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ESTIMATION OF STRESS - STRENGTH RELIABILITY
FOR A NON - IDENTICAL - COMPONENT - STRENGTHS SYSTEM

BASED ON UPPER RECORD VALUES

SUMMARY

Since its inception in 1956, the stress-strength model has produced hundreds of
papers and even now researchers are flocking to take advantage of this simple yet
rewarding model. Each paper produced has always tried to fill gaps in the literature
or modify the model to suit desired applications, and the present work is no different.
Motivated by the lack of literature on multicomponent stress-strength models based
on record values, this thesis is an attempt to produce more realistic stress-strength
models by deviating from the much studied traditional way of assuming identical
strengths for system components. The thesis considers the estimation of stress-strength
reliability in a multi-component system with non-identical component strengths based
on upper record values from the family of Kumaraswamy generalized distributions.
In frequentist estimation, the maximum likelihood estimator (MLE) of the reliability,
its asymptotic distribution and asymptotic confidence intervals are constructed. Bayes
estimates under symmetric (squared error) and asymmetric (LINEX) loss functions
using conjugate prior distributions are derived and corresponding highest probability
density (HPD) credible intervals are also constructed. In Bayesian estimation, Lindley
approximation and the Markov Chain Monte Carlo (MCMC) method are employed
due to lack of explicit forms. For the first time using records, the uniformly minimum
variance unbiased estimator (UMVUE) for the multicomponent system reliability
parameter is derived for a common and known shape parameter of the stress and
strength variates distributions. Comparisons of the performance of the estimators
are carried out using Monte Carlo simulations, the mean squared error (MSE), bias,
credible sets and coverage probabilities. The similarity in the definitions of both upper
and lower record values implies that the present work may be regarded as covering the
case of lower record values. Finally, the prevalent natural occurrence of record type
data in practice, especially in life tests and industrial tests, leads to a demonstration
being presented on how the proposed model may be utilized in materials science and
engineering with the analysis of high-strength steel fatigue life data. The example also
serves to show that the model may be applied in comparisons problems. The thesis
is concluded with possible future considerations for improving the stress-strength
model.
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REKOR DEĞERLERINE DAYALI
BENZER - OLMAYAN - BİLEŞENLERLİ SİSTEM İÇİN

STRES - DAYANIKLILIK GÜVENİLİRLİĞİNİN TAHMİNİ

ÖZET

Stres-dayanıklılık modelinde, güvenilirlik, X gücüne sahip bir nesnenin, üzerine Y
tarafından uygulanan belli miktarda bir baskıya dayanmasıdır. Matematiksel olarak
stres-dayanıklılık güvenilirliği böyle tanımlanır:

R = P(X > Y ) (1)

1956 yılında Bernbaun tarafından ortaya atıldığından bu yana, stres-dayanıklılık
modeli hakkında yüzlerce sayfa yazı yazılsa da araştırmacılar halen basit ama değerli
olan bu modelden faydalanmak için uğraşmaktadırlar. Üretilen her bir çalışma daima
ya literatürdeki boşlukları doldurmaya ya da istenilen uygulamalara cevap verebilmek
için modeli değiştirmeye yönelik olmuştur ve burada yapılan çalışmaların da bundan
bir farkı yoktur. Temel model R = P(X > Y ), iki veya daha fazla bileşenden
oluşan bir sistem durumunda genişletilebilir. Bu sistemin, k-dan-s: G çıkışlı sistemi
olarak bilinen, ortak bir strese sahip, bağımsız ve aynı şekilde dağıtılan (i.i.d.) güç
bileşenlerinden oluştuğu varsayılmaktadır. Sistem, k, (1≤ s≤ k) ’dan çıktığında işlev
görüyor ve bileşenler strese dayanabiliyor. Matematiksel olarak model ağşadaki gibi
tanımlanır:

Rs,k = P(en az s (X1, ...,Xk) Y ′den daha buyuk)

=
k

∑
j=s

(
k
j

)∫ ∞

0
[1−F(x)] j[F(x)]k− jdG(x)

(2)

(X1, ...,Xk) i.i.d’dir, cdf F(.) ve Y ortak stresdir ve rastgele güçlükler cdf G(.)’dir.
Çok bileşenli stres-dayanıklılık güvenilirliği ile ilgili mevcut literatürün çokluğununda
i.i.d rastgele değişkenler olarak varsayıldığı dikkat çekmektedir. Bununla birlikte,
bir sistemin bileşenlerinin yapıları farklı olduğunda, dayanıklılık değişkeni üzerindeki
benzerlik varsayımı geçerli değildir. Örneğin mekanikte istenen mekanik özelliklerin
elde edilmesi için ısıyla işlemden geçirme, söndürme veya soğutma madde üzerinde
çeşitli çatlamalara neden olabilir. Kaynak veya sert lehimleme gibi birleştirme
işlemleri, kaynak alanındaki döküm hatalarına, ve bitişik ısı etkilenen bölgelerdeki
çatlaklara neden olabilir ve sonuçta bileşenler farklılaşır. En azından, sistem
bileşenlerini benzer olmayan rastgele güçlülüğe sahip sayan bir model doğal olarak
daha gerçekçi bir fikir gibi görünmektedir. Tamamen farklı olasılık dağılımlarını takip
eden güç değişkenlerine sahip bir model bu açıdan daha cazip. Öyleyse, k1 bileşenlerin
1. tip ve kalan k2 = k− k1 bileşenleri 2. tip olan k bileşenlerini içeren bir sistem
olduğunu varsayalım. i. tip türünün bileşenleri için rasgele bileşen güçlerinin dağılım
fonksiyonu olarak Fi, i = 1,2 olsun. Tüm bileşenlerin bir dağıtım fonksiyonu H ile
ortak bir gerilime Y maruz bırakıldığını varsayalım. Sistem, k bileşenleri işlevinin
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dışında s olduğu sürece çalışır. Sözü edilen model için (2), buna göre modifiye
edilebilir.

Rs,k1,k2 =
k1

∑
j1=s1

k2

∑
j2=s2

(
2

∏
i=1

(
ki

ji

))∫ ∞

0

2

∏
i=1

(
[1−Fi(x)]

ji [Fi(x)]
ki− ji

)
dH(x) (3)

Bu fikir, birden fazla kategori bileşen türüne kadar genişletilebilir. k1 = 0 ise (3) (2) da
bilinen s -out-of-k sistem güvenilirlik modeline indirgenir

Rs,k2 =
k2

∑
j2=s2

(
k2

j2

)∫ ∞

0
[1−F2(x)] j2[F2(x)]k2− j2dH(x).

k1 = 0 ise ve k2 = s = 1 ise, (3) (1) R = P(X > Y ) temel modele indirgenir

R =

∫
∞

0
[1−F2(x)][F2(x)]dH(x)

Bugüne kadar stres-dayanıklılık güvenilirliği tahmininde yapılan çalışmaların çoğu-
nun, tam veya sansürlü örneklerin kullanılmasını gerektirdiğini ve rekor değerleri
ile çok şey yapılmadığını ve daha fazlasını belirtmek gerekir, özellikle de rekorlarla
çok bileşenli sistem güvenilirliğinin tahmini. Endüstriyel stres testleri gibi bazı
çalışmalarda, tüm gözlemler dikkate alınmaz, ancak ölçümler sıralı yapılabilir ve
yalnızca önceki değerlerden daha büyük veya daha düşük değerler kaydedilir. Bu
tür veriler rekor değerleri olarak bilinir. Yapılan ölçümlerin sayısı bu nedenle tam
numune boyutundan küçüktür. Bu, tüm numunenin yok edilebileceği yıkıcı testlerde
çok önemli olabilir. Rekor değeri verileri doğal olarak çeşitli bağlamlarda ve pratik
durumlarda ortaya çıkar. Meteorolojik analiz, spor ve atletizm olayları, petrol ve
madencilik anketleri gibi örnekler verilebilir. Ayrıca, bazı hidrolojik ve maddi test
verileri doğal olarak rekor tipinde olduğu fark edilmiştir. Bu çalışmada, rekor
değerlerine dayalı çok bileşenli stres-dayanıklılık modelleri sistem bileşenlerini benzer
(identical) kabul etmeyerek, daha gerçekçi stres-dayanıklılık modellerinin üretilmesi
amaçlanmıştır. Bu modelleme, genelleştirilmiş Kumaraswamy dağılım ailesi için
gerçekleştirilmiş ve çok bileşenli sistemdeki stres-dayanıklılık güvenilirliğinin tahmini
çeşitli istatistiksel yaklaşımlarla değerlendirilmiştir. Klasik istatistiksel tahmin
yöntemleriyle stres-dayanıklılık güvenilirliğin en çok olabilirlik tahmin edicisi
(MLE), asimptotik dağılım ve asimptotik güven aralıkları oluşturulmuştur. Diğer
yandan, Bayesci tahmin yöntemleriyle, simetrik (karesel hata) ve asimetrik (LINEX)
kayıp fonksiyonları altında, eşlenik önsel dağılımlar kullanılarak stres-dayanıklılık
güvenilirliğini tahmin edicisi ve Bayes en yüksek olasılık yoğunluğu (HDP)
güven aralıkları elde edilmiştir. Bayes tahmin yönteminde, Lindley yaklaşımı ve
Markov zinciri Monte Carlo (MCMC) yöntemi, açık formüllerin eksikliği nedeniyle
kullanılmıştır. Bu çalışmada yeni olan, bileşenlerin aynı dağılımdan ancak benzer
olmayan parametre varsayımı altında rekor değerlerine dayalı, çok bileşenli sistem
güvenilirliği parametresi için düzgün en küçük varyanslı yansız tahmin edicisi
(UMVUE) elde edilmiş olmasıdır. Tahmin edicilerin karşılaştırmaları Monte Carlo
simülasyonları, karesel ortalama hata, bias, credible sets ve kapsama olasılıkları
kullanılarak gerçekleştirilmiştir. Üst ve alt rekor değerlerinin tanımlarındaki benzerlik,
mevcut çalışmanın alt rekor değerler içinde elde edilebilir. Son olarak, pratikteki
rekor türü verilerinin yaygın doğal oluşumu, özellikle de yaşam sınamalarında
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ve endüstriyel sınamalarda, yüksek mukavemetli çelik yorma yaşam verilerinin
analiziyle, bu çalışmada önerilen modelden malzeme bilimi ve mühendisliğinde
nasıl faydalanılabileceği gösterilmiştir. Bu örnek ayrıca modelin karşılaştırma
problemlerinde uygulanabileceğini de göstermektedir.

Tezin aşağıdaki şekilde düzenlenmiştir. 2. bölümde, Rs,k1,k2’ daki MLE ve Bayesçi
tahminciler, yaygın ve bilinmeyen bir şekil parametresi α için türetilmiştir. Bayesian
tahmini altında, önceki davada SE ve LINEX kayıp fonksiyonları altında Lindley
yaklaşımı ve MCMC yöntemi kullanılmıştır. İlgili asimtotik aralıklarla birlikte HPD
güvenilir aralıkları da oluşturulmuştur. 3. bölümde, α bilindiğinde Rs,k1,k2 ’lık
MLE ve Bayesçi tahmincileri türetilir. Yaklaşık, kesin ve HPD güvenilir aralıkları
oluşturulmuştur. Ek olarak, rekor değerlerine dayalı Rs,k1,k2 UMVUE sunulmuştur. 4.
bölümde tam örnekleri kullanarak Rs,k1,k2 MLE ve UMVUE türetilmiş ve kayıtların
durumu ile karşılaştırılmıştır 5. bölümde, tahmin edicileri karşılaştırmak için sayısal
denemeler ve Monte Carlo simülasyonları gerçekleştirilmiştir. 5.1. alt bölümde,
modelin nasıl kullanılacağına dair bir illüstrasyon, yüksek mukavemetli yorulma ömrü
verisinin analizi ile gösterilmiştir. Tez, 5.2. alt bölümde stres-dayanıklılık modelinin
gelişimine yönelik olası gelecek yönelik çalışma önerileriyle tez sonuçlandırılmıştır.
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1. INTRODUCTION

In a stress-strength model, reliability refers to the ability of an object with a strength

X to withstand a certain amount of stress Y exerted on it. If at some point the stress Y

exceeds the strength X , the object will cease to function properly. Due to the inherent

uncertainties in the constituents of the environment in which the system lives such as

pressure, temperature or humidity as well as the uncertainties in the object’s strength

(or resistance) due to factors such as material composition or design style, X and Y are

assumed to be random in nature. It is therefore reasonable to quantify this quantity,

denoted by R, probabilistically as R = P(X > Y ). In other words, reliability is defined

as the probability that the object has enough strength to withstand the stress. This

idea was first introduced by [1] and later developed by [2]. Since then hundreds

of papers have been published on this simple model alone. Despite its simplicity,

the stress-strength model is very useful and arises frequently in different branches of

science and engineering such as life testing and clinical trials [3]. The basic model

R = P(X > Y ) may be extended to the case of a system made up of two or more

components. Reliability in such a multicomponent stress-strength model was first

developed by [4]. This system, known as an s-out-of-k: G system, is assumed to

be made up of k independent and identically distributed (i.i.d.) strength components

with a common stress. The system is considered to be functioning as long as s out

of k, (1≤ s≤ k), components can withstand the stress. Mathematically the model is

defined as

Rs,k = P(at least s of (X1, ...,Xk) exceed Y )

=
k

∑
j=s

(
k
j

)∫ ∞

0
[1−F(x)] j[F(x)]k− jdG(x)

(1.1)

where the (X1, ...,Xk) are the i.i.d. random strengths with cdf F(.) and Y is the common

stress variate with cdf G(.).

1



1.1 What Has Been Done So Far

Estimation of reliability in a multicomponent system using (1.1) for various

distributional assumptions on the strengths and stress variates has been extensively

covered in literature. [5] studied system reliability when the (X1, ...,Xk) follow

the absolutely continuous multivariate exponential distribution while Y follows an

independent exponential distribution. [6] studied the classical and Bayesian estimation

of reliability in a multicomponent system assuming the Weibull distribution for stress

and strength variates. The Generalized exponential, Burr type III, Log-logistic,

and Inverse Reyleigh distributions cases were considered by [7], [8], [9] and [10]

respectively among many others. The most recent works include the use of bivariate

distributions by [11], [12]. The system components therein are constructed by a pair

of s-independent elements (X1,Y1),(X2,Y2), ...,(Xk,Yk) following the Marshal-Olkin

Bivariate Weibull or bivariate Kumaraswamy distributions with a common stress T

acting on all the components. A comprehensive review of the literature on classical

and bayesian estimation of stress-strength reliability and some of its parallels is

provided by [13], [14] and [15]. It is worth noting that much of existing literature

on multicomponent stress-strength reliability assumes strength variates to be i.i.d.

random variables. However, when the structures of the components of a system

are different, the identicality assumption on strength variates is not practical, [15].

For instance, in mechanics, heat treating to obtain desired mechanical properties

can cause various types of cracking upon quenching or cooling. Joining operations

such as welding or brazing can result in casting defects in the weld area as well

as cracks in the adjacent heat-affected zones, ( [16]) and this ultimately makes the

components different, however slight the difference may be. A model which at least

considers system components to have non-identical random strengths naturally seems

a more realistic idea. A model with strength variates following completely different

probability distributions is more appealing in this regard. However, mathematical

tractability of resulting expressions has proven daunting and progress is often stalled.

Progress in this direction would yield more realistic models.
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1.2 Model Description

Suppose that there is a system consisting of k components of which k1 of the

components are of type 1, k2 are of type 2,..., and the remaining kn = k−∑
n
i=1ki

components are of type n. Let Fi , i = 1,2, ...,n be the distribution function of

the random component strengths for components of the i-th type. Assume that all

components are exposed to a common stress Y with a distribution function H. For the

aforementioned model, (1.1) can be modified accordingly to be

Rs,k1,...,kn =
k1

∑
j1=0

...
kn

∑
jn=0

(
n

∏
i=1

(
ki

ji

))∫ ∞

0

n

∏
i=1

(
[1−Fi(x)]

ji [Fi(x)]
ki− ji

)
dH(x) (1.2)

where summation ranges over all possible combinations ( j1, j2, ..., jn) with 0≤ ji ≤ ki

for i = 1,2, ...,n such that s ≤ ∑
n
i=1 ji ≤ k. In the present work, the case of a system

with two types of components is investigated. The system is regarded as working if s1

and s2 components of types 1 and 2 respectively can withstand the common stress. In

this case, the model (1.2) can be written as follows

Rs,k1,k2 =
k1

∑
j1=s1

k2

∑
j2=s2

(
2

∏
i=1

(
ki

ji

))∫ ∞

0

2

∏
i=1

(
[1−Fi(x)]

ji [Fi(x)]
ki− ji

)
dH(x) (1.3)

where summation ranges over all possible pairs ( j1, j2) with 0≤ j1 ≤ k1 and 0≤ j2 ≤

k2 such that s ≤ j1 + j2 ≤ k ,see [15]. This idea can be extended to more than two

category types of components. Furthermore, one can assume each component to be of

a different type. This idea is demonstrated later on for a much simplified version of

the model (1.3). When k2 = 0 then (1.3) reduces to the well known s-out-of-k system

reliability model in (1.1)

Rs,k1 =
k1

∑
j1=s1

(
k1

j1

)∫ ∞

0
[1−F1(x)] j1[F1(x)]k1− j1dH(x).

