + p*). Now set G; =1 and € = 1
(1 + p17)
to get the one-soliton solution for the NLS equation,
o
A= — - (2.25)
1+ — el TH
H1 + iy

11



2.2.2 Two-Soliton Solution of the NLS Equation

For the two-soliton solution, let us try g, = e* + e where p = p1x + st + 1o and

n = max + ot + 1no. When we plug g1 into (2.19), we get

i(pae” +mpe”) + pie! + e = 0.

(2.26)

Therefore, po = ipu? and 7o = in?. The next order perturbation equations (2.20);

and (2.20)4 imply

ng,t + 92,22 = 07

2.xx — o ’ ) .
fa, cle +e) (e +e)

= 2= Oa
é — ;*euﬂ/»* + %e’”"* + ;*enﬂt* + 1 *e’”‘”*.
¢ pr Ha 1y T+ m+m

By using (2.21)5 and (2.21)¢ , we have

193t + 93,22 + C’gl|291 —ig1far — 2f20010 =0,
f3,x:t = 07

which lead to f3 =0 and

2¢(pn —m)* ehtnn” 2c(m —m)* NI
pa +n7)(m +ny) (1 + p3)(m + p7)

ig3,t + 93,22 = (

Then, setting g3 = By exp(p +n+n*) + Boexp(u + pu* +n) gives

C(Nl — 771)2
(1 + p5)2(m + pp)?

2
B, = el —m) and B, =

(1 +n7)2(m +ny)?

For O(e*), simplifying equation (2.22), we obtain

94t + 94,20 = 07
f4,:c:r: + Cf2|91|2 - 6(9193 + glg;) - f22,ac = 07 :
= gy = O,

_ A —m)*(pf —np)?
fa=

* * * * e#""#* + 77 + 77*
(p 4 )2 (e + p7)?(pea + m7)2 (0 + 7))

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Therefore, the two-soliton solution for the NLS equation is A = G/ F, where

12



C(Ml _ 771)2 ek tn+n" C(Ml _ 771)2 ehtrT+n

(1 +00)?(m +n0i)? (o + pi)?(m + pi)?
c el T c ekt celntr’ celntn”

G = e'+el+

F = 1+

prt+pi o prtny o omA ;o m N
A —m)2(pg — mp)2 ettt
(1 + )2 (4 )2 (s 4 17)% (e + )%

(2.34)

Remark: In this section, soliton solutions for NLS are presented by perturbating
the bilinear form. However, to find rogue wave solutions, we will consider a
different approach which is used for the DS system in [17, 18]. In fact, rogue
wave solutions for NLS is also derived by this approach in [22]. We will use the
direct method along with the determinant of matrices which will be explained
in the next chapter. Therefore, the solution of the GDS equation will consist of

determinants of matrices.
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3. ROGUE WAVE SOLUTIONS FOR THE GDS EQUATIONS

In this section, we will consider the GDS system, which is given by

i Ay = 11 Aez + Y22 Ay + Y1240y + X |APA+ A(B10, + $20,)@Q,

O41162:(:9[: + a22ny = _2(6181‘ + 628y)|A|2a (31)

to find its rogue wave solutions by using the Hirota bilinear form.

3.1 Bilinear Forms

Before converting the GDS system (3.1) into the Hirota Bilinear form, it is
appropriate to express this system in a dimensionless form. To do this, we first
introduce the dimensionless variables:

1
V11

6 =, n=y, C = P)/llta A= u, Q = . (32)

Then, substituting the new variables into the equations (3.1) gives the

dimensionless form of the GDS system

iU = Uge + Y1y, + YVoley + U(E&g + E&,)v + x| u|u,

a110ge + QU = —2(B10¢ + P20y |ul?, (3.3)

where v1 = Yo2/Y11, Y2 = Y12/ M1, E = B1/71 E = f/y11 and X = X/’Y121- Also,
the DSI equation is obtained in the case that v = 85 = 0, v = 1 and a9 < 0,

whereas DSII is obtained in the case v = 2 = 0, 17 = —1 and a9 > 0.
Therefore, system (3.3) for 73 — 4y, < 0 and aqya99 < 0, the elliptic-hyperbolic
GDS, may be called the GDSI system. Similarly, the hyperbolic-elliptic GDS
system, where 72 — 4y; > 0 and ajya9p > 0, may be called the GDSII system.
From now on, for the ease of flow, we eliminate the bar notation in 3y, B, and ¥;

and use them as 1, f2 and x.
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Now, in order to obtain Hirota bilinear form for (3.3), the variable transformations

are defined by

G
U = alf and v = a2§ + asn + a4(51(‘9§ + Bg@n)logF, (34)

where G is complex valued and F' is real-valued functions; and a;, (i = 1,--- ,4),

are undetermined coefficients. Hence, equation (3.3) becomes

GF { {(1 — a425f) D? + (’yl — a42ﬁ§) D?7 + (72 — 045152)D5Dn1 (FF)

