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THE ROLES OF MATRIX NORMS
IN THE GAME THEORY

SUMMARY

In this thesis, we make some significant contributions and give a new perspective
to the game theory and 3-dimensional matrix theory. We present our contributions
and developments in three diffrent chapters as follows: In the first chaper, a brief
history of the matrices is given. Some examples are given in order to demonstrate the
usage in science for different purposes. In the second chapter, some definitions and
properties for the 2-dimensional matrices are extended to the 3-dimensional matrices.
The basic concepts of the 3-dimensional matrices are presented by extending the
definitions for the 2-dimensional matrices. The 3-dimensional matrix product
is defined as it is defined for the 2-dimensional matrices. Moreover, the matrix
inversion of a 3-dimensional matrix, determinant vector and some other definitions
are made.The condition number vectors for the 3-dimensional matrices is defined. In
addition these definitions, the singular and nonsingular 3-dimensional matrices are
defined based on the definition of the determinant vector. Furthermore, the definition
of ill-conditioned and well-conditioned 3-dimensional matrices are presented by
using the definition of the condition number vector. Beside these, Cauchy-Schwarz
inequality is represented for the 3-dimensional matrices and proved by inducing the
3-dimensional matrix to 2-D matrix. Additionally, some other important inequalities
related to the 3-dimensional matrix norms are demonstrated. Finally, in this chapter,
the effects of the third dimension with the new definitions and inequalities by some
examples are investigated.

In addition to these, the norm inequalities for 3-dimensional matrices are presented
and comprehensively proved. The proofs are completed with the similiar methodology
being used for the 2-dimensional matrix norm inequalities. That is, we first induce
the 3-D matrix to the 2-dimensional matrix. Then, we use the 2-D matrix norm
inequalities and necessary vector norm inequalities. Moreover, the relationships
between these norms are showed and the coefficients of the 3-dimensional matrix
norm inequalities are presented with a table in order to simplify the usage of these
norm inequalities. Furthermore, the usefulness of these inequalities is illustrated
for 3-dimensional matrices which are obtained from simulations and real data
applications.

In the third chapter, a novel approach to solve and create a two person zero sum
matrix game by using matrix norms is presented. Especially, we show how to obtain
approximated game value, v,,p, for any zero sum matrix game without solving any
equations using our approaches. Firstly, some lemmas are given and the results
of these lemmas for the game value depend on the matrix norms of the payoff
matrix and some constants k containing the game value v. Then, the row-wise and
column-wise induced matrix for the payoff matrix are introduced. Moreover, the
proposed approaches are improved and the game value in the constant k is vanished
off. Then, some new improved theorems for the game value are presented in order
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to obtain some inequalities which depend on only the 1 — norm and o — norm of the
payoff matrix. Furthermore, the min-max theorem for p,,,. and p,,;, is stated and
clearly proved, where p.c and p,i, are the maximum and minimum elements of
the mixed strategy set, respectively. The min-max theorem shows the relationship
between p,q and pp,i,. Additionally, this theorem provides an opportunity to obtain
more optimal interval for the game value. We also illustrate and show the consistency
of our approaches with some test examples. To the best of our knowledge, this is the
first study in the literature that the game theory meets the matrix norms.
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MATRIS NORMLARININ
OYUN TEORISINDEKI ROLLERI

