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ESTIMATION OF STRESS - STRENGTH RELIABILITY
FOR A NON - IDENTICAL - COMPONENT - STRENGTHS SYSTEM
BASED ON UPPER RECORD VALUES

SUMMARY

Since its inception in 1956, the stress-strength model has produced hundreds of
papers and even now researchers are flocking to take advantage of this simple yet
rewarding model. Each paper produced has always tried to fill gaps in the literature
or modify the model to suit desired applications, and the present work is no different.
Motivated by the lack of literature on multicomponent stress-strength models based
on record values, this thesis is an attempt to produce more realistic stress-strength
models by deviating from the much studied traditional way of assuming identical
strengths for system components. The thesis considers the estimation of stress-strength
reliability in a multi-component system with non-identical component strengths based
on upper record values from the family of Kumaraswamy generalized distributions.
In frequentist estimation, the maximum likelihood estimator (MLE) of the reliability,
its asymptotic distribution and asymptotic confidence intervals are constructed. Bayes
estimates under symmetric (squared error) and asymmetric (LINEX) loss functions
using conjugate prior distributions are derived and corresponding highest probability
density (HPD) credible intervals are also constructed. In Bayesian estimation, Lindley
approximation and the Markov Chain Monte Carlo (MCMC) method are employed
due to lack of explicit forms. For the first time using records, the uniformly minimum
variance unbiased estimator (UMVUE) for the multicomponent system reliability
parameter is derived for a common and known shape parameter of the stress and
strength variates distributions. Comparisons of the performance of the estimators
are carried out using Monte Carlo simulations, the mean squared error (MSE), bias,
credible sets and coverage probabilities. The similarity in the definitions of both upper
and lower record values implies that the present work may be regarded as covering the
case of lower record values. Finally, the prevalent natural occurrence of record type
data in practice, especially in life tests and industrial tests, leads to a demonstration
being presented on how the proposed model may be utilized in materials science and
engineering with the analysis of high-strength steel fatigue life data. The example also
serves to show that the model may be applied in comparisons problems. The thesis
is concluded with possible future considerations for improving the stress-strength
model.
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REKOR DEGERLERINE DAYALI
BENZER - OLMAYAN - BILESENLERLI SISTEM ICIN
STRES - DAYANIKLILIK GUVENILIRLIGININ TAHMINi

OZET

Stres-dayaniklilik modelinde, giivenilirlik, X giiciine sahip bir nesnenin, iizerine Y
tarafindan uygulanan belli miktarda bir baskiya dayanmasidir. Matematiksel olarak
stres-dayaniklilik giivenilirligi boyle tanimlanir:

R=P(X>Y) (1)

1956 yilinda Bernbaun tarafindan ortaya atildigindan bu yana, stres-dayaniklilik
modeli hakkinda yiizlerce sayfa yazi yazilsa da arastirmacilar halen basit ama degerli
olan bu modelden faydalanmak icin ugrasmaktadirlar. Uretilen her bir ¢alisma daima
ya literatiirdeki bosluklar1 doldurmaya ya da istenilen uygulamalara cevap verebilmek
icin modeli degistirmeye yonelik olmustur ve burada yapilan ¢alismalarin da bundan
bir farki yoktur. Temel model R = P(X > Y), iki veya daha fazla bilesenden
olusan bir sistem durumunda genisletilebilir. Bu sistemin, k-dan-s: G ¢ikigh sistemi
olarak bilinen, ortak bir strese sahip, bagimsiz ve ayni sekilde dagitilan (i.i.d.) gii¢
bilesenlerinden olustugu varsayilmaktadir. Sistem, k, (1 <s < k) ’dan ¢iktiginda iglev
goriiyor ve bilesenler strese dayanabiliyor. Matematiksel olarak model agsadaki gibi
tanimlanir:

Rsx = P(enazs (X,...,Xx) Y'den daha buyuk)

k o0
-x (") / 1 - FVIF ] dG()
Jj=s 0

(X1, .., Xg) 1.i.d’dir, cdf F(.) ve Y ortak stresdir ve rastgele giicliikler cdf G(.)dir.
Cok bilesenli stres-dayanmiklilik giivenilirligi ile ilgili mevcut literatiiriin coklugununda
1.1.d rastgele degiskenler olarak varsayildigi dikkat ¢cekmektedir. Bununla birlikte,
bir sistemin bilesenlerinin yapilar farkli oldugunda, dayaniklilik degiskeni tizerindeki
benzerlik varsayimi gecerli degildir. Ornegin mekanikte istenen mekanik dzelliklerin
elde edilmesi i¢in 1s1yla islemden gecirme, sondiirme veya sogutma madde {izerinde
cesitli catlamalara neden olabilir. Kaynak veya sert lehimleme gibi birlestirme
islemleri, kaynak alanindaki dokiim hatalarina, ve bitisik 1s1 etkilenen bolgelerdeki
catlaklara neden olabilir ve sonucta bilesenler farklilasir. En azindan, sistem
bilesenlerini benzer olmayan rastgele giicliiliige sahip sayan bir model dogal olarak
daha gercgekgi bir fikir gibi goriinmektedir. Tamamen farkli olasilik dagilimlarini takip
eden gii¢ degiskenlerine sahip bir model bu acidan daha cazip. Oyleyse, k; bilesenlerin
1. tip ve kalan kp = k — k; bilesenleri 2. tip olan k bilesenlerini iceren bir sistem
oldugunu varsayalim. i. tip tiiriiniin bilesenleri i¢in rasgele bilesen giiclerinin dagilim
fonksiyonu olarak F;, i = 1,2 olsun. Tiim bilesenlerin bir dagitim fonksiyonu H ile
ortak bir gerilime Y maruz birakildigin1 varsayalim. Sistem, k bilesenleri islevinin

2)
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disinda s oldugu siirece ¢alisir. So6zii edilen model i¢in (2), buna gore modifiye
edilebilir.

Rin=Y ¥ (fl (")) / (0 Rl an o

J1=s1ja=s2 \i=1

Bu fikir, birden fazla kategori bilegen tiiriine kadar genisletilebilir. k; = 0 ise (3) (2) da
bilinen s -out-of-k sistem giivenilirlik modeline indirgenir

ko >
Ropy =Y. (kz)/ [1 = B (x)]2[F(x))22dH (x).

jamsy \J2

ki =0ise ve kp = s = lise, (3) (1) R=P(X > Y) temel modele indirgenir

R:/ [1 = F>(x)][F2(x)]dH (x)
0

Bugiine kadar stres-dayaniklilik giivenilirli§i tahmininde yapilan ¢alismalarin ¢ogu-
nun, tam veya sansiirlii 0rneklerin kullanilmasini gerektirdigini ve rekor degerleri
ile ¢cok sey yapilmadigim1 ve daha fazlasim belirtmek gerekir, 6zellikle de rekorlarla
cok bilesenli sistem giivenilirliginin tahmini. Endiistriyel stres testleri gibi bazi
caligmalarda, tiim gozlemler dikkate alinmaz, ancak Ol¢iimler sirali yapilabilir ve
yalmizca onceki degerlerden daha biiyiik veya daha diisiik degerler kaydedilir. Bu
tiir veriler rekor degerleri olarak bilinir. Yapilan Ol¢iimlerin sayis1 bu nedenle tam
numune boyutundan kiiciiktiir. Bu, tiim numunenin yok edilebilecegi yikici testlerde
cok onemli olabilir. Rekor degeri verileri dogal olarak cesitli baglamlarda ve pratik
durumlarda ortaya c¢ikar. Meteorolojik analiz, spor ve atletizm olaylari, petrol ve
madencilik anketleri gibi 6rnekler verilebilir. Ayrica, bazi hidrolojik ve maddi test
verileri dogal olarak rekor tipinde oldugu fark edilmistir. Bu c¢alismada, rekor
degerlerine dayali cok bilesenli stres-dayaniklilik modelleri sistem bilesenlerini benzer
(identical) kabul etmeyerek, daha gercekgi stres-dayaniklilik modellerinin iiretilmesi
amaglanmistir. Bu modelleme, genellestirilmis Kumaraswamy dagilim ailesi icin
gerceklestirilmis ve ¢ok bilesenli sistemdeki stres-dayaniklilik giivenilirliginin tahmini
cesitli istatistiksel yaklasimlarla degerlendirilmistir. ~ Klasik istatistiksel tahmin
yontemleriyle stres-dayaniklilik giivenilirligin en ¢ok olabilirlik tahmin edicisi
(MLE), asimptotik dagilim ve asimptotik giiven araliklari olusturulmustur. Diger
yandan, Bayesci tahmin yontemleriyle, simetrik (karesel hata) ve asimetrik (LINEX)
kayip fonksiyonlar1 altinda, eslenik Onsel dagilimlar kullanilarak stres-dayaniklilik
giivenilirligini tahmin edicisi ve Bayes en yiiksek olasilik yogunlugu (HDP)
giiven araliklart elde edilmistir. Bayes tahmin yonteminde, Lindley yaklagimi ve
Markov zinciri Monte Carlo (MCMC) yontemi, acik formiillerin eksikligi nedeniyle
kullanilmigtir.  Bu calismada yeni olan, bilesenlerin ayni dagilimdan ancak benzer
olmayan parametre varsayimi altinda rekor degerlerine dayali, cok bilesenli sistem
giivenilirligi parametresi i¢in diizgiin en kiiclik varyansh yansiz tahmin edicisi
(UMVUE) elde edilmis olmasidir. Tahmin edicilerin karsilastirmalar1 Monte Carlo
simiilasyonlar1, karesel ortalama hata, bias, credible sets ve kapsama olasiliklari
kullanilarak gergeklestirilmistir. Ust ve alt rekor degerlerinin tanimlarindaki benzerlik,
mevcut calismanin alt rekor degerler icinde elde edilebilir. Son olarak, pratikteki
rekor tlirli verilerinin yaygin dogal olusumu, oOzellikle de yasam sinamalarinda
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ve endiistriyel sinamalarda, yiliksek mukavemetli celik yorma yasam verilerinin
analiziyle, bu calismada Onerilen modelden malzeme bilimi ve miihendisliginde
nasil faydalanilabilecegi gosterilmisti.  Bu oOrnek ayrica modelin karsilastirma
problemlerinde uygulanabileceg8ini de gostermektedir.

Tezin agagidaki gekilde diizenlenmigtir. 2. boliimde, Ry, «,” daki MLE ve Bayesci
tahminciler, yaygin ve bilinmeyen bir sekil parametresi & i¢in tiiretilmistir. Bayesian
tahmini altinda, onceki davada SE ve LINEX kayip fonksiyonlar1 altinda Lindley
yaklastmi ve MCMC yéntemi kullamlmustir. Tlgili asimtotik araliklarla birlikte HPD
glivenilir araliklar1 da olusturulmustur. 3. bdoliimde, o bilindiginde Ry, x, 'Iik
MLE ve Bayesci tahmincileri tiiretilir.  Yaklasik, kesin ve HPD giivenilir araliklar
olusturulmugtur. Ek olarak, rekor degerlerine dayali R; 4, r, UMVUE sunulmugtur. 4.
boliimde tam Ornekleri kullanarak Ry, , MLE ve UMVUE tiiretilmis ve kayitlarin
durumu ile kargilagtirilmistir 5. boliimde, tahmin edicileri karsilagtirmak igin sayisal
denemeler ve Monte Carlo simiilasyonlar1 gerceklestirilmistir. 5.1. alt boliimde,
modelin nasil kullanilacagina dair bir illiistrasyon, yiiksek mukavemetli yorulma omrii
verisinin analizi ile gosterilmistir. Tez, 5.2. alt boliimde stres-dayaniklilik modelinin
gelisimine yonelik olas1 gelecek yonelik ¢alisma Onerileriyle tez sonuclandirilmstir.
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1. INTRODUCTION

In a stress-strength model, reliability refers to the ability of an object with a strength
X to withstand a certain amount of stress Y exerted on it. If at some point the stress Y
exceeds the strength X, the object will cease to function properly. Due to the inherent
uncertainties in the constituents of the environment in which the system lives such as
pressure, temperature or humidity as well as the uncertainties in the object’s strength
(or resistance) due to factors such as material composition or design style, X and Y are
assumed to be random in nature. It is therefore reasonable to quantify this quantity,
denoted by R, probabilistically as R = P(X >Y). In other words, reliability is defined
as the probability that the object has enough strength to withstand the stress. This
idea was first introduced by [1] and later developed by [2]. Since then hundreds
of papers have been published on this simple model alone. Despite its simplicity,
the stress-strength model is very useful and arises frequently in different branches of
science and engineering such as life testing and clinical trials [3]. The basic model
R = P(X >Y) may be extended to the case of a system made up of two or more
components. Reliability in such a multicomponent stress-strength model was first
developed by [4]. This system, known as an s-out-of-k: G system, is assumed to
be made up of k independent and identically distributed (i.i.d.) strength components
with a common stress. The system is considered to be functioning as long as s out
of k, (1 <s < k), components can withstand the stress. Mathematically the model is

defined as

Ry = P(at least s of (Xi,...,X;) exceed )
= - (¢ ) — F(x)//[F(x)]*7dG(x
—g(]) /0 1= FVIF W) dG()

where the (X, ...,X}) are the i.i.d. random strengths with cdf F(.) and Y is the common

(1.1)

stress variate with cdf G(.).