—X(I%|G|2} = FF [—iDC + Dg + ’71D727 + ’YQDEDn + agﬁl + CL352} (GF),

D?(FF) D?(FF) 4a2 |G|?
(5135 + 52377) (0411£T + 042277T(FF> + a—:ﬁ) =0. (3'5)

Then, equation (3.5); turns to the simpler form when we set
[—iDq + Dg + ’Yng -+ ’YQDﬁDn + agﬁl -+ agﬁﬂ (GF) = (agﬂl + agﬁg)GF,
which helps to separate (3.5); according to GF and FF:

[—iD¢ + D + 1D2 + 72 DeD,)] (GF) = 0,
asfft o asfy \ 12
- D+ (m— Dy + (v2 = asB182) De Dy | (F'F)

2 2
= Xa3|G)? + (a2 + asfs) (FF),
D2(FF) D?(FF) 4a2 |GJ?
3 n 1 —
(B10¢ + B20) (OénT + 0422T(FF) + a_4ﬁ> = 0. (3.6)
At this stage, we need to assume the following equations
a4612
=1—
Qg1 5
oy — ey — a46§
22 =N 5
4
=~
2
ay = ——, 3.7
= B, 37)

One can observe that equation (3.6)3 is directly satisfied under the assumptions

(3.7). In this way, we obtain the bilinear form for equation (3.3)
(=iD¢ + D + 1D} + 72D D)) GF = 0,

(Oéan -+ 0522D727)<FF> = Xa%‘GF + (CLQ/Bl -+ agﬂg)FQ. (38)
16



In the next section, we will adapt the theorems in which is presented the rogue
wave solutions of DSI [17] for the GDSI system. In fact, we first need to find
the rational solutions for GDSI, (3.3) for 42 — 4y, < 0 and ;a9 < 0, since the
rogue wave is also a rational wave. However, we still have the free coefficients aq,
as and az. In addition, the restrictions (3.7) do not guarantee that equation (3.3)

is in the elliptic-hyperbolic case. Therefore, we write more assumptions

481271
Vo= 55— 71 >0, Po— iy <0,
53 + Bim !

V2 2 —
ay = 2—’}/12, ag = 62, as = 1. (39)
VB3 + Bim A

Now, using the all restrictions (3.7) and (3.9) in (3.4) and (3.8) gives the

transformation
27, G 2 — [y 4y
—  VisdlE A E+n+ ——5—(B10: + [20,)logFE, (3.10
FopmE T B e T Aen B0

and the final bilinear form

(=iD¢ + D + 71D} + 72 De D, )GF =0,

2xmn
2 2 _ 2 2
(Oéan + OéQQDn)(FF) = M|G| + 2F s (311)
where

Ny = 481 5om1 ay = 52 5171

5%"‘5%717 52 +/3171
2 2
Qg9 = <62 /Blfyl) X = ——62 + 6171, (312)
52 + 5171 it

respectively. Note that the conditions v, > 0 and 8, — f1,/71 < 0 gives the case
of the GDSI equation (3.3).

On the other hand, there is another bilinear form,

(D,,D,_, —2)FF = =2|G?,
(D2, — D,,)GF =0,
(D + D, ,)GF =0, (3.13)

17



which is reduced to (3.11) by the independent variables transformation

To —

). o

1= 2(B2—P1+/71) 2
\/,8 + 52 i
v = g () sy (314

Indeed, to the rogue wave solutions for (3.3), the bilinear form (3.13) is considered

as a special case of the bilinear form

(D:c1D:I:_1 - 2)7_717_71 == _27_n+17_n—17

(Dzl - D$2)Tn+lTn = 0:

(D2, + Dy_y)Toiamn =0, (3.15)
where the determinant
i (n)
Tn = 1§%?£N (m] ) . (3.16)

It is easy to see that equation (3.15) for m = 0 becomes (3.13) when defined
0= F, 1 = G and 7_1 = G*. Before passing the discussion of the solutions, we

prove the following lemma about the bilinear form (3.15):

Lemma 3.1.1 ([17]) If the functions ml(]), goz , andw of x1, To, x_1 and T_o

satisfy the differential equations

Byl = Py,

axzm(n) _ Qﬁgn+1)1/1 n)w n—1)
0, 17n(n) _ (pz(n— )w§n+1)’
O ymiy) = =" Py — "y,
n n+k
R
amk@b;”) = _¢J<.“—’f> (k=-2,-1,1,2) (3.17)
and the difference relation
mi ™Y = i)+ oMy, (3.18)

then the bilinear equations (3.15) is satisfied by the determinant 7, in (3.16).