If k2 = 0 and k1 = s = 1, then (1.3) reduces to the fundamental model R = P(X > Y )

R =

∫
∞

0
[1−F1(x)][F1(x)]dH(x)

The model (1.3) is not new to statistical literature. [17] and [18] investigated the MLE

and Bayesian estimation of Rs,k1,k2 assuming the Weibull and exponential distributions

on the strength and stress variates respectively. Hassan et al. [19] considered various

estimation methods for Rs,k1,k2 when the non-identical component strengths and stress
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variates follow the exponentiated Pareto distribution. One of the objectives of this

article is to improve the inference methods of the model given recent considerable

development in the stress-strength reliability models. It is also worth pointing out that

most of the work done so far on estimation of stress-strength reliability assumes the

use of complete or censored samples and a lot has not been done with record values,

( [20]), and more so estimation of multicomponent system reliability with records.

1.3 What are Record Values?

In some studies, such as industrial stress tests, not all observations are considered

but measurements may be made sequentially and only values larger (or smaller) than

all previous ones are recorded. Such data is known as record data. The number of

measurements made is therefore smaller than the complete sample size. This can

be crucial in destructive sampling where all the sample may be destroyed. Record

value data arise naturally in a variety of contexts and practical situations. [21] gives

examples such as meteorological analysis, sports and athletics events, and oil and

mining surveys. Furthermore, some hydrological and material-testing data have been

noticed to be naturally of records type by [22]. Formally, if X1, X2,... is an infinite

sequence of i.i.d. random variables from a continuous distribution with cdf F and pdf

f , then an observation X j is called an upper record value (or simply record) if its value

exceeds that of all previous observations. Thus, X j is a record if X j > Xi for every i< j.

A similar definition can be given for lower record values. The main concept of records

was first presented by [23] and detailed theory and methods of statistical inference

based on records was later developed by [24], [25], as well as [26]. Estimation of

R = P(X > Y ) based on records was studied by [27], [3], [28], [29], [?] and recently

by [30] among many others.

1.4 Kumaraswamy Generalized Family of Distributions

The past decades have seen an enormous increase in the interest to develop new and

more flexible statistical distributions. The spark in interest has been motivated mainly

by an apparent need to find models that are a better fit to our modern real data which

is often characterized by high to moderate degrees of skewness and kurtosis. New

distributions are discovered almost daily and they are developed to model various
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kinds of data from fields such as biology, economics, reliability engineering and many

others. Recently there has been a further increased interest in defining new families of

continuous distributions by introducing additional shape parameters to already existing

parent distributions. These new classes of distributions so generated, contain not only

new distributions which provide better fits, but also contain existing distributions as

special sub-models as well. Thus this enables one to study a variety of distributions in

one go with a single representation. From [31]’s idea of a class of beta generalized

distributions and a distribution for double bounded random processes introduced

by [32], [33] constructed an interesting new family of generalized distributions, the

Kumaraswamy generalized (Kw-G) distributions. This class is defined as follows: For

any parent distribution function G(x), the cumulative distribution function (cdf) of the

Kw-G distribution is given by

F(x) = 1−{1−G(x)α}β , (1.4)

where α,β > 0 are additional shape parameters to the G distribution which introduce

skewness and vary tail weights.Its probability density function (pdf) is given by

f (x) = αβg(x)G(x)α−1{1−G(x)α}β−1 (1.5)

where

g(x) =
d
dx

G(x) (1.6)

If X is a random variable having the pdf (1.5), it will be denoted by X ∼ Kw-G(α,β ).

It is also imperative to note that the parameters of the underlying baseline distribution,

G, are assumed known in the model. Furthermore, in order to avoid complications with

mathematical tractability of resulting pdf formulas when using (1.5), caution must be

exercised in choosing a baseline distribution. Since its inception nearly seven years

ago, the Kw-G distribution has received a considerable amount of attention from the

statistical community, with over 282 citations to date. Its versatility and effectiveness

in a variety of situations has been portrayed in numerous papers. From modelling

the number of millions of revolutions reached by ball bearings before fatigue failure

by [34], to modelling the number of absences among shift-workers in a steel industry

by [35]. The introduction of the two parameters α and β allows the Kw-G distribution

to assume a wide range of shapes. Which is an ideal ability in data fitting and modeling.

According to [33], because of its tractability, the Kw-G distribution can be effective

5



even if the data are censored and one of its major benefits is its ability of fitting skewed

data that can not be properly fitted by existing distributions. [36] demonstrated this

ability by applying the Kumaraswamy Weibull distribution to failure data. The Kw-G

family of distributions includes as special models the Kumaraswamy distribution as

well as the Beta-generalized distribution by Eugene among several others. It is also

obvious that for α = β = 1, Kw-G≡G. A physical intepretation of (1.4) given by [33]

when α and β are positive integers is as follows. Consider a system formed by β

independent series components and that each compomponent is made up of α parallel

independent subcomponents. The system fails if any of the β components fails and

each component fails if all of the α subcomponents fail. The time to failure distribution

of the entire system has precisely the Kw-G distribuiton. A recent and lucid account of

literature on the applications of Kw-G distributions to date can be found on the doctoral

thesis by [37].
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2. ESTIMATION OF Rs,k1,k2 FOR UNKNOWN α I

2.1 Maximum Likelihood Estimation of Rs,k1,k2

From the total of k system components in the model (1.3), let the first k1 type 1

component strengths follow a Kw-G distribution with parameters α and β = β1, while

the remaining k2 = k−k1 type 2 component strengths follow a Kw-G distribution with

parameters α and β = β2 . Assume further that Y follows a Kw-G distribution with

parameters α and β3 independently. The respective distribution functions are

F1(x) = 1−{1−G(x)α}β1

F2(x) = 1−{1−G(x)α}β2

H(x) = 1−{1−G(x)α}β3

 (2.1)

Substitution of (2.1) into (1.3) yields :

Rs,k1,k2 =
k1

∑
j1=s1

k2

∑
j2=s2

(
2

∏
l=1

(
kl

jl

))∫ ∞

0

2

∏
l=1

(
[1−G(x)α ] jlβl [1−{1−G(x)α}βl ]kl− jl

)
×β3αg(x)G(x)α−1 [1−G(x)α ]β3−1 dx, set t = 1−G(x)α

=∑
s
k

∫ 1

0
u

 2

∑
i=1

( ji + ii)βi +β3−1


du

=∑
s
k

(
β3

pβ1 +qβ2 +β3

)
(2.2)

where

∑
s
k ≡

k1

∑
j1=s1

k2

∑
j2=s2

(
2

∏
l=1

(
kl

jl

)) k1− j1

∑
i1=1

k1− j1

∑
i2=1

(
2

∏
l=1

(
kl− jl

il

)
(−1)il

)
(2.3)

and

p = j1 + i1, q = j2 + i2 (2.4)

It is noted that the reliability expression (2.2) is independent of the common parameter

α . Furthermore, it can also be shown that under the same setup, Rs,k1,k2 assumes a

similar form for other lifetime distributions such as Weibull, Rayleigh, Gompertz,

Burr Type III and several other distributions commonly used to model reliability
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data. The main goal of this paper is to estimate Rs,k1,k2 using upper records data

from the Kw-G distribution. In order to find the MLE of Rs,k1,k2 , we first need to

obtain the MLEs of the parameters α ,β1, β2, and β3. So let R1, ..., Rn1 , P1, ....,Pn2

and S1, ..., Sm be independent random samples of upper records of sizes n1, n2 and m

from the distributions Kw-G(α,β1), Kw-G(α,β2) and Kw-G(α,β3) with relializations

r = (r1,...,rn1), p = (p1, ..., pn1), and s = (s1, ...,sm) respectively. The respective

likelihood functions of the observed samples of records as given by [25] are

L1(α,β1|r) = f (rn1)
n1−1

∏
i=1

f (ri)

1−F(ri)
, 0 < r1 < ... < rn1 < ∞

=(αβ1)
n1g(rn1)G(rn1)

α−1{1−G(rn1)
α}β1−1

n1−1

∏
i=1

g(ri)G(ri)
α−1

1−G(ri)α

=(αβ1)
n1{1−G(rn1)

α}β1
n1

∏
i=1

g(ri)G(ri)
α−1

1−G(ri)α

(2.5)

L2(α,β2|p) = f (pn2)
n2−1

∏
i=1

f (pi)

1−F(pi)
, 0 < p1 < ... < pn2 < ∞

=(αβ2)
n2{1−G(pn2)

α}β2
n2

∏
i=1

g(pi)G(pi)
α−1

1−G(pi)α

(2.6)

L3(α,β3|s) = f (sm)
m−1

∏
i=1

f (si)

1−F(si)
, 0 < s1 < ... < sm < ∞

=(αβ3)
m{1−G(sm)

α}β3
m

∏
i=1

g(si)G(si)
α−1

1−G(si)α

(2.7)

The joint likelihood function of (α,β1,β2,β3) based on the observed record values r ,

p and s is therefore given by

L =
3

∏
i=1

Li

=α
(n1+n2+m)

β
n1
1 β

n2
2 β

m
3 {1−G(rn1)

α}β1{1−G(pn2)
α}β2{1−G(sm)

α}β3

×
n1

∏
i=1

g(ri)G(ri)
α−1

1−G(ri)α

n2

∏
i=1

g(pi)G(pi)
α−1

1−G(pi)α

m

∏
i=1

g(si)G(si)
α−1

1−G(si)α

(2.8)

and the corresponding joint log-likelihood function, denoted by l, is written as

l =(n1 +n2 +m) lnα +n1 lnβ1 +n2 lnβ2 +m lnβ3

+β1 ln [1−G(rn1)
α ]+β2 ln [1−G(pn2)

α ]+β3 ln [1−G(sm)
α ]

+
n1

∑
i=1

lnS(ri)+
n2

∑
i=1

lnT (pi)+
m

∑
i=1

lnU(si).

(2.9)
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where

S(ri) =

(
g(ri)G(ri)

α−1

1−G(ri)α

)
,

T (pi) =

(
g(pi)G(pi)

α−1

1−G(pi)α

)
, and

U(si) =

(
g(si)G(si)

α−1

1−G(si)α

)
.

The maximum likelihood estimators of βi ; i = 1,2,3 and α denoted by β̂i and α̂

respectively, are found as follows

∂ l
∂β1

=
n1

β̂1
+ ln{1−G(rn1)

α}= 0

∴ β̂1 =−
n1

ln
[
1−G(rn1)

α̂
] (2.10)

and similarly

β̂2 =−
n2

ln
[
1−G(pn2)

α̂
] , (2.11)

and

β̂3 =−
m

ln
[
1−G(sm)α̂

] . (2.12)

The maximum likelihood estimator of the common parameter α on the other hand is

the solution to the non-linear equation

∂ l
∂α

=
(n1 +n2 +m)

α
− β1G(rn1)

α lnG(rn1)

(1−G(rn1)
α)

− β2G(pn2)
α lnG(pn2)

(1−G(pn2)
α)

− β3G(sm)
α lnG(sm)

(1−G(sm)α)
+

n1

∑
i=1

[
lnG(ri)

1−G(ri)α

]
+

n2

∑
i=1

[
lnG(pi)

1−G(pi)α

]

+
m

∑
i=1

[
lnG(si)

1−G(si)α

]
= 0

(2.13)

Therefore, α̂ can be obtained as a solution to the equation λ (α) = α , where

λ (α) =− (n1 +n2 +m)

[
n1G(rn1)

α lnG(rn1)

ln [1−G(rn1)
α ] (1−G(rn1)

α)

+
n2G(pn2)

α lnG(pn2)

ln [1−G(pn2)
α ] (1−G(pn2)

α)
+

mG(sm)
α lnG(sm)

ln [1−G(sm)α ] (1−G(sm)α)

+
n1

∑
i=1

[
lnG(ri)

1−G(ri)α

]
+

n2

∑
i=1

[
lnG(pi)

1−G(pi)α

]
+

m

∑
i=1

[
lnG(si)

1−G(si)α

]]−1

(2.14)
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It is clear that α̂ is a fixed point of the equation λ (α) =α and can therefore be obtained

via an iterative scheme as follows

λ (αi) = αi (2.15)

Where αi is the i-th iterate of α̂ . The iterative procedure will be halted when the

quantity |αi+1−αi| is sufficiently small. Thus, by the invariance property of maximum

likelihood estimation, the MLE of Rs,k1,k2 based on upper record values from the class

of Kumaraswamy generalized distributions is given by

R̂s,k1,k2 =∑
s
k

β̂3

( j1 + i1)β̂1 +( j2 + i2)β̂2 + β̂3
(2.16)

Theorem 1. The maximum likelihood estimates of β1, β2, β3, and α as given by

(2.10),(2.11),(2.12), and (2.13) respectively are unique.

Proof. See [28] for a proof in the fundamental model R = P(X > Y ) case using upper

record values from the Kumaraswamy distribution. The proof can easily be extended

to the model in the present work.

2.1.1 Asymptotic Confidence Interval For Rs,k1,k2 I

In this subsection we derive the asymptotic distribution of θ̂θθ =
(

β̂1, β̂2, β̂3, α̂
)

and

from this, the asymptotic distribution of Rs,k1,k2 is derived. We later construct an

asymptotic confidence interval based on the asymptotic distribution of Rs,k1,k2 . The

expected Fisher information matrix of θθθ =(β1,β2,β3,α) is given by ΦΦΦ(θθθ)=E (I(θθθ)),

where I(θθθ) =
[
Ii j (θθθ)

]
=

[
− ∂ 2`

∂θi∂θ j

]
for i, j = 1,2,3,4 is the observed information

matrix. I11 =
n1

β 2
1

, I22 =
n2

β 2
2

, I33 =
m
β 2

3
, and I12 = I13 = I21 = I23 = I31 = I32 = 0. What

is required now is to find I44.

∂ 2l
∂α2 =

−(n1 +n2 +m)

α2 − β1G(rn1)
α(lnG(rn1))

2

(1−G(rn1)
α)2 − β2G(pn2)

α(lnG(pn2))
2

(1−G(pn2)
α)2

− β3G(sm)
α(lnG(sm)

α)2

(1−G(sm))2 +
n1

∑
i=1

G(ri)
α(lnG(ri))

2

(1−G(ri)α)2

+
n2

∑
i=1

G(pi)
α(lnG(pi))

2

(1−G(pi)α)2 +
m

∑
i=1

G(si)
α(lnG(si))

2

(1−G(si)α)2 .

In order to determine the expression E
(

∂ 2l
∂α2

)
, let

µ(G(rn1)
α) =

β1G(rn1)
α (lnG(rn1))

2

(1−G(rn1)
α)2 =

β1G(rn1)
α

(
1
α

lnG(rn1)
α

)2

(1−G(rn1)
α)2 . (2.17)

10



The pdf of the n-th upper record Rn is given by

fRn(rn) =
f (rn)

(n−1)!
[− ln(1−F(rn))]

n−1 , (2.18)

see [25]. Defining Y (Rn1) = G(Rn1)
α , a simple transformation yields the pdf of Y as

fY (y) =
β n1

(n1−1)!
(1− y)β−1 [− ln(1− y)]n1−1 (2.19)

Therefore,

E (µ(G(rn1)
α)) =

∫ 1

0
µ(y) fY (y)dy

=
αβ n1

(n1−1)!