1.1 What Has Been Done So Far

Estimation of reliability in a multicomponent system using (1.1) for various
distributional assumptions on the strengths and stress variates has been extensively
covered in literature. [5] studied system reliability when the (Xi,...,X;) follow
the absolutely continuous multivariate exponential distribution while Y follows an
independent exponential distribution. [6] studied the classical and Bayesian estimation
of reliability in a multicomponent system assuming the Weibull distribution for stress
and strength variates. The Generalized exponential, Burr type III, Log-logistic,
and Inverse Reyleigh distributions cases were considered by [7], [8], [9] and [10]
respectively among many others. The most recent works include the use of bivariate
distributions by [11], [12]. The system components therein are constructed by a pair
of s-independent elements (Xi,Y;),(X2,Y2),..., (Xk,Yx) following the Marshal-Olkin
Bivariate Weibull or bivariate Kumaraswamy distributions with a common stress 7T
acting on all the components. A comprehensive review of the literature on classical
and bayesian estimation of stress-strength reliability and some of its parallels is
provided by [13], [14] and [15]. It is worth noting that much of existing literature
on multicomponent stress-strength reliability assumes strength variates to be i.i.d.
random variables. However, when the structures of the components of a system
are different, the identicality assumption on strength variates is not practical, [15].
For instance, in mechanics, heat treating to obtain desired mechanical properties
can cause various types of cracking upon quenching or cooling. Joining operations
such as welding or brazing can result in casting defects in the weld area as well
as cracks in the adjacent heat-affected zones, ( [16]) and this ultimately makes the
components different, however slight the difference may be. A model which at least
considers system components to have non-identical random strengths naturally seems
a more realistic idea. A model with strength variates following completely different
probability distributions is more appealing in this regard. However, mathematical
tractability of resulting expressions has proven daunting and progress is often stalled.

Progress in this direction would yield more realistic models.



1.2 Model Description

Suppose that there is a system consisting of k components of which k; of the
components are of type 1, ko are of type 2,..., and the remaining k, = k — Y |k;
components are of type n. Let F; , i = 1,2,...,n be the distribution function of
the random component strengths for components of the i-th type. Assume that all
components are exposed to a common stress Y with a distribution function H. For the

aforementioned model, (1.1) can be modified accordingly to be

Rbi= X% (H( )) /O mlﬂl([l—E-<x)]""[E(x)]k"‘f")dmx) (1.2)

=0 ju= i=1
where summation ranges over all possible combinations (i, j2, ..., jn) With 0 < j; <k;
fori =1,2,...,n such that s <Y ,j; < k. In the present work, the case of a system
with two types of components is investigated. The system is regarded as working if s
and s, components of types 1 and 2 respectively can withstand the common stress. In

this case, the model (1.2) can be written as follows

Ruo= Y ¥ (ﬁ( )) / D (I O e
0

J1=s1j2=52 i=1
where summation ranges over all possible pairs (i, j2) with 0 < j; <kjand 0 < j, <
ky such that s < j; 4 jo» < k ,see [15]. This idea can be extended to more than two
category types of components. Furthermore, one can assume each component to be of
a different type. This idea is demonstrated later on for a much simplified version of
the model (1.3). When k; = 0 then (1.3) reduces to the well known s-out-of-k system
reliability model in (1.1)

ky * ' .
Ropy =) <k1>/0 [1— F ()] [F (x)) 1 dH (x).

ji=s1 M1

If k, = 0 and k; = s = 1, then (1.3) reduces to the fundamental model R = P(X >Y)

R:/ [1 = Fy(x)][F1(x)|dH (x)
0

The model (1.3) is not new to statistical literature. [17] and [18] investigated the MLE
and Bayesian estimation of Ry ;, , assuming the Weibull and exponential distributions
on the strength and stress variates respectively. Hassan et al. [19] considered various

estimation methods for R, r, when the non-identical component strengths and stress
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variates follow the exponentiated Pareto distribution. One of the objectives of this
article is to improve the inference methods of the model given recent considerable
development in the stress-strength reliability models. It is also worth pointing out that
most of the work done so far on estimation of stress-strength reliability assumes the
use of complete or censored samples and a lot has not been done with record values,

( [20]), and more so estimation of multicomponent system reliability with records.

1.3 What are Record Values?

In some studies, such as industrial stress tests, not all observations are considered
but measurements may be made sequentially and only values larger (or smaller) than
all previous ones are recorded. Such data is known as record data. The number of
measurements made is therefore smaller than the complete sample size. This can
be crucial in destructive sampling where all the sample may be destroyed. Record
value data arise naturally in a variety of contexts and practical situations. [21] gives
examples such as meteorological analysis, sports and athletics events, and oil and
mining surveys. Furthermore, some hydrological and material-testing data have been
noticed to be naturally of records type by [22]. Formally, if X;, X>,... is an infinite
sequence of i.1.d. random variables from a continuous distribution with cdf F and pdf
f, then an observation X; is called an upper record value (or simply record) if its value
exceeds that of all previous observations. Thus, X; is arecord if X; > X; forevery i < j.
A similar definition can be given for lower record values. The main concept of records
was first presented by [23] and detailed theory and methods of statistical inference
based on records was later developed by [24], [25], as well as [26]. Estimation of
R = P(X >7Y) based on records was studied by [27], [3], [28], [29], [?] and recently

by [30] among many others.

1.4 Kumaraswamy Generalized Family of Distributions

The past decades have seen an enormous increase in the interest to develop new and
more flexible statistical distributions. The spark in interest has been motivated mainly
by an apparent need to find models that are a better fit to our modern real data which
is often characterized by high to moderate degrees of skewness and kurtosis. New

distributions are discovered almost daily and they are developed to model various
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kinds of data from fields such as biology, economics, reliability engineering and many
others. Recently there has been a further increased interest in defining new families of
continuous distributions by introducing additional shape parameters to already existing
parent distributions. These new classes of distributions so generated, contain not only
new distributions which provide better fits, but also contain existing distributions as
special sub-models as well. Thus this enables one to study a variety of distributions in
one go with a single representation. From [31]’s idea of a class of beta generalized
distributions and a distribution for double bounded random processes introduced
by [32], [33] constructed an interesting new family of generalized distributions, the
Kumaraswamy generalized (Kw-G) distributions. This class is defined as follows: For
any parent distribution function G(x), the cuamulative distribution function (cdf) of the

Kw-G distribution is given by
F(x)=1-{1-G(x)*}?, (1.4)

where a, 8 > 0 are additional shape parameters to the G distribution which introduce

skewness and vary tail weights.Its probability density function (pdf) is given by

£(x) = aBg(x) G {1 — Gx)*}P! (1.5)
where
8(x) = -G() (1.6)

If X is a random variable having the pdf (1.5), it will be denoted by X ~ Kw-G(a., ).
It is also imperative to note that the parameters of the underlying baseline distribution,
G, are assumed known in the model. Furthermore, in order to avoid complications with
mathematical tractability of resulting pdf formulas when using (1.5), caution must be
exercised in choosing a baseline distribution. Since its inception nearly seven years
ago, the Kw-G distribution has received a considerable amount of attention from the
statistical community, with over 282 citations to date. Its versatility and effectiveness
in a variety of situations has been portrayed in numerous papers. From modelling
the number of millions of revolutions reached by ball bearings before fatigue failure
by [34], to modelling the number of absences among shift-workers in a steel industry
by [35]. The introduction of the two parameters o and 3 allows the Kw-G distribution
to assume a wide range of shapes. Which is an ideal ability in data fitting and modeling.

According to [33], because of its tractability, the Kw-G distribution can be effective

5



even if the data are censored and one of its major benefits is its ability of fitting skewed
data that can not be properly fitted by existing distributions. [36] demonstrated this
ability by applying the Kumaraswamy Weibull distribution to failure data. The Kw-G
family of distributions includes as special models the Kumaraswamy distribution as
well as the Beta-generalized distribution by Eugene among several others. It is also
obvious that for &« = 8 = 1, Kw-G = G. A physical intepretation of (1.4) given by [33]
when o and 3 are positive integers is as follows. Consider a system formed by f3
independent series components and that each compomponent is made up of & parallel
independent subcomponents. The system fails if any of the B components fails and
each component fails if all of the & subcomponents fail. The time to failure distribution
of the entire system has precisely the Kw-G distribuiton. A recent and lucid account of
literature on the applications of Kw-G distributions to date can be found on the doctoral

thesis by [37].



2. ESTIMATION OF R, ,, FOR UNKNOWN o I

2.1 Maximum Likelihood Estimation of R; ;, 1,

From the total of k& system components in the model (1.3), let the first k; type 1
component strengths follow a Kw-G distribution with parameters o and 8 = B;, while
the remaining k» = k — kj type 2 component strengths follow a Kw-G distribution with
parameters o and B = B, . Assume further that Y follows a Kw-G distribution with
parameters & and 33 independently. The respective distribution functions are

Fi(x) =1-{1-Gx)“}P

F(x) = 1-{1-G(x)*}» @2.1)
H(x) = 1—{1-G(x)*}F

Substitution of (2.1) into (1.3) yields :

Rk ey = i f (H( ))/mﬁ<[1—G(x)°‘]flﬁl[1_{1_G(x)a}ﬁz]kz—jz>
0

J1=s1j2=s2 \I=1 =1

x B3ag(x)G(x)* 1 — G(x)*)PLdx, sett=1—G(x)*
2

_Zk/ (_ Jl+l)ﬁl+ﬁ3_l>du
By
:Zk(pﬁ1+qﬁz+ﬁs)

(2.2)
where
ka 2 /& k—pki—jr (2 /s .
Zk _h m ] (E (D) i; i; (H( lil Jl)(_1)11> (2.3)
and
p=j1+i, g=j2+i2 (2.4)

It is noted that the reliability expression (2.2) is independent of the common parameter
o. Furthermore, it can also be shown that under the same setup, R, x, assumes a
similar form for other lifetime distributions such as Weibull, Rayleigh, Gompertz,

Burr Type III and several other distributions commonly used to model reliability
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data. The main goal of this paper is to estimate Ry, x, using upper records data
from the Kw-G distribution. In order to find the MLE of Ry, x,, we first need to
obtain the MLEs of the parameters o,f;, B2, and B3. So let Ry,..., Ry, Pi,....,Pp,
and Sy, ..., S, be independent random samples of upper records of sizes np, n, and m
from the distributions Kw-G(, B1), Kw-G(a, B2) and Kw-G(a, B3) with relializations
r=(ri,rn;)s P = (P1,--,Pn;), and s = (s1,...,5,) respectively. The respective

likelihood functions of the observed samples of records as given by [25] are

f(r ™ f(ri) O<r T )
2 (o, Bilr) - gl Flr) << <y <
np—1 i v oa—1
=(of1)" g(rn, )G ("nl)a_]{l—G(rm)a}ﬁl_lH‘% (2.5)
_ n oy g(r)Gr) !
=(atB1)" {1 = G(ru)" }ﬁgm
2 (a,Balp) =f(pn,) i_I p), 0<p1 <...<pn<oo
i ’ (2.6)
Yy .4 15 8(P)G(pi)* !
—=(atBr){1 —G(pn,)*}P EW
Z(a, Bsls) I:[ S’ T Fls) 0< 8 <o < Sy <00
N £(6)G(s)* =7

=(af3)"{1 = G(sm )}&HW

i=1
The joint likelihood function of (o, B1, B2, B3) based on the observed record values r,

p and s is therefore given by

z:ﬁz
e B Gln A1 Gl -G @
g0 35 g(p)Glp)™ ! P 8l Gl
Xg 1—G(r)® g 1-G ZU )

and the corresponding joint log-likelihood function, denoted by [, is written as
l=(ni+nm+m)lna+n;Inf;+nyln Py +min s
+BiIn[1 — G(rn)) ]+ B2 In[1 — G(py,)*] + B3 In[1 — G(s)“] (2.9)

n ny m
+ ZlnS(ri) + ZlnT(pi) + Zan(s,-).
i=1 i=1 i=1



where

SOJ::(gOOGOﬂ“1)7

1— G(I‘,’)a
_ (8(p))G(p)*!
T(pi) = (W) , and
_ (8(s1)G(s) %!
v = (755 )

The maximum likelihood estimators of f3; ; i = 1,2,3 and o denoted by 3,- and &

respectively, are found as follows

81 _n1 ay
_aﬁl Al—l—l {1-G(ry))?} =0
A nl
— _ 2.10
L I [1=G(r)¥] (10
and similarly
A nz
— _ 2.11
and
By = ~ (2.12)

“In [1—G(sm)?]
The maximum likelihood estimator of the common parameter & on the other hand is

the solution to the non-linear equation

Ol _(mAmtm)  BiG(ra)*G(rn)  BrG(py)*InG(pny)

oo o (1 =G(ry))?) (1-G(pn,)%)

_l33G(Sm)“1nG(Sm)+i{ InG(ri) ]jfil InG(pi) ]

(1-Gw®)  &=l1-6r| " &lT-Gp)e] &1
o In G(Sl') .
+,~; [1 —G(Si)“] =0
Therefore, & can be obtained as a solution to the equation A (@) = «, where
B n1G(ry,)*InG(ry,)
A = ) [ G

mG(p) nG(py) | mG(s,)*InG(s)

In[1—G(ps,)* (1= G(py)%) * In[1 = G(s2)*] (1= G(s)%) (219

9



It is clear that & is a fixed point of the equation A () = a and can therefore be obtained

via an iterative scheme as follows
l(oci) =0 (2.15)

Where ¢; is the i-th iterate of &. The iterative procedure will be halted when the
quantity | o1 — oy is sufficiently small. Thus, by the invariance property of maximum
likelihood estimation, the MLE of Ry x, x, based on upper record values from the class
of Kumaraswamy generalized distributions is given by

. s Bs

ftads _Zk(j1+i1)31+(jz+i2)l§z+l§3 210
Theorem 1. The maximum likelihood estimates of By, Ba, B3, and o as given by

(2.10),(2.11),(2.12), and (2.13) respectively are unique.