18



Proof: To compute derivatives of 7,, we apply the differential formula for a
determinant
N
8x det (aij) = Z Amﬁxaij«, (319)

1<ij<N =
7,7=1

where A;; represents the (i, j) cofactor of the matrix (a;;), to 7, with the
differential equations (3.17) and then these derivatives are expressed in terms
of the expansion of a bordered determinant

aij bl

c; d

J

= — Z Ai7jbi0j + ddet(aij). (320)

ij=1
The first order derivatives and the second order derivatives of 7, are given in

Table 3.1 and in Table 3.2, respectively:

Table 3.1 : First order derivatives of 7,.

P WD A |
O = | Oy T (n) = e

—¢j 0 ¢j 0 _¢j 0
T R P R
r_1'n ¢J(n+) 0 z_2'n ¢§"+1) 0 ¢J(‘n+2) 0

Table 3.2 : Second order derivatives of 7,,.

n n+1 n n
| A | i
n n—2 n n—1
g | ||l
r_1'MN n+ n—+
V; 0 Y, 0
m™
(O 0oy — D= |00 —1
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By using 92 7y, 03,7, 02_ 7, and 9,_,7, in Table 3.1 and in Table 3.2, we deduce

T_1

the following determinants:

| )
_(ai + 8:(: )Tn = Un ! ,
g \Car T s g
1 my) "
S0 =0 )T = ey 7 (3.21)
J

At this step, the difference equation (3.18) is taken into account for the bordered

determinant representations of 7,,,; and 7,_1:

|
(M -

Ter = | ¥ (3.22)
AN

Then, the procedure done to 7, is applied to 7,1 and find the first and second

order derivatives given in Table 3.3 and Table 3.4, respectively.

Table 3.3 : First order derivatives of 7,,,1.

n n+1 n n
o _ mgj)l 901(‘ y Oy Tt = 1(3)2 SOE )
1 —¢j(-n+ ) 0 -1 wj(n+ ) 0
(n) (n) (n+1)
my; 2 i (n) (n+2)
9 _ (n) my, ¥;
22 Tnt+1 = wj 0 0 + (n+1) 0
_w(n+1) 1 0 _1/)]‘
J

m(in) i ¥ () )
8x_27_n+1 = _1/].7" O O + ¢(7;L_j~_3) 6
10 ;

1 n
5(851 - a£L“2>7—n+1 = _w( ) 0 0 )

1 j
SO+ 0 )T = [0 0 0 | (3.23)
—p"t 10



Table 3.4 : Second order derivatives of 7.

n n n+1
mz(‘j(‘)) %( ) 901(‘ ) m(n) (p(n+2)
agl’]—n—i-l = _¢] ) 0 O + _¢(Z%+1) 7'0
—plmt) /
( ) (n) (n—1)
, (z 2 P m(r;) go(n)
a:r:—17—n+1 = w 0 0 w(Tfi?’) 6
¢§ 10 7

In the last step, using equations (3.21), (3.23) and (3.22), and the following

formula which is called Jacobi Formula for determinants

aij bz C;

A T PR e P P o P T
we get the following equalities:
(02,05, — V)T X Ty = 03T X Oz T — (—Tnt1)(—Tn-1),
(02, — Duy)Trg1 X T = Oy Tt X Oy T — (Tn+1)%(8§1 + O, T,
%(8;31 02y Tng1 X Tn = Op_ Tng1 X Oz, Tn — (Tn+1)%(8§1 — 0p_,)Tn, (3.25)
which are together equivalent to (3.15). O

3.2 Rational Solutions

In this section, inspired by Theorem 1 in [17], we prove the following main theorem

which presents the rational solutions of the GDSI system.

Theorem 3.2.1 The non-singular rational solutions of the GDSI equation (3.3)
with the restrictions (3.7) and (3.9) are given by

__ VT (3.26)
VB + B o '
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where T, is a determinant of the N x N matriz <m(n)

i ) whose entires are

mﬁ?) = Z cir (1 + 1 + p’iapi>ni_k
k=0

n;—l 1
« i i ’fa*_) . 3.97
Z i (mn+ () +00)" o (2D

with

= V05 + Bim < 1 b >§
’ 2 pi(Ba + Biy/n) B — Byt
V05 + Bim ( 1 L P >n+p?+pi2
2ym pi(Be+ Biyn)  Bo— Biym V-1

Proof: We need to verify that the function u in (3.26) is a solution of GDSI. To

+

¢. (3.28)

do this, we recall that the auxiliary bilinear form (3.15) is reduced to the bilinear
form of the GDSI equation (3.3) in (3.11) under the transformations (3.14) with

=G, 71 = G* and 79 = F. Thus, we have two complex conjugate conditions

Th=7T_, and xj=2x_s. (3.29)

Moreover, it is established that the determinant 7, in (3.16) satisfies the auxiliary