∫ 1

0
y(1− y)β1−3(lny)2

[
ln
(

1
1− y

)]n−1

dy

=
β

n1
1

α2

[
∞

∑
k=0

1
(k+1)

(
1

(β1 + k−1)n1
− 1

(β1 + k)n1

) k

∑
j=1

1
j

]
,

(2.20)

the integral (2.20) was evaluated by [28] and tables of integrals used can be found

in [38]. Similarly we obtain

E (µ(G(pn2)
α)) =

β
n2
2

α2

[
∞

∑
k=0

1
(k+1)

(
1

(β2 + k−1)n2
− 1

(β2 + k)n2

) k

∑
j=1

1
j

]
, (2.21)

and

E (µ(G(sm)
α)) =

β m
3

α2

[
∞

∑
k=0

1
(k+1)

(
1

(β3 + k−1)m −
1

(β3 + k)m

) k

∑
j=1

1
j

]
(2.22)

Therefore,

I44 =E
(

∂ 2l
∂α2

)
=
(n1 +n2 +m)

α2 +[E (µ(G(rn1)
α))+E (µ(G(pn2)

α))+E (µ(G(sm)
α))]

−

[
n1

∑
i=1

E (µ(G(ri)
α))+

n2

∑
i=1

E (µ(G(pi)
α))+

m

∑
i=1

E (µ(G(si)
α))

] (2.23)

with all the expectations as given in (2.20), (2.21), (2.22). Following a similar

technique as above, expressions for I12, I13 ,I14, I21 , I31 , and I41 are also obtained

as follows

I14 = I41 =
β

n1
1
α

∞

∑
k=1

1
k

[
1

(β1 + k)n1
− 1

(β1 + k−1)n1

]
, (2.24)

I24 = I42 =
β

n2
2
α

∞

∑
k=1

1
k

[
1

(β2 + k)n2
− 1

(β2 + k−1)n2

]
, (2.25)

and

I34 = I43 =
β m

3
α

∞

∑
k=1

1
k

[
1

(β3 + k)m −
1

(β3 + k−1)m

]
(2.26)
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Theorem 2. As n1, n2, m→ ∞,
n1

m
→ q1 and

n2

m
→ q2 ,0 < q1 < 1,0 < q2 < 1, then

√
n1

(
β̂1−β1

)
√

n2

(
β̂2−β2

)
√

m
(

β̂3−β3

)
√

m(α̂−α)

→ N4
(
0,A−1(θθθ)

)

where A(θθθ) and A−1(θθθ) are symmetric matrices such that

A(θθθ) =


u11 0 0 u14

u22 0 u24
u33 u34

u44

 , and

A−1(θθθ) =
1

|A(θθθ)|


v11 v12 v13 v14

v22 v23 v24
v33 v34

v44


(2.27)

Here, the stress sample size m is assumed to be greater than the two strength samples

sizes n1 and n2. If otherwise, the formulae can always be readjusted accordingly. The

entries of each of the matrices are

u11 = lim
n1,n2,m→∞

1
n1

I11, u14 = u41 = lim
n1,n2,m→∞

√
q1

n1
I14,

u24 = u42 = lim
n1,n2,m→∞

√
q2

n2
I24, u34 = u43 = lim

n1,n2,m→∞

1
m

I34

u22 = lim
n1,n2,m→∞

1
n2

I22, u33 = lim
n1,n2,m→∞

1
m

I33, u44 = lim
n1,n2,m→∞

1
m

I44

u12 = u13 = u21 = u23 = u31 = u32 = 0

v11 =−
u2

24
β 2

3
−

u2
34

β 2
2
+

u44

β 2
2 β 2

3
, v12 =−

u14u24

β 2
3

, v13 =−
u14u34

β 2
2

, v14 =
u14

β 2
2 β 2

3

v22 =−
u2

14
β 2

3
−

u2
34

β 2
1
+

u44

β 2
1 β 2

3
, v23 =−

u24u34

β 2
1

, v24 =−
u24

β 2
1 β 2

3
,

v33 =−
u2

14
β 2

2
−

u2
24

β 2
1
+

u44

β 2
1 β 2

2
, v34 =

u34

β 2
1 β 2

2
,

v44 =
1

β 2
1 β 2

2 β 2
3
, and

|A(θθθ)|=−
(
β 2

1 u2
14 +β 2

2 u2
24 +β 2

3 u2
34−u44

)
β 2

1 β 2
2 β 2

3
(2.28)

Proof. The proof of the theorem follows from the asymptotic normality of MLE,

details of the proof can be found in [39].
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Theorem 3. As n1, n2, m→ ∞,
n1

m
→ q1 and

n2

m
→ q2 then

√
m
(
R̂s,k1,k2−Rs,k1,k2

)
→ N(0,σ2) (2.29)

where

σ
2 =

1
|A(θθθ)|

[(
∂Rs,k1,k2

∂β1

)2

v11 +2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β2
v12 +

(
∂Rs,k1,k2

∂β2

)2

v22

+2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β3
v13 +2

∂Rs,k1,k2

∂β2

∂Rs,k1,k2

∂β3
v23 +

(
∂Rs,k1,k2

∂β3

)2

v33

]
.

Proof. Using Theorem 2 and applying the delta method, (see [39]), the asymptotic

distribution of Rs,k1,k2 = g(θ̂θθ) can be written as follows

√
m
(
R̂s,k1,k2−Rs,k1,k2

)
→ N(0,σ2) (2.30)

where σ2 = bTA−1(θθθ)b with

b =

[
∂Rs,k1,k2

∂β1
,
∂Rs,k1,k2

∂β2
,
∂Rs,k1,k2

∂β3
,
∂Rs,k1,k2

∂α

]T

=

[
∂Rs,k1,k2

∂β1
,
∂Rs,k1,k2

∂β2
,
∂Rs,k1,k2

∂β3
,0
]T

where the partial derivatives of Rs,k1,k2 with respect to β1,β2, and β3 as defined in

Section 2.2.1.

Theorem 3 can therefore be used to construct asymptotic confidence intervals of

Rs,k1,k2 . Using the invariance property of the MLE, the variance σ2 is estimated using

the empirical Fisher information matrix and the MLEs of β1, β2, β3, and α as follows

u11 =
1

β̂1
, u22 =

1

β̂2
, u33 =

1

β̂3
,

u14 =

√
q1

n1

β̂1
n1

α̂

∞

∑
k=1

1
k

[
1

(β̂1 + k)n1
− 1

(β1 + k−1)n1

]

u24 =

√
q2

n2

β̂2
n2

α̂

∞

∑
k=1

1
k

[
1

(β̂2 + k)n2
− 1

(β̂2 + k−1)n2

]

u34 =
1
m

β̂3
m

α̂

∞

∑
k=1

1
k

[
1

(β̂3 + k)m
− 1

(β̂3 + k−1)m

]

u44 =
(q1 +q2 +1)

α̂2 +
1
m

[
E
(

µ(G(rn1)
α̂)
)
+E

(
µ(G(pn2)

α̂)
)
+E

(
µ(G(sm)

α̂)
)]

− 1
m

[
n1

∑
i=1

E
(

µ(G(ri)
α̂)
)
+

n2

∑
i=1

E
(

µ(G(pi)
α̂)
)
+

m

∑
i=1

E
(

µ(G(si)
α̂)
)]
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with all the expectations as defined in (2.20), (2.21), (2.22) and with all parameters

replaced by their respective MLEs. Therefore, a 100(1− γ)% asymptotic confidence

interval of Rs,k1,k2 is given by(
R̂s,k1,k2− z1− γ

2

σ̂√
m
, R̂s,k1,k2 + z1− γ

2

σ̂√
m

)
(2.31)

where zγ is the 100γ− th percentile of N(0,1).

2.1.2 Bootstrap Confidence Intervals

It is observed that the asymptotic confidence intervals do not perform very well for

small sample sizes, Kundu and Gupta (2005) . In this subsection we construct

bootstrap confidence intervals for Rs,k1,k2 since an explicit pdf for Rs,k1,k2 is unavailable.

(i) Boot-p Method Step 1 : From the samples {r1, ...,rn1} , {p1, ..., pn2} ,and

{s1, ...,sm}, compute α̂, β̂1, β̂2, and β̂3. Step 2 : Using α̂ and β̂1 generate a bootstrap

sample
{

r∗1, ...,r
∗
n1

}
, using α̂ and β̂2 generate a bootstrap sample

{
p∗1, ..., p∗n2

}
and similarly from α̂ and β̂3 generate a bootstrap sample {s∗1, ...,s∗m}. Based on{

r∗1, ...,r
∗
n1

}
,
{

p∗1, ..., p∗n2

}
, and {s∗1, ...,s∗m} compute the bootstrap estimate of Rs,k1,k2 ,

denoted by R̂∗s,k1,k2
Step 3 : Repeat step 2, NBOOT times. Step 4 : Let G(r) =

P(R̂∗s,k1,k2
≤ r), be the CDF of R̂∗s,k1,k2

.Define R̂Bp(r) = G−1(r) for each given r. The

100(1− γ)% confidence interval of Rs,k1,k2 is given by(
R̂Bp

s,k1,k2
(
γ

2
), R̂Bp

s,k1,k2
(1− γ

2
)
)

(2.32)

(ii) Boot-t Method

Step 1 : From the samples {r1, ...,rn1} , {p1, ..., pn2} ,and {s1, ...,sm}, compute

α̂, β̂1, β̂2, and β̂3.

Step 2 : Using α̂ and β̂1generate a bootstrap sample
{

r∗1, ...,r
∗
n1

}
, using α̂ and β̂2

generate a bootstrap sample
{

p∗1, ..., p∗n2

}
and similarly from α̂ and β̂3 generate a

bootstrap sample {s∗1, ...,s∗m}. Based on
{

r∗1, ...,r
∗
n1

}
,
{

p∗1, ..., p∗n2

}
, and {s∗1, ...,s∗m}

compute the bootstrap estimate of Rs,k1,k2 , denoted by R̂∗s,k1,k2
. Compute the bootstrap

estimate of Rs,k1,k2 and the following statistic :

T ∗ =

√
m
(

R̂∗s,k1,k2
− R̂s,k1,k2

)
√

Var
(

R̂∗s,k1,k2

)
14



Var
(

R̂∗s,k1,k2

)
can be computed using Theorem 2.

Step 3 : Repeat step 2 NBOOT times.

Step 4 : From the NBOOT T ∗values obtained, determine the upper and lower bound of

the 100(1− γ)% confidence interval of Rs,k1,k2 as follows : Let H(x) = P(T ∗ ≤ x) be

the CDF of T ∗. For a given r, define

R̂Bt
s,k1,k2

(x) = R̂s,k1,k2 +m−
1
2

√
Var

(
R̂s,k1,k2

)
H−1(x)

The approximate 100(1− γ)% confidence interval of Rs,k1,k2 is given by :(
R̂Bt

s,k1,k2
(
γ

2
), R̂Bt

s,k1,k2
(1− γ

2
)
)

(2.33)

2.2 Bayesian Estimation of Rs,k1,k2 .

In this section, the Bayes estimate of Rs,k1,k2 is derived under the assumption that the

parameters α, β1, β2, and β3 themselves are random variables, see [40] and [41] for

more details on the bayesian approach to parameter estimation. Consider the likelihood

functions for β1,β2, and β3 based on upper record values from the Kw-G distribution

in equations (2.5), (2.6), and (2.7). From these functions, it can be deduced that the

suggested conjugate family of prior distributions for θθθ = (β1,β2,β3,α) is the gamma

distribution. So, it is assumed that β1 ∼ Gamma(δ1,γ1), β2 ∼ Gamma(δ2,γ2),β3 ∼

Gamma(δ3,γ3), and α ∼ Gamma(δ4,γ4). The pdfs are given by

π(β1) =
γ

δ1
1 β

δ1−1
1 e−γ1β1

Γ (δ1)
, β1 > 0, δ1,γ1 > 0

π(β2) =
γ

δ2
2 β

δ2−1
2 e−γ2β2

Γ (δ2)
, β2 > 0, δ2,γ2 > 0

π(β3) =
γ

δ3
3 β

δ3−1
3 e−γ3β3

Γ (δ3)
, β3 > 0, δ3,γ3 > 0, and

π(α) =
γ

δ4
4 αδ4−1e−γ4α

Γ (δ4)
, α > 0, δ4,γ4 > 0

(2.34)

respectively. The joint prior distribution function of θθθ is given by

f (θθθ) = π(α)π(β1)π(β2)π(β3)
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and the joint posterior distribution function of θθθ is given by

π(θθθ |data) =
L (θθθ |data) f (θθθ)∫

∞

0

∫
∞

0

∫
∞

0

∫
∞

0 L (θθθ |data) f (θθθ)dθθθ

=
M1(r;α)M2(r;α)M3(r;α)β n1+δ1−1

1 β
n2+δ2−1
2 β

m+δ3−1
3 αn1+n2+m+δ4−1

Γ (n1 +δ1)Γ (n2 +δ2)Γ (m+δ3)I0(r, p,s)

× e−β1(γ1+λ1)e−β2(γ2+λ2)e−β3(γ3+λ3)e−αγ4

(2.35)

where

I0(r, p,s) =

∫
∞

0

αn1+n2+m−1M1(r;α)M2(p;α)M3(s;α)e−αγ4

(γ1 +λ1)n1+δ1(γ2 +λ2)n2+δ2(γ3 +λ3)m+δ3
dα (2.36)

M1(r;α) =
n1

∏
i=1

(
g(ri)G(ri)

α−1

1−G(ri)α

)
,

M2(p;α) =
n2

∏
i=1

(
g(pi)G(pi)

α−1

1−G(pi)α

)
,

M3(s;α) =
m

∏
i=1

(
g(si)G(si)

α−1

1−G(si)α

)
,

(2.37)

with

λ1 =− ln{1−G(rn1)
α}, λ2 =− ln{1−G(pn2)

α}, and λ3 =− ln{1−G(sm)
α}

Under the Square Error loss function, the estimate of Rs,k1,k2 = g(θθθ) is the mean of the

posterior function in (2.35), which can be written as a ratio of two integrals as follows.

E [g(θθθ) |data ] =

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0
g(θθθ)π(θθθ |data)dθθθ

=

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0 g(θθθ)L (θθθ |data) f (θθθ)dθθθ∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0 L (θ |data) f (θθθ)dθθθ

(2.38)

It is difficult or perhaps impossible to get an explicit analytic expression for (2.38).

Numerical methods such as, (i) Lindley approximation, as well as (ii) Markov Chain

Monte Carlo(MCMC) method can be used. An alternative to Lindley’s method is an

approximation method of a slightly higher order by [42] which has been used by [28].

Only Lindley approximation will be considered in the present work.
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2.2.1 Lindley Approximation

In this subsection we approxiamate Rs,k1,k2 using the famous Lindley approximation

method, see Lindley (1980) for details. For a vector of parameters βββ = (β1,β2,β3,α)

and a function W (βββ ) consider the integral

E [W (βββ ) |data ] =

∫
∞

0 W (βββ )e`(βββ )+ρ(βββ )dβββ∫
∞

0 e`(βββ )+ρ(βββ )dβββ

(2.39)

where `(βββ ) is the log-likelihood function of βββ and ρ(βββ ) is the nanural logarithm of the

prior density of βββ . For sufficiently large sample sizes n1,n2, and m , using Lindley’s

method, the Bayes estimate of Rs,k1,k2 is given by

E [W (βββ ) |data ] =w+
1
2∑

i
∑

j
(wi j +2wiρ j)σi j +

1
2∑

i
∑

j
∑
k
∑

l
τi jkσi jwl

+ terms of order n−2 or smaller.