Proof. See [28] for a proof in the fundamental model R = P(X > Y) case using upper
record values from the Kumaraswamy distribution. The proof can easily be extended

to the model in the present work. ]

2.1.1 Asymptotic Confidence Interval For Ry ; , I

In this subsection we derive the asymptotic distribution of 6 = (31, 32, 33, 65) and
from this, the asymptotic distribution of Ry, «, is derived. We later construct an
asymptotic confidence interval based on the asymptotic distribution of Ry, «, . The

expected Fisher information matrix of @ = (B, B2, B3, @) is given by ®(0) = E (1(9)),

9%
where 1(0) = [1;;(0)] = [_89 78 } for i, j = 1,2,3,4 is the observed information
ioYj
n n m
matrix. Ij; = —12, Iy = —22, I3 = YL and I1p =113 = ) = Ihs = 131 = I3 = 0. What
1 2 3

is required now is to find l44.
I’ —(m+mtm) BiG(ra)*(InG(rn))*  BG(pn,)*(InG(pn,))*
o

da? o’ (1= G(ra))*)? (1=G(pny)®)?
B3G(sm O‘(lnG(sm)O‘)2+ & G(ri)*(InG(ry))?
(1—G(sm))? 5 (1-G(r)*)?
> G(p)*(InG(pi))* | ¥~ G(s:)*(InG(s))?
LG T (-Ge)D?
In order to determine the expression E (%) , let
1 2
% (InG(r 2 ﬁlG(rnl)a _hlG(rnl)a
,U(G(’”nl)a> :ﬁlG(rnl) (1 G( nl)) . (OC ) ) (217)

(1_G(rn1)a)2 B (1_G(rn1)a)2
10



The pdf of the n-th upper record R, is given by

- f(rn> n—1
IR, (rn) = T [—In(1—-F(ry))]" ", (2.18)
see [25]. Defining Y (R,,) = G(Ry,)*

, a simple transformation yields the pdf of Y as

p"
fr(y) = (nl—l)!(l

—y)P = In(1 -y (2.19)
Therefore,

1
E(U(G<rn1)a)) :/ H(Y)fY(Y)dy
0

ap™

nj

o

B 1 1 1 L1
_W[;@+n(@+k4w wwww)zl’

=1/
the integral (2.20) was evaluated by [28] and tables of integrals used can be found
in [38]. Similarly we obtain

[ee]

E(1(G(pny)®) = P2 1 ! : L e
it =G | B (i~ By @

j=1
and

(o]

ayy B3 1 ko
E(u(G(sm)®) == L;O k+1)<([33+k—1) /33+k )Z;] (2.22)

J=1
Therefore,

021
Iy =E So?

(’“+Z—§+"’l)+[E(N(G(rm)a»+E<u(G(pn2)°‘))+E (1(G(sm)*))] (2.23)

"iEwme» y 9+ ]

+ Y E(u(G(p)*)) + Y E (u(G(s1)%))
i=1 i=1

with all the expectations as given in (2.20), (2.21), (2.22). Following a similar
technique as above, expressions for 13, 13 ,I14, I21 , I31 , and I4; are also obtained
as follows

B Bl &l 1 T
ha=1ln= sz§ { Bi+kym (B +k—1)m)’ (2.24)
[ | 1 1
mmte= L e .
and

B =1 1 7
Ly =1 By 1 2.26
HTW Ty ;k[ﬁ3+k T (Bsthk—1)"] (2:20)
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n n
Theorem 2. As ny, ny, m — oo, -1 — ¢y and =2 —q2,0<q1 <1,0<gr <1, then
m m

.
vVE\BR=R) o 07 (0)
Vi (B~ Bs)

V(@ a)

where A(0) and A='(0) are symmetric matrices such that

uyp 0 0 wupg
up 0 ux

A(0) = , and
U3z U4
Had (2.27)
Vil Vi2 VI3 Vi4
-1(g) = 1 Va2 Va3 Vo4
|A(O)] V33 V34
V44

Here, the stress sample size m is assumed to be greater than the two strength samples
sizes ny and ny. If otherwise, the formulae can always be readjusted accordingly. The

entries of each of the matrices are

: 1 : Va1
upp = lim —hyj, ups=uy = lim 1y,
ni 7”27m—>°°n1 ny,np,Mm—ro0 ni

. V42 . 1
upu=up = lim “—Dbhy uzg=uy3= lim —I3y

ny,ny,m—o n2 ny,ny,m—oom
: 1 . 1 . 1

uzy = lim —122, uzz = lim —]33, Ugq4 = lim —144

ny 7n23m*>°°n2 ny,ny,m—eom ny,ny,m—eom

Ui =up3 =up] = up3 = u31 =uzy =0
2

ol w3, ug _ uj4un4 _ uj4u3g _uiy
vll__ﬁ_g_ﬁ_zz ﬁ22,3327 Vi2g = — ﬁ32 ) Vi3 = — ﬁ22 ) V14_ﬁ22ﬁ32
by a4 Wa iz
By BP  BiBY Bt BiBs
by Ua Mg s
By B BB BiB;’
1
Va4 = ——=—=, and
BB B3
22 L p2.2 | p2.2
A(6)| =  (Bfuiy + Busy + Biusy — uaa)
BiB5 B3
(2.28)

Proof. The proof of the theorem follows from the asymptotic normality of MLE,
details of the proof can be found in [39]. [l
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ni np
Theorem 3. As ny, ny, m — oo, — — g1 and — — g, then
m m

Vm (Rs gy 4y — Ry sy ko) — N(0,02) (2.29)

1 IR, 1 1o \ 2 IR & 1o OR ko & IR, 1 1o \ 2
2: $,K1,K2 2 $,K1,K2 $,K1,K2 S,K1,K2
i 7 T1A(e)] ( 9B ) ST ap 2\ Tag ) 2
wnere
aRS,kl ,k2 aRS,k[,kQ +28Rs7k1,k2 8Rs,k1,k2 + (8Rs,k1 7k2 ) 2V33 ]
Ipr 9B If  IBs d s

Proof. Using Theorem 2 and applying the delta method, (see [39]), the asymptotic

A

distribution of R 4, x, = g(0) can be written as follows

Vm (Rs gy ke, — Ry sy 1) — N(0,02) (2.30)
where 62 = bTA1(0)b with
b = |‘8Rs7k1 7k2 aRsvkl 7k2 aRSakl 7k2 aRS7k1 >k2 T
B I aIfs 7 da
— |:8Rs7k17k2 aRs7k17k2 aRS7k17k2 O:| T
dpi B~ 9IB

where the partial derivatives of Ry, x, With respect to B, 3>, and B3 as defined in
Section 2.2.1. ]

Theorem 3 can therefore be used to construct asymptotic confidence intervals of
R; k, k,- Using the invariance property of the MLE, the variance o7 is estimated using

the empirical Fisher information matrix and the MLEs of B, 2, B3, and « as follows

u —i u :i u :l
11 B\ly 22 B\27 33 B\3a

VIV S N T S B

N a Bk |G Bk

RVCEY: S S N T S S

YT a k;k (B2+k)2 (Batk—1)m |
R S I B

34_m & I;lk (A3_|_k)m (ﬁ3+k— )m
uaa = & - 2 +n11 B (1(G()") +E (1(G(pn)®)) +E (1(Glsm)®))|
- ;E(N(G(n)&)>+ _21E<[.L(G(p,)&)>+ iE(,u(G(s,)%)




with all the expectations as defined in (2.20), (2.21), (2.22) and with all parameters
replaced by their respective MLEs. Therefore, a 100(1 — y)% asymptotic confidence

interval of Ry, x, 1s given by

A

A o
<RSJ<1J<2 _Zlf%’ \/ﬁ RY ki T 2121 \/—) (2.31)
where zy is the 100y — th percentile of N(0, 1).

2.1.2 Bootstrap Confidence Intervals

It is observed that the asymptotic confidence intervals do not perform very well for
small sample sizes, Kundu and Gupta (2005) . In this subsection we construct
bootstrap confidence intervals for Ry, , since an explicit pdf for Ry x, t, is unavailable.
(i) Boot-p Method Step 1 : From the samples {ri,...,7n,}, {P1,---, Pn,} and
{s1,..-,8m}, compute & 31 [32, and 33 Step 2 : Using & and [3’1 generate a bootstrap
sample {ri,...,rs }, using & and B, generate a bootstrap sample {pi,..., Py}
and similarly from & and [33 generate a bootstrap sample {s7,...,s;,}. Based on
{rik, . n1} {pl, ,pnz} and {s7,...,s,} compute the bootstrap estimate of Ry, t,
denoted by R;k,k,,kz Step 3 : Repeat step 2, NBOOT times. Step 4 : Let G(r) =
P(I?::khk2 <r), be the CDF of ﬁ;khkz.Deﬁne Rg,(r) = G™!(r) for each given r. The

100(1 — y)% confidence interval of Ry, «, is given by
B Y\ pB Y
(R&ihkz(i)’ R (1= 5)) (2.32)

(ii) Boot-t Method

Step 1 : From the samples {ri,...,rn,}, {p1,....,pn, },and {s1,...,s,}, compute
&, B, Ba, and Bs.

Step 2 : Using & and 31 generate a bootstrap sample {rT, } using & and Bz

* nl
generate a bootstrap sample { DPlsees P;;z} and similarly from & and [33 generate a
bootstrap sample {s7,...,s;,}. Based on {ri‘, . ’ll} {pl, ,pnz} and {s},...,sp,}
compute the bootstrap estimate of R; 4, x,, denoted by R . kl k,- Compute the bootstrap

estimate of Ry, x, and the following statistic :
Ay .
ﬁ (Rs,k] 7k2 - Rs7k1 7k2>

Var <R;‘ K 7k2>

14
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Var (Ié’: ki k2) can be computed using Theorem 2.
Step 3 : Repeat step 2 NBOOT times.

Step 4 : From the NBOOT T *values obtained, determine the upper and lower bound of
the 100(1 — ¥)% confidence interval of Ry 4, x, as follows : Let H(x) = P(T* < x) be
the CDF of T*. For a given r, define

A N 1 A _
RY, (%) =Ryp iy +m 2\ /Var (Ryp, i) H ' (x)

The approximate 100(1 — y)% confidence interval of R; x, &, is given by :

5B Y\ pB Y
<Rs.,lkl,k2(§)’ Rs;q,kz(l - 5)) (2.33)

2.2 Bayesian Estimation of R, ;, ,.

In this section, the Bayes estimate of Ry, x, is derived under the assumption that the
parameters o, By, B,, and B3 themselves are random variables, see [40] and [41] for
more details on the bayesian approach to parameter estimation. Consider the likelihood
functions for B, B>, and B3 based on upper record values from the Kw-G distribution
in equations (2.5), (2.6), and (2.7). From these functions, it can be deduced that the
suggested conjugate family of prior distributions for @ = (B, B2, B3, &) is the gamma
distribution. So, it is assumed that 8 ~ Gamma(d1,71), B2 ~ Gamma(8;,7),B3 ~

Gamma(83,73), and o0 ~ Gamma(04,vs). The pdfs are given by

S pdi—1 —
vBY e 7B

n(ﬁl): F((Sl) ; ﬁl>07 617Yl>0
5 p&—1 ,—pp
7B =2 T o0, 8m >0
L) (2.34)
’}/383ﬁ363_1€_73ﬁ3
n(B3) = (%) , B3>0, 03,7 >0,and
54 5471 -V
_'}’4 o e
71?(06)— F(64) > a>0; 54774>0

respectively. The joint prior distribution function of 0 is given by

f(8) = m(a)m(Bi)m(B2)m(Bs)
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and the joint posterior distribution function of 0 is given by

Z(0|data)f(0)

(0 |data) =
LT LT 26 \data) f(8)d6
_M (r;00) Mo (r; ) M5 (1 OC) ni+6—1 ;24-52 1 3m+53 L gnitnatm+84—1
B I'(m+6)r (n2+52) (m+63)Io(r, p,s)
x e P1(n+41) ,=Pa(1+42) ,—B3(13+43) ,— 014
(2.35)
where
Z ot ()Mo (py o) M; (53 o) e~ %
I ,8) = - = - do (2.36)
&:2:5) [ (N1 4+ M)"1H0 (1 + Aa) 2t 8 (3 4 Azt 05
! 8(":‘)G(ri)°‘l)
My(ro) =TT (B2
1(_ ) i_l( l—G(ri)O‘
- g(pz)G(pi)“‘l>
My(p; o) = (— , 2.37
2(ps ) {6 (2.37)
S d g(s,)G(s,)O‘_]
M3(§aa)_g( 1—G<Sl')a )

with
A =—In{1—G(ry)*}, 22 = —In{1 — G(pn,)*}, and 23 = —In{1 — G(s,m)*}

Under the Square Error loss function, the estimate of Ry, x, = g(0) is the mean of the

posterior function in (2.35), which can be written as a ratio of two integrals as follows.