OZET

Bu tezde, genel olarak 3-boyutlu matrisler i¢in bazi temel tanimlar ve ozellikler
sunuldu. Buna ek olarak, 3-boyutlu matris norm esitsizlikleri ispatlandi ve bu normlar
arasindaki iligkileri gosteren katsayilar esitsizliklerin daha kolay kullanilabilmesi
icin bir tablo halinde verildi. Son olarak, matris normlari, literatiirde ilk olmak
izere, oyun teorisi ile bir araya getirildi. Biitiin bunlar tez boyunca ii¢ farkli baglik
altinda detayli bir sekilde incelendi. Bu boliimlerdeki icerikler su sekildedir: Giris
boliimiinde, matrislerin tarihi ve kullanim alanlariyla ilgili bazi 6rnekler verildi. Bu
verilen orneklerle matrislerin farkli bilim dallarinda farkli amaclarla kullanildiginin
vurgulanmasi hedeflendi. Daha sonra, 2-boyutlu matrislerle ilgili literatiir taramasi
mahiyetinde gecmisten bugiine kadar kullanilan bazi temel tanimlar ve Ozellikler
verildi. Birinci boliimde, 2-boyutlu matrisler i¢in bazi temel tamim ve ozellikler,
2-boyutlu matrislerdeki tanimlar iizerinden, 3-boyutlu matrisler i¢in genellestirildi.
Bunun sonucunda, 3-boyutlu matrisler i¢cin 2-boyutlu matrislere dayanarak temel
konsept sunuldu. 3-boyutlu matrisleri temsil etmek iizere bir notasyon belirlendi.
Ayrica, 3-boyutlu matrislerde ¢carpma islemi 2-boyutlu matrislerdeki ¢carpma islemine
benzer sekilde acik¢a tamimlandi. Bir 3-boyutlu matrisin tersinin nasil alinmasi
gerektigi agiklandi. 3-boyutlu bir matrisin determinant vektorii tanimland:r ve bu
tanima bagh olarak bir 3-boyutlu matrisin tekil olma, tekil olmama ve hemen hemen
tekil olma durumlar1 aciklandi. 2-boyutlu matrislerdeki kondisyon sayis1 3-boyutlu
matrisler icin genellestirildiginde bir vektor elde edildi ve bu vektdr 3-boyutlu
bir matrisin kondisyon sayis1 vektorii olarak tanimlandi. 2-boyutlu matrislerdeki
kondisyon sayis1 hesaplanirken matrisin tersi kullanildigi gibi 3-boyutlu bir matrisin
kondisyon sayis1 vektoriinii hesaplarken daha onceden agiklanmis olan 3-boyutlu
matrislerdeki ters alma islemi kullanildi. 2-boyutlu matrisler i¢in tanimlanmis olan
kondisyon sayisinin tanmimina bagh kalinarak kotii ve iyi kosullu matris tanimlari
verildi. Bunlarin yan sira, 2-boyutlu matris normlari icin énemli bir esitsizlik olan
Cauchy-Schwarz esitsizligi, 3-boyutlu matrislerin 2-boyutlu matrislere indirgenmesi
yontemiyle, 3-boyutlu matrisler i¢cin kanitlandi. Buna ek olarak bazi 3-boyutlu
matris normlari icin 6nemli esitsizlikler sunulup, bu esitsizlikler agik bir sekilde ispat
edildi. Ornegin, bir matrisin spektral yar1 capinin 3-boyutlu bir matrisin herhangi bir
normundan kiiciik ya da esit oldugu gosterildi. 3-boyutlu bir A matrisinin hermisyen
bir matris olmas1 durumunda bu matrisin spektral yarigapinin, 3-boyutlu matrisler i¢in
verilen 2 — normuna esit oldugu ispatlandi. Bunlarin yaninda 3-boyutlu matrisler icin
tanimlanmis Frobenius — normun iiniter matrislerle ¢carpim durumda degismez oldugu
sunulup, kanitlandi. Benzer sekilde 2 — normunun 3-boyutlu {initer bir matrisle soldan
carpim durumunda degismez oldugu ispatlandi. 3-boyutlu matrisler i¢in tanimlanmis
2 —normu ile 1 — normu ve o — normu arasindaki iligkiyi gosteren bir esitsizlik daha
kanitlandi. Son olarak bu boliimde verilen tamimlart acgiklayacak ve ii¢iincii boyutun
yeni tanimlar iizerindeki etkilerini gosterecek sekilde bazi aciklayici 6rnekler verildi.
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Bu orneklerde, ilk olarak 3-boyutlu matrislerin determinantinin nasil hesaplanacag ve
3-D bir matrisin hemen hemen tekil olma durumu gosterildi. Daha sonra, 3-boyutlu
bir matrisin tersinin nasil alinacagi aciklandi. Ayrica, 3-boyutlu bir matrisin kondisyon
sayis1 vektoriiniin nasil hesaplanacagi acik bir sekilde gosterildi. Boylece verilen
orneklerle 3-boyutlu matrisler i¢in yapilmis olan yeni tanimlarin nasil kullanilacagina
aciklik getirildi.

Ikinci olarak, oncelikle literatiirde tanimlanmis olan ve bu calismada da kullanilan
3-boyutlu matris normlarinin tanimlar ilgili ¢calismada sunuldugu sekilde verildi.
Literatiirde 3-boyutlu matris norm esitsizliklerini gosteren herhangi bir c¢alisma
olmadigindan dolayr bu agig1 kapatmak icin bu tezde 3-boyutlu matris norm
esitsizlikleri sunuldu. Bunun sonucunda 3-boyutlu matrislerdeki norm esitsizlikleri
2-boyutlu matris norm esitsizliklerine benzer sekilde ispatlandi. Yani, nasil ki bazi
kaynaklarda 2-boyutlu matris norm esitsizliklerinin ispatlarinda, 2-boyutlu matrislerin
vektorlere indirgenmesinden sonra vektor norm esitsizlikleri kullaniliyorsa, bizim
kanitlarimizda da 3-boyutlu bir A € C™*"*¥ matrisi 2-boyutlu matrislere indirgendi
ve 2-boyutlu matris norm esitsizlikleri ile gerekli yerlerde vektdr norm esitsizlikleri
kullanilarak kamitlar yapildi. Ispatlardaki diger 6nemli bir nokta ise boyutlart m x
1 x s olan bir 3-boyutlu A € C"™ !> matrisinin 2-boyutlu bir matris olan A €
C™*$ geklinde davrandigiin kabul edilmis olmasidir. Bu fikre dayanarak yapilmis
olan ispatlar sonucunda elde edilen 3-boyutlu matris norm esitsizliklerinde bulunan
katsayilar bir katsayilar tablosu halinde esitsizliklerin kolayca kullanilabilmesi i¢in
sunulmugtur. Daha sonra 3-boyutlu matris normlarinin ve ilgili esitsizliklerin 6nemini
ve kullamighlifin1 gostermek amaciyla matematiksel finanstan alinmis, gercek ve
simiilasyon verilerini igeren bir Oornek verildi. Yani, kanitlanan 3-boyutlu matris
norm esitsizliklerinin, simiilasyon sonucu elde edilen ve gercek veriler kullanilarak
hesaplanmis 3-boyutlu matris norm degerleri icin saglanmig oldufu gosterildi.
Ispatlanan bu norm esitsizlikleri kullanilarak matrisin boyutuna bagh olarak daha
optimal araliklar elde edilebileceg§inden bahsedildi. Bunlarin yani sira, stokastik
diferansiyel denklemlerle yapilan cesitli analizler Milstein ve Stokastik Runge Kutta
(SRK) yontemleri ile yapilmis olup 3-boyutlu matris norm esitsizliklerini saglamistir.
Bu iki yontemin yakinsama hizlarindan ve yontemlerden bagimsiz olarak 3-boyutlu
matris normlar esitsizliklerinin calistif1 gosterildi. Ayrica, literatiir taramalarimiz
sonucunda 3-boyutlu matris norm esitsizliklerinin ilk olarak bu ¢alismada yer aldigin
diisiinmekteyiz.