(n)

form (3.15) when its elements m;;” hold the differential and difference relations

(3.17) and (3.18) (see Lemma 3.1.1). Under these circumstances, it is sufficient
(n)

ij » SO we assume that

to choose the suitable m;

o =prettand Yl = (—g;) e, (3.30)
where
1 1 9 —1 1 2
Wi = —2];724——];71 +pixy —|—plSC2 and )‘j = —2£C72—|—_37—1 +ij1_qj'$2 (331)

with p; and ¢; being complex numbers. By substituting (3.30) into equation

(3.17), we get my}) = / ) P dry = (—pigt)" €N (pi + qp). Tt s easy

to verify that m ) also satisfy the other relations, but this choice does not lead

to rational solution. Therefore, we must improve the assumptions and take into
(n) ) (n) (n)

account the derivatives of the functions ¢; ’, ;" and m;;”. The new assumptions

are given by

Sﬁgn) = Apier, Y = Bi(—g;) eV,

1 i
" = A;B, (=Liymenitr; (3.32)
Tpita
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where A; and B; denote differential operators of order n; and n; with respect to
p; and g; as

ng

Ai = car(pidy)™ ™ and B; = dij(q;0,,)" " (3.33)
k=0 =0

for which ¢, d;; are complex numbers and n; and n; are positive integers.

At this stage, we find the solution expression in Theorem 3.2.1 leading the rational
solutions since it is also easy to show the functions <p§”), %('n) and mgl) are solutions

of (3.17) and (3.18). Now, we first expand the term (p;0,,) piret:

i

(piapi) pie = p (apip?) e + pipy (apieui) + p?-&-lem Op;

. 2 1 ' ,
= npjet +pit <—E$—2 — T + 1 + 2pwc2) et 4 pitletia,
i i

. 2 1
= pret (n + (——2x_2 - ;x_l + proy + prxg> +pi({9pi> ,(3.34)

7 (2

which implies the operator relation
(Piyp,) pi'et = pie (n + 1 + pidh,) (3.35)
if we set p; = —2x_/p} — x_1/pi + pit1 + 2piTs.

Next, we do same procedure for (qjaqj) (—q;) " e

(qjaqj) (_qJ)—n e)\j — q] (8qj (_qj)—n) e)\j o q;n+1 (aqje)\j) . q‘;n+1e>\jaqj

2 1
. —n_ A\ —n+1 A —n+1 _A\;
=ng; "e™ —g; (—39(:2 — ST+ 11— 2¢;x0 | €Y —q; " T eV,

J J
N P 1
= (—q)) et (—n + <—2x_2 — ;x_l + qjry — 2qJ2-x2) + q]@q]) (3.36)
B j

If we define N = 2x_5/q7 — x_1/q; + q;z1 — 2¢; x5 then the expression (3.36)
becomes

(4;05,) (—q;) " e = (—q;) " &Y (=n+ X + ¢;0,,) . (3.37)

Therefore, applying the operator relations (3.35) and (3.37) to (3.32), the matrix
(n)

entries m;;” can be represented as follows:
mg = () e
9 k=0
o n;—l 1
x Y djy (—n+ N + ¢;0,,)" : (3.38)
P pi +qj

23



Due to the complex conjugate condition 77 = 7_,, we take the restrictions
dji = cjj, and g; = pj. Then, we substitute these restrictions and the variables

transformation (3.14) into the expressions ) and \.:

' 2 pi(B2 + ﬁlﬁ)
+ \/55"’5%%( 1 )77
2ym pi(B2 + 51\/ﬂ) ’
’ 2 pi(Be + Blﬁ)
2 2 1
NIY B5 + Bim ( . ) ", (3.39)
2v/m i (B2 + 61@)
which implies that A} = p7*. As a result, we obtain
m’E;‘) — <_p_i) e,ufz“hu; Zcik (n + M; _}_pzapz)nz*k
Pj k=0
5 nj—t 1
X n+ 5 ) ; 3.40
Z G ( MJ) D;Op: Di —i—p}f ( )
(n)x _  (-n) . _ :
som;;” =m; ~ and 7, = 7_,. Finally, we use the gauge freedom of 7, to get

equation (3.27).

Moreover, the nonsingularity of rational solutions are satisfied depending on the
fact that the real part of p; is positive. As mentioned previously F is defined as

F =deti<; i< N( ) Specifically the entries of the N x N matrix are

v

m(o) / AZ'BJEMJFN; dIl

where B; is obtained as the complex conjugate of A; with the expression
n;
Bj _ c ( *a )nj—l

1=0
When the real part of p; is positive, then in the integral, the part e***i vanishes

at r1 = —o0.