∣∣∣
βββ=β̂ββ (2.40)

Where βββ = (θ1, ...,θm) i, j,k, l = 1, ...,m, β̂ββ is the MLE of β , w = w(βββ ), wi =
∂w
∂θi

,

wi j =
∂ 2w

∂θi∂θ j
, τi jk =

∂ 3τ

∂θi∂θ j∂θk
, ρ j =

∂ρ

∂θ j
, and σi j = (i, j)-th element of the inverse

of the matrix
[
−τi j

]
with all the parameters βββ = (θ1,θ2,θ3,η) replaced by their

respective MLEs . Therefore in our case βββ = (θ1,θ2,θ3,η), Lindley’s approximation

gives

E [w(βββ ) |data ] = w+(w1u1 +w2u2 +w3u3 +u5 +u6)+
1
2
[A (w1σ11 +w2σ12 +w3σ13)

+B(w1σ21 +w2σ22 +w3σ23)+C (A (w1σ31 +w2σ32 +w3σ43)

+ D (w1σ41 +w2σ42 +w3σ43)]

where

ui = ρ1σi1 +ρ2σi2 +ρ3σi3 +ρ4σi4, i = 1,2,3

u5 = w12σ12 +w13σ13 +w23σ23

u6 =
1
2
(w11σ11 +w22σ22 +w33σ33)

A =τ111σ11 +2τ121σ12 +2τ131σ13 +2τ141σ14 +2τ231σ23

+2τ241σ24 +2τ341σ34 + τ221σ22 + τ331σ33 + τ441σ44

B =τ112σ11 +2τ122σ12 +2τ132σ13 +2τ142σ14 +2τ232σ23

+2τ242σ24 +2τ342σ34 + τ222σ22 + τ332σ33 + τ442σ44
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C =τ113σ11 +2τ123σ12 +2τ133σ13 +2τ143σ14 +2τ233σ23

+2τ243σ24 +2τ343σ34 + τ223σ22 + τ333σ33 + τ443σ44

D =τ114σ11 +2τ124σ12 +2τ134σ13 +2τ144σ14 +2τ234σ23

+2τ244σ24 +2τ344σ34 + τ224σ22 + τ334σ33 + τ444σ44

In our case, w(βββ ) = Rs,k1,k2

ρ1 =
δ1−1

β1
− γ1, ρ2 =

δ2−1
β2
− γ2, ρ3 =

δ3−1
β3
− γ3, ,ρ4 =

δ4−1
α
− γ4

τ11 =−
n1

β 2
1
, τ22 =−

n2

β 2
2
, τ33 =−

m
β 2

3

τ14 = τ41 =−
G(rn1)

α lnG(rn1)

(1−G(rn1)
α)

, τ24 = τ42 =−
G(pn2)

α lnG(pn2)

(1−G(pn2)
α)

,

τ34 = τ43 =−
G(sm)

α lnG(sm)

(1−G(sm)α)

τ44 =−
(n1 +n2 +m)

α2 − β1G(rn1)
α (lnG(rn1))

2

(1−G(rn1)
α)2 − β2G(pn2)

α (lnG(pn2))
2

(1−G(pn2)
α)2

−β3G(sm)
α (lnG(sm))

2

(1−G(sm)α)2 +
n1

∑
i=1

[
G(ri)

α (lnG(ri))
2

(1−G(ri)α)2

]
+

n2

∑
i=1

[
G(pi)

α (lnG(pi))
2

(1−G(pi)α)2

]

+
m

∑
i=1

[
G(si)

α (lnG(si))
2

(1−G(si)α)2

]
The terms σi j i, j = 1,2,3,4 are found using the terms τi j, i, j = 1,2,3,4. Finally

τ111 =
2n1

β 3
1
, τ144 = τ441 = τ414 =−

G(rn1)
α (lnG(rn1))

2

(1−G(rn1)
α)2

τ222 =
2n2

β 3
2
,τ424 = τ244 = τ442 =−

G(pn2)
α (lnG(pn2))

2

(1−G(pn2)
α)2

τ333 =
2n1

β 3
1
,τ434 = τ443 = τ344 =−

G(sm)
α (lnG(sm))

2

(1−G(sm)α)2

τ444 =
2(n1 +n2 +m)

α3 − β1G(rn1)
α (1+G(rn1)

α)(lnG(rn1))
3

(1−G(rn1)
α)3

−β2G(pn2)
α (1+G(pn2)

α)(lnG(pn2))
3

(1−G(pn2)
α)3 − β3G(sm)

α (1+G(sm)
α)(lnG(sm))

3

(1−G(sm)α)3

+
n1

∑
i=1

[
G(ri)

α (1+G(ri)
α)(lnG(ri))

3

(1−G(ri)α)3

]
+

n2

∑
i=1

[
G(pi)

α (1+G(pi)
α)(lnG(pi))

3

(1−G(pi)α)3

]

+
m

∑
i=1

[
G(si)

α (1+G(si)
α)(lnG(si))

3

(1−G(si)α)3

]
.
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u12 =
∂ 2Rs,k1,k2

∂β1∂β2
=∑

s
k

(
2pqβ3

(pβ1 +qβ2 +β3)
3

)
,

u13 =
∂ 2Rs,k1,k2

∂β1∂β3
=∑

s
k

(
−p(pβ1 +qβ2−β3)

(pβ1 +qβ2 +β3)
3

)
,

u23 =
∂ 2Rs,k1,k2

∂β2∂β3
=∑

s
k

(
−q(pβ1 +qβ2−β3)

(pβ1 +qβ2 +β3)
3

)
,

Due to the lack of an explicit pdf for Rs,k1,k2 , in order to construct the highest posterior

density (HPD) credible intervals, the MCMC method is preferred to generate samples

from the posterior density function (2.35). The Bayes estimate and HPD credible

intervals can then be computed from these samples under the SE and LINEX loss

functions.

2.2.2 MCMC Method

From (2.35), it can be deduced that the posterior distributions of β1,β2,β3, and α are

as follows:

β1|β2,β3,data∼ Gamma(n1 +δ1,γ1− ln{1−G(rn1)
α}) ,

β2|β1,β3,data∼ Gamma(n2 +δ2,γ2− ln{1−G(pn2)
α}) ,

β3|β1,β2,data∼ Gamma(m+δ3,γ3− ln{1−G(sm)
α}) ,

π (α|β1,β2,β3,data) ∝α
n1+n2+m+δ4−1e−αγ4F(data)

(2.41)

where

F(data) =

(
n1

∏
i=1

g(ri)G(ri)
α−1

1−G(ri)α

)(
n2

∏
i=1

g(pi)G(pi)
α−1

1−G(pi)α

)(
m

∏
i=1

g(si)G(si)
α−1

1−G(si)α

)
The samples for β1,β2, and β3 can thus be generated easily using the gamma

distribution. The posterior distribution of α on the other hand cannot be written

analytically to a well known distribution and it is not possible to sample directly

using standard methods. The Metropolis-Hastings method is used to generate random

samples from the posterior distribution of α . Therefore, the algorithm for Gibbs

sampling is as follows:

1. Start with an initial guess
(

β
(0)
1 ,β

(0)
2 ,β

(0)
3 ,α(0)

)
.

2. Set t = 1.

3. Generate α(t) from π (α|β1,β2,β3,data) .
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4. Generate β
(t)
1 from Gamma(n1 +δ1,γ1− ln{1−G(rn1)

α}).

5. Generate β
(t)
2 from Gamma(n2 +δ2,γ2− ln{1−G(pn2)

α}).

6. Generate β
(t)
3 from Gamma(m+δ3,γ3− ln{1−G(sm)

α}) .

7. Compute R(t)
s,k1,k2

=∑
s
k

β
(t)
3

pβ
(t)
1 +qβ

(t)
2 +β

(t)
3

.

8. Set t = t +1.

9. Repeat steps 1−8 T times.

The sample obtained in the above algorithm is then used to obtain the Bayes estimate

of Rs,k1,k2 as well as the HPD credible intervals for Rs,k1,k2 . The Bayes estimate of

Rs,k1,k2 under the SE and LINEX loss functions is given respectively by

R̂MC
s,k1,k2

=
1
T

T
∑

t=1
R(t)

s,k1,k2
(2.42)

R̂MCLNX
s,k1,k2

= −1
v

lnE
(

e−vRs,k1,k2

)
= −1

v
ln

(
1
T

T

∑
t=1

e−vR(t)
s,k1,k2

)
(2.43)

The 100(1−η)% HPD credible intervals for Rs,k1,k2 can be obtained by the method

of [43].
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3. ESTIMATION OF Rs,k1,k2 FOR KNOWN α I

3.1 Maximum Likelihood Estimation And Confidence Intervals For Rs,k1,k2 I

For the sake of simplicity it is assumed that α = 1. So let R1, ..., Rn1 , P1, ....,Pn2 and

S1, ..., Sm be independent random samples of upper record values of sizes n1, n2 and

m from the distributions Kw-G(1,β1), Kw-G(1,β2) and Kw-G(1,β3) respectively. In

this case the MLE of Rs,k1,k2 is given by

R̂s,k1,k2 =∑
s
k

1[
p

n1

m
ln(1−G(sm))

ln(1−G(rn1))
+q

n2

m
ln(1−G(sm))

ln(1−G(pn2))
+1
] (3.1)

In order to construct an exact confidence interval for Rs,k1,k2 , its distribution needs to

be determined, and to do so one must first obtain the distribution of R̂s,k1,k2 . Using

elementary transformation techniques it can easily be shown that

−2β1 ln(1−G(Rn1)) ∼ χ
2
2n1

, −2β2 ln(1−G(Pn2)) ∼ χ
2
2n2

, and

−2β3 ln(1−G(Sn1)) ∼ χ
2
2m.

(3.2)

The quantities in (3.2) are all independent of each other. Thus,

−2n1β
−1
3 ln(1−G(Sm))

−2mβ
−1
1 ln(1−G(Rn1))

∼ F(2m,2n1) (3.3)

and
−2β

−1
3 ln(1−G(Sm))

−2β
−1
2 ln(1−G(Pn2))

∼ F(2m,2n2) (3.4)

In other words,

n1

m
ln(1−G(Sm))

ln(1−G(Rn1))
∼β1

β3
F(2m,2n1), and

n2

m
ln(1−G(Sm))

ln(1−G(Pn2))
∼β2

β3
F(2m,2n2)

have scaled F-distributions . Thus from (2.2), we have that the distribution of R̂s,k1,k2

is that of

∑
s
k

1[
p

β1

β3
F(2m,2n1)+q

β2

β3
F(2m,2n2)+1

] (3.5)

21



An explicit formula for the pdf of R̂s,k1,k2 is clearly too complex and is therefore not

pursued further. We therefore conclude that the exact (1− γ)100% confidence interval

for R̂s,k1,k2 is (
∑

s
kF1, ∑

s
kF2

)
(3.6)

where

F1 ≡
1[

p
β̂1

β̂3
F1− γ

2
(2m,2n1)+q

β̂2

β̂3
F1− γ

2
(2m,2n2)+1

]
F2 ≡

1[
p

β̂1

β̂3
Fγ

2
(2m,2n1)+q

β̂2

β̂3
Fγ

2
(2m,2n2)+1

] .
An approximate confidence interval for Rs,k1,k2 can also be derived using the Fisher

information matrix. The Fisher information matrix for θθθ =(β1,β2,β3) is given by

I(θ) =−


E
(

∂ 2l
∂β 2

1

)
E
(

∂ 2l
∂β1∂β2

)
E
(

∂ 2l
∂β1∂β3

)
E
(

∂ 2l
∂β2∂β1

)
E
(

∂ 2l
∂β 2

2

)
E
(

∂ 2l
∂β2∂β3

)
E
(

∂ 2l
∂β3∂β1

)
E
(

∂ 2l
∂β3∂β2

)
E
(

∂ 2l
∂β 2

3

)



=



n1

β 2
1

0 0

0
n2

β 2
2

0

0 0
m
β 2

3


=


I11 I12 I13

I21 I22 I23

I33 I32 I33



(3.7)

So, it must be the case that I−1(θθθ) =



β 2
1

n1
0 0

0
β 2

2
n2

0

0 0
β 2

3
m


The MLE estimator

R̂s,k1,k2 is approximately normally distributed with mean Rs,k1,k2 and variance

σ
2
Rs,k1,k2

=
3

∑
i=1

3

∑
j=1

∂Rs,k1,k2

∂βi

∂Rs,k1,k2

∂β j
I−1
i j ,
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where I−1
i j is the i j-th term of the matrix I−1(θ), the inverse matrix of I(θ). So

σ
2
Rs,k1,k2

=
3

∑
i=1

3

∑
j=1

∂Rs,k1,k2

∂βi

∂Rs,k1,k2

∂β j
I−1
i j

=

(
∂Rs,k1,k2

∂β1

)2(
β 2

1
n1

)
+

(
∂Rs,k1,k2

∂β2

)2(
β 2

2
n2

)
+

(
∂Rs,k1,k2

∂β3

)2(
β 2

3
m

) (3.8)

where
∂Rs,k1,k2

∂β1
,

∂Rs,k1,k2

∂β2
, and

∂Rs,k1,k2

∂β3
are as defined in Section 2.2. Therefore, the

(1− γ)100% asymptotic confidence interval for Rs,k1,k2 when α is known is given by(
R̂s,k1,k2− z1− γ

2

√
1
m

σ̂Rs,k1,k2
, R̂s,k1,k2 + z1− γ

2

√
1
m

σ̂Rs,k1,k2

)
, (3.9)

where zγ is the 100γ-th percentile of the standard normal distribution N(0,1).

3.2 Uniformly Minimum Variance Unbiased Estimator of Rs,k1,k2

As [15] point out, despite possessing a useful invariance property, the MLE method

may be susceptible to bias, especially if sample sizes are very small. Since records

sample sizes are particularly not always large and it is often of intrinsic interest to

consider only estimators that are unbiased. This leads to the inevitable task of deriving

an unbiased estimator for Rs,k1,k2 which is optimal in the MSE. In this subsection an

attempt is made to find an unbiased estimator which performs best among all unbiased

estimators, the so called UMVUE, for Rs,k1,k2 . In deriving the UMVUE, it is often

necessary determine whether or not a statistic of the parameter under study is complete.

Showing that a sufficient statistic is complete is generally quite difficult. However, it

is well known that if the parameter vector θθθ is viewed as unknown but non-random,

with the only available information as the measurements X and the observation model

specified by the density fX|θθθ (X |θθθ ), that is, the likelihood function. Then if fX|θθθ (x |θθθ )

belongs to the exponential class of densities of the form

fX|θθθ (x |θθθ ) = u(x)exp
(

θθθ
TT(x)−t(θθθ)

)
(3.10)

it must be true that T(X) is a complete sufficient statistic for θθθ , [44]. Most of the

fundamental definitions and theorems in this section have been taken from [44] unless

otherwise stated.

Definition 1. A statistic T(X) is said to be sufficient for a parameter θθθ if it contains

all the information about the observation vector X necessary to estimate θθθ . Formally,
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T(X) is sufficient for θθθ if the conditional density of X given T(X) is independent of

θθθ . This independence property indicates that all the information about θθθ has been

”squeezed” in fT(T |θθθ ) and there is no leftover information about θθθ that could be

extracted from fX|T (X |T) , which means that the desnsity must be independent of θθθ .

Theorem 4. Neyman-Fisher Factorization Theorem The statistic T(X) is sufficient if

and only if the density fX can be written in the form
[

fX|θθθ (x |θθθ ) = H (T(x),x) I (x)
]

A

proof of this result can be found in [44].

Definition 2. Let T(X) be a sufficient statisic. We say T is complete if any function

h(T) that satisfies

E [h(T)] = 0 (3.11)

for all θθθ must necessarily be identically zero. Equivalently, the sufficient statistic T is

complete if there is at most one unbiased estimator θ̂θθ(T) of θθθ depending on T only .

Lemma 1. The statistic

(U,V,W ) = (− ln [1−G(rn1)] ,− ln [1−G(pn2)] ,− ln [1−G(sm)])

is a complete sufficient statistic for θ = (β1,β2,β3).

Proof. The joint pdf of the sets of upper records R1, ...,Rn1 , P1, ...,Pn2, and S1, ...,Sm

is given by

f (θ |data) =β
n1
1 β

n2
2 β

m
3 {1−G(rn1)}

β1{1−G(pn2)}
β2{1−G(sm)}β3

×
n1

∏
i=1

g(ri)G(ri)

1−G(ri)

n2

∏
i=1

g(pi)G(pi)

1−G(pi)

m

∏
i=1

g(si)G(si)

1−G(si)

(3.12)

, see [25]. The joint pdf can also be written as

f (θ |data) = H(data)Iθ (U(rn1),V (pn2),W (sm)) (3.13)

where

H(data) =
n1

∏
i=1

g(ri)G(ri)

1−G(ri)

n2

∏
i=1

g(pi)G(pi)

1−G(pi)

m

∏
i=1

g(si)G(si)

1−G(si)
,

U(rn1),V (pn2),W (sm) =(− ln [1−G(rn1)] ,− ln [1−G(sm)] ,− ln [1−G(sm)]) ,

Iθ (U(rn1),V (pn2),W (sm)) =β
n1
1 β

n2
2 β

m
3 e−β1U(rn1)e−β2V (pn2)e−β3W (sm).

(3.14)

From (3.13) it is clear that by employing the Neuman-Fisher Factorization Theorem,

(U,V,W ) is a sufficient statistic for θ . Furthermore, it can be deduced that (U,V,W )
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is a complete sufficient statistic for θ since the likelihood function, f (θ |data), can be

written in the canonical exponential class form given in (3.10).

Theorem 5. Rao-Blackwell Theorem Suppose that T(X) is a sufficient statistic and

W(X) is an unbiased estimator of θθθ , then if we define the new unbiased estimator

E (W(X) |T(X)), then
[
var
(
E
(
W̃(X) |T(X)

))
≤ var

(
W̃(X)

)]
The Rao-Blackwell

theorem tells us that estimators with the smallest variance must be a function of

the sufficient statistic. This besgs the question is there a unique estimatior with the

minimum variance . This is adressed by the following result.