Son olarak, matrislerin kullanim alanlari ile ilgili aragtirma yaparken matrislerin oyun
teorisinin temel kisimlarinda kullandigini gordiik. Bunun iizerine oyun teorisinde
matrislerin kullanilmasina ragmen matris normlarinin kullanilmamas: dikkatimizi
cekti. Bdylece iki kisilik sifir toplamli bir oyunun getiri matrisinin 1 — normu ve
oo — normu kullanilarak matris normlar1 oyun teorisi ile ilk kez bir araya getirilmis
oldu. Bu bir araya getirme islemi iki kisilik sifir toplamli matris oyunlarinin ¢éztimleri
ve bu tiir oyunlarin kurulmas ile ilgili yeni bir yaklasim ortaya atilarak saglandi.
Ozellikle, herhangi bir iki kisilik sifir toplamli matris oyununun herhangi bir denklem
cozmeden nasil kolay ve hizli bir sekilde yaklasik olarak coziilebilecegi gosterildi.
Oncelikle, ortaya atilan metoda temel atmak amaciyla iki nsav sunuldu ve kanitlari
yapildi. Bu o6nsavlarda oyun degeri icin alt ve {ist sinirlar olusturan esitsizlikler
verildi. Bu esitsizlikler getiri matrisinin 1 ve oo normlari ile oyun degerini iceren
bir sabit olan k’ya bagh bir sekilde elde edildi. Ayrica bu sonuglarda yer alan
esitsizliklerin herhangi bir iki kisilik sifir toplamli matris oyunlarinda kullanilmak
lizere genellemeleri yapildi. Ispatlar1 genellerken kullanilmak iizere getiri matrisinin
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satirsal ve siitunsal olmak iizere iki farkli indiis matris tanimi yapildi. Daha sonra,
onsavlarda temelleri atilan bu yontem gelistirildi ve verilen sonuglardaki £ sabitinin
icindeki oyun degerinden kurtulduk. Bu sabit igerisinde bulunan oyun degerinden
kurtulmak i¢in bazi varsayimlarda bulunuldu ve bdylece yeni sonuclar elde edildi.
Bu yeni sunulan sonuclardaki esitsizlikler sadece 1 — normu ve oo — normuna bagh
esitsizlikler olup, bu sonuclar yeni teoremler seklinde sunuldu ve detayl bir sekilde
ispatlandi. Bunlarin yani sira, iki kigilik sifir toplamli matris oyunlarinin getiri
matrislerinin herhangi bir 6teleme durumundaki hali incelendi. Bunun sonucu olarak
bu tarz oyunlarin getiri matrislerinde herhangi bir 6teleme yapilmasi durumunda
oyun degerinin Oteleme miktar1 kadar degistigini ve karma stratejiler kiimesinin ise
aymi kaldigr gosterildi. Ayrica ilk olarak 2 x 2 boyutlu iki kisilik sifir toplaml
matris oyunlarinin sirasiyla en bilyilk ve en kiiciik elemanlart, pjuc V€ pmin, i¢in
getiri matrisinin normlaria bagl olarak alt ve iist sinirlar verildi ve gerekli ispatlar
yapildi. Daha sonra bu yaklasimin genellemesi yapildi ve m x n boyutlu bir matris
oyunu i¢in ayni sinirlar sunuldu ve ispatlandi. Bunlara ek olarak, karma stratejiler
kiimesinin sirasiyla en biiyiik ve en kiiciik elemanlari, yani p,,,x Ve ppmin, arasindaki
iligkiyi gosteren min-max teoremi verildi ve detayl bir sekilde kanitlandi. Min-Max
teoreminin sonucunda, oyun c¢oziimlerinde ve kurulumlarinda p,,. ya da p,,’den
biri kullanilmak iizere digeri i¢in daha optimal sinirlar elde edilebilecegi gosterildi.
Boylece herhangi bir iki kisilik sifir toplamli matris oyununu ¢dzerken oyun degeri i¢in
daha 1yi smirlar elde etmek miimkiin hale getirildi. Son olarak, yeni yaklasimimizin
tutarligin1 gostermek iizere bazi test ornekler verildi. Bu orneklerin yan sira, gercek
bir askeri problemin simiilasyonu sonucu elde edilmis ve iki kisilik sifir toplaml
bir oyun olarak incelenmis bir oyun hi¢bir denklem ¢oziilmeksizin yaklasik olarak
coziildii. Bu ¢oziimii yapmak i¢in oncelikle ilgili ¢calismada verilmis denklemler
kullanilarak oyunun getiri matrisini olusturuldu ve bu matrisin 1 ve e normlari, bu
calismada verilen teoremlerde kullanmak amaciyla hesaplandi. Ortaya attifimiz bu
yeni yaklasimla yapilan ¢oziimiin sonucunda elde edilen ve yaklasik oyun degeri adi
verilen deger, v, ile ilgili makalede iki kisilik sifir toplamli bir oyunu ¢6zmek igin
kullanilan bir yontemle hesaplanmis gercek oyun degeri karsilastirildi. Yapilan bu
kargilastirma sonucunda, yaklasik oyun degerinin bilinen yOntemlerle hesaplanmig
gercek degerine ¢ok yakin oldugu goriildii. Boylece oyun ¢6ziimii icin gerekli
stirenin yeni yaklasimla daha kisa olacagi agiklandi. Son olarak, yeni yontemin
nasil kullanilacagin1 6zetleyen bir akis semasi verilerek yontemin kullanigina agiklik
getirildi. Calismamizin bu kisminin yani, matris normlariyla oyun teorisinin bir araya
getirildigi kismin, alaninda ilk defa yapilmis bir ¢calisma olduguna inanmaktay1z.