Now, assume that v = (v, v2,v3,....,uy) i a nonzero vector and (v)" is the

conjugate transpose of v. Then,

@)N o= [
v (mw i (v) /

—00

N 2

E UZ'AiGM

=1

d$1>0

24



N
is obtained. this shows that the matrix (m(o)) is positive definite which

9 ) ig=1
means that the determinant of the matrix is positive, f > 0. Hence, the solution
is nonsingular. The similar procedure can be followed for the case that the real
parts of p;’s are negative. Also, in this case, the nonsingularity of the rational

solutions is obtained. O

In the next sections, we present rogue waves as fundamental rogue wave,
multi-rogue wave and higher order rogue wave in the GDSI system (3.3) under

the constraints v, > 0 and (B — B1/71 < 0.

3.3 Fundamental Rogue Waves

The 1- dimensionol rational solution of first order (N = 1 and ny = 1) with
p1 € R forms a fundamental rouge wave. To obtain a fundamental rogue wave,

we first impose N = 1, n; = 1 to the rational solution given in Theorem 3.2.1:

G = lemgll)

1

1
_ X - 1
= e (14 1 +218y,)' " % ZCTZ (=1 + () +piap1‘)l l

— P p1+Dpi
1
= *<(//1+1+011— H *)
p1+ P p1+ D1
. . 2 p1|? )
X /,[,/ _— 1 + C - *) + * )
(( J Yopi+nr)  (m+)?
F = T0 — mﬁ)
1 1 L1
1-k * * x\ 1—
= chk (pla]h + :ull) X chl (plapT + ([/1) ) *
p1+Dpi

k=0

1
1 / D1 >
= * M +con — *
p1+pi <( ! p1+ pj

* 2
X((u’l)*wﬁ— = )+ il ) (3.41)

p1+pj (p1 + p})?

where p; and c¢q; are free complex constants and

= VB + Bim ( 1 . m >£
' 2 pi(Ba+ Biym)  Ba— By

VB3 + Bin ( 1 P ) Pt
2ym p1(B2 + Bry/71) " B2 — B/t nr V-1 ¢ (342)
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Then putting ) in (3.42) into this solutions, we have

¢ = — (Iul”u"—u—Hﬁ)
P+ 5 (pr+p7)%)’
1 \p1\2 )
F = — (|up+ 2L ), 3.43
p1+ 0 <|| (p1 +p})? (3.43)
where
b= ey — D1 +\/522+5%’71( 1 B P1 >£
p1+pi 2 p1(Ba+ Biyn) B = Biyn

+

\/M( L L_n» )n+p%+p12<. (3.44)
2ym p1(Ba + Biy/n)  Ba— By V-1

Now, we observe that the coefficients of £ and n in (3.44) are real and the
coefficient of ¢ in (3.44) is pure imaginary, if p; € R. In this case, the solution
uw=G/F =1+ (u* —p—1)/(Ju|*> + 1/4) is in the form of line, so it is called
a line wave. However, it does not move in the direction of (£, n)-plane and
is approaching to uniformly constant background as ( — Z4oco. Moreover, its
highest amplitude occur in the intermediate times. Thus, the wave solution (3.43)
appears from nowhere and disappears with no trace. In other words, this wave
is a line rogue wave. By reducing GDSI system to DSI system considering the
condition that v = 3 = 0 and 7; = 1 and then reducing the DSI system to nLLS

equation, the fundamental rogue wave turns to the Peregrine soliton.

At this step, we simulate the line rogue wave solutions of the GDSI system for

two different values of (vq, 81, 52):

(a) The case (y1, 51, 52) = (1, 1, 0.5):
For this values, The GDSI equation (3.3) becomes
8 1 5
iU = Uge + Uy + = Uen +u (85 + 5877) v — Z|u|2u,
10 1
Veg — Upp = ? (65 + 5677) |U|2 (345)
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Assuming ¢y; = 0.5 and p; = 1, the solutions u and v are obtained as

_2\/5 . 144i¢ — 36
v 5(+9+80(5—77/2)2+144§2)’

1 B 9 — 80(¢ — 1/2)% + 144¢2
(ag + 287,) v=2+ 288(9 T80 —n/D7 L T

(3.46)

As seen in Figure 3.1, the solution describes a line rogue wave. Thus, fundamental
rogue wave can be considered as line rogue wave. In the intermediate times |u]
reaches the maximum amplitude which is close to 4. However, as ( — =00,
the solution |u| approaches to constant background which is 1 in the (£, n) plane.