E[g(0)|data] / / / / 7(0 |data)dO

b L s(0)2(8 ldata) (6)d6 (239
I £ 9|data £(6)a6

It is difficult or perhaps impossible to get an explicit analytic expression for (2.38).

Numerical methods such as, (i) Lindley approximation, as well as (ii) Markov Chain
Monte CarloMMCMC) method can be used. An alternative to Lindley’s method is an
approximation method of a slightly higher order by [42] which has been used by [28].

Only Lindley approximation will be considered in the present work.
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2.2.1 Lindley Approximation

In this subsection we approxiamate Ry, k, using the famous Lindley approximation
method, see Lindley (1980) for details. For a vector of parameters B = (B, 2, B3, @)

and a function W (B) consider the integral

ﬁ”w(ﬁ)eﬁ(ﬁ)w(ﬁ)dﬁ
|7 et BreBrap

E[W(B)|data] = (2.39)

where ¢(B) is the log-likelihood function of B and p(B) is the nanural logarithm of the
prior density of B. For sufficiently large sample sizes ny,n,, and m , using Lindley’s

method, the Bayes estimate of Ry, «, 1S given by

1 1
E[W(B)|data] =w+ EZZ(WU +2wip;)0ij + EZZZZTUWUWZ ‘ﬁ:[;
T Tk

(2.40)
+ terms of order n—2 or smaller.
A 0
Where B = (6y,...,6) i,j,k,l =1,....,m, B is the MLE of B, w = w(B), w; = a—g,

_Pw Pt dp
= 9606, "~ 96,00,00, P T 96,
of the matrix [—7;;] with all the parameters B = (6y,65,63,7M) replaced by their

Wij and o;; = (i, j)-th element of the inverse

respective MLEs . Therefore in our case B = (6, 6,,65,1), Lindley’s approximation

gives
1
E[w(B)|data] = w+H (wiu +W2M2+W3u3+us+u6)+§ (< (w1011 + w2012 +W3013)
+B (Wl 021 +wWr02) —|—W3623) —i—%(ﬂf (W1 031 +wr032 +W3G43)
+ P (w1041 +w2042 +w3043)]
where

Ui = P10j1 + P20 + P30;3 + P40ia, =1,2,3
Us = wi2012 + w3013 +W23023

1
Us = 5 (W11011 + w2022 +W33033)

o =T111011 + 27121012 + 27131013 + 27141014 + 27231 023
+ 2741024 + 27341 034 + 221022 + T331 033 + T441044
B =T112011 + 27122012 + 27132013 + 27142014 + 217232023
+ 2742024 + 27342034 + 7222022 + 7332033 + T442044
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€ =T113011 + 27123012 + 27133613 + 27143014 + 27233023

+ 2743024 + 27343034 + 1223022 + 7333033 + T443044

D =T114011 + 27124012 + 27134013 + 27144014 + 27234023

+ 2744024 + 27344034 + 1224022 + 1334033 + T444044

In our case, w(B) = Rk, k,

pP1 = 5113:1 -MN, P2= %—Yz, P3=%—Y3, yP4 = 04— 1 — Y
Tllz—n—]z, Tzzz—n—zz, T33=—%
1 2 3
___ G(ra)*InG(rn,) __ G(pn,)*InG(pu,)
A (< ) B (T I
T34 = T3 = — G((ls m_) Oé;lg(;)(of;l)
S (mtnt+m)  BiG(ra)*(InG(ra)))*  B2G(pn,)* (InG(py,))*
44 = 2 2 2
o (1=G(rn))%) ( —G(pm)“)
B3G(sm)* (InG(sm))> 3 | G(r;)™ (lnG rl "2 % (InG(p;))
1-Geme? & u—Gm ; <iwf:
m )a lnG(s,))
; G(si)%)

The terms o;; i, j = 1,2,3,4 are found using the terms 7;;, i, j = 1,2,3,4. Finally

2n G(rs )% (InG(r, )2
Tlll:_?,l; T144 = Ta41 = T414 = — ( nl) ( ( nlz))
1 (1 _G(rm)a)
2n G(p,)% (InG(py))>
= _327 Taos = Toas = Tadr = — (Pr)®( (pné))
2 (1 _G(pnz)a)
_ ~ G(sm)*(In G(sm))*
T333 = ,1434 = Tgs3 = Tags = — L
ﬁl (1—Glsn)?)

o 2mtmtm)  BiG(m) (1+Glrm,)*) (InG(ry,))’
e (1=G(r)*)
~ B3G(sm)® (1+ G(sm)”

A / N—
W[ —~
—
=
Q
]
S
[\S)
N—
N—

]

G(r) (14 G(r)®) (nG(r))* ] &2 amw1+6@mxm6@m1
tL (1—G(r)2) +§ (1—G(p)®)
m [ Gls)® (14 Gls)®) (InG(s1))?
tL (1—G(s)*)
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o PRk :Zs 2pgPs

P OBk =R\ (B apatB) )
" :32Rs,kl,kzzzs —p (pBi+aP> — B3)
BT Bos R\ it apat ) )

e PRk Zs —q4(PB1+ 4B — Bs)
T 0Bk T K\ (B a7 )

Due to the lack of an explicit pdf for Ry x, x,, in order to construct the highest posterior

density (HPD) credible intervals, the MCMC method is preferred to generate samples
from the posterior density function (2.35). The Bayes estimate and HPD credible
intervals can then be computed from these samples under the SE and LINEX loss

functions.

2.2.2 MCMC Method

From (2.35), it can be deduced that the posterior distributions of B, B,, B3, and ¢ are

as follows:

Bi1B2, B3, data ~ Gamma (ny + 61,11 —In{1 — G(r,,)*}),
B2|ﬁlvﬁ37data ~ Gamma (1’12 + 627’}/2 _ln{l - G(pnz)a}) )
Bs|B1, B2, data ~ Gamma (m+ 8,73 —In{1 — G(s,,)*}),

(2.41)

n(al|Bi, B2, B3, data) 0<Ot"1+"2+m+54_1e_ay“F(data)
where
o ([ 2020 (st ) st )
ok ri) =1 1-G(pi) =1 1-G(s;)

The samples for Pi,f,, and B3 can thus be generated easily using the gamma
distribution. The posterior distribution of & on the other hand cannot be written
analytically to a well known distribution and it is not possible to sample directly
using standard methods. The Metropolis-Hastings method is used to generate random
samples from the posterior distribution of ¢. Therefore, the algorithm for Gibbs

sampling is as follows:

1. Start with an initial guess (Bl(o), ﬁz(o), ﬁ3(0), oc(o)).
2. Sett=1.

3. Generate o"¥) from 7 (|1, Ba, B3, data) .
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4. Generate [31([) from Gamma (ny + 81,71 —In{1—G(ry,)*}).
5. Generate [32([) from Gamma (ny + &, —In{1 — G(pn,)*}).

6. Generate B3(Z) from Gamma (m+ 63,3 —In{1 — G(s,,)*}).

B§’>
PB + Bz +B3

7. Compute RS Kk = Zk
8. Settr=rt+1.

9. Repeat steps 1 — 8 T times.

The sample obtained in the above algorithm is then used to obtain the Bayes estimate
of Ry, k, as well as the HPD credible intervals for Ry, t,. The Bayes estimate of

R; i, k, under the SE and LINEX loss functions is given respectively by

1 T
Rk k= T L R% ko (2.42)
N 1
MCLNX __ —VR ;. . 3
Rskl,kz —;lnE (e "kl’k2> == __ln < Z e kl k2> (2.43)

The 100(1 — 1)% HPD credible intervals for Ry, r, can be obtained by the method
of [43].
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3. ESTIMATION OF R, ;, FOR KNOWN a I

3.1 Maximum Likelihood Estimation And Confidence Intervals For Ry ; i, I

For the sake of simplicity it is assumed that &« = 1. So let Ry,...,Ry,,, Py, ....,P,, and
S1,..., S, be independent random samples of upper record values of sizes ny, np and
m from the distributions Kw-G(1, B1), Kw-G(1, 2) and Kw-G(1, B3) respectively. In
this case the MLE of R; 4, «, is given by

1
sk1,k2 Zk |: ni ]n I_G(sm)) q@ ln(l —G(Sm)) 11 G-
mln(l—G(rn])) mIn(1—G(py,))

In order to construct an exact confidence interval for Ry, x,, its distribution needs to
be determined, and to do so one must first obtain the distribution of Iz’s,khkz. Using

elementary transformation techniques it can easily be shown that

—2B1In(1—G(Ru,)) ~ X3n,» —2B2In(1—~G(Py,)) ~ ¥3,,, and

) (3.2)
—2B3In (1= G(Sn,)) ~ Xim-
The quantities in (3.2) are all independent of each other. Thus,
—2m B3 ' In(1 - G(Sp
”‘ﬁil N =GSw) | pom o) (3.3)
—2mpB; " In(1—-G(Ry)))
and |
—2B; " In(1—-G(S,
Py (U =GSn) (3, 2my) (3.4)

2B, 'In(1-G(Py,))
In other words,

ny In(1-G(Sn) B

(1 G(R,)) BT 22 and
ny ln(l - G<Sm)) & m, 2n
mIn(1—G(Py,)) NﬁSF(z )

have scaled F-distributions . Thus from (2.2), we have that the distribution of Iés.,kl ko

is that of

Zk{ B, ) )

ﬁ3 F(2m, 2n1)+qﬁ3 (2m,2ny) + 1
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An explicit formula for the pdf of I?s’kl k, 18 clearly too complex and is therefore not
pursued further. We therefore conclude that the exact (1 — ¥)100% confidence interval

for Iés7kl,k2 is

S S
(Z bE Zsz) (3.6)
where
1
o= ~
B B
p=F _ y(2m 2n1) +q=-F,_ y(2m 2np) +1
B B
1
F2 = ~
[ B p2
pﬁ Fy(2m 2n) + g+ Fy(Zm 2ny) +1
3 3

An approximate confidence interval for Ry, «, can also be derived using the Fisher

information matrix. The Fisher information matrix for @ =(f;, 3,, B3) is given by

() #(iam) #(55am)
IpP dB19B 9193
0= (5a5) #(m) #(55am)
y B3P o83 9B:9P;
“(apam) *(opam)  *(3g2)
dpB39 B 939> 93
”_12 0 0 3.7)
bi Ly hy 3
ns
=1 0 B2 O =1t I b
m Iz I I3
0 0 —
5
2
=L 0 0
n
2
So, it must be the case that I-1(0) = 0 2 0 The MLE estimator
ny
2
0 0 B—3

RSJQJQ is approximately normally distributed with mean Ry, r, and variance

MM—ZZ

i=1j=

aRs kl k2 aRS k]

aBi

22

9B,

ko 7—1
Ilj ,



where Il.;l is the ij-th term of the matrix 7~!(8), the inverse matrix of 1(8). So
33

IR i, ky ORs e, Ky
O-I%Sk K ZZ 3 1 : 1 1.’ 21ij1
== 9B 9B,

() () (5 () () 4
dB ni 2Js7 ) aBs m

IRk ky ORsk ke IR i, ko
9 9 , 9 9 , d 9 9
B I T aps

(1 —17)100% asymptotic confidence interval for Ry x, x, when « is known is given by

N 1. .\ 1.,
(Rs,kukz —4-1\ EGRS,kl,kz Ry ki Ky +Z1—%’ EGRS,klﬁkz ) (3.9)

where zy is the 100y-th percentile of the standard normal distribution N(0, 1).

(3.8)

where are as defined in Section 2.2. Therefore, the

3.2 Uniformly Minimum Variance Unbiased Estimator of R; ;, 1,

As [15] point out, despite possessing a useful invariance property, the MLE method
may be susceptible to bias, especially if sample sizes are very small. Since records
sample sizes are particularly not always large and it is often of intrinsic interest to
consider only estimators that are unbiased. This leads to the inevitable task of deriving
an unbiased estimator for R;x, x, which is optimal in the MSE. In this subsection an
attempt is made to find an unbiased estimator which performs best among all unbiased
estimators, the so called UMVUE, for Ry, t,. In deriving the UMVUE, it is often
necessary determine whether or not a statistic of the parameter under study is complete.
Showing that a sufficient statistic is complete is generally quite difficult. However, it
is well known that if the parameter vector 0 is viewed as unknown but non-random,
with the only available information as the measurements X and the observation model
specified by the density fx|g (X|0 ), that is, the likelihood function. Then if fx|q (x|6)

belongs to the exponential class of densities of the form

fxio (x]8) = u(x)exp (8"T(x)-1(8)) (3.10)

it must be true that T(X) is a complete sufficient statistic for 8, [44]. Most of the
fundamental definitions and theorems in this section have been taken from [44] unless

otherwise stated.

Definition 1. A statistic T(X) is said to be sufficient for a parameter 0 if it contains

all the information about the observation vector X necessary to estimate 0. Formally,
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T(X) is sufficient for 0 if the conditional density of X given T(X) is independent of
0. This independence property indicates that all the information about 0 has been
“squeezed” in fy(T|0) and there is no leftover information about @ that could be

extracted from fxp (X|T) , which means that the desnsity must be independent of 6 .