Tezin son boliimiinde ise 6ncelikle 3-boyutlu matrisler i¢in sunulan temel tanimlarin ve
ozelliklerin fayda ve sonuglarindan bahsedildi. Daha sonra 3-boyutlu matris normlari
icin sunulan esitsizliklerin potansiyel kullanim alanlarindan 6rnek verilip, literatiire
yaptig1 katkilar sunuldu. En son olarak ise, oyun teorisi ile matris normlarinim
birlestiritilmesi ile olusturulan, iki kisilik sifir toplamli bir oyunun nasil daha hizli ve
kolay bir sekilde yaklasik olarak ¢oziilebilecegini gosteren yeni bir yaklasim sunuldu
ve bu yaklagimin oyun teorisine nasil bir katki sagladig anlatildi.
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1. INTRODUCTION

In this chapter, we give a brief history of matrices. We also present the basics of
2-dimensional matrices and the matrix norms. Moreover, we give some studies as

examples in order to show the usage of the matrices.

1.1 History of Matrices

The mathematicians established different type of systems to deal with linear equations.
The structure of these systems changed by the time and took its eventual form. British
mathematician Arthur Cayley gave the basic information about the matrices and their
notations. After that, in 1857, he improved his idea of matrices in the previous paper
and presented them in the paper entilted "A Memoir on the Theory of Matrices" to the
world of mathematics. This paper is recognized as the origin of the modern matrix

analysis and linear algebra.

In the course of time, the matrix theory has made significant progress for the
2-dimensional matrices and involved into different areas of science. As illustrations,
the study of Ignatova and Styczynski may be an example for the usage of the matrices
in electrical engineering [1]. Besides, Ni et. al investigated the risk matrices in [2]. As
we see from the examples, the 2-dimensional matrices adapted to the different kind of

theories.

Recently, the 2-dimensional matrices are extended to the third or higher dimensions.
There are different studies about the 3-dimensional matrices and hypermatrices in the
literature. As we see that the theory of 3-dimensional matrices improves and finds new

application area by the time.

Another important property of the matrices is their norms. The matrix norms has
very common usage from mathematics to statistic, from physics to engineering. A
matrix norm is a special number, which is obtained by using m.n number, special to

the m x n matrix. The matrix norm inequalities give the special relationship between



these norms. Matrix norms are used in many different fields by the time. For example,
Zielke showed the relationships between matrix norms and their condition numbers [3].
Li adapted the matrix norms to relative perturbation theory [4]. Moreover, Whitaker et
al. used the matrix norm for learning anormalus features via sparse coding in 2015 [5].
Today, as the theory of 3-dimensional matrices improves, the 2-dimensional matrix
norms are extended to the 3-dimension matrices as the natural consequence of this
improvement. For example, Duran and Izgi, in 2014, defined the 3-dimensional matrix
norms [6]. Izgi compherensively defined and investigated the 3-dimensional matrix
norms and proved some theoretical results on 3-D norms in 2015 ( [7] and references
therein). He also exhibited the real data applications of the 3-D norms by performing
the simulations, which are based on the numerical solution of stochastic differential
equations, for the stock market. In 2017, in this thesis, 1zgi and Ozkaya showed
the 3-dimensional matrix norms are equivalent and proved the relationships between
these norms [8]. Furthermore, they gave some applications for the 3-dimensional
matrix norms in [8]. In 2018, Izgi and Ozkaya presented some basic definitions and
propositions for the 3-dimensional matrices [9]. In addition to these, we demonstrated

some important inequalities for 3-dimensional matrix norms.

Beside these developments in 2-dimensional matrix theory, we, Izgi and Ozkaya,
realized that there is no usage of the 2-dimensional matrix norms in the game theory
when they studied on the matrices. The matrix norms are not introduced to the game
theory even though the matrices are used in the theory according to the literature.
Therefore, we improved a novel methodology, that includes the 2-dimensional matrix
norms of the payoff matrix, to solve and create two person zero sum matrix games in
2018 [10]. Thus, we brought a new point of view and introduced the matrix norms
to the game theory with the combination of the 2-dimensional matrix norms and the
theory. Moreover, we solved a simulation of a real life military problem and other
problems with their novel approach and introduced the matrix norms to the game
theory. We accelerated the game solution process since they solve the game without

solving any equation.

Basically, in the thesis, we tried to complete the loose end of the 3-dimensional
matrices such as some basic concept of the 3-dimensional matrix theory such as

determinant and condition vectors, 3-dimensional matrix inversion. Although the 3-D



matrix norms were defined in the past, their relationships between each other was not
demonstrated. Therefore, we showed the relationships between the 3-D matrix norms
in order to fill up the gap in the 3-D matrix theory. Additionally, we presented some
examples to make the definitions clear. We also illustrated the 3-D norm inequalities
with an example of financial mathematics. Furthermore, we have realized that the
matrix norms are not used in the game theory even if the matrices are used in order to
show the payoffs of each player. For this reason, we also introduced the matrix norms,
1 —norm and o — norm of the payoff matrix, to the game theory for a zero sum game
solution and creation. In addition to this, we developed a new methodology, based on
the 2-dimensional matrix norms, to solve a zero sum matrix game. This methodology
decreases the computational cost, which is another purpose of this study. Also we
solve a simulation of a real life military problem, which is a zero sum game, with the

new approach without solving any equations.