Therefore, the line rogue wave appears and disappears suddenly.
(b) The case (v1, 1, B2) = (0.25, 3, 0.5)

This time, we consider the following system:

. 1 3 1
iU = Uge + 7 + = Uen +u (3(95 + 5&7) v — 10ulu,

1 2 1
vee = 4 Um = & (386 + 5877) [ul? (3.47)

Similarly, assuming c;; = 0.5 and p; = 1, the solutions u and v are found as

V5 128i¢ — 32
5 ( tsT 5(3¢ — 2n)2 + 128@) ’

u =

1 8 — 5(3¢ — 2n)? + 128¢?
(305 + —an) b= 242560 DBE T 2T g
2 (8 4+ 5(3¢ — 2n)? + 128¢?)
In Figure 3.2, at time ¢ = 0 the wave reaches its maximum amplitude and

|u| approaches to 1.35. In this case, the fundamental rogue wave has smaller
amplitude than one in the first case. As ( — =oo, it shows a constant
background. For ( = —4 and ( = 4 illustrate the constant background. Just
obtaining maximum amplitude at { = 0 shows that rogue waves suddenly appears

and disappears again.
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Figure 3.1 : The fundamental rogue wave solution for the case
(717 517 BQ) = (17 17 05) with b1 = 1.

3.4 Multi-Rogue Waves

Multi-rogue waves are the interaction of multiple fundamental rogue waves.
Multi-rogue waves behave as follows: in the intermediate times they interact with
each other and at the intersection region the amplitude reaches the maximum
value. After the intersection region fades, they separately reach their highest
amplitude. Finally, they disappear into the constant backround again. Since we
dealt with combination of multiple line rogue waves, in order to obtain multi-rogue
wave, the condition should be that N > 1, ny = ny = .... = ny = 1 and

(p1,p2, ..., pN) are real-valued.

Let us first take N = 2 and assume that ¢;y = 1. Now, the solution for F' and G

are the following determinants:

myy miy miy my
G=| " F=1"0 0l (3.49)
Moy Mg Moy Moo
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Figure 3.2 : The fundamental rogue wave solution for the case
(1, B1, B2) = (0.25, 3, 0.5) with p, = 1.

where

: - ! . -1 1
mg)) = E cik (1 + pidp,) " % E:C;l ((M;) +p}‘75p*> .
k=0 ! Pi + D
M/- +c,— - )+

rV* * Dj pip;
Kj) + ¢~ ) + —

1 i
= (M; +cin — P
pi +Dpj pi +pj

. 1 -1
1 1-k * * *
ml(»j):Zcik(l—i—ug—l-piapi) XZCﬂ <_1+(’u;) +pj6p;> ; +
P =0 p’L p]
- <u2+1+cu— - >
pi +p; i T Pj
. o PiPj
% /A _ 1 + C*f — J _'_ : )
((“J) it +pj.) (pi +p})?
1 i
i T Dj N
. ) p;j PiD;
(Y 14 N 3.50
((N]) T p +pj) (pi +PJ')2) o

with p; and ps are arbitrary real parameters, and ¢; and co; are arbitrary complex
parameters, beside 1 is given in (3.28).

29



(a) The case (y1, f1, f2) = (1, 1, 0.5)

By taking p; = 1, ps = 1.5, ¢;1 = 0 and ¢9; = 0 the two-rogue wave solution is
given in Figure 3.3. As seen in the figure the two fundamental rogue waves arise
from the constant background. Then the interaction region reaches the highest
amplitude which is close to 4 at ( = —1. After the higher amplitude fade, the
two fundamental rogue waves in the far field appear to be with their highest
amplitude at ( = 0. The wave fronts at this stage is well separated. These curvy
wave fronts are caused by the interaction of the two fundamental rogue waves.
When ( becomes larger, the waves go back to the constant background as seen at
¢ = —10 and ¢ = 10. In all cases, the amplitude did not pass through 4. Thus,

this means that the interaction does not guarantee very high peaks.

Figure 3.3 : The two-rogue wave solution for the case (v, f1, f2) = (1, 1, 0.5)
with p; = 1 and p, = 1.5.
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(b) The case (v1, 81, B2) = (0.25, 3, 0.5)

By taking p; = 1, po = 1.5, ¢11 = 0 and ¢o; = 0 the two-rogue wave solution is
given in Figure 3.4. As seen in the figure the two fundamental rogue waves arise
from the constant backround. Then the interaction region reaches the highest
amplitude which is close to 1.5 at ( = —1.1. After the higher amplitude fade,
the two fundamental rogue waves in the far field appear to be with their highest
amplitude at ( = 0. The wave fronts at this stage is well separated. These curvy
wave fronts are caused by the interaction of the two fundamental rogue waves.
When ( becomes larger, the waves go back to the constant background as seen
at ( = =5 and ¢ = 5. In all cases, the amplitude did not pass through 1.5. Thus,

this means that the interaction does not guarantee very high peaks.

Figure 3.4 : The two-rogue wave solution for the case
(7, B1, B2) = (0.25, 3, 0.5) with p; = 1 and p, = 1.5.
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Figure 3.5 : The three-rogue wave solution for the case
(’71, ﬁl, ﬂg) = (]_, 1, 05) with P1 = 1, P2 = 1.5 and P3 = 2.