Theorem 4. Neyman-Fisher Factorization Theorem The statistic T(X) is sufficient if
and only if the density fx can be written in the form [fX|9 (x]0) =H (T(x),x)I(x)] A
proof of this result can be found in [44].

Definition 2. Ler T(X) be a sufficient statisic. We say T is complete if any function
h(T) that satisfies
Eh(T)] =0 (3.11)

for all O must necessarily be identically zero. Equivalently, the sufficient statistic T is

complete if there is at most one unbiased estimator é(T) of 0 depending on T only .

Lemma 1. The statistic
(U,V,W) = (=In[l = G(ry,)], = In[l = G(pn,)], —In[1 — G(sm)])

is a complete sufficient statistic for 8 = (B1, B2, B3)-

Proof. The joint pdf of the sets of upper records Ry,...,Ry, , Pi,...,Py,, and S1,..., S,
is given by

f(0ldata) =By By B5{1 = G(ray)}P {1 = G(puy) 12 {1 = G(s5)}»

Ty 800G 15 8(p)G(pi) 1 8(s1)Gls1) (3.12)
I:—! 1-G(r:) ,IJ 1-G(pi) ,11 1—-G(s;)

, see [25]. The joint pdf can also be written as
f(6|data) = H(data)lg (U(ry,),V(Pny), W (sm)) (3.13)

where

_ 1 8(ri)G(ri) v 8(pi)G(pi) v 8(si)G(si)
H(data)_EI_G(z)ll 1— G( )EI_G(SI)7

U(rag),V(pny), W (sm) = (=In[1 = G(ru))], =In[1 = G(s)], = In[1 = G(sm)]),

1o (U ).V (), W () =B} By B57e Y (il ()= ),
(3.14)

From (3.13) it is clear that by employing the Neuman-Fisher Factorization Theorem,

(U,V,W) is a sufficient statistic for 6. Furthermore, it can be deduced that (U,V,W)
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is a complete sufficient statistic for 6 since the likelihood function, f(0|data), can be

written in the canonical exponential class form given in (3.10). U

Theorem 5. Rao-Blackwell Theorem Suppose that T(X) is a sufficient statistic and
W(X) is an unbiased estimator of 0, then if we define the new unbiased estimator
E(W(X)|T(X)), then [var(E (W(X)|T(X))) <var(W(X))] The Rao-Blackwell
theorem tells us that estimators with the smallest variance must be a function of
the sufficient statistic. This besgs the question is there a unique estimatior with the

minimum variance . This is adressed by the following result.

Theorem 6. Lehmann-Scheffe Theorem . If T(X) is a complete sufficient statistic
and W(X) is an unbiased estimator of 0, then ¢(T) = E(W|T) is an UMVUE of 6.
Furthermore, ¢ (T) is the unique UMVUE in the sense that if T* is any other UMVUE,
then Py (¢(T)=T") =1 for all 6.

Let
Ry =—In[1-G(Ry)],Pf = —In[1—G(P)], and S} = —In[1 = G(S;)] (3.15)

Then it is easy to show that R}, P/, and S| are exponentially distributed random

variables with means f3; L By ! and i ! respectively. It follows that the joint

distribution of the independent random variables R}, P/ , and S} can therefore be

written as

Tr: Py 57 (r15 p155T) =y (1) S (P1) f57 (57)
=B1BaPse” Prithrithisi) 0 < < 0,0 < pi < 0,0 < 5] < oo,

(3.16)

Lemma 2. If Rf = —In[l—=G(R;)] and U = —In[1 —G(Ry,)], the conditional

distribution of R} given U is given by

Jreo(iu)  (np—1)(u—r;)m=2
Trew (R |U) = {MW) = LW41 0<ri<u (3.17)

Likewise, for Pf = —In[1 —G(P;)] and V = —In[1 — G(PB,,)] , we have

fev(P1v) _ (ma—1)(v—pj)™?
fr(v) ym—l

and finally for ST = —In[1 — G(S1)] and W = —In[1 — G(S,)| , we have that

Sspw(sEw) — (m—1)(w—s})"2
fw(w) o Wm—l
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Proof. The joint pdf of any pair (R,,, R,) of upper records as given by [25] is

— F(r, n—m—1
(=Pl |- ()] o)
SRRy Tty Tn) = ml(n—m—1)1 (1= F (r)) , for m <n.
(3.20)

Using result (2.18) and (3.20) together with appropriate elementary transformation
techniques, joint pdf of R} and U is derived and from this, the pdf of U is found to be

1

Bl e

fRT,U(rikvu) =

and

1 n —Uu ny—
fU(u):(m—l)!B'le P

Consequently we get the conditional distribution of R} given U as follows

. Jreu(iuw)  (ng—1)(u—rf)m=2 ’
fRﬂU(rl|U): lfU(u) = unlfl . 70<r1 <M

Following a similar procedure, we obtain the conditional distributions

Jery (P1V) and fow (s7 (W) as

ferv(P1v) (g —1)(v—pi)—?
Teey (pilv)==— = e 1 ,0<pi<v, and

fr(v)

” fST,W(S*7W) (I’I’l— 1)(W_S*)m72 *
Fsiw (sTIW) = =i = 0 <si <

respectively to conclude the proof . [

Now the main result of the present work is given in the following theorem.

Theorem 7. Forn; > 2, np > 2, and m > 2, the UMVUE of

B3
Bi(j1+i1) + B2(j2+i2) + B3

o(B1,B2,B3) =

, denoted by (PU(ﬁ ; ﬁZ; ﬁ?’)’ is

(

)

} 3.21)

}

O1(ny,np,myu,v,w) if w< max{

Eanl IR

>

S <

ou(B,B2,B3) =< Qa(ni,nz,m,u,v,w) ifzﬁmax{w,

S <

tanl IR

Y
Q3(n1,n2,m,u,v,w) lf E < max{w,

\
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0 =% iy (=) Ty (h—w)b—“zzf;’? )

v/ (M)

:Fl (17<1 _n1)7(1 _n2)7m; kwth)
u
m

o= (%) G B o () B ) s
~(5) @) (romaomm i )

o= (%) Go) & o ) E v )
_ <mn_21) ( v )Fl (1, 1—m),(2—m),m+1; :— hl>

Proof. Using (2.2), the following functions are defined
1 , R} >KkS1, P> pS)

¢ (R, P{,S)) = ) (3.22)
0 , Otherwise
and
0B B ) =P (3.23)
’ kB1 +hpBy + B3

with R}, P{", and S7 defined as in (3.15). It can easily be shown that

E[¢ (R}, P{,S7)] / / / ¢ (r1,p1,81) fry pr s (71, P, 81)dridpids)

@ (B1,B2,B3)
Thus ¢ (R}, Py, S7) is an unbiased estimator of ¢ (B, B2, B3). The linearity of unbiased
estimators allows one to conclude that an unbiased estimator of R; 4, «, is given by

) o ®iPS) (3.24)

Furthermore, since (U,V,W) is a complete sufficient statistic for 8 = (B, B2, B3),
employing the Rao-Blackwell and Lehmann-Scheffe’s Theorems, the unique UMVUE
for ¢(B1, B2, B3) is obtained as

ou(B1. B2, B3) = E [q&( F PSS U=u V=W =w

3.25
:///fR’ﬂU(x)fPﬂV(y)fSﬂW(Z)dXdde 6:2)

A
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Figure 3.1 : A look of the region of integration, A, for specific values of u,v, and w,.
where
A ={(r],p1,51): 0 <r] <u,0< p] <v,0<s] <w,r]>ks],p] >hsi} (3.26)

Letr{ =x, pj =y,5] =2,0 = (B1,B2,B3) and f(x,y,2) = (u—x)""2(v—y)2=2(w—

14 u
z)™~2. Now for the region w < max{ , it is true that

ny—1)(np —1)(
oy(0) = ( lunl)gvi lwm y / / / f(x,y,2)dxdydz

_ (m—l) n—1 ny—1 m—2
o i —lyna—1y,m—1 y (l/l—kZ) (V—hz) (W_Z) dz

Let z = wt so that

ut1—lym—1,,m—1

o [ (-2 () e

= o (B)E cap () GG

b=0 a+b

1
Py (0) = (m — 1) /0 (— kwt)"™ = (v — hwe )2~ (w — wr )" 2wt

where the following binomial expansions have been used
-l ! — 1\ [ kwt\“
<1_k_m> — Z (_1)(1 (nl ) (l) and
u = a u
hwe ™! na= 1 — 1\ [ hwt\?
(ul) -y (_1)b(”2 )(1)
v P b v

together with the assumption that integration and summation are interchangeable.

Alternatively, formula 3.211 of [38] is given as

1
/ xl_l(l _x)“_l(l —th)_c(l —VX)_edX:B(‘LL,A)Fl(A,G’0’2, +IJ;M,V),
0

with Re A > 0 and Re u > 0. Using this result with A =1, u =m—1, 6 =1—ny,

k h
0=1—-m,u= alid and v = —W, one obtains an alternative representation for ¢y as
u v
kw hw
ou(0) =F (1;(1—”1)»(1—@);"’!;7,7) (3.27)
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where B(+) is the standard beta function and Fj is the Appell hypergeometric function

of the first type which is defined as

O e b
Rbedxy) = 3 Y Qrnlnln g,

and and (g), is the rising Pochhammmer symbol, which is defined by :

, n=20
(9)n :{ q(qg+1)..(g+n—-1), n>0,

see [45] and [38] for more details about the Appell hypergeometric function. For the

reionu< { V}
g k_max w,h

¢u(Br, B2 B3) = z ;nll)giljz_llwml /// f(x,y,z)dxdydz
- (@Rl

Finally, for the region % < max {w, %}

ny—1)(np —1)(
ou(B.B2,B3) = <1un1)§vi2 1wm1 / // f(x,y,2)dxdydz

_ (’"n_zl) (hw)ﬂ (1 (1=n1),2—m),ny+1; :V hv)

]

One can therefore conclude from Theorem 3 that the UMVUE of Ry, «,, denoted by

U
stkl K must be

s
R b = Zk(PU(e) (3.28)

3.3 Bayesian Estimation of R; ;, ;, For Known o

3.3.1 Conjugate Prior Distributions

As was the case in Section 2.2, in this subsection an attempt is made to derive the

Bayesian estimate of Ry, x, under the assumptions that the independent parameters
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Bi, B>, and B3 are random variables with independent gamma prior distributions and

that o is known. The prior distributions of B;, B, and B3 are given respectively by

y51[351—1e—71ﬁ1
n(p1) — re)
yazﬁaz Lo—1B
(Bo) ') , and
53 63_1 - 3B3
VB e T

The joint prior distribution function of 6 = (Bi,B,B3) is given by f(8) =

n(B1)m(B2)7(B3) and the its joint posterior distribution function is given by

20|r,p.s)f (0
m(0|data) = (6]r.p.)/(6)
L £v £v / (0 |data) f(6)dBidBdBs (3.29)
_ A'111222’33 vi—lpva— 1[32\’3 L =B p=22B2 ;=233

S T(vi)I(w)[(vs)™h 72

where

M =n+In{l1-G(rs)}, o= +In{l —=G(pp,)}, 23 =3+ In{l — G(sm)},
=01+n, va=8+ny, and v3 =03 +m

An explicit formula for the posterior distribution of Ry, , in this case is clearly very
complex and is not pursued further. In order to find an estimate of reliability, we will
once again use Lindley’s approximation and MCMC method with o replaced by 1 in
the formulae from Section (2.2). Before proceeding to the approximate methods, a

closed form of the Bayes estimator is proposed.

3.3.2 Closed Form of Bayes Estimator

The Bayes estimator of Ry k, «,, denoted by RSB ki dr? is as follows

ngukz :/m/m/szvkukz (6)71'(6‘057&275) de
_///Zk/ / / < B 3p;fpiqg;ﬁ1ﬁ—3uzﬁz—u3ﬁ3)>de

oy e
%:
I'(vi)I(v2)I"(v3)

where
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Define a one-to-one transformation .7 by

i pBi )
 pBi+aBatBs Br=xz/p
_ qP» = Bo=yz/q |
pB1+qB2+ B3
Bs=z(1-x—y)
z=pP1+qPfa+ps5 |

where p # 0 and g # 0. It is evident that R = =1 for the case when p =0and ¢ =0.