Theorem 6. Lehmann-Scheffe Theorem . If T(X) is a complete sufficient statistic

and W(X) is an unbiased estimator of θθθ , then φφφ(T) = E(W |T) is an UMVUE of θθθ .

Furthermore, φφφ(T) is the unique UMVUE in the sense that if TTT ∗ is any other UMVUE,

then Pθθθ (φφφ(T) = TTT ∗) = 1 for all θθθ .

Let

R∗1 =− ln [1−G(R1)] ,P∗1 =− ln [1−G(P1)] , and S∗1 =− ln [1−G(S1)] (3.15)

Then it is easy to show that R∗1, P∗1 , and S∗1 are exponentially distributed random

variables with means β
−1
1 , β

−1
2 , and β

−1
3 respectively. It follows that the joint

distribution of the independent random variables R∗1, P∗1 , and S∗1 can therefore be

written as

fR∗1,P
∗
1 ,S
∗
1
(r∗1, p∗1,s

∗
1) = fR∗1(r

∗
1) fP∗1 (p∗1) fS∗1(s

∗
1)

=β1β2β3e−(β1r∗1+β2 p∗1+β3s∗1),0 < r∗1 < ∞,0 < p∗1 < ∞,0 < s∗1 < ∞.
(3.16)

Lemma 2. If R∗1 = − ln [1−G(R1)] and U = − ln [1−G(Rn1)], the conditional

distribution of R∗1 given U is given by

fR∗1|U (r∗1 |U ) =
fR∗1,U(r

∗
1,u)

fU(u)
=

(n1−1)(u− r∗1)
n1−2

un1−1 ,0 < r∗1 < u (3.17)

Likewise, for P∗1 =− ln [1−G(P1)] and V =− ln [1−G(Pn2)] , we have

fP∗1 |V (p∗1 |V ) =
fP∗1 ,V (p∗1,v)

fV (v)
=

(n2−1)(v− p∗1)
n2−2

vn2−1 ,0 < p∗1 < v, (3.18)

and finally for S∗1 =− ln [1−G(S1)] and W =− ln [1−G(Sm)] , we have that

fS∗1|W (s∗1 |W ) =
fS∗1,W (s∗1,w)

fW (w)
=

(m−1)(w− s∗1)
m−2

wm−1 ,0 < s∗1 < w (3.19)
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Proof. The joint pdf of any pair (Rm, Rn) of upper records as given by [25] is

fRn,Rm(rn,rm) =

[− ln(1−F(rm)]
m
[
− ln

(
1−F(rn)

1−F(rm)

)]n−m−1

f (rm) f (rn)

m!(n−m−1)!(1−F(rm))
, for m< n.

(3.20)

Using result (2.18) and (3.20) together with appropriate elementary transformation

techniques, joint pdf of R∗1 and U is derived and from this, the pdf of U is found to be

fR∗1,U(r
∗
1,u) =

1
(n1−2)!

β
n1
1 (u− r∗1)

n1−2e−uβ1

and

fU(u) =
1

(n1−1)!
β

n1
1 e−uβ1un1−1

Consequently we get the conditional distribution of R∗1 given U as follows

fR∗1|U (r∗1 |U ) =
fR∗1,U(r

∗
1,u)

fU(u)
=

(n1−1)(u− r∗1)
n1−2

un1−1 ,0 < r∗1 < u

Following a similar procedure, we obtain the conditional distributions

fP∗1 |V (p∗1 |V ) and fS∗1|W (s∗1 |W ) as

fP∗1 |V (p∗1 |V ) =
fP∗1 ,V (p∗1,v)

fV (v)
=

(n2−1)(v− p∗1)
n2−2

vn2−1 ,0 < p∗1 < v, and

fS∗1|W (s∗1 |W ) =
fS∗1,W (s∗1,w)

fW (w)
=

(m−1)(w− s∗1)
m−2

wm−1 ,0 < s∗1 < w

respectively to conclude the proof .

Now the main result of the present work is given in the following theorem.

Theorem 7. For n1 ≥ 2, n2 ≥ 2, and m≥ 2, the UMVUE of

ϕ(β1,β2,β3) =
β3

β1( j1 + i1)+β2( j2 + i2)+β3

, denoted by ϕU(β ,β2,β3), is

ϕU(β ,β2,β3) =



Q1(n1,n2,m,u,v,w) i f w≤ max
{v

h
,

u
k

}
Q2(n1,n2,m,u,v,w) i f

u
k
≤ max

{
w,

v
h

}
Q3(n1,n2,m,u,v,w) i f

v
h
≤ max

{
w,

u
k

}
(3.21)
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where

Q1 =
n1−1

∑
a=0

(−1)a
(

kw
u

)a n2−1

∑
b=0

(−1)b
(

hw
v

)b (n1−1
a

)(n2−1
b

)(m+a+b−1
a+b

)
= F1

(
1,(1−n1),(1−n2),m;

kw
u
,
hw
v

)
Q2 =

(
m−1

n1

)( u
kw

) n2−1

∑
a=0

(−1)a
(

hu
kv

)a m−2

∑
b=0

(−1)b
( u

kw

)b
(n2−1

a

)(m−2
b

)(n1+a+b
a+b

)
=

(
m−1

n1

)( u
kw

)
F1

(
1,(1−n2),(2−m),n1 +1;

hu
kv

,
u

kw

)
Q3 =

(
m−1

n2

)( v
hw

) n1−1

∑
a=0

(−1)a
(

kv
hu

)a m−2

∑
b=0

(−1)b
( v

hw

)b
(n1−1

a

)(m−2
b

)(n2+a+b
a+b

)
=

(
m−1

n2

)( v
hw

)
F1

(
1,(1−n1),(2−m),n2 +1;

kv
hu

,
v

hw

)
and k = i1 + j1, h = i2 + j2.

Proof. Using (2.2), the following functions are defined

φ (R∗1,P
∗
1 ,S
∗
1) =


1 , R∗1 > kS∗1, P∗1 > pS∗1

0 , Otherwise
, (3.22)

and

ϕ(β1,β2,β3) =
β3

kβ1 +hβ2 +β3
(3.23)

with R∗1,P
∗
1 , and S∗1 defined as in (3.15). It can easily be shown that

E [φ (R∗1,P
∗
1 ,S
∗
1)] =

∫
∞

0

∫
∞

0

∫
∞

0
φ (r∗1, p∗1,s

∗
1) fR∗1,P

∗
1 ,S
∗
1
(r∗1, p∗1,s

∗
1)dr∗1d p∗1ds∗1

=ϕ(β1,β2,β3)

Thus φ (R∗1,P
∗
1 ,S
∗
1) is an unbiased estimator of ϕ(β1,β2,β3). The linearity of unbiased

estimators allows one to conclude that an unbiased estimator of Rs,k1,k2 is given by

∑
s
kφ (R∗1,P

∗
1 ,S
∗
1) (3.24)

Furthermore, since (U,V,W ) is a complete sufficient statistic for θθθ = (β1,β2,β3),

employing the Rao-Blackwell and Lehmann-Scheffe’s Theorems, the unique UMVUE

for ϕ(β1,β2,β3) is obtained as

ϕU(β1,β2,β3) = E
[
φ (R∗1,P

∗
1 ,S
∗
1)
∣∣∣U = u,V = v,W = w

]
=

∫ ∫ ∫
A

fR∗1|U (x) fP∗1 |V (y) fS∗1|W (z)dxdydz
(3.25)
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Figure 3.1 : A look of the region of integration, A, for specific values of u,v, and w,.

where

A = { (r∗1, p∗1,s
∗
1) : 0 < r∗1 < u,0 < p∗1 < v,0 < s∗1 < w,r∗1 > ks∗1, p∗1 > hs∗1} (3.26)

Let r∗1 = x, p∗1 = y, s∗1 = z,θ = (β1,β2,β3) and f (x,y,z) = (u−x)n1−2(v−y)n2−2(w−

z)m−2. Now for the region w≤ max
{v

h
,
u
k

}
, it is true that

ϕU(θθθ) =
(n1−1)(n2−1)(m−1)

un1−1vn2−1wm−1

∫ w

0

∫ v

hz

∫ u

kz

f (x,y,z)dxdydz

=
(m−1)

un1−1vn2−1wm−1

∫ w

0
(u− kz)n1−1 (v−hz)n2−1(w− z)m−2dz

Let z = wt so that

ϕU(θθθ) =
(m−1)

un1−1vn2−1wm−1

∫ 1

0
(u− kwt)n1−1 (v−hwt)n2−1 (w−wt)m−2wdt

= (m−1)
∫ 1

0

(
1− kwt

u

)n1−1(
1− hwt

v

)n2−1

(1− t)m−2dt

=
n1−1

∑
a=0

(−1)a
(

kw
u

)a n2−1

∑
b=0

(−1)b
(

hw
v

)b (n1−1
a

)(n2−1
b

)(m+a+b−1
a+b

)
where the following binomial expansions have been used(

1− kwt
u

)n1−1

=
n1−1

∑
a=0

(−1)a
(

n1−1
a

)(
kwt
u

)a

and(
1− hwt

v

)n2−1

=
n2−1

∑
b=0

(−1)b
(

n2−1
b

)(
hwt

v

)b

together with the assumption that integration and summation are interchangeable.

Alternatively, formula 3.211 of [38] is given as∫ 1

0
xλ−1(1− x)µ−1(1−ux)−σ (1− vx)−θ dx = B(µ,λ )F1(λ ,σ ,θ ,λ +µ;u,v),

with Re λ > 0 and Re µ > 0. Using this result with λ = 1, µ = m− 1, σ = 1− n1,

θ = 1−n2, u =
kw
u

and v =
hw
v

, one obtains an alternative representation for ϕU as

ϕU(θθθ) = F1

(
1;(1−n1),(1−n2);m;

kw
u
,
hw
v

)
(3.27)
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where B(·) is the standard beta function and F1 is the Appell hypergeometric function

of the first type which is defined as

F1(a;b,c;d;x,y) =
∞

∑
m=0

∞

∑
n=0

(a)m+n(b)m(c)n

m!n!(d)m+n
xmyn

=
Γ (d)

Γ(a)Γ(d−a)

∫ 1

0
ta−1(1− t)d−a−1(1− tx)−b(1− ty)−cdt

and and (q)n is the rising Pochhammmer symbol, which is defined by :

(q)n =

{
1, n = 0

q(q+1)...(q+n−1), n > 0,

see [45] and [38] for more details about the Appell hypergeometric function. For the

region
u
k
≤ max

{
w,

v
h

}

ϕU(β1,β2,β3) =
(n1−1)(n2−1)(m−1)

un1−1vn2−1wm−1

∫ u
k

0

∫ v

hz

∫ u

kz

f (x,y,z)dxdydz

=

(
m−1

n1

)( u
kw

)
F1

(
1,(1−n2),(2−m),n1 +1;

hu
kv

,
u

kw

)
Finally, for the region

v
h
≤ max

{
w,

u
k

}

ϕU(β ,β2,β3) =
(n1−1)(n2−1)(m−1)

un1−1vn2−1wm−1

∫ v
h

0

∫ v

hz

∫ u

kz

f (x,y,z)dxdydz

=

(
m−1

n2

)( v
hw

)
F1

(
1,(1−n1),(2−m),n2 +1;

kv
hu

,
v

hw

)

One can therefore conclude from Theorem 3 that the UMVUE of Rs,k1,k2 , denoted by

RU
s,k1,k2

, must be

RU
s,k1,k2

=∑
s
kϕU(θ) (3.28)

3.3 Bayesian Estimation of Rs,k1,k2 For Known α

3.3.1 Conjugate Prior Distributions

As was the case in Section 2.2, in this subsection an attempt is made to derive the

Bayesian estimate of Rs,k1,k2 under the assumptions that the independent parameters
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β1, β2, and β3 are random variables with independent gamma prior distributions and

that α is known. The prior distributions of β1, β2, and β3 are given respectively by

π(β1) =
γ

δ1
1 β

δ1−1
1 e−γ1β1

Γ (δ1)
,

π(β2) =
γ

δ2
2 β

δ2−1
2 e−γ2β2

Γ (δ2)
, and

π(β3) =
γ

δ3
3 β

δ3−1
3 e−γ3β3

Γ (δ3)

The joint prior distribution function of θ = (β1,β2,β3) is given by f (θ) =

π(β1)π(β2)π(β3) and the its joint posterior distribution function is given by

π(θ |data) =
L (θ

∣∣r, p,s) f (θ)∫
∞

0

∫
∞

0

∫
∞

0 L (θ |data) f (θ)dβ1dβ2dβ3

=
λ

ν1
1 λ

ν2
2 λ

ν3
3

Γ (ν1)Γ (ν2)Γ (ν3)
β

ν1−1
1 β

ν2−1
2 β

ν3−1
2 e−λ1β1e−λ2β2e−λ3β3

(3.29)

where

λ1 = γ1 + ln{1−G(rn1)}, λ2 = γ2 + ln{1−G(pn2)}, λ3 = γ3 + ln{1−G(sm)},

ν1 = δ1 +n1, ν2 = δ2 +n2, and ν3 = δ3 +m

An explicit formula for the posterior distribution of Rs,k1,k2 in this case is clearly very

complex and is not pursued further. In order to find an estimate of reliability, we will

once again use Lindley’s approximation and MCMC method with α replaced by 1 in

the formulae from Section (2.2). Before proceeding to the approximate methods, a

closed form of the Bayes estimator is proposed.

3.3.2 Closed Form of Bayes Estimator

The Bayes estimator of Rs,k1,k2 , denoted by RB
s,k1,k2

, is as follows

RB
s,k1,k2

=

∫
∞

0

∫
∞

0

∫
∞

0
Rs,k1,k2 (θθθ)π

(
θθθ
∣∣α,x,y,z

)
dθθθ

=M∑
s
k

∫
∞

0

∫
∞

0

∫
∞

0

(
β

v1−1
1 β

v2−1
2 β

v3
3 exp(−µ1β1−µ2β2−µ3β3)

pβ1 +qβ2 +β3

)
dθθθ

where

M =
µ

v1
1 µ

v2
2 µ

v3
3

Γ (v1)Γ (v2)Γ (v3)
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Define a one-to-one transformation T by

x =
pβ1

pβ1 +qβ2 +β3

y =
qβ2

pβ1 +qβ2 +β3

z = pβ1 +qβ2 +β3


=⇒


β1 = xz/p

β2 = yz/q

β3 = z(1− x− y)

,

where p 6= 0 and q 6= 0. It is evident that RB
s,k1,k2

= 1 for the case when p = 0 and q = 0.

We note that

0 < x+ y =
pβ1 +qβ2

pβ1 +qβ2 +β3
< 1, 0 < z < ∞ and

β3

pβ1 +qβ2 +β3
= 1− x− y.

Furthermore, the Jacobian of T is given by

|J(x,y,z)|=

∣∣∣∣∣∣
z/p 0 x/p
0 z/q y/q
−z −z 1− x− y

∣∣∣∣∣∣= z2

pq
.

Therefore, we have that

RB
s,k1,k2

=
µ

v1
1 µ

v2
2 µ

v3
3

pv1qv2Γ (v1)Γ (v2)Γ (v3)
∑

s
k

∫ 1

0

∫ 1−y

0

∫
∞

0
xv1−1yv2−1 (1− x− y)v3

× zv1+v2+v3−1 exp{−z [µ1x/p+µ2y/q+µ3(1− x− y)]}dzdxdy

=K ∑
s
k

∫ 1

0

∫ 1−y

0
xv1−1yv2−1 (1− x− y)v3 (1−σ1x−σ2y)−(v1+v2+v3) dxdy

where

K =
(1−σ1)

v1 (1−σ2)
v2 Γ (v1 + v2 + v3)

Γ (v1)Γ (v2)Γ (v3)
, σ1 = 1− µ1

pµ3
, σ2 = 1− µ2

qµ3

A Euler type integral representation of the Appell hypergeometric function of the first

kind, denoted by F1, as shown in [38] is as follows

Γ (d)F1 (a,b,c,d;x,y)
Γ (b)Γ (c)Γ (d−b− c)

=

∫ 1

0

∫ 1−v

0
ub−1vc−1(1−u− v)d−b−c−1 (1−ux− vy)−a dudv

b > 0, c > 0, d−b− c > 0, |x|< 1, |y|< 1.
(3.30)

Using the result (4.28), together with functional relations of F1 (see [38] formulae

9.183(1)), we can conclude that

RB
s,k1,k2

=



ϖ1 (σ1,σ2) , if |σ1|< 1, |σ2|< 1

ϖ2 (σ1,σ2) , if σ1 <−1,σ2 <−1

ϖ3 (σ1,σ2) , if |σ1|< 1,σ2 <−1

ϖ4 (σ1,σ2) , if ,σ1 <−1, |σ2|< 1

(3.31)
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where

ϖ1 =∑
s
k
(1−σ1)

v1 (1−σ2)
v2 v3

(v1 + v2 + v3)
F1

(
3

∑
i=1

vi,v1,v2,1+
3

∑
i=1

vi;σ1,σ2

)
,

ϖ2 =∑
s
k

(
v3

v1 + v2 + v3

)
F1

(
1,v1,v2,1+

3

∑
i=1

vi;
σ1

σ1−1
,

σ2

σ2−1

)
,

ϖ3 =∑
s
k

(
v3 (1−σ1)

v1 + v2 + v3

)
F1

(
1,v3 +1,v2,1+

3

∑
i=1

vi;σ1,
σ1−σ2

1−σ2

)
,

and

ϖ4 =∑
s
k

(
v3 (1−σ2)

v1 + v2 + v3

)
F1

(
1,v1,v3 +1,1+

3

∑
i=1

vi;
σ2−σ1

1−σ1
,σ2,

)
.