Let us now take N = 3. Then, F' and G are
(1) (1) (1) (0) (0) (0)

m%11) mg) m%ig) m%&) m%g) m%g)
G=|my’ my My |, F=\my my my |, (3.51)

m (1) © 0 (0

My, Mgy Mag My, Mgy Mag

where mgf.) and mg;), 1 <14,j < 3 are obtained in (3.50).

(a) The case (y1, b1, f2) = (1, 1, 0.5)

Setting p1 = 1, po = 1.5, p3 = 2 and ¢;; = 0 for ¢ = 1,2, 3, the three-rogue waves
are obtained in Figure 3.5. Similar to the case of two-rogue wave, the three rogue
waves interact with each other. However, different than the previous case the
wave fronts are more complicated due to the number of interacting waves. The
graphics show that at ( = 0 the three waves separately have higher amplitudes
which is close to 4. However, the intersection of three waves reaches the higher
amplitude at ( = —1 and { = 1 which is approximately the same as in the case of
separate amplitude. After a while the rogue wave disappears without any trace.
Since in all cases the amplitude did not pass through 4, this implies that the

interaction does not create very high peaks.
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Figure 3.6 : The three-rogue wave solution for the case
(71, B1, B2) = (0.25, 3, 0.5) with p; = 1, p» = 1.5 and p3 = 2.

(b) the case (71, p1, B2) = (0.25, 3, 0.5)

For the values p; = 1, po = 1.5, p3 = 2 and ¢;; = 0 for i = 1, 2, 3, the three-rogue
waves are obtained in Figure 3.6. The graphics show that at ( = 0 the three waves
separately have higher amplitudes which is close to 1.5. However, the intersection
of three waves reaches the highest amplitude at ( = —1 and ¢ = 1 which is close
to 1.5. After a while the rogue wave disappears without any trace. Since in all
cases the amplitude did not pass through 1.5, this implies that the interaction

does not create very high peaks.

3.5 Higher Order Rogue Waves

Higher-order rogue waves are different than multi-rogue waves. Therefore,
they act differently. These waves cannot approach to the constant background
uniformly as ¢ — oco. Only some parts of the waves approach to the constant
background uniformly. In order to find higher order rogue waves the necessary

condition is that N = 1 and n; > 1 with p; being real-valued. Now let us take
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ni1 = 2. Then, F and G are
0
G = mgl)

B . 11
B ;Clk 1+M1+p16m XZC” 1+ #J +p10p;) P+ o}
F = m(ﬁ)

_ 1-1
= kzocw (P10p, + i)' ¥ x chl 10p; + (11)") n+pt

(3.52)

By taking c¢io = 1, ¢;1 = 0, ¢12 = 0 and ¢9; = 0, the solution F' and G in (3.52)

are reduced to the following form:

1
G = (L+ g +m0,)" (1 + (1) +pidy)* ——
( Ml b1 pl)( (lul) pl Pl) p1+p>{
1
F o= (i, +p10,) (1) +pidy) ——, 3.53

where ] is given in (3.42).
(a) The case (y1, 51, B2) = (1, 1, 0.5)

By taking p; = 1, we have the solution u = 2¢/2G/(v/5F) with
5 ? 1
F:8(t2+§<x——> + o x/_( az)) A

(7 (000 -9%5) (- 2>—§—3(x—%)2(3—4ﬁ<x—2y>>)7

G:F+it(16t2+%0(x——> +4V5(y — ))

20 no 1
—12t2——< ——)—— 54
9 T 5 5 (3.54)

Then the higher order rogue wave is formed as in Figure 3.7. Unlike fundamental
rogue wave and multi rogue wave, in this case the rogue wave does not disappear
without any trace. For instance, at ( = —5 and ¢ = 10 some part of the wave
still exists. When the graphs are examined, it can be said that in the case that
¢ > 1, the solution is localized lump sitting on the constant background. As (
increases, the lump accelarates. When ¢ = 1 the lump disappears and turns to a

parabola shaped rogue wave that rises from the background.
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Figure 3.7 : The higher order rogue wave solution for the case
(11, Bi, Bo) = (1, 1, 0.5) with p; = 1.

(b) The case (y1, B, B2) = (0.25, 3, 0.5):

By taking p; = 1, we have the solution u = G/(v/5F) with

2
45 20\> 1 1
_ 2 _ - _ 2, -
F_8<t +—128 (a: 3) +8\/10(2y x)) + 4t +7

3z —2 10y\> 2
+ mm Y (15@ <x—7y) -2 (15x+16o\/ﬁy2—330y+12\/ﬁ)>,

2
G=F+%z’t (16(8t2—\/ﬁ(x—2y))+45 <:c—%y> ) Cqgp ol

2
) )
B -2 + \/;(:c —2y).