The remainder of this thesis is organized as follows, in the first chapter we mention
the history of 2-dimensional matrices and their application areas in the literature. We
also give one of the important properties of the matrices, which is the norms of a
matrix. In the second chapter, we present the fundamental concept of 3-D matrices
and basic definitions for them such as 3-D matrix inversion, determinant and condition
number vector. We also proved some important properties in this chapter. Moreover,
we illustrate the new definitions with some examples. Furthermore, we extend the
2-dimensional matrix norms inequalities to the 3-dimensional matrix norm inequalities
and we prove them. We present the relationships between these inequalities as a
coefficient table. Additionally, we illustrate the usage of the 3-D norm inequalities with
the results of a mathematical finance problem. In the third chapter, we present some
new approaches for the game theory. We bound the game value of a zero sum matrix
game with 1 —norm and e — norms of the payoff matrix. Moreover, we give upper and
lower boundaries for the greatest and the smallest element of the mixed strategy set. In
addition to this, we demostrate the relationship between these elements. Furthermore,
we find the approximate game value of a zero sum matrix game, which is a simulation
of a real life military problem, without solving any equations. In the last chapter, we

present the conclusions and contributions of each chapter.



1.2 2-Dimensional Matrices

Basic Definitions and Properties

In this section, we present some basic definitions for the 2-dimensional matrices in
the literature. After Arthur Cayley published the fundamental facts about the matrix
theory, the mathematicians put new definitions and propositions upon the theory. There

are several different definitions of a matrix.

Definition 1 (Matrix) A matrix is a rectangular array of numbers. The numbers in the

array are said to be the entries in the matrix [11].

Definition 2 (Column and Row Matrix) A matrix with only one column is called
a column vector or column matrix and a matrix with only one row is said to be row

vector or row matrix [11].

The entry that occurs in row i and column j of a matrix A will be denoted by a;;. A

general m X n matrix is in the form
A=

Definition 3 (Equal Matrices) If two matrices A and B in the same shape is called

equal if a;; = b;; for all i, j [12].

Proposition 1 (Addition and Substraction) Let A and B be m X n matrices, then

AxB= aij:i:bij for all i,j [13]

Proposition 2 (Multiplication) Let A € C"*" and B € C"*? be two matrices, then
C = AB € C"™*P. The entries of the matrix C'is ¢;; = Zle a;jxbi ;- Moreover, let o be a

scalar, then @A = oa;; for all i, j [14].

Definition 4 (Trace) Let A be a m X m square matrix, then trace of A is the sum of the

entries on the main diagonal of A and it is denoted as 7r(A) or trace(A) [11].

Definition 5 (Determinant) The n x n matrix A = [a;;], the determinant of A is defined
to be a scalar det(A) = Y., 6(p)aip,azp,..-anp, Where the sum is taken over the n!
permutation p = (py, pa,...,pn) of (1,2,...,n) where o(p) is the sign function of the

permutation [13].



Definition 6 (Identity Matrix) The n X n matrix with 1’s on the main diagonal and 0’s
elsewhere is called the identity matrix of order n. For every m X n matrix A, Al, = A

and [,,A = A [13].

Definition 7 (Inverse Matrix) The given square matrices A € C"*" and B € C"*" that
satisfy the condition AB = I,, and BA = I, is called the inverse of A and is denoted by
B =A"!. An invertible matrix is said to be nonsingular and a square matrix with no

inverse is called singular matrix [13].

Definition 8 (Transpose) Given a matrix A € C™*", its conjugate transpose is the

n x m matrix A* given by [A*];; = [A]ji, 1 <i<mand 1 < j<n[l5].

Definition 9 (Unitary Matrix) A square matrix Q € C"™*™ is unitary if 0* = 07!, i.e,
if 0*Q =I[16].

Definition 10 (Hermitian Matrix) Let A = [g;;] be a square matrix. Then, A is said

to be hermitian matrix whenever A = A* [13].

Definition 11 (Spectral Radius) Let A = [g;;] be a square matrix. Then, the number

p(A) = lma(x) |A| is called the spectral radius of A, where A is the eigenvalues of
€o(A

A [13].

Definition 12 (Condition Number) Let A = [q;;] be a square and nonsingular matrix.

Then, the condition number of the matrix A is defined as cond(A) = ||A||-||A~Y|| [13].

Proposition 3 (Properties of Condition Number) Let A € C"™*™ be 2-dimensional

matrix. Then,

1. For any matrix A, cond(A) > 1
2. For identity matrix, Cond(A) =1

3. For any matrix A and scalar @, cond(aA) = cond(A)

Proposition 4 (Properties of Transpose) If A and B are two matrices of the same

shape, and if « is a scalar, then each of the following statements is true [13].
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These kind of definitions and propositions can be found with more details in any linear

algebra book. In the next section, we recall an important property of a matrix.

1.3 2-Dimensional Matrix Norms

An m x n matrix can be viewed as a vector in an mn-dimensional spaces: each of the
mn entries of the matrix is an independent coordinate. Therefore, any mn-dimensional
norm can be used for measuring the size of such a matrix [16]. The matrix norms
are used in different field of science from past to present. For example, Zielke (1988)
showed the relatioship between matrix norms and condition number of the matrices [3].
Li (1998) used the Frobenius — norm in relative perturbation theory [4]. Moreover,
Wilkinson, in 2005, applied the matrix norms to find two different boundaries for noise
variances [17]. Furhetmore, De Maio and Carotenuto invastigated the two cost function
that includes either Frobenius — norm or spectral norm of a hermitian matrix in their
joint work [18]. As we see from the examples, the matrix norms has a wide usage
area in different branches of science. We now continue with some definitions and

propositions for 2-dimensional matrix norms:

Definition 13 (Matrix Norm ) Let f : C"*" — C is a matrix norm if the following

three properties hold [15]:

1. f(A)=0
2. f(A)=0ifand onlyifA=0
3. f(A+B) < f(A)+ f(B)

4. f(ad) = af(A)

where A,B € C"*", o € C. The function f(A) is usually denoted as ||A|| in the

literature.