We note that

pB1+qB2 Bs
O0<x+y= <1,0<z< o and =1—x—y.
pBi+aB2+ B3 pBi+qB2+ B3
Furthermore, the Jacobian of .7 is given by
z/p 0 x/p 2
Jx,yo)|l=1 0 z/g y/q |=—.
[ (x,y,2)] / / #

-2z —z l—x—y

Therefore, we have that

-y
5 oy ps? ,u Z Xyl
Rs,kl,kz_ vlqu[‘(vl V3 / / / o y)

e eXp{—z 1%/ p+ pay/q+ b3(1 — x = y)]} dzdxdy
1 1—y
~xY 3 P11 (1 = ) (1 — 01— Gyy) =) gy
0 JO

XZ

where

(I—Gl)vl(I—GQ)VZF(V1+V2+V3) U 153
H = , op=1———, op=1——
T (v)T (v2)T (v3) ! s’ ° qi

A Euler type integral representation of the Appell hypergeometric function of the first

kind, denoted by F7, as shown in [38] is as follows

I'(d)F (a,b,c,d;x,y) = e _
F((b))F(() Td—b—0) / / Wb (1 —u— )P (1 — ux — vy) " dudy

b>0,¢>0,d—b—c>0,|x| <1, |y <.
(3.30)

Using the result (4.28), together with functional relations of F; (see [38] formulae

9.183(1)), we can conclude that

(@) (01,0), if |o1| < 1, |on] < 1

(0)) (61,62), ifor<—1,0p < —1
B _
Rs’kl’kz o 3 (61,02), if |61’ <l,00 < —1 (3.31)

() ((71,62), if 01 < —1,|C72| <1
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where

1—61 0_2)v2
w Z ) ) 71 ?G 76
1=/ Kk v1+v2+v3) sz Vi, V2 +Zvl 1,02

i=1

(o] (03]
() Z F 1 9 71 s 10 )
2 k(V1+vz+v3 1( 2 +Z’v’ o —1 0'2—1)

=1

}:s v3(l—o o1 — O
w — 1 1 71 ’G’— )
3 k(V1+V2—|-V3 ( Vst vz +ZVZ ! 1—62>

=1

and

vi+vy+v3 1—-o0

v3(l—o03) o),—O
GL‘_:Zf((u Fl (1 VI,V3+1 1+Z l’ 2 17627>'

Using Jeffery’s non informative priors, it can easily be shown that the Bayes estimator

assumes the same form as above with a; =a» = a3 =b; = by = b3 =0.

3.3.3 Lindley Approximation

Rskl hy W+(W1V1+W2V2+W3V3+V5+v6)+—[JZ)Z(W1611+W2612+W3613)

2
+ B (w1021 + w202 +w3023) + € (w1031 +w2032) |

Vi = P10j1 + P20 +p3053, i =1,2,3.
V5 = U12012 + U13013 + U23023
—(u11011 + u22022 + 133033)

2
o/ = 7111011 + 27121012 + 27131013 + 27231023 + 7221022 + 1331 033

Ve =

B = T112011 + 27122012 + 27132013 + 27232023 + 7222022 + 1332033
C = 7113011 + 27123012 + 27133013 + 27233023 + 7223022 + 1333033

Since w(B) = Ry k, k,» We have:

b1 b1 _b3—1
p1 = ) —ai, Pz—e—z—az, P3 = 0; —as,
(28! = 2 2 733 n
0%’ 63’ 63’
~ 2m 2ny 2ny
T = 9—137 22 9—23 7333 9—137

All other terms are zero and the w;j,i, j = 1,2,3 are as defined in Section 2.2.1. So,

o/ = 1111011, # = 7112011, and € = 7113011
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3.3.4 MCMC Method

Since « is known, the posterior distributions of B, B2, B3, and « are simply:
Bi1B2, B3, data ~ Gamma (ny + 61,71 —In{1 — G(r,,)*}),
B2|B1, B3, data ~ Gamma (ny + 8,7 —In{1 — G(py,)*}), (3.32)
Bs|B1, B2, data ~ Gamma (m+ 83,7 — In{1 — G(s,,)*})

Once again random samples are generated from these distributions using Gibbs

sampling. The algorithm is as follows:

1. Start with an initial guess (BI(O) , [32(0),[33(0) )

2. Sett=1.

3. Generate ﬁl(t) from Gamma (ny + 61,71 —In{1 — G(ry,)*}).
4. Generate ﬁz(t) from Gamma (ny + &, —In{1 — G(pp,)*}).

5. Generate [33(t) from Gamma (m+ 83,73 —In{1 — G(s,,)*}).

(1)

(1) s Bs
6. Compute R, . = ) Kk .
(TS (i1 4+ j0)BY + (i + o) B + B

7. Sett =t+1.

8. Repeat steps 2 —7 T times.

The sample obtained in the above algorithm is then used to obtain the Bayes estimate
of R, k, as well as the HPD credible intervals for R, x,. The Bayes estimates of

R k, k, under the SE and LINEX loss functions are given respectively by

1

T
pB (1)
Roww= 7 LRk (3.33)
B 1 VR ky k ! | v _VR<*tl)c k
Ri i, = —;lnE (e Skp» 2> = —;ln T 2:1 e Shik (3.34)
=

The 100(1 — )% HPD credible intervals for R 4, x, can be obtained by the method of
[43]. For illustration purposes, a much simplified system made up k; = 1 component of
type 1 and k; = 1 component of type 2 which functions as long as both the components

are functioning is considered. In this case, the reliability expression (2.2) simplifies to

_ B3
B+ B2+ B3
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From (3.29), we can deduce that 1, 3;, and B3 have gamma marginal posterior dis-
tributions. Suppose fBi ~ Gamma(d1,y1), B ~ Gamma(d,,7),Bs ~ Gamma(3,793).
Let X =fB3and Y = 1 + B, so that R = % The pdf of R needs to be derived.
[46] derived the distribution for a sum of n independent gamma random variables
with different parameters expressed as a single gamma-series. This representation is
computationally friendly as coefficients are calculated using a simple iteration and a
truncation error is easily attainable. Using this result, one can obtain the distribution

of Y = B; + B, and it is given by

f=cy 2O (336)
Y y = o, < .
i—0 Yi+pr(l+P)
where
c-T1 ()" = (2
B Yi A\n
j=1 J
2
p=Y 8=8+&
j=1
J J
TGN
Y: V43 :
P — 61 = = 3 5 — 1’2,
é] ; ; ; J
1 Jj+1
Tj+l ) Y &t j=0,1,2,..with 7o = 1.
i=1

In order to derive the pdf of R its first noted that R must take values between 0 and 1

and so the derivation proceeds as follows :

Forr € (0,1),  Fe(r)=Pr( —— <
orr s 1), R\V) = Y+X_r

e (v 2x(1-1)

r

_ / etore (v 2l )Y

, see Chaitanya [47]. Differentiating the resulting expression for Fg(r) with respect to
r and simplifying yields

o 5 1)2k+p—1 —(83+k+p)
fe()=CY Ti(me) (z+1)%z (ny+z) |
i=0 3(637k+p)

O<r<1 (3.38)

1—
where z = ~~" and B(x,y) is the standard beta function. The Bayes estimator of
r

R> 1.1, denoted by 1?123‘? 1> under the SE loss function is the mean of the posterior

34



distribution in (3.38) , and is therefore given by

1
1%5571 =E(R) :/ rfr(r)dr
0

& &(1—d)%F (a,b;b+ 1;d)
—Cizér, -

(3.39)

wherea=1+083,b=03+p+i,andd = 1 —¥;73 and , F] is the Gauss-hypergeometric
function with C, p, and 7; as defined in (3.37). It is also clear that in the case of a system

with n components of n different types, the reliability expression in (3.35) becomes

Bn

Ruppoi=R=—""
2%Vﬁi+'ﬁn
1=

(3.40)

Therefore the technique used above may be generalized to get the Bayes estimate of
the reliability expression in (3.40). For the reliability expression (3.40), if the f3;, i =

1,2,3,...,n have a common scale parameter ¥, using the well known facts that

n—1 n—1
Z Bi ~ Gamma (Z 6,-,}/) )
i=1 i=1

ﬁn n—1
T ~ Beta (5,1, Z 8,)
Bn+ ‘gl Bi i=1

Using properties of the beta distribution, the Bayesian estimate of reliability (3.40) is

and therefore

given by

S T D

n—1 n—1
B.+ X Bi o+ ¥ O
i=1 i=1
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4. A BRIEF OVERLOOK AT THE MLE, UMVUE and BAYES ESTIMATION
FOR Ry 4, , USING COMPLETE SAMPLES

4.1 MLE Estimation of R; ;, r, For Unknown o II

Let (X1,X2,...,Xy,), (Y1,Y2,...,Y,,) and (Z1,23, ...,Z,,) be random samples of sizes nj,
ny and m from Kw-G («, B1), Kw-G (@, ), and Kw-G («, B3) respectively. Then the

respective likelihood functions of the observed samples are given by

Z(a,Bi|x) = )™ :ll (—l))al) ifjl(l —G(x)*)P (4.1)
2L(a,Bly) = ”2ﬁ (—) :1 (1-Gly)®)P (4.2)
2 polo) = (@B [ (—) [T0-6e"" @

Thus the overall likelihood function of 6 = (B, B, B3, &) based on the observed
3
samples x ,y and z can be written as 95,”([31,[32,[33,a|)_c,y,g) =J] % and the
- - i=1
corresponding log-likelihood is given by

14 (9|)_C,X,§) =(ni+ny+mha+(a—1) (ilnG(xi) + flnG(yi) + flnG(@)

i=1 i=1 i=1

ﬁl_l Zln (xl 2_1 Zln (yl) )]

+(Bs—1) Zln g(zi) (1= G(z:)™)] +n11n By +nzIn By +min B
“4.4)
The MLEs of «, and f3; , denoted by & and [§,~, i =1,2,3 respectively are the solutions

to the following system of equations :

ol ny < o

— = —+YIn(1-G(x)%) = 4.
35, ﬁ1+§{n( G(x)%) =0 4.5)
)55 B =

or m

= - = In(1-G(z)*) =0 4.7
dBs ﬁ3+,§‘n( &)%) @0
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(P = 1>ZW+(&— 1)y G0 InG(y:)

+ - Z = = 7
o a = = 1-G(yi)*
2 G(z)*InG a
+ (B4 I)ZerZlnG (x; —I—ZlnG Vi +ZlnG zi)=0
i=1 - (Zl) i=1 i=1
(4.8)
Therefore,
A n A n
hi=—g——— b : (4.9)
In(1-G(x;)* In(1-
Y in(1-6tx)*) Y (
A m
B = — (4.10)

,Ziln (1 — G(Zi)&)

The MLE of o on the hand can be obtained as a solution to the following
nonlinear-equation & (o) = o, where
1o

) L G(x)*InG(x) | (4 G(yi)*InG(y;)
<B1_1>i_21 1—G(x;)* +(Bz—1>i_21 1—G(y)®

( ) i G(z lnG zl ZlnG X;) flnG(yi) + ilnG(Zi)]
=1 i=1

i=1

5(06) =—(n1+ny+m)

-1

4.11)
It is clear that & is a fixed point of the equation & (¢¢) = o and can therefore be obtained

via an iterative scheme as follows

S(ai) =

Where o; is the i-th iterate of & . The iterative procedure will be halted when the

quantity |o 1 — oyl is sufficiently small. Therefore, the maximum likelihood estimator

R k) &y 4.12
ok Zk<kﬁl+hﬁz+53> (12

4.2 Asymptotic Confidence Interval I1

of Ry i, k, 18 given by

In this subsection we derive the asymptotic distribution of 6 = (31, 32, 33, 66) and
from this, the asymptotic distribution of Ry, «, is derived. We later construct an
asymptotic confidence interval based on the asymptotic distribution of Ry, «, . The

expected Fisher information matrix of @ = (B, 2, B3, @) is given by (B) = E (1(0)),
38



d%¢
where 1(0) = [I;; (B)] = [—m} for i, j = 1,2,3,4 is the observed information
199

matrix. Thus we have

w5t
and
R

Lemma 3. Let (X1,X2,....Xn,) be a random sample of
size ny  from the Kw-G(a,pi). Then  the  following  hold

& (LRI = = (0 - vl - P e - v,

(G G 28 [ 1 L1 \y!
(”)E< (1—G(X;)*)? >_ o [k;)(k—i-l)((ﬁl-l-k—l) (ﬁl-i-k))j_zlf]

d
Where y(t) = EF (t) is the Psi (polygamma) function.