Using Jeffery’s non informative priors, it can easily be shown that the Bayes estimator

assumes the same form as above with a1 = a2 = a3 = b1 = b2 = b3 = 0.

3.3.3 Lindley Approximation

R̂L
s,k1,k2

= w+(w1v1 +w2v2 +w3v3 + v5 + v6)+
1
2
[A (w1σ11 +w2σ12 +w3σ13)

+B(w1σ21 +w2σ22 +w3σ23)+C (w1σ31 +w2σ32) ]

vi = ρ1σi1 +ρ2σi2 +ρ3σi3, i = 1,2,3.

v5 = u12σ12 +u13σ13 +u23σ23

v6 =
1
2
(u11σ11 +u22σ22 +u33σ33)

A = τ111σ11 +2τ121σ12 +2τ131σ13 +2τ231σ23 + τ221σ22 + τ331σ33

B = τ112σ11 +2τ122σ12 +2τ132σ13 +2τ232σ23 + τ222σ22 + τ332σ33

C = τ113σ11 +2τ123σ12 +2τ133σ13 +2τ233σ23 + τ223σ22 + τ333σ33

Since w(β ) = Rs,k1,k2 , we have:

ρ1 =
b1−1

θ1
−a1, ρ2 =

b2−1
θ2
−a2, ρ3 =

b3−1
θ3
−a3,

τ11 =−
n1

θ 2
1
, τ22 =−

n2

θ 2
2
, τ33 =−

m
θ 2

3
,

τ111 =
2n1

θ 3
1
, τ222 =

2n2

θ 3
2

τ333 =
2n1

θ 3
1
,

All other terms are zero and the wi j, i, j = 1,2,3 are as defined in Section 2.2.1. So,

A = τ111σ11, B = τ112σ11, and C = τ113σ11
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3.3.4 MCMC Method

Since α is known, the posterior distributions of β1,β2,β3, and α are simply:

β1|β2,β3,data∼ Gamma(n1 +δ1,γ1− ln{1−G(rn1)
α}) ,

β2|β1,β3,data∼ Gamma(n2 +δ2,γ2− ln{1−G(pn2)
α}) ,

β3|β1,β2,data∼ Gamma(m+δ3,γ3− ln{1−G(sm)
α})

(3.32)

Once again random samples are generated from these distributions using Gibbs

sampling. The algorithm is as follows:

1. Start with an initial guess
(

β
(0)
1 ,β

(0)
2 ,β

(0)
3

)
.

2. Set t = 1.

3. Generate β
(t)
1 from Gamma(n1 +δ1,γ1− ln{1−G(rn1)

α}).

4. Generate β
(t)
2 from Gamma(n2 +δ2,γ2− ln{1−G(pn2)

α}).

5. Generate β
(t)
3 from Gamma(m+δ3,γ3− ln{1−G(sm)

α}) .

6. Compute R(t)
s,k1,k2

=∑
s
k

β
(t)
3

(i1 + j1)β
(t)
1 +(i2 + j2)β

(t)
2 +β

(t)
3

.

7. Set t = t +1.

8. Repeat steps 2−7 T times.

The sample obtained in the above algorithm is then used to obtain the Bayes estimate

of Rs,k1,k2 as well as the HPD credible intervals for Rs,k1,k2 . The Bayes estimates of

Rs,k1,k2 under the SE and LINEX loss functions are given respectively by

R̂B
s,k1,k2

=
1
T

T
∑

t=1
R(t)

s,k1,k2
(3.33)

R̂B
s,k1,k2

= −1
v

lnE
(

e−vRs,k1,k2

)
= −1

v
ln

(
1
T

T

∑
t=1

e−vR(t)
s,k1,k2

)
(3.34)

The 100(1−η)% HPD credible intervals for Rs,k1,k2 can be obtained by the method of

[43]. For illustration purposes, a much simplified system made up k1 = 1 component of

type 1 and k2 = 1 component of type 2 which functions as long as both the components

are functioning is considered. In this case, the reliability expression (2.2) simplifies to

R2,1,1 = R =
β3

β1 +β2 +β3
(3.35)
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From (3.29), we can deduce that β1,β2, and β3 have gamma marginal posterior dis-

tributions. Suppose β1 ∼ Gamma(δ1,γ1), β2 ∼ Gamma(δ2,γ2),β3 ∼ Gamma(δ3,γ3).

Let X = β3 and Y = β1 + β2 so that R =
X

Y +X
. The pdf of R needs to be derived.

[46] derived the distribution for a sum of n independent gamma random variables

with different parameters expressed as a single gamma-series. This representation is

computationally friendly as coefficients are calculated using a simple iteration and a

truncation error is easily attainable. Using this result, one can obtain the distribution

of Y = β1 +β2 and it is given by

fY (y) =C
∞

∑
i=0

τiyρ+i−1e−
y

γ1

γ
i+ρ

1 Γ(i+ρ)
(3.36)

where

C =
2

∏
j=1

(
γ1

γ j

)δ j

=

(
γ1

γ2

)δ2

ρ =
2

∑
j=1

δ j = δ1 +δ2

ξ j =
2

∑
i=1

δi

(
1− γ1

γi

) j

j

=

δ2

(
1− γ1

γ2

) j

j
, j = 1,2, ...

τ j+1 =
1

( j+1)

j+1

∑
i=1

iξiτ j+1−i, j = 0,1,2, ...with τ0 = 1.

(3.37)

In order to derive the pdf of R its first noted that R must take values between 0 and 1

and so the derivation proceeds as follows :

For r ∈ (0,1), FR(r) =Pr
(

X
Y +X

≤ r
)

=Pr
(

Y ≥ X(
1
r
−1)

)
=

∫
∞

0
fX(x)Pr

(
Y ≥ x(

1
r
−1)

)
dx

, see Chaitanya [47]. Differentiating the resulting expression for FR(r) with respect to

r and simplifying yields

fR(r) =C
∞

∑
i=0

τi
(γ1γ3)

δ3 (z+1)2zk+ρ−1 (γ1γ3 + z)−(δ3+k+ρ)

B(δ3,k+ρ)
, 0 < r < 1 (3.38)

where z =
1− r

r
and B(x,y) is the standard beta function. The Bayes estimator of

R2,1,1, denoted by R̂BE
2,1,1, under the SE loss function is the mean of the posterior
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distribution in (3.38) , and is therefore given by

R̂BE
2,1,1 = E(R) =

∫ 1

0
r fR(r)dr

=C
∞

∑
i=0

τi
δ3(1−d)δ32F1 (a,b;b+1;d)

b

(3.39)

where a= 1+δ3, b= δ3+ρ+ i, and d = 1−γ1γ3 and 2F1 is the Gauss-hypergeometric

function with C, ρ , and τi as defined in (3.37). It is also clear that in the case of a system

with n components of n different types, the reliability expression in (3.35) becomes

Rn,1,1,...,1 = R =
βn

n−1
∑

i=1
βi +βn

(3.40)

Therefore the technique used above may be generalized to get the Bayes estimate of

the reliability expression in (3.40). For the reliability expression (3.40), if the βi, i =

1,2,3, ...,n have a common scale parameter γ , using the well known facts that

n−1

∑
i=1

βi ∼ Gamma

(
n−1

∑
i=1

δi,γ

)
,

and therefore
βn

βn+
n−1
∑

i=1
βi

∼ Beta

(
δn,

n−1

∑
i=1

δi

)

Using properties of the beta distribution, the Bayesian estimate of reliability (3.40) is

given by

E

 βn

βn+
n−1
∑

i=1
βi

=
δn

δn+
n−1
∑

i=1
δi
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4. A BRIEF OVERLOOK AT THE MLE, UMVUE and BAYES ESTIMATION
FOR Rs,k1,k2 USING COMPLETE SAMPLES

4.1 MLE Estimation of Rs,k1,k2 For Unknown α II

Let (X1,X2, ...,Xn1), (Y1,Y2, ...,Yn2) and (Z1,Z2, ...,Zm) be random samples of sizes n1,

n2 and m from Kw-G(α,β1), Kw-G(α,β2), and Kw-G(α,β3) respectively. Then the

respective likelihood functions of the observed samples are given by

L1(α,β1|x) = (αβ1)
n1

n1

∏
i=1

(
g(xi)G(xi)

α−1

1−G(xi)α

) n1

∏
i=1

(1−G(xi)
α)β1 (4.1)

L2(α,β2|y) = (αβ2)
n2

n2

∏
i=1

(
g(yi)G(yi)

α−1

1−G(yi)α

) n2

∏
i=1

(1−G(yi)
α)β2 (4.2)

L3(α,β3|z) = (αβ3)
m

m

∏
i=1

(
g(zi)G(zi)

α−1

1−G(zi)α

) m

∏
i=1

(1−G(zi)
α)β3 (4.3)

Thus the overall likelihood function of θ = (β1,β2,β3,α) based on the observed

samples x ,y and z can be written as L
(
β1,β2,β3,α

∣∣x,y,z) =
3
∏
i=1

Li and the

corresponding log-likelihood is given by

`
(
θ |x,y,z

)
=(n1 +n2 +m) lnα +(α−1)

(
n1

∑
i=1

lnG(xi)+
n2

∑
i=1

lnG(yi)+
m

∑
i=1

lnG(zi)

)

+(β1−1)
n1

∑
i=1

ln [g(xi)(1−G(xi)
α)]+(β2−1)

n2

∑
i=1

ln [g(yi)(1−G(yi)
α)]

+(β3−1)
m

∑
i=1

ln [g(zi)(1−G(zi)
α)]+n1 lnβ1 +n2 lnβ2 +m lnβ3

(4.4)

The MLEs of α , and βi , denoted by α̂ and β̂i, i = 1,2,3 respectively are the solutions

to the following system of equations :

∂`

∂β1
=

n1

β1
+

n1

∑
i=1

ln(1−G(xi)
α) = 0 (4.5)

∂`

∂β2
=

n2

β2
+

n2

∑
i=1

ln(1−G(yi)
α) = 0 (4.6)

∂`

∂β3
=

m
β3

+
m

∑
i=1

ln(1−G(zi)
α) = 0 (4.7)
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∂`

∂α
=
(n1 +n2 +m)

α
+(β1−1)

n1

∑
i=1

G(xi)
α lnG(xi)

1−G(xi)α
+(β2−1)

n2

∑
i=1

G(yi)
α lnG(yi)

1−G(yi)α

+(β 3−1)
m

∑
i=1

G(zi)
α lnG(zi)

1−G(zi)α
+

n1

∑
i=1

lnG(xi)+
n2

∑
i=1

lnG(yi)+
m

∑
i=1

lnG(zi) = 0

(4.8)

Therefore,

β̂1 =−
n1

n1

∑
i=1

ln
(

1−G(xi)
α̂

) , β̂2 =−
n2

n2

∑
i=1

ln
(

1−G(yi)
α̂

) (4.9)

β̂3 = − m
m

∑
i=1

ln
(

1−G(zi)
α̂

) (4.10)

The MLE of α on the hand can be obtained as a solution to the following

nonlinear-equation ξ (α) = α , where

ξ (α) =− (n1 +n2 +m)

[(
β̂1−1

) n1

∑
i=1

G(xi)
α lnG(xi)

1−G(xi)α
+
(

β̂2−1
) n2

∑
i=1

G(yi)
α lnG(yi)

1−G(yi)α

+
(

β̂3−1
) m

∑
i=1

G(zi)
α lnG(zi)

1−G(zi)α
+

n1

∑
i=1

lnG(xi)+
n2

∑
i=1

lnG(yi)+
m

∑
i=1

lnG(zi)

]−1

(4.11)

It is clear that α̂ is a fixed point of the equation ξ (α) =α and can therefore be obtained

via an iterative scheme as follows

ξ (αi) = αi

Where αi is the i-th iterate of α̂ . The iterative procedure will be halted when the

quantity |αi+1−αi| is sufficiently small. Therefore, the maximum likelihood estimator

of Rs,k1,k2 is given by

Rs,k1,k2 =∑
s
k

(
β̂3

kβ̂1 +hβ̂2 + β̂3

)
(4.12)

4.2 Asymptotic Confidence Interval II

In this subsection we derive the asymptotic distribution of θ̂θθ =
(

β̂1, β̂2, β̂3, α̂
)

and

from this, the asymptotic distribution of Rs,k1,k2 is derived. We later construct an

asymptotic confidence interval based on the asymptotic distribution of Rs,k1,k2 . The

expected Fisher information matrix of θθθ = (β1,β2,β3,α) is given by ¶(βββ ) = E (I(θθθ)),

38



where I(θθθ) =
[
Ii j (βββ )

]
=

[
− ∂ 2`

∂θi∂θ j

]
for i, j = 1,2,3,4 is the observed information

matrix. Thus we have

∂ 2`

∂β1∂α
=

n1

∑
i=1

G(xi)
α lnG(xi)

1−G(xi)α
,

∂ 2`

∂β2∂α
=

n2

∑
i=1

G(yi)
α lnG(yi)

1−G(yi)α
,

∂ 2`

∂β1∂α
=

m

∑
i=1

G(zi)
α lnG(zi)

1−G(zi)α

and

∂ 2`

∂α2 =
−(n1 +n2 +m)

α2 +(β1−1)
n1

∑
i=1

G(xi)
α(lnG(xi))

2

(1−G(xi)α)2

+(β2−1)
n1

∑
i=1

G(yi)
α(lnG(yi))

2

(1−G(yi)α)2 +(β3−1)
n1

∑
i=1

G(zi)
α(lnG(zi))

2

(1−G(zi)α)2 .

Lemma 3. Let (X1,X2, ...,Xn1) be a random sample of

size n1 from the Kw-G(α,β1) . Then the following hold

(i) E
(

G(Xi)
α lnG(Xi)

1−G(Xi)α

)
=

1
α

(
[ψ (β1 +1)−ψ (1)]− β1

(β1−1)
[ψ(β1)−ψ(1)]

)
,

(ii) E

(
G(Xi)

α (lnG(Xi))
2

(1−G(Xi)α)2

)
=

2β1

α

[
∞

∑
k=0

1
(k+1)

(
1

(β1 + k−1)
− 1

(β1 + k)

) k

∑
j=1

1
j

]
Where ψ(t) =

d
dt

Γ (t) is the Psi (polygamma) function.