The most frequently used matrix norms are defined as follows [13]:
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Frobenius norm, |[|A[|F =Y, ; !aijfz-

2 —norm, ||A||2 = v/ Amax Where A, is the greatest eigenvalue of the matrix A.

1 —norm, ||A||; = max}|a;;|, the largest absolute column sum.
J

oo —norm, ||A||e = mlaxzj\a,-j

, the largest absolute row sum.

On the other hand, the above matrix norms are equaivalent and the relationships
between these matrices are summarized in the below table.
Table 2.1 gives the values of the function f;,(m,n) such that ||A||, < fur(m,n)||All4

where A is m-by-n matrix.

Table 1.1 : Coefficients table of the 2-D norm inequalities..

F
Jm
1
1

o)
8“11N~§

-5
-5

2
\/lﬁ
\/min(m,n)
vn Vn







2. 3-DIMENSIONAL MATRICES

In this chapter, we present the basic principals and important properties of
3-dimensional matrices. In addition to these, we state and prove the 3-D matrix norm

inequalities.

2.1 Basic Principals of 3-D Matrices

As we see in the previous chapter, the 2-dimensional matrix theory has showns a
significant development in the last centuries. Nowadays, the theory of 2-dimensional
matrces is developed and some definitions are presented for the matrices in the third or
higher dimensions. There are various type of definitions made for higher dimensional
matrices by mathematicians. In this chapter, we give some basic definitions and state
some propositions with the corresponding proofs of these propositions. We construct
and improve the new definitions, which are based on the 2-dimensional matrices, for
3-dimensional matrices. Moreover, we represent Cauchy-Schwarz inequality and some
other inequalities for the 3-dimensional matrices norms [9]. Furthermore, we present
the 3-D matrix norm inequalities and prove them. Then, we give a table that shows the
relationships between these norms [8].

First of all, it is important to emphasis that we refer k’* section of 3-dimensional matrix
A € C™"%S with AF throughout the paper. So that, a 3-D matrix A can be written as

N
A= J A~
k=1

Definition 14 (Multiplication) Let A € C"*"** and B € C"*P** be 3-dimensional

matrices, then C = AB € C"*P*S and the entries of the matrix C is obtained as ci-‘j =

n k 1.k
Y1 by

Definition 15 (Determinant Vector) Let A € C"™*™* be a 3-D matrix and det (A*)
be the determinant of the k' section of A. The vector det(A) € C'*1*5 is called the
determinant vector of the 3-dimensional matrix A whose entiries are det(A¥), where

k=1,..,s.



Definition 16 (Singular and Almeost Singular Matrix) A 3-dimensional matrix A €
C™*m*s is said to be singular if det(A*) = 0 for all k = 1,...,s. On the other hand, the

matrix A is called almost singular if det(A¥) = 0 for countable k.

Definition 17 (Identity Matrix) Let 7 € C"™*™** be a 3-dimensional matrix whose

entries, for all &, are ai.‘j = 1 wheneveri = j, and afj = 0 while i # j. Then the matrix

1 is called the 3-dimensional identity matrix.

Definition 18 (Inverse Matrix) Let A € C™*™** be a 3-dimensional matrix. Then,
S

A~ is called the inverse matrix of A when AA~! = |J (A¥)(A%)~! = I where I is the
k=1
3-dimensional identity matrix.

Definition 19 (Transpose) Let A € C"™*"*5 be a 3-dimensional matrix and A* =
N

U (A%)*. Then the matrix A* € C™*"* is called the conjugate transpose of the matrix

k=1

A.

Definition 20 (Unitary Matrix) Let U € C"™*"* be 3-dimensional matrix, and U* be
N
the conjugate transpose of the matrix U. If U*U = |J (U*)*U* = I or in other words

k=1
if (UX)* = (U*)~!forall k = 1,...,s, then the matrix U is called the unitary matrix.

Definition 21 (Hermitian Matrix) Let A € C"*"*5 be a 3-dimensional matrix. If

A* = A, then the matrix A is called Hermitian matrix.

Definition 22 (Spectral Radius) Let A € C™*"* be a 3-dimensional matrix, then the
spectral radius of the matrix A is the greatest eigenvalue among the eigenvalues of all

sections of the 3-D matrix A and denoted by p(A).

We now describe the condition number vector for 3-dimensional matrices which is the

generalization of the condition number in 2-dimensional matrices [13,16].

Definition 23 (Condition Number Vector) Let A € C™*™*S be a 3-dimensional
matrix. Then, the condition number vector Cond(A) € C'*!*$ is defined as Cond (A[:
., k)) = [|AK|[.||(A¥)~1|| for k = 1,...,s where A¥ is the k' section of 3-D matrix A.

6,9

The colon “:” refers to the all elements in the corresponding places.
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Definition 24 (IlI-Conditioned and Well-Conditioned Matrices) Let A € C"™*"*s
be a 3-dimensional matrix. The matrix is called ill-conditioned if Cond (A[:,:,k]) >> 1

at least one k. Otherwise, the matrix is said to be well-conditioned.