Proof. If U(X;) = G(X;)%, then it is easy to show that fy (1) = 0;(1 —u)® !, with

0 <u < 1is the pdf of U. Now define functions

o 1 o
6(x)*mG(x) &) (ElnG(Xi) )
1-G(X)* 1 - G(X;)™

G(G(X)*) =

and
2

o 1 a
E1(G(X)) = G(X)*(InG(X;))* G(Xi) (alnG(Xi) )
1 i - (1—G(X.)oc)2 - (I—G(X~)O‘)2
Employing formulae 4.293(8) and 1.516(1)) of [38] for (i) and (i) respectively , we

proceed as follows

E(CI(U)):/OI (%) u(l—u)P2Inudu, (setr=1—u)

— (% (/Oltﬁl‘zln(l—t)dt—thﬁl‘lln(l—t)dt>
1
o

B+ 1)~ w(1)] = 52 (B~ wiD)] ) i >0
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E(gl(u)):<ﬁ12>[u(1—u)ﬁl31n2udu, (set?=1—u)

:(%) </01rﬁ1 3n?(1 - )dt—/oltﬁl *In*(1 — l)dt)

:<2a ) L:) k-|1-1) (([31+lk—1) (B :_k)> i%] ,B1 >0

]

Similarly, we can derive E ({(G(Y:)%)), E(&(G(Y:)%)) and E (83(G(Z)%)),
E (&3(G(Z;)%)) for the random samples (Y1,Y2,...,Y,,) and (Z,2,, ..., Z,,) of sizes ny,
m and from Kw-G (&, 3;), and Kw-G (o, 33) respectively. From Lemma 3, we can

conclude that

o= (v B0 - w0 - B v - w).
h= g (Bt D -yl - 2 B -vl). @y
=g (B + )= w0]- P ey - v,
and
=) (1) Y B (6 (GO0 + (1~ B2) L E (G600
: a i=1 i=1

(4.14)

Furthermore, it can be shown that

ny m
In=—_5In="3I3=_5 andlp=ls=hi=hy=h =1 =0. (4.15)
131 B; B;

Theorem 8. If 6 = (31732,33,60 is the maximum likelihood estimator of 0 =
(B17B27ﬁ3; a) s then

[Bl —ﬁth _BZJB3 — B3, & — OC} ! — Ny (O,B—l (9))

Where B(0) and B~' (0) are symmetric matrices such that

by 0 0 by dyy dip diz dig

B by, 0 by gy L dy dyz doy
B(6)= bys b3 |’ (6) = IB(0)] dyz dza
byy daq



with
IB(0)| = b11622 (b33bas — b3y) — b11bss (b33 — biy)
and the entries of each of the matrices being
di1 = by (b3sbas — b34) —bx3b3y,  din =biabasbss, di3 = biabxnbss,
dry = ury (uoouss — u3y) —ussuty, doz =biibabss, doa = —bi1bubss,
d33 = ur1 (unoias — u34) —unputy, dsa = —biibnba,
dag = b11bxnbss,  dis = b1ababss
Proof. The proof of the theorem follows fromt the asymptotic normality of MLE, see

[39]. U

Theorem 9. If R, i, 1, is the MLE of Ry, k,, then

(ésﬂkl 7k2 - Rs7k1 >k2) — N(O’ 62)

where
1 OR 2 OR OR OR 2
2 s,k1,kp 5,k ,kp s5,k1 k2 s,k1,kp
= d 2 d —2 2= )
> ~IBe) [( 2P > NTETOR op 1”( ]2 ) ”
IRk, ky ORs k& IR ky ky ORs ki k IRtk \*
2 SKT K2 Sa 15 2d 2 S7 1,K2 S7 1y 2d Sa 1,K2 d
TR ops " ae, ap P\ Tap )

Proof. Using Theorem 1 and the delta method (see [39] ) ,the asymptotic distribution

of the R, x, x, = &" (6) may be written as follows

(R&kl,kz - R57k1 ’kz) - N(O, 62)

aRqu,kzr: {3Rs,k1,k2 IR ki ke IRs ke O}T
20 By 7 9B, T 9By |

ORs ki ky s —pB3
o Zk <(P91 +61[32+ﬁ3)2) ,
IRk, iy _ s —qB3
P> Li ((pﬁl +qu+ﬁ3)2> ’

3Rs,k1,k222s< pBi + 4B )
9B K\ (oB1 +1B2+B3)?)
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and B~1 () is as defined in Theorem 1. Thus, it must be true that

1 OR 2 OR OR OR 2
62 _ [( asghkz) di+2 s,k1,ko s,k1,k2 dir + ( s, k1,k2> d»
1

IB(6)] Ipr I 9B,
IR i, ky ORs ) k IR, &, ky ORs i, k IRk, ky \
2 sK1,K2 S7 1y 2d +2 57 1,K2 sa 1, 2d + ( 57 1y 2> d
B B T 9B B O ps )
This concludes the proof. [

Therefore, a 100(1 — y)% asymptotic confidence interval of Ry, x, is given by
(Iésjq,kz _Z]_%’é) Ié&kl,kz +Z1_%’6> (416)

Where zy is the 100y — th percentile of N(0, 1).

4.3 Uniformly Minimum Variance Unbiased Estimator of R; ; s, II

In order to derive the UMV UE of reliability, the thesis starts with the following lemma.

Lemma 4. Let (X],Xz,...,an) 2 (YhYZ,---,Ynz) , and (Zl,Zz,...,Zm) be independent
random samples of sizes ny, np and m from the distributions Kw-G(a,pB),

Kw-G(a, B,) and Kw-G(a., B3) respectively. The statistic

(R,S,T) ( Zln [1-G(X)%] ,—fln[l —G(1)*] ,—iln[l —G(Zi)“]) :
i=1 '
is a complete sufficient statistic for @ = (B1, B2, B3).

Proof. The joint pdf of the random sample X = (X, ...,X,, ), is given by
ni

fx (x )" ﬁ (—)al) [TC —Gx)*)P

i=1 X,) i=1

i i=1

ni )G (x;)%! i m
N ol o)
L i=1 1L i=1
(4.17)
n
It follows that R = —Zln(l—G(Xi)O‘) is a sufficient statistic for f§; by the

I
R

Neyman-Fisher factorization criterion. R is also a complete sufficient statistic since the
pdf of B; can be written in the canonical exponential form 3.10. A similar approach

can be followed for S and 7. ]
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Let
X{ =-In[1-G(X1)], ¥ = —In[1-G(})"],
and
Zi = —In[l - G(Z))"]
Then it is easy to show that X[, Y|, and Z} are exponentially distributed random

variables with means [, ! B, ! and [33’1 respectively.

ny

Lemma 5. If X{ = —In[l = G(X)%] and U = =) _In(1—G(X;)*), the conditional
i=1

distribution of X{ given U is given by

Feru () (ny = 1) (u—x)m=2

O e 0<xi<u (4.18)

fxpw (1 |U) =

1
Likewise, for Y{ = —In[1 — G(Y1)%] and V = — Zln [1—G(Y;)], we have
i=1
le*,V()’T;V) (np — 1)(v—y*1‘)"2*2

fo‘|V(yT’V): fV(V) = a1 ,O<yT<v, 4.19)

m
and finally for Z{ = —In[1 — G(Z;)%] and W = — Zln [1—G(Z)%), we have that
i=1
Tzzw(Z,w)  (m—1)(w—z})"2

fzw (Z{ W) = ) = v O0<zi<w (4.20)

Proof. The proof runs parallel to a similar proof used by [48] in deriving the
UMVUE of P(X > Y) under progressive type-II sampling scheme. The proof is as
follows: Let Q = iP,- where P, = —In(1 — G(X;)%). Since the —In(1—G(X;)%)"s
are independent exll;énential random variables, each with mean ﬁf 1, it must be true

that Q ~ Gamma(ny — 1,B1). Moreover Q and P, are independent and their joint

distribution must be given by

for(a,p) = fola)fp (p) = b )qnl_ze_ﬁl(q+”) (4.21)

r (n1 —1
Defining X" = P and U = Q + Py and applying elementary transformation techniques

yields the joint distribution of X;" and U as

" 1 -2 —
fxru(xy,u) = ) M (i — )M 2P (4.22)
and similarly the marginal distribution of U is given by
1 —Uu ny—
fU(u) :mﬁ]nle Bll/l 1—1
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Consequently we get the conditional distribution of X| given U as follows

X fX*,U(X*,M) ny — 1) (u—x)m—2 .
fow T |U) = ‘fU(ul) _ (m )u(m—l Y 0<xi<u (4.23)

Thus, the expressions are still similar to the ones derived in the records case and

certainly for censored samples as well. The derivation of the remaining conditional

distributions as well as the proof of the following theorem are trivial. O]

Theorem 10. For ny; > 2, ny > 2, and m > 2 and the UMVUE of

_ B3
o(B1,B2,B3) = m,

denoted by oy (B, B2, B3), is given by

vV u
e vou
O (ny,ny,myu,v,w) lfw_max{h, k}
u v
ou(B,B2,B3) =< Qa(ni,nz,mu,v,w) zfzgmax{w,z} (4.24)
v u
Y u
Os(ny,np,m,u,v,w) th_max{w,k}

0= o (B)E () Gl

a=0 b=0 v (")
= A (1 (=), (1 =) 22 2
( iy
o= () ) B v () B o ()
- (mn‘ll) (L) (1,<1—n2>,<2—m>,n1+1;2—:‘,§)
o= (7)) B oo () B v o) G

0
m—1 v kv v
- YN (1,(0=n),2— Y
( ny )(hw) 1( (=m), (2 =m),na+ ’hu’hw)

andk=1i1+j1 #0, h=1i+ j» #0.

As was the case with upper record values, the UMVUE of Ry, «,, denoted by jokl ky?

must be

S
R =Y hou(0) (4.25)
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4.4 Closed Form of The Bayes Estimator Using Conjugate And Non-Informative

Priors 11

Assuming gamma priors for 31, B, and 3 given by
a B e P

r) Bi.bi,ai>0,i=1,2.3, (4.26)

n(Bi) =

the joint posterior function of B, 8, and B3 (see Section 2.2) can be written as

“V1“V2”V3
n-(e}r’p’s _ 1 2 3 vi—lpvy—1pv3—1

_) F(V])F(VZ)F(V3) 1 o) o) eXp(_Hlﬁl—ﬂzﬁz—H3ﬁ3)

4.27)
Where

ni 1
uy=a;— Y In[1-=G(x)%, tp =ar— Y In[1 —G(y)%]
i=1 i=

Y 1n[1 - G(z:)
i=1

H3 =asz—
l

The Bayes estimator of Ry, «,, denoted by Rf Ky ke is as follows

RYy 4 :/O‘”/O‘”/O‘”stkhkz (B, B2, B3)  (B1. B2, B3 | ot,x,y,2) dB1dBrd B3
© oo foo vi—1 pva—1pv
il S 1By Bylexp (=B — wofr — 13f3)
il [ ] ( PP+ 4o+ Bs )d"

1wy iy s’
I'(vi)["(v2)I"(v3)

Define a one-to-one transformation .7 by

where

%:

y— pB1 )
pB1+aB2+ B3 B1=xz/p
qP — B=yz/q

Y bBi+ 4B + B3
Bs=z(1-x—y)

z=pP1+aqpa+ps5 |
where p # 0 and g # 0. It is evident that Rf k, k, = 1 for the case when p =0 and ¢ = 0.

We note that

pB1+aqB> Bs .
pB1+qB2+ B3 pB1+4qpB2+ B3

Furthermore, the Jacobian of the transformation is given by

O<x+y=

<1,0<z<ooand

—X—y.

Jx,y,2)|=| 0 z/q y/q |=—.
-z —z l—x—y Pq
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Therefore, we have that

1—y
B W'y’ “3 Z Lyl
RS,kl 7k2 pvquZF(vl V3 k Vl V2 —X— y)

x g1Vt 1 exp {—z [wix/p+ .u2Y/61 + N3(1 —x—y)]} dzdxdy
1 1—y
A Yq [ [ e - o o) Y daay

where

(1-=01)" (1-02)"T (vi +v2+v3) W i
oi=1-HL 512

A= r'(vi)I(v)I (v3) ’ pU3 qu3

A Euler type integral representation of the Appell hypergeometric function of the first

kind, denoted by F7, as shown in [38] is as follows

F F 1—v
((bd))FE()a bdc dbxy / / ub= N (1 —u— )N (1 —ux — vy) " dudy
—c)

b>0,c>0,d—b—c>0, x| <1, |y <.
(4.28)

Using the result (4.28), together with functional relations of F; (see [38] formulae

9.183(1)), we can conclude that

071 (61,62), if |(71| <1, |(52| <1

B (61,62),if61<—1,62<—1

Riwi=\ @ if 1 —1
3(01,02), if [o1] < 1,00 <

w4<61762>7 if 01 < _17|62‘ <1

(4.29)

where
o = Zk 1—C‘7}11+V2+‘C}Y32))V2 (thvl,vbl—f—;v,,m,@)
@2 = Zk(V1+V2—|—V3 ki (1 b v2’1+;vl’66—1 626i1>
o Ta (e (ot fie S,
and

v3(l—o03) -0
ﬁ4=Zi(u F (1 vi,v3+1, 1+ZV1, 17627>-

Vi+va+v3 1—o0

Using Jeffery’s non informative priors, it can easily be shown that the Bayes estimator

assumes the same form as above with a; =ay = a3 = by = by = b3 =0.
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5. NUMERICAL EXPERIMENTS AND SIMULATIONS

In this section, Monte Carlo simulations are conducted to compare the performance
of the Bayes estimator, MLE and UMVUE of R, «, using upper record values
from the family of Kumaraswamy generalized distributions, Kw-G. Case 1: The
exponential distribution with rate parameter equal to 2 is used as the baseline, G, when
« is unknown. The performances of the estimators are compared in terms of mean
squared error (MSE). The HDP credible intervals are compared in terms of average
confidence lengths, and coverage probabilities (cp). All results are based on 1000
replications and computations are performed in MATLAB2010. When « is unknown,
the performance of the MLE and Bayes estimators under Lindley approximation
and MCMC method using four the parameter values 8 = («, B, B2, B3) = (1,1,2,2)
are compared. The confidence levels are held at 5% level of significance. The
true value of Ry, k, is evaluated for (s1,s2,k1,k2) = (2,1,2,2),(2,3,4,6). Bayes
estimators and HDP credible intervals are computed using following choices of prior
distributions : Prior 1: (81,0,83,64) = (2,1,1,3), (11,72, 73, %) = (2,2,1,1), Prior 2:
(81,62,83,04) = (1,1,2,3), (11, %, 13, 7a) = (1,2,3,1). Records samples are generated
using an algorithm from [49]. The results for Case 1 are reported in Table A.5 with
Lcg and Ly denoting the average asymptotic and credible interval lengths respectively.
cpcr and cpcg denote the respective coverage probabilities. It is observed that the MSE
decreases with increase in sample sizes as expected. This confirms the consistency of
the estimates. The average lengths of the asymptotic and Bayesian credible intervals
also decrease with increase in sample sizes and the coverage probabilities are at least
0.80 and 0.90 respectively. For low sample sizes, Lindley’s approximation has the
smallest MSE followed by the MCMC and MLE methods but the performance is
almost the same with increase in sample size. So, for samples large enough, any of
the estimates may be be employed. Case 2 : In the case that o is known the Weibull
distribution with scale and shape parameters given by 2 and 3 respectively, is used
as the baseline. The performance of the UMVUE, MLE and Bayes estimators under

Lindley approximation and MCMC method are compared with R, «, evaluated at 6 =
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(a,Bi, B2, B3) = (1,1,2,2) with (s1,s2,k1,k2) = (2,1,2,2). The asymptotic and HDP
credible intervals are compared in terms of average confidence lengths, and coverage
probabilities (cp). The prior used is Prior 3: (01,8,8) = (1,1,2), (7,7, 13) =
(2,3,1). The results of the simulations for Case 2 are reported in Table A.7 and Table
A.6. It is noted that the MSE in all the estimates decreases as sample sizes increases.
For low sample sizes, Lindley’s approximation has the least MSE followed by the
MLE and the MCMC method. Here we note that the UMVUE is not comparable
under the MSE criterion, see [20]. However, even for small sample sizes, the UMVUE
performs best among all the estimates in terms of biases and is therefore preferred in
practice. The asymptotic and Bayesian credibles intervals lengths together with their

corresponding coverage probabilities increase with increase in sample size.