Proof. If U(Xi) = G(Xi)
α , then it is easy to show that fU (u) = θ1(1− u)θ1−1, with

0 < u < 1 is the pdf of U. Now define functions

ζ1(G(Xi)
α) =

G(Xi)
α lnG(Xi)

1−G(Xi)α
=

G(Xi)
α

(
1
α

lnG(Xi)
α

)
1−G(Xi)α

and

ξ1(G(Xi)
α) =

G(Xi)
α (lnG(Xi))

2

(1−G(Xi)α)2 =

G(Xi)
α

(
1
α

lnG(Xi)
α

)2

(1−G(Xi)α)2

Employing formulae 4.293(8) and 1.516(1)) of [38] for (i) and (ii) respectively , we

proceed as follows

E (ζ1(U)) =

∫ 1

0

(
β1

α

)
u(1−u)β1−2 lnudu, (set t = 1−u)

=

(
β1

α

)(∫ 1

0
tβ1−2 ln(1− t)dt−

∫ 1

0
tβ1−1 ln(1− t)dt

)

=
1
α

(
[ψ (β1 +1)−ψ (1)]− β1

(β1−1)
[ψ(β1)−ψ(1)]

)
, β1 > 0
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E (ξ1(U)) =

(
β1

α2

)∫ 1

0
u(1−u)β1−3 ln2 udu, (set t = 1−u)

=

(
β1

α2

)(∫ 1

0
tβ1−3 ln2(1− t)dt−

∫ 1

0
tβ1−2 ln2(1− t)dt

)

=

(
2β1

α2

)[
∞

∑
k=0

1
(k+1)

(
1

(β1 + k−1)
− 1

(β1 + k)

) k

∑
j=1

1
j

]
, β1 > 0

Similarly, we can derive E (ζ2(G(Yi)
α)) , E (ξ2(G(Yi)

α)) and E (ζ3(G(Zi)
α)) ,

E (ξ3(G(Zi)
α)) for the random samples (Y1,Y2, ...,Yn2) and (Z1,Z2, ...,Zm) of sizes n2,

m and from Kw-G(α,β2), and Kw-G(α,β3) respectively. From Lemma 3, we can

conclude that

I14 =
1
α

(
[ψ (β1 +1)−ψ (1)]− β1

(β1−1)
[ψ(β1)−ψ(1)]

)
,

I24 =
1
α

(
[ψ (β2 +1)−ψ (1)]− β2

(β2−1)
[ψ(β2)−ψ(1)]

)
,

I34 =
1
α

(
[ψ (β3 +1)−ψ (1)]− β3

(β3−1)
[ψ(β3)−ψ(1)]

)
,

(4.13)

and

I44 =
(n1 +n2 +m)

α2 +(1−β1)
n1

∑
i=1

E (ξ1(G(Xi)
α))+(1−β 2)

n2

∑
i=1

E (ξ2(G(Yi)
α))

+(1−β3)
m

∑
i=1

E (ξ3(G(Zi)
α))

(4.14)

Furthermore, it can be shown that

I11 =
n1

β 2
1

, I22 =
n2

β 2
2

, I33 =
m
β 2

3
, and I12 = I13 = I21 = I23 = I31 = I32 = 0. (4.15)

Theorem 8. If θ̂θθ =
(

β̂1, β̂2, β̂3, α̂
)

is the maximum likelihood estimator of θθθ =

(β1,β2,β3,α) , then

[
β̂1−β1, β̂2−β2, β̂3−β3, α̂−α

]T
→ N4

(
0,B−1 (θθθ)

)
Where B(θθθ) and B−1 (θθθ) are symmetric matrices such that

B(θθθ) =


b11 0 0 b14

b22 0 b24
b33 b34

b44

 , B−1 (θθθ) =
1

|B(θθθ)|


d11 d12 d13 d14

d22 d23 d24
d33 d34

d44


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with

|B(θθθ)|= b11b22
(
b33b44−b2

34
)
−b11b33

(
b2

23−b2
14
)

and the entries of each of the matrices being

d11 = b22
(
b33b44−b2

34
)
−b33b2

24, d12 = b14b24b33, d13 = b14b22b34,

d22 = u11
(
u22u44−u2

34
)
−u33u2

14, d23 = b11b24b34, d24 =−b11b24b33,

d33 = u11
(
u22u44−u2

24
)
−u22u2

14, d34 =−b11b22b34,

d44 = b11b22b33, d14 = b14b22b33

Proof. The proof of the theorem follows fromt the asymptotic normality of MLE, see

[39].

Theorem 9. If R̂s,k1,k2 is the MLE of Rs,k1,k2, then

(
R̂s,k1,k2−Rs,k1,k2

)
→ N(0,σ2)

where

σ
2 =

1
|B(θθθ)|

[(
∂Rs,k1,k2

∂β1

)2

d11 +2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β2
d12 +

(
∂Rs,k1,k2

∂β2

)2

d22

+2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β3
d13 +2

∂Rs,k1,k2

∂θ2

∂Rs,k1,k2

∂β3
d23 +

(
∂Rs,k1,k2

∂β3

)2

d33

]

Proof. Using Theorem 1 and the delta method (see [39] ) ,the asymptotic distribution

of the Rs,k1,k2 = g∗ (θ) may be written as follows

(
R̂s,k1,k2−Rs,k1,k2

)
→ N(0,σ2)

where σ2 = cTB−1c with c =
[

∂Rs,k1,k2

∂θθθ

]T

=

[
∂Rs,k1,k2

∂β1
,
∂Rs,k1,k2

∂β2
,
∂Rs,k1,k2

∂β3
,0
]T

,

∂Rs,k1,k2

∂β1
= ∑

s
k

(
−pβ3

(pθ1 +qβ2 +β3)
2

)
,

∂Rs,k1,k2

∂β2
= ∑

s
k

(
−qβ3

(pβ1 +qβ2 +β3)
2

)
,

∂Rs,k1,k2

∂β3
=∑

s
k

(
pβ1 +qβ2

(pβ1 +hβ2 +β3)
2

)
,
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and B−1 (θ) is as defined in Theorem 1. Thus, it must be true that

σ
2 =

1
|B(θθθ)|

[(
∂Rs,k1,k2

∂β1

)2

d11 +2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β2
d12 +

(
∂Rs,k1,k2

∂β2

)2

d22

+2
∂Rs,k1,k2

∂β1

∂Rs,k1,k2

∂β3
d13 +2

∂Rs,k1,k2

∂β2

∂Rs,k1,k2

∂β3
d23 +

(
∂Rs,k1,k2

∂β3

)2

d33

]
This concludes the proof.

Therefore, a 100(1− γ)% asymptotic confidence interval of Rs,k1,k2 is given by(
R̂s,k1,k2− z1− γ

2
σ̂ , R̂s,k1,k2 + z1− γ

2
σ̂

)
(4.16)

Where zγ is the 100γ− th percentile of N(0,1).

4.3 Uniformly Minimum Variance Unbiased Estimator of Rs,k1,k2 II

In order to derive the UMVUE of reliability, the thesis starts with the following lemma.

Lemma 4. Let (X1,X2, ...,Xn1) , (Y1,Y2, ...,Yn2) , and (Z1,Z2, ...,Zm) be independent

random samples of sizes n1, n2 and m from the distributions Kw-G(α,β1),

Kw-G(α,β2) and Kw-G(α,β3) respectively. The statistic

(R,S,T ) =

(
−

n1

∑
i=1

ln [1−G(Xi)
α ] ,−

n2

∑
i=1

ln [1−G(Yi)
α ] ,−

m

∑
i=1

ln [1−G(Zi)
α ]

)
,

is a complete sufficient statistic for θθθ = (β1,β2,β3).

Proof. The joint pdf of the random sample XXX = (X1, ...,Xn1) , is given by

fXXX (xxx) =(αβ1)
n1

n1

∏
i=1

(
g(xi)G(xi)

α−1

1−G(xi)α

) n1

∏
i=1

(1−G(xi)
α)β1

=

[
α

n1
n1

∏
i=1

(
g(xi)G(xi)

α−1

1−G(xi)α

)][
β

n1
1

n1

∏
i=1

(1−G(xi)
α)β1

]

=

[
α

n1
n1

∏
i=1

(
g(xi)G(xi)

α−1

1−G(xi)α

)][
β

n1
1 exp

(
−β1

(
−

m

∑
i=1

ln(1−G(zi)
α)

))]
(4.17)

It follows that R = −
n1

∑
i=1

ln(1−G(Xi)
α) is a sufficient statistic for β1 by the

Neyman-Fisher factorization criterion. R is also a complete sufficient statistic since the

pdf of β1 can be written in the canonical exponential form 3.10. A similar approach

can be followed for S and T .
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Let

X∗1 =− ln [1−G(X1)
α ] , Y ∗1 =− ln [1−G(Y1)

α ] ,

and

Z∗1 =− ln [1−G(Z1)
α ]

Then it is easy to show that X∗1 , Y ∗1 , and Z∗1 are exponentially distributed random

variables with means β
−1
1 , β

−1
2 , and β

−1
3 respectively.

Lemma 5. If X∗1 = − ln [1−G(X1)
α ] and U = −

n1

∑
i=1

ln(1−G(Xi)
α), the conditional

distribution of X∗1 given U is given by

fX∗1 |U (x∗1 |U ) =
fX∗1 ,U(x

∗
1,u)

fU(u)
=

(n1−1)(u− x∗1)
n1−2

un1−1 ,0 < x∗1 < u (4.18)

Likewise, for Y ∗1 =− ln [1−G(Y1)
α ] and V =−

n2

∑
i=1

ln [1−G(Yi)], we have

fY ∗1 |V (y∗1 |V ) =
fY ∗1 ,V (y

∗
1,v)

fV (v)
=

(n2−1)(v− y∗1)
n2−2

vn2−1 ,0 < y∗1 < v, (4.19)

and finally for Z∗1 =− ln [1−G(Z1)
α ] and W =−

m

∑
i=1

ln [1−G(Zi)
α ], we have that

fZ∗1 |W (z∗1 |W ) =
fZ∗1 ,W (z∗1,w)

fW (w)
=

(m−1)(w− z∗1)
m−2

wm−1 ,0 < z∗1 < w (4.20)

Proof. The proof runs parallel to a similar proof used by [48] in deriving the

UMVUE of P(X > Y ) under progressive type-II sampling scheme. The proof is as

follows: Let Q =
n1

∑
i=2

Pi where Pi = − ln(1−G(Xi)
α) . Since the − ln(1−G(Xi)

α)′ s

are independent exponential random variables, each with mean β
−1
1 , it must be true

that Q ∼ Gamma(n1 − 1,β1). Moreover Q and P1 are independent and their joint

distribution must be given by

fQ,P1(q, p) = fQ(q) fP1(p) =
β

n1
1

Γ (n1−1)
qn1−2e−β1(q+p) (4.21)

Defining X∗1 = P1 and U = Q+P1 and applying elementary transformation techniques

yields the joint distribution of X∗1 and U as

fX∗1 ,U(x
∗
1,u) =

1
(n1−2)!

β
n1
1 (u− x∗1)

n1−2e−uβ1 (4.22)

and similarly the marginal distribution of U is given by

fU(u) =
1

(n1−1)!
β

n1
1 e−uβ1un1−1
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Consequently we get the conditional distribution of X∗1 given U as follows

fX∗1 |U (x∗1 |U ) =
fX∗1 ,U(x

∗
1,u)

fU(u)
=

(n1−1)(u− x∗1)
n1−2

un1−1 ,0 < x∗1 < u (4.23)

Thus, the expressions are still similar to the ones derived in the records case and

certainly for censored samples as well. The derivation of the remaining conditional

distributions as well as the proof of the following theorem are trivial.

Theorem 10. For n1 ≥ 2, n2 ≥ 2, and m≥ 2 and the UMVUE of

ϕ(β1,β2,β3) =
β3

kβ1 +hβ2 +β3
,

denoted by ϕU(β ,β2,β3), is given by

ϕU(β ,β2,β3) =



Q1(n1,n2,m,u,v,w) i f w≤ max
{v

h
,

u
k

}
Q2(n1,n2,m,u,v,w) i f

u
k
≤ max

{
w,

v
h

}
Q3(n1,n2,m,u,v,w) i f

v
h
≤ max

{
w,

u
k

}
(4.24)

where

Q1 =
n1−1

∑
a=0

(−1)a
(

kw
u

)a n2−1

∑
b=0

(−1)b
(

hw
v

)b (n1−1
a

)(n2−1
b

)(m+a+b−1
a+b

)
= F1

(
1,(1−n1),(1−n2),m;

kw
u
,
hw
v

)
Q2 =

(
m−1

n1

)( u
kw

) n2−1

∑
a=0

(−1)a
(

hu
kv

)a m−2

∑
b=0

(−1)b
( u

kw

)b
(n2−1

a

)(m−2
b

)(n1+a+b
a+b

)
=

(
m−1

n1

)( u
kw

)
F1

(
1,(1−n2),(2−m),n1 +1;

hu
kv

,
u

kw

)
Q3 =

(
m−1

n2

)( v
hw

) n1−1

∑
a=0

(−1)a
(

kv
hu

)a m−2

∑
b=0

(−1)b
( v

hw

)b
(n1−1

a

)(m−2
b

)(n2+a+b
a+b

)
=

(
m−1

n2

)( v
hw

)
F1

(
1,(1−n1),(2−m),n2 +1;

kv
hu

,
v

hw

)
and k = i1 + j1 6= 0, h = i2 + j2 6= 0.

As was the case with upper record values, the UMVUE of Rs,k1,k2 , denoted by RU
s,k1,k2

,

must be

RU
s,k1,k2

=∑
s
kϕU(θ) (4.25)
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4.4 Closed Form of The Bayes Estimator Using Conjugate And Non-Informative

Priors II

Assuming gamma priors for β1,β2, and β3 given by

π(βi) =
abi

i β
bi−1
i e−aiβi

Γ (bi)
, βi,bi,ai > 0, i = 1,2,3, (4.26)

the joint posterior function of β1,β2, and β3 (see Section 2.2) can be written as

π(θθθ
∣∣r, p,s) =

µ
v1
1 µ

v2
2 µ

v3
3

Γ (v1)Γ (v2)Γ (v3)
β

v1−1
1 β

v2−1
2 β

v3−1
2 exp(−µ1β1−µ2β2−µ3β3)

(4.27)

Where

µ1 = a1−
n1

∑
i=1

ln [1−G(xi)
α ] , µ2 = a2−

n2

∑
i=1

ln [1−G(yi)
α ]

µ3 = a3−
m

∑
i=1

ln [1−G(zi)
α ]

The Bayes estimator of Rs,k1,k2 , denoted by RB
s,k1,k2

, is as follows

RB
s,k1,k2

=

∫
∞

0

∫
∞

0

∫
∞

0
Rs,k1,k2 (β1,β2,β3)π

(
β1,β2,β3

∣∣α,x,y,z
)

dβ1dβ2dβ3

=M∑
s
k

∫
∞

0

∫
∞

0

∫
∞

0

(
β

v1−1
1 β

v2−1
2 β

v3
3 exp(−µ1β1−µ2β2−µ3β3)

pβ1 +qβ2 +β3

)
dθθθ

where

M =
µ

v1
1 µ

v2
2 µ

v3
3

Γ (v1)Γ (v2)Γ (v3)

Define a one-to-one transformation T by

x =
pβ1

pβ1 +qβ2 +β3

y =
qβ2

pβ1 +qβ2 +β3

z = pβ1 +qβ2 +β3


=⇒


β1 = xz/p

β2 = yz/q

β3 = z(1− x− y)

,

where p 6= 0 and q 6= 0. It is evident that RB
s,k1,k2

= 1 for the case when p = 0 and q = 0.

We note that

0 < x+ y =
pβ1 +qβ2

pβ1 +qβ2 +β3
< 1, 0 < z < ∞ and

β3

pβ1 +qβ2 +β3
= 1− x− y.

Furthermore, the Jacobian of the transformation is given by

|J(x,y,z)|=

∣∣∣∣∣∣
z/p 0 x/p
0 z/q y/q
−z −z 1− x− y

∣∣∣∣∣∣= z2

pq
.
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Therefore, we have that

RB
s,k1,k2

=
µ

v1
1 µ

v2
2 µ

v3
3

pv1qv2Γ (v1)Γ (v2)Γ (v3)
∑

s
k

∫ 1

0

∫ 1−y

0

∫
∞

0
xv1−1yv2−1 (1− x− y)v3

× zv1+v2+v3−1 exp{−z [µ1x/p+µ2y/q+µ3(1− x− y)]}dzdxdy

=K ∑
s
k

∫ 1

0

∫ 1−y

0
xv1−1yv2−1 (1− x− y)v3 (1−σ1x−σ2y)−(v1+v2+v3) dxdy

where

K =
(1−σ1)

v1 (1−σ2)
v2 Γ (v1 + v2 + v3)

Γ (v1)Γ (v2)Γ (v3)
, σ1 = 1− µ1

pµ3
, σ2 = 1− µ2

qµ3

A Euler type integral representation of the Appell hypergeometric function of the first

kind, denoted by F1, as shown in [38] is as follows

Γ (d)F1 (a,b,c,d;x,y)
Γ (b)Γ (c)Γ (d−b− c)

=

∫ 1

0

∫ 1−v

0
ub−1vc−1(1−u− v)d−b−c−1 (1−ux− vy)−a dudv

b > 0, c > 0, d−b− c > 0, |x|< 1, |y|< 1.
(4.28)

Using the result (4.28), together with functional relations of F1 (see [38] formulae

9.183(1)), we can conclude that

RB
s,k1,k2

=


ϖ1 (σ1,σ2) , if |σ1|< 1, |σ2|< 1
ϖ2 (σ1,σ2) , if σ1 <−1,σ2 <−1
ϖ3 (σ1,σ2) , if |σ1|< 1,σ2 <−1
ϖ4 (σ1,σ2) , if ,σ1 <−1, |σ2|< 1

(4.29)

where

ϖ1 =∑
s
k
(1−σ1)

v1 (1−σ2)
v2 v3

(v1 + v2 + v3)
F1

(
3

∑
i=1

vi,v1,v2,1+
3

∑
i=1

vi;σ1,σ2

)
,

ϖ2 =∑
s
k

(
v3

v1 + v2 + v3

)
F1

(
1,v1,v2,1+

3

∑
i=1

vi;
σ1

σ1−1
,

σ2

σ2−1

)
,

ϖ3 =∑
s
k

(
v3 (1−σ1)

v1 + v2 + v3

)
F1

(
1,v3 +1,v2,1+

3

∑
i=1

vi;σ1,
σ1−σ2

1−σ2

)
,

and

ϖ4 =∑
s
k

(
v3 (1−σ2)

v1 + v2 + v3

)
F1

(
1,v1,v3 +1,1+

3

∑
i=1

vi;
σ2−σ1

1−σ1
,σ2,

)
.