We define the basic concepts of 3-D matrices so far. We now present and prove some

propositions and inequalities for the 3-dimensional matrices.

Proposition 5 (Properties of the Condition Number Vector) Let A € C"™*** be a

3-dimensional matrix. Then,
1. Cond(A) = Cond(A[:,,k]) > 1,Vk=1,...,5.
2. Cond(I) =Cond(I[:,:,k]) = 1 for all k where I € C"™*"** i the 3-D identity matrix.

3. Cond(aA) = Cond(A) where o € R.
Proof

1. Cond(A) = Cond(A[:,:,k]) = [|A¥|| - [|(A%) 71| > [|A%(A%)~1]] = [|*]] = 1 for all

k=1,....s where IF € C"™*™m,
2. Cond(I) = Cond(I[:,:,k]) = ||I¥|| - ||(I*)~!|| = 1 for all k.
3. Cond(aA) = Cond(QA[:,:,k]) = [laAX|| - [[(@A")!| = |af - [|A¥]] - o] -

1[(AKY =1 = ||AK|| - ||(A*)~!||= Cond(A[:,:,k]) = Cond(A) for all k. B

Proposition 6 (Cauchy-Schwarz Inequality) Let A € C"*"*5 and B € C"*** be a
AB|| < ||A]|-[|B]| holds.

3-dimensional matrices. Then,

Proof. Let A € C"*"*S B € C"™P*S and x € CP*1*S pe the 3-dimensional matrices.

Then, we can write ||AB|| with the corresponding induced matrix norms as, ||AB|| =

sup ”‘ﬁfﬁ” = sup <HII\4£€)\CIH %) where ABx € C™*1%$ and Bx € C"*1*5. We obtain
|[xl|#0 ||Bx||%0
ABx|| ||B AB B . .
sup <—H||Bx)|C\H %) < sup (H\|B—xx||H> ( sup H||x)|C\H> = ||A||-||B|| by using the induced
||Bx||£0 [1Bx||#0 [l 0

norms for 2-dimensional matrices. Thus, ||AB|| < ||A|| - ||B|| is obtained.H

Proposition 7 Let A € C™", and x € C™15. Then, ||Ax||, < ||Ax||r <
A7 |[xl[F < V/rl|AllF|x

and 2-norm of 3-dimensional matrices,respectively.

2, where r = min(n,s), || - ||r and || - ||2 are Frobenius-norm
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Proof. We consider the 3-dimensional matrix Ax € C"™*!*5 as the 2-dimensional
matrix Ax € C™**. Then, the proof can be easily completed by using the fact
[|M||> < ||M||r < V/t||M||> for 2-dimensional matrix norms, where M € C"*" is a

2-dimensional matrix and t = min(m,n) [6].

Proposition 8 Let || - || be a 3-dimensional matrix norm and p(A) be the spectral

radius of a matrix A € C"*"™**_ Then, p(A) < ||Al| satisfies.

Proof Let A be the greatest eigenvalue of the k' section in the matrix A € C"™*"**

and ¢ # 0 be the corresponding eigenvector. Then, |AX..[.|[V¥|| = [|AX ¥ =

[[ASVK|| < ||A¥]].|[vK|| by the fact AKvk = Ak VK. We obtain |AK | < ||A¥|| since
|[vK|| > 0 for all k. Hence, the result follows by taking maximum of this inequallity

over k.1

Proposition 9 Let A € C"*"** be a 3-D matrix and U € C"*"™*S be a 3-D unitary
UA||» = ||Al]]2 and ||Al||2 = \/p(A*A) where ||- ||, is the 2-norm for the

matrix. Then,
3-dimensional matrices. Moreover, if A € C"*"™* s a hermitian matrix then ||A||, =

p(A) where p(A) is the spectral radius of the 3-D matrix A.

Proof. First, we prove the 2 — norm of any 3-D matrix
A is invariant under left-handside  multiplication by a  unitary
matrix as |lUA|, = \/m]?x{mfx{]((UA)*)k(UA)k —X&I|=0}} =
\/mlflx{mfx{(Ak)*(Uk)*UkAk — NI} =0}}= m].(ax{mfxﬂ(Ak)*Ak — NI =0}} =
|A]]2. On the other hand, we have ||A||3 = m]le{KA(k))*A(k) — AX . d| =0}, where

Ak .. is the largest eigenvalue of the k' section of the 3-D matrix AA*, by the
definition of 2-norm for 3-D matrices [7]. Therefore, it is clear that we can obtain
|A||2 = \/p(A*A) as a natural result of the spectral radius of A*A. Now, let us
assume that p(A) = A be the spectral radius of a 3-D hermitian matrix A. Hence,

4]l = /p(A*A) = /p(A%) = VA2 =p(A)

Proposition 10 Ler A € C™" be a 3-dimensional matrix, then ||A|lz <

VIIA||1||A|| holds for the 3-D matrix norms.

Proof We know that ||A||3 = p(A*A), where p(A) is the spectral radius of 3-D matrix

A, by Proposition 5. Moreover, by Proposition 4 and the norm properties, we get
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p(A*A) < ||A*Allw < [|A[[w]|Aleo = [|A[[|1]|A|e since [|A* || = [|A]|1. Therefore,
||A||% < ||A[|1||A]|e- Thus, ||A||2 < +/||A]|1||A||- is obtained. W

Proposition 11 Frobenius norm for 3-D matrices is invariant under the multiplication

by unitary matrices.

Proof Let A € C™"*S be a 3-dimensional matrix and U € C™*™*5 and V € C"*"*s$
be the unitary matrices.