Then the higher order rogue wave is formed as in Figure 3.8. Unlike fundamental

rogue wave and multi rogue wave, in this case the rogue wave does not disappear

without any trace. For instance, at ( = 2.5 and { = 5 some part of the wave still

exists. When the graphs are examined, it can be said that in the case that ( > 1

the solution is localized lump sitting on the constant backround. As ( increases,
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Figure 3.8 : The higher order rogue wave solution for the case
(71, B1, B2) = (0.25, 3, 0.5) with p; = 1.

the lump accelarates. When ¢ = 1 the lump disappears and turns to a parabola

shaped rogue wave that rises from the backround.
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4. CONCLUSION

The aim of this study is to investigate rogue waves in elliptic-hyperbolic GDS
system which is derived in acoustics. Therefore, we focus on NLS type equations
since it is the origin of DS system. After giving the classification of NLS, we
elaborate on the generalized DS systems in different media such as elastic medium
and acoustics. Then, we focus on rogue waves and explain what is rogue wave,
origin of the rogue waves and classification of rogue waves. In order to find
the rogue wave solutions for elliptic-hyperbolic generalized Davey-Stewartson
equation, we mention the method we use which was also suggested in previous
studies [17, 18, 22]. The method is finding solutions by determinants of matrices
using Hirota Direct method. Therefore, we mention the properties of the direct
method and share the proof of lemma and theorem which are related to the rogue
wave solution by determinants of matrices. Then, we solve the elliptic-hyperbolic
generalized DS system and determine the rogue wave solutions. The results
show that the properties of the waves obtained in the solution are compatible
with Ohta and Yang’s classification of rogue waves as fundamental rogue wave,
multi-rogue wave and higher order rogue wave. We search for high amplitude
and low amplitude. Starting with the case of fundamental rogue wave, as time
approaches to —oo we observed a constant background and in the intermediate
times we investigated fundamental rogue wave with a line profile by appearing
suddenly and disappearing into the constant background again as time approaches
to 0o. In the case of multi-rogue wave, we searched for N = 2 and N = 3,
which gives two-rogue/three-rogue wave solution. Again starting with constant
background as time approaches to —oo, in the intermediate times, the two/three
line rogue waves interact with each other and at the intersection region, the
highest amplitude is reached. After the intersection region fade, the two/three
line rogue waves separately reach their highest amplitudes. As time approaches to

00, they disappear into the constant background again. In the case of higher-order
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rogue wave, we investigated a different sitaution compared to the fundamental
rogue wave and multi-rogue wave but is compatible with the findings of Ohta and
Yang. These waves cannot approach to the constant background uniformly as
time goes to —oo and oco. Only some parts of the waves approach to the constant
background uniformly. There are still some parts remaining in the graph of the

wave.

Now, we want to mention as a further study to focus on hyperbolic-elliptic
generalized DS equation. Ohta and Yang [18] investigated the rogue waves in DSII
equation and emphasized a different type of rogue wave stem from multi rogue
wave or higher order rogue wave in DS II equation and named it as exploding
rogue wave. Different than the rogue wave solution for DSI equation as using
N x N determinanats, in DSII equation, considering the appropriate variable

transformation x_o, x_1, z1, ro from

(Dg,Dy_, —2)FF = —2|G|?,
(D2, — D,,)GF =0,
(D}  +D, ,)GF =0 (4.1)

into the GDSII equation, the size of the matrices are considered as 2N x 2N
due to complex conjugate condition z_; = —z] and x_y = x5 We investigate the
exploding rogue wave for the following hyperbolic-elliptic generalized DS system

through multi-rogue wave solution:

8
g = Uge — Uy + Uy + u(—20¢ — dy)v — 3|ul*u
5% 5)
— 3V~ gUm = —2(=20; - Oy )|ul? (4.2)

The solution is of the form u = \/gg and v = —%5 +n+ %(—285 —0,)log F. For

finding 70 = F and 7, = G we can use the 7,, expression given below [18]:

nm (e - ) (- - - )

- |p1—

lp1 — p2|?
2 2 1 1 1
+ (it ) —n)+ 53
;; [Ps-i = P3| & 2 |pr + paf?
4
i b1 — P2 (4.3)
16 |p1 +p2|
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Figure 4.1 : Exploding rogue wave in GDSII.

where for the solution of (4.2), p1 = 1, py = i, 3 = ‘/?gf — %gn + 2i¢ and
po = =236 — By — 2.

When the change in the amplitude with respect to the time is investigated, Figure
4.1 is obtained. Unlike the two-rogue wave solution in elliptic-hyperbolic GDS
system, in this case we obtain that the wave initially has a constant background
but as ( — —0.43 the amplitude of the wave approaches to 100 as we can say the

wave explodes.
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