Using Jeffery’s non informative priors, it can easily be shown that the Bayes estimator

assumes the same form as above with a1 = a2 = a3 = b1 = b2 = b3 = 0.
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5. NUMERICAL EXPERIMENTS AND SIMULATIONS

In this section, Monte Carlo simulations are conducted to compare the performance

of the Bayes estimator, MLE and UMVUE of Rs,k1,k2 using upper record values

from the family of Kumaraswamy generalized distributions, Kw-G. Case 1: The

exponential distribution with rate parameter equal to 2 is used as the baseline, G, when

α is unknown. The performances of the estimators are compared in terms of mean

squared error (MSE). The HDP credible intervals are compared in terms of average

confidence lengths, and coverage probabilities (cp). All results are based on 1000

replications and computations are performed in MATLAB2010. When α is unknown,

the performance of the MLE and Bayes estimators under Lindley approximation

and MCMC method using four the parameter values θ = (α,β1,β2,β3) = (1,1,2,2)

are compared. The confidence levels are held at 5% level of significance. The

true value of Rs,k1,k2 is evaluated for (s1,s2,k1,k2) = (2,1,2,2),(2,3,4,6). Bayes

estimators and HDP credible intervals are computed using following choices of prior

distributions : Prior 1: (δ1,δ2,δ3,δ4) = (2,1,1,3),(γ1,γ2,γ3,γ4) = (2,2,1,1), Prior 2:

(δ1,δ2,δ3,δ4) = (1,1,2,3),(γ1,γ2,γ3,γ4) = (1,2,3,1). Records samples are generated

using an algorithm from [49]. The results for Case 1 are reported in Table A.5 with

L̄CR and L̄CI denoting the average asymptotic and credible interval lengths respectively.

cpCI and cpCR denote the respective coverage probabilities. It is observed that the MSE

decreases with increase in sample sizes as expected. This confirms the consistency of

the estimates. The average lengths of the asymptotic and Bayesian credible intervals

also decrease with increase in sample sizes and the coverage probabilities are at least

0.80 and 0.90 respectively. For low sample sizes, Lindley’s approximation has the

smallest MSE followed by the MCMC and MLE methods but the performance is

almost the same with increase in sample size. So, for samples large enough, any of

the estimates may be be employed. Case 2 : In the case that α is known the Weibull

distribution with scale and shape parameters given by 2 and 3 respectively, is used

as the baseline. The performance of the UMVUE, MLE and Bayes estimators under

Lindley approximation and MCMC method are compared with Rs,k1,k2 evaluated at θ =
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(α,β1,β2,β3) = (1,1,2,2) with (s1,s2,k1,k2) = (2,1,2,2). The asymptotic and HDP

credible intervals are compared in terms of average confidence lengths, and coverage

probabilities (cp). The prior used is Prior 3: (δ1,δ2,δ3) = (1,1,2),(γ1,γ2,γ3) =

(2,3,1). The results of the simulations for Case 2 are reported in Table A.7 and Table

A.6. It is noted that the MSE in all the estimates decreases as sample sizes increases.

For low sample sizes, Lindley’s approximation has the least MSE followed by the

MLE and the MCMC method. Here we note that the UMVUE is not comparable

under the MSE criterion, see [20]. However, even for small sample sizes, the UMVUE

performs best among all the estimates in terms of biases and is therefore preferred in

practice. The asymptotic and Bayesian credibles intervals lengths together with their

corresponding coverage probabilities increase with increase in sample size.

5.1 Real Data Application

Recall the proposed model description from the introduction. Fatigue strength is a

factor of paramount importance in structural materials in order to ensure long-term

reliability of structures. It is vital to ensure that material used can sustain huge loads

without failure. High-strength low alloy steels are much stronger and tougher than

ordinary carbon steels and are highly resistant to corrosion, see [50] and [51]. Their

increased strength means that structures can be built to contain less steel and therefore

be lighter than they otherwise would be. They are often used in cars and trucks

because it leads to fuel economy and less damage to road surfaces. In this section,

we demonstrate how the model may be applied in real life by considering three sets of

data which were produced by [52] for evaluating specimen size effect in gigacycle

fatigue of high-strength JIS-SCM440 (AISI-4140) low-alloy steel under ultrasonic

fatigue testing. This paper extends an idea previously used by [53], [54] and recently

by Sales et al. [55]. In the present work, we propose a way of studying a well known

phenomenon in materials science and engineering that fatigue strength of a material

decreases with increasing specimen size (size effect), see [56] and [57]. The fatigue

test results on the three specimens were extracted with WebPlotDigitizer [58] due to

lack of raw data. The results are reported in Tables A.1, A.2, and A.3. As mentioned in

the introduction, the material-testing experiments produced results which are naturally

of records type, confirming [22]’s claim. So, there are a total of 18, 16, and 9 upper
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Figure 5.1 : φ3mm, φ7mm and φ8x10mm specimens drawings.

record values form experiments 1, 2, and 3 respectively. In order to compare the

specimen fatigue lives, the samples for system component strengths of type 1 and type

2 will be represented by the fatigue life samples from any two specimens with the third

specimen sample used as stress sample. The Kumaraswamy-Lomax distribution with

a CDF given by

F(x) = 1−
{

1−
(

1− δ

(x+δ )γ

)α}β

, x > 0,α > 0,δ > 0,γ > 0,β > 0, (5.1)

was found to fit the data well with parameter values (α,δ ,γ,β1,β2,β3) =

(1,6234000,0.32958,0.9112,1.0831,1.5113), see Table A.4 for the corresponding

K-S distances and p-values. The goodness-of-fit tests were performed on the three data

sets with the help of EasyFit [59], MATLAB2010 [60], and R [61]. The lifetimes of the

φ3mm (stress), φ7mm (type 1 strength) and φ8×10mm (type 2 strength) specimens

are compared with the combination (s1,s2,k1,k2) = (1,1,1,1) which yields UMVUE

of Rs,k1,k2 as 0.4151. That is, the fatigue lifetime of the φ3mm specimen exceeds that

of both the φ8×10mm and φ7mm specimens. These result is in agreement with [52]’s
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findings that under ultrasonic fatigue testing, the fatigue strength of specimens of

various sizes fell with increase in specimen sizes.

5.2 Conclusions And Possible Future Considerations

In this thesis, the estimation of stress-strength reliability in a multicomponent system

with non-identical component strengths based on upper record values was considered

under Bayesian and frequentist methods. The upper record value samples used were

generated using the algorithm of [49]. When the common shape parameter is unknown,

the MLE and Lindley estimator have similar performances for samples sizes large

enough. When the common parameter is known the paper also proposes for the first

time, the UMVUE of the reliability parameter using upper record values. The UMVUE

performs best in terms of biases and a preferred choice in practice as it is more accurate

even for small sample sizes. The asymptotic intervals perform better than Bayesian

credible intervals in terms of average lengths and vise versa in terms of coverage

probabilities. Despite having considered a system with non-identical components in

the present work, the family of distributions used was still the same. The assumption

of completely different probability distributions would certainly yield more realistic

models as they would account reasonably for the differences in system components’

structures. Additionally a lot has not been done in multicomponent stress-strength

models for the case of components’ strengths degradation over time as alluded by [15].

Investigations are underway on these issues. The mesh of the present model with that

of [12] and [11] could also lead to interesting findings.
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APPENDIX A.1

Table A.1 : φ3mm specimen
fatigue test data

Experiment 1
Specimen Num-
ber

Fatigue
Life(number
of cycles to
failure)

1 1017286
2 2989152
3 4059346
4 4256299
5 8376572
6 9560400
7 13007977
8 25303118
9 33621704
10 55951560
11 101155984
12 144322192
13 376711232
14 731957760
15 9444513800
16 9912163300
17 9918688300
18 9921105900

Table A.2 : φ7mm specimen
fatigue test data

Experiment 2
Specimen Num-
ber

Fatigue
Life(number
of cycles to
failure)

1 611670
2 890099
3 974460
4 3461990
5 13640537
6 26045358
7 28147395
8 31216343
9 39400852
10 134652209
11 217309470
12 277856285
13 350706504
14 6441526000
15 6783606914
16 8452132412

Table A.3 : φ8×10mm
specimen fatigue

test data

Experiment 3
Specimen Num-
ber

Fatigue
Life(number
of cycles to
failure)

1 289867
2 1291756
3 6404257
4 7848468
5 9374890
6 31500474
7 211678768
8 5575744500
9 5926607400

Table A.4 : Kolmogorov-Smirnov
Goodness of Fit Test

Specimen size Test Statistic p-value

0.1113 0.9606
φ3mm specimen

0.1369 0.8860
φ7mm specimen

0.1886 0.8501
φ8×10mm specimen
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APPENDIX A.2

Table A.5 : Estimating Rs,k1,k2 using Prior 1 and Prior 2 with
(s1,s2,k1,k2) = (2,1,2,2) and (s1,s2,k1,k2) = (2,3,4,6).

(n1,n2,m) Rs,k1,k2 R̂s,k1,k2 R̂L
s,k1,k2

R̂MC
s,k1,k2

CI/CR L̄CI/L̄CR cpCI/cpCR

0.4641 0.4005 0.3954 (0.2660,0.6621) 0.3961/0.4236 0.8020/0.9280(5,5,6) 0.4667
0.0204 0.0234 0.0123 (0.1885,0.6121)

0.4672 0.4360 0.4204 (0.3111,0.6232) 0.3121/0.3377 0.8360/0.9190(10,10,11)
0.0106 0.0084 0.0078 (0.2538,0.5915)

0.4657 0.4487 0.4312 (0.3336,0.5979) 0.2644/0.2901 0.8680/0.9280(15,15,16)
0.0075 0.0068 0.0061 (0.2873,0.5774)

0.4640 0.4541 0.4408 (0.3479,0.5801) 0.2322/0.2582 0.8750/0.9100(20,20,21)
0.0055 0.0055 0.0064 (0.3125,0.5707)

0.4636 0.4577 0.4692 (0.3588,0.5685) 0.2097/0.2386 0.8820/0.8370(25,25,26)
0.0042 0.0043 0.0125 (0.3507,0.5893)

0.6549 0.4575 0.5558 (0.4385,0.8661) 0.4276/0.5115 0.7510/0.9040(5,5,6) 0.7009
0.0300 0.0796 0.0281 (0.3010,0.8125)

0.6844 0.6156 0.6173 (0.5382,0.8306) 0.2924/0.3443 0.8490/0.8920(15,15,16)
0.0097 0.0136 0.0122 (0.4434,0.7878)

0.6928 0.6438 0.6379 (0.5641,0.8215) 0.2574/0.3044 0.8570/0.9040(20,20,21)
0.0070 0.0087 0.0085 (0.4835,0.7879)

0.7006 0.6687 0.6961 (0.5954,0.8058) 0.2104/0.2666 0.9260/0.9390(30,30,31)
0.0032 0.0039 0.0063

0.7000 0.6697 0.7362 (0.6046,0.7954) 0.1908/0.2629 0.9350/0.9060(35,35,36)
0.0022 0.0029 0.0094
∗ The second row represents the MSE of the estimates.
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Table A.6 : Estimating Rs,k1,k2 using Prior 3 with (s1,s2,k1,k2) = (2,1,2,2).

(n1,n2,m) Rs,k1,k2 R̂s,k1,k2 R̂L
s,k1,k2

R̂MC
s,k1,k2

UMVUE CI/CR L̄CI/L̄CR cpCI/cpCR

0.4810 0.5562 0.3634 0.4972 (0.3504,0.6117) 0.2613/0.4341 0.6330/0.8400(5,5,6) 0.5000
0.0198 0.0169 0.0238 0.0233 (0.1564,0.5906)

-0.0190 0.0562 −0.1366 -0.0028

0.4927 0.5271 0.4058 0.5000 (0.3907,0.5946) 0.2039/0.3522 0.6850/0.8800(10,10,11)
0.0098 0.0086 0.0132 0.0107 (0.2340,0.5862)

-0.0073 0.0271 −0.0942 0.0000269

0.4922 0.5145 0.4333 0.4968 (0.4061,0.5783) 0.1721/0.3041 0.6830/0.9010(15,15,16)
0.0072 0.0064 0.0084 0.0077 (0.2831,0.5872)

-0.0078 0.0145 −0.0667 -0.0032

0.4907 0.5075 0.4501 0.4968 (0.4146,0.5668) 0.1523/2711 0.7070/0.9130(20,20,21)
0.0052 0.0047 0.0057 0.0054 (0.3154,0.5865)

-0.0093 0.0075 −0.0499 -0.0061

0.4980 0.5112 0.4677 0.5007 (0.4294,0.5666) 0.1372/0.2471 0.7150/0.9520(25,25,26)
0.0041 0.0039 0.0037 0.0042 (0.3445,0.5916)

-0.0020 0.0112 −0.0323 0.00066

0.5147 0.5251 0.4973 0.5176 (0.4563,0.5731) 0.1168/0.2230 0.7930/0.9840(30,30,35)
0.0023 0.0026 0.00181 0.0025 (0.3860,0.6091)

0.0147 0.0251 −0.0027 0.0176

0.5012 0.5031 0.4841 0.5031 (0.4447,0.5577) 0.1130/0.2139 0.8630/0.9840(35,35,36)
0.0014 0.0015 0.00141 0.0015 (0.3773,0.5912)

0.0012 0.0114 −0.0159 0.0031

∗ The second and third rows represent the MSE and Bias of the estimates respectively.
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Table A.7 : Estimating Rs,k1,k2 using Prior 3 with (s1,s2,k1,k2) = (2,1,2,2).

(n1,n2,m) Rs,k1,k2 R̂s,k1,k2 R̂L
s,k1,k2

R̂MC
s,k1,k2

UMVUE CI/CR L̄CI/L̄CR cpCI/cpCR

0.4841 0.6479 0.5731 0.5010 (0.3536,0.6146) 0.2610/0.4592 0.6420/0.9720(5,5,6) 0.5000
0.0191 0.0385 0.0106 0.0010 (0.3536,0.6146)

-0.0159 0.1479 0.0731 -0.0010

0.4953 0.5431 0.5580 0.5000 (0.4088,0.5818) 0.1730/0.3046 0.6800/0.9080(15,15,16)
0.0075 0.0071 0.0077 0.0078 (0.4045,0.7046)

0.0047 0.0431 0.0580 -0.00004

0.4943 0.5307 0.5548 0.4977 (0.4185,0.5701) 0.1516/0.2705 0.7050/0.9060(20,20,21)
0.0053 0.0051 0.0052 0.0066 (0.3154,0.5865)

0.0057 0.0307 0.0548 -0.0023

0.4941 0.5234 0.5527 0.4967 (0.4257,0.5625) 0.1368/0.2451 0.7130/0.8700(25,25,26)
0.0043 0.0042 0.0062 0.0044 (0.4297,0.6747)

-0.0059 0.0234 0.0527 -0.00033

0.4850 0.5115 0.5348 0.4869 (0.4209,0.5491) 0.1282/0.2234 1.00/1.00(30,30,31)
0.0023 0.0026 0.0018 0.0025 (0.4176,0.6410)

-0.0150 0.0115 0.0348 -0.0131

0.5018 0.5239 0.5577 0.5037 (0.4453,0.5582) 0.1129/0.2106 0.8450/0.9130(35,35,36)
0.0015 0.0015 0.0019 0.0045 (0.4517,0.6623)

0.0018 0.0239 −0.0577 0.0037

0.5030 0.5241 0.5574 0.5047 (0.4519,0.5541) 0.1022/0.1986 0.9060/0.9250(40,40,41)
0.00084 0.0013 0.0040 0.00088 (0.4576,0.6562)

0.0030 0.0241 0.0574 0.0047

∗ The second and third rows represent the MSE and Bias of the estimates respectively.
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