5.1 Real Data Application

Recall the proposed model description from the introduction. Fatigue strength is a
factor of paramount importance in structural materials in order to ensure long-term
reliability of structures. It is vital to ensure that material used can sustain huge loads
without failure. High-strength low alloy steels are much stronger and tougher than
ordinary carbon steels and are highly resistant to corrosion, see [50] and [51]. Their
increased strength means that structures can be built to contain less steel and therefore
be lighter than they otherwise would be. They are often used in cars and trucks
because it leads to fuel economy and less damage to road surfaces. In this section,
we demonstrate how the model may be applied in real life by considering three sets of
data which were produced by [52] for evaluating specimen size effect in gigacycle
fatigue of high-strength JIS-SCM440 (AISI-4140) low-alloy steel under ultrasonic
fatigue testing. This paper extends an idea previously used by [53], [54] and recently
by Sales et al. [55]. In the present work, we propose a way of studying a well known
phenomenon in materials science and engineering that fatigue strength of a material
decreases with increasing specimen size (size effect), see [56] and [57]. The fatigue
test results on the three specimens were extracted with WebPlotDigitizer [58] due to
lack of raw data. The results are reported in Tables A.1, A.2, and A.3. As mentioned in
the introduction, the material-testing experiments produced results which are naturally

of records type, confirming [22]’s claim. So, there are a total of 18, 16, and 9 upper
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Figure 5.1 : ¢3mm, ¢7mm and ¢8x10mm specimens drawings.

record values form experiments 1, 2, and 3 respectively. In order to compare the
specimen fatigue lives, the samples for system component strengths of type 1 and type
2 will be represented by the fatigue life samples from any two specimens with the third
specimen sample used as stress sample. The Kumaraswamy-Lomax distribution with

a CDF given by

ay B
F(x)zl—{l—(l—ﬁ) } ,x>0,00>0,06>0,y>0,8>0, (5.1)

was found to fit the data well with parameter values (o,d,7,B1,B2,B63) =
(1,6234000,0.32958,0.9112,1.0831,1.5113), see Table A.4 for the corresponding
K-S distances and p-values. The goodness-of-fit tests were performed on the three data
sets with the help of EasyFit [59], MATLAB2010 [60], and R [61]. The lifetimes of the
@3mm (stress), ¢7mm (type 1 strength) and ¢8x 10mm (type 2 strength) specimens
are compared with the combination (s1,s2,k1,k2) = (1,1,1,1) which yields UMVUE
of Ry k, k, as 0.4151. That is, the fatigue lifetime of the ¢3mm specimen exceeds that

of both the $8 x10mm and ¢ 7mm specimens. These result is in agreement with [52]’s
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findings that under ultrasonic fatigue testing, the fatigue strength of specimens of

various sizes fell with increase in specimen sizes.

5.2 Conclusions And Possible Future Considerations

In this thesis, the estimation of stress-strength reliability in a multicomponent system
with non-identical component strengths based on upper record values was considered
under Bayesian and frequentist methods. The upper record value samples used were
generated using the algorithm of [49]. When the common shape parameter is unknown,
the MLE and Lindley estimator have similar performances for samples sizes large
enough. When the common parameter is known the paper also proposes for the first
time, the UMV UE of the reliability parameter using upper record values. The UMVUE
performs best in terms of biases and a preferred choice in practice as it is more accurate
even for small sample sizes. The asymptotic intervals perform better than Bayesian
credible intervals in terms of average lengths and vise versa in terms of coverage
probabilities. Despite having considered a system with non-identical components in
the present work, the family of distributions used was still the same. The assumption
of completely different probability distributions would certainly yield more realistic
models as they would account reasonably for the differences in system components’
structures. Additionally a lot has not been done in multicomponent stress-strength
models for the case of components’ strengths degradation over time as alluded by [15].
Investigations are underway on these issues. The mesh of the present model with that

of [12] and [11] could also lead to interesting findings.
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APPENDIX A.1

Table A.1 : $3mm specimen

fatigue test data

Experiment 1

~ Specimen Num- | Fatigue

ber Life(number
of cycles to
failure)

1 1017286

2 2989152

3 4059346

4 4256299

5 8376572

6 9560400

7 13007977

8 25303118

9 33621704

10 55951560

11 101155984

12 144322192

13 376711232

14 731957760

15 9444513800

16 9912163300

17 9918688300

18 9921105900

Table A.3 : $8x10mm
specimen fatigue

test data

Experiment 3

" Specimen Num-
ber

Fatigue
Life(number
of  cycles
failure)

to

O 001N N b W=

289867
1291756
6404257
7848468
9374890
31500474
211678768
5575744500
5926607400

Table A.2 : ¢7mm specimen
fatigue test data

Experiment 2
Specimen Num- | Fatigue
ber Life(number
of cycles to
failure)
611670
890099
974460
3461990
13640537
26045358
28147395
31216343
39400852
134652209
217309470
277856285
350706504
6441526000
6783606914
8452132412

00 1N N B W=

Pt ek ek e e \O
ANk W= O

Table A.4 : Kolmogorov-Smirnov
Goodness of Fit Test

Specimen size Test Statistic p-value

¢3mm specimen 0.1113 0.9606

¢7mm specimen 0.1369 0.8860

¢8x 10mm specimen 0.1836 0.8501
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APPENDIX A.2

Table A.S : Estimating R; x, x, using Prior 1 and Prior 2 with
(Sl,SQ,kl,kz) = (2, 1,2,2) and (Sl,Sz,kl,kz) = (2,3,4,6).

A A

(ni,m2,m)  Ropky Rogry, RE, ., RME CI/CR Ler/Ler cpci/cpcr
(5.5.6) 04667 0.4641 0.4005 0.3954 (0.2660,0.6621) 0.3961/0.4236 0.8020/0.9280
™ ' 0.0204 0.0234 0.0123 (0.1885,0.6121)
(10.10.11) 0.4672 0.4360 0.4204 (0.3111,0.6232) 0.3121/0.3377 0.8360/0.9190
T 0.0106 0.0084 0.0078 (0.2538,0.5915)
(15.15.16) 0.4657 0.4487 0.4312 (0.3336,0.5979) 0.2644/0.2901 0.8680/0.9280
T 0.0075 0.0068 0.0061 (0.2873,0.5774)
(20.20.21) 0.4640 0.4541 0.4408 (0.3479,0.5801) 0.2322/0.2582 0.8750/0.9100
T 0.0055 0.0055 0.0064 (0.3125,0.5707)
(25.25.26) 0.4636 0.4577 0.4692 (0.3588,0.5685) 0.2097/0.2386 0.8820/0.8370
T 0.0042 0.0043 0.0125 (0.3507,0.5893)
(5.5.6) 0.7009 0.6549 0.4575 0.5558 (0.4385,0.8661) 0.4276/0.5115 0.7510/0.9040
= ’ 0.0300 0.0796 0.0281 (0.3010,0.8125)
(15.15.16) 0.6844 0.6156 0.6173 (0.5382,0.8306) 0.2924/0.3443 0.8490/0.8920
T 0.0097 0.0136 0.0122 (0.4434,0.7878)
(20.20.21) 0.6928 0.6438 0.6379 (0.5641,0.8215) 0.2574/0.3044 0.8570/0.9040
T 0.0070 0.0087 0.0085 (0.4835,0.7879)
(30.30.31) 0.7006 0.6687 0.6961 (0.5954,0.8058) 0.2104/0.2666 0.9260/0.9390
7 0.0032 0.0039 0.0063
(35.35.36) 0.7000 0.6697 0.7362 (0.6046,0.7954) 0.1908/0.2629 0.9350/0.9060
T 0.0022 0.0029 0.0094

* The second row represents the MSE of the estimates.
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Table A.6 : Estimating R; x, x, using Prior 3 with (s1,52,k1,k2) = (2,1,2,2).
(n1,m,m)  Ropky, Roksy RE ,kz Iég‘{kcl «» UMVUE CI/CR Ler/Ler cper/eper
(556  0so00 04810 05562 03634 04972 (0.3504,0.6117) 02613/0.4341 0.6330/0.8400

- ' 00198 00169 0.0238 00233 (0.1564,0.5906)
-0.0190 0.0562 —0.1366  -0.0028
a0 i 04927 05271 04058  0.5000 (0.3907,0.5946) 0.2039/0.3522 0.6850/0.8800
= 0.0098 0.0086 0.0132  0.0107 (0.2340,0.5862)
-0.0073  0.0271 —0.0942 0.0000269
(15.15.16) 04922 05145 04333 04968 (0.4061,0.5783) 0.1721/0.3041 0.6830/0.9010
> 00072 00064 0.0084 00077 (0.2831,0.5872)
-0.0078 0.0145 —0.0667  -0.0032
20,2021 04907 05075 04501 04968 (0.4146,0.5668)  0.1523/2711 0.7070/0.9130
- 00052 00047 00057  0.0054 (0.3154,0.5865)
-0.0093  0.0075 —0.0499  -0.0061
25.25.26) 04980 05112 04677 05007 (0.4294,0.5666) 0.1372/0.2471 0.7150/0.9520
o 0.0041 0.0039  0.0037  0.0042 (0.3445,0.5916)
-0.0020 00112 —0.0323  0.00066
(30.30.35) 05147 05251 04973 05176 (0.4563,0.5731) 0.1168/0.2230 0.7930/0.9840
o 0.0023 00026 0.00181  0.0025 (0.3860,0.6091)
00147 0.0251 —0.0027  0.0176
(35.35.36) 05012 05031 04841 05031 (0.4447,0.5577) 0.1130/0.2139 0.8630/0.9840
o 0.0014 0.0015 0.00141  0.0015 (0.3773,0.5912)
00012 00114 —0.0159  0.0031

* The second and third rows represent the MSE and Bias of the estimates respectively.
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Table A.7 : Estimating R; x, x, using Prior 3 with (s1,52,k1,k2) = (2,1,2,2).
(mi,m2,m)  Rigky, Rk, Rbg,, RV, UMVUE CI/CR Ler/Ler epci/epcr
(5.5.6) 0.5000 0.4841 0.6479 0.5731 0.5010 (0.3536,0.6146) 0.2610/0.4592 0.6420/0.9720

= ’ 0.0191 0.0385 0.0106 0.0010  (0.3536,0.6146)
-0.0159 0.1479 0.0731  -0.0010
(15.15.16) 0.4953 0.5431 0.5580 0.5000 (0.4088,0.5818) 0.1730/0.3046 0.6800/0.9080
T 0.0075 0.0071 0.0077 0.0078  (0.4045,0.7046)
0.0047  0.0431 0.0580 -0.00004
(20.20.21) 0.4943  0.5307 0.5548 0.4977 (0.4185,0.5701) 0.1516/0.2705 0.7050/0.9060
” 0.0053  0.0051 0.0052 0.0066  (0.3154,0.5865)
0.0057  0.0307 0.0548  -0.0023
(25.25.26) 0.4941 0.5234 0.5527 0.4967 (0.4257,0.5625) 0.1368/0.2451 0.7130/0.8700
” 0.0043  0.0042 0.0062 0.0044  (0.4297,0.6747)
-0.0059 0.0234 0.0527 -0.00033
(30.30.31) 0.4850 0.5115 0.5348 0.4869 (0.4209,0.5491) 0.1282/0.2234 1.00/1.00
7 0.0023  0.0026 0.0018 0.0025 (0.4176,0.6410)
-0.0150 0.0115 0.0348  -0.0131
(35.35.36) 0.5018  0.5239 0.5577 0.5037 (0.4453,0.5582) 0.1129/0.2106 0.8450/0.9130
T 0.0015 0.0015 0.0019 0.0045 (0.4517,0.6623)
0.0018 0.0239 —0.0577 0.0037
(40.40.41) 0.5030 0.5241 0.5574 0.5047 (0.4519,0.5541) 0.1022/0.1986 0.9060/0.9250
T 0.00084 0.0013 0.0040  0.00088  (0.4576,0.6562)
0.0030 0.0241 0.0574 0.0047

* The second and third rows represent the MSE and Bias of the estimates respectively.
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