We first prove the frobenius norm is invariant for the left-handside multiplication
by unitary matrix U. To do so, we write |[UA||} = trace((UA)*(UA)) =
trace(A*U*UA) = trace(A*A) = ||A||%. On the other hand, we know that ||A||r =
trace(A*A) = trace(AA*) by the definition. For the right-handside multiplication by
a unitary matrix within the light of this fact, we have ||AV||2 = trace <(AV) (AV)*) =
trace(AVV*A*) = trace(A*A) = ||A||%.1

Proposition 12 Let U € C™*"™*S be a 3-D unitary matrix and A € C"™*"™** be a 3-D

hermitian matrix, then the conjugate of the similarity transformation of A is UAU ™.

Proof The similarity transformation of A is UAU™!. Its conjugate can

be obtained as follows: (VAU N = ((UA)(U’1)>* = (U H*(UA)* =
k@} [((Uk)_l)*<(Ak)*(Uk)*)} _ kﬁl [((Uk)*)*(Ak)*(Uk)_l] — kﬁl [UkAk(Uk)—l]
= UAU ! since (U*)* = (U¥) ' and A* = A. W

2.2 Applications of 3-D Matrices

In this section, we exemplify the basic concepts of 3-dimensional matrices such as
determinant and condition number vector for 3-D matrices. We also illustrate the
3-dimensional matrix inversion. We need to set a notation for 3-dimensional matrices
before the illustrations. Throughout the section, we will denote any 3-D matrix
A€ Cmnxs a5 A = [AY A2, ... A, ... A%] where AK € C™*" represents the k' section
of the 3-D matrix A for all k.

Example 1. (Determinant Vector) Let A € C3*3*3 be a 3-D matrix and A* denote the

k'™ section of the matrix A where k = 1,2, 3.

1 -3 5 5 12 4 2 4 6
A=|Al=| -9 6 —2|,A2=| 0 21 3|,A3=| 6 12 18
7 8 0 19 2 0 -2 7 20

13



In order to evaluate der(A), we firstly calculate the determinants of each section
seperately as det(A') = —512, det(A?) = 2250 and det(A®) = 0. Then, we allocate
the determinants of each section in the corresponding places at the determinant vector.
Finally, we obtain the determinant vector as:
—512
det(A)= | 2250
0

where det(A) € C'*1x3_ Moreover, the 3-dimensional matrix A is an almost singular
since det(A%) = 0.
Example 2. (Matrix Inversion) Let A € C3*3*3 be a 3-D matrix and A denote the

k'™ section of the matrix A where k = 1,2, 3.

1 23 37 1 2
Al=| —4 2 1 [|,A2=]4 9 2 [ A=]|1
8 1 6 6 8 —3 5

7
A= 1
4

W =— OO0

Then, A~! is calculated as follows. We firstly invert all the sections by using the

inversion method for 2-dimensional matrices and gather these matrices under a inverse

matrix of A.
[ 11/15 =3/5 —4/15 ] 43/17  29/17
At =@ah™t = | 32/15 —6/5 —13/15 |, (A ' =| 24/17 —15/17
| —4/3 1 2/3 | —22/17 18/17
[ —1/4 11/4 —1/4 ]
@aH' = | 12 -17/2 3)2
| —1/4 27/4 —5/4 ||

Example 3. (Condition Number Vector) Let A € C?*?*3 be 3-dimensional matrix as

in the following form.

L f1 2] o [3 2] 5 [10 -2
A‘{47’A_ 14|t s s

We first calculate the inverse of the 3-D matrix A.

A=

4 -1 1/14 3/14

Secondly, we calculate the 1 —norm of the each section for A as ||[Al||; =9,
|A%||; = 6, ||A%|]1 = 29 where AX denote the k'* section of the matrix A where

k = 1,2,3. Then, we evaluate the 1 — norm of the each section of the inverse

14

(Al)’l a [ =7 2 ]7<A2)1 _ [ 2/7 —1)7 1 ,(A3)*1 a [ §é3/9759 2;?;25

5/17
—2/17
—1/17

]
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matrix |[(A")7!|]; = 11, |[(A%)71]]; = 0.3571, and [[(A%)~!||; = 0.078. Finally,
we obtain the condition number vector, Cond(A) = Cond(A[:,:,k]) for all k, as:
Cond(A[:,:,1]) = [[AY[1||(A") 7|1 =99, Cond (A[:,:,2]) = [|A?||1]|(A%) 7| |1 = 2.1426
Cond(A[:,:,3]) = ||A%||1]|(A®)~!||1 = 2.262. Hence, we obtain the condition number
vector below,

99

Cond(A) = | 2.1426
2.262

The matrix is ill-conditioned since the each entry of the vector Cond(A) € C*1*3 is
much greater than 1. We aim to present norm inequalities, based on the 2-dimensional
matrix norms, for 3-dimensional matrices and prove them in the next section.
Moreover, we show the usefulness of these inequalities for 3-D matrices obtain from
simulations and real data applications. However, we firstly bring back the definitions

of the 3-D matrix norms before we present the 3-dimensional matrix norms inequalties.

2.3 3-Dimensional Matrix Norms in Literature

We come up the definitions of the 3-dimensional matrix norm for the first time in 2014
[6]. In 2015, Izgi and his collabrator give an application of these 3-D matrix norms
[19]. Moreover, in the same year, Izgi compherensively studied about 3-D matrix
norms in [7]. He also applied these norms to examine a financial mathematics problem
in his paper with his collaborator [6]. We recall the definition of these 3-D norms as

follows:

Definition 25 A 3-dimensional matrix norm ||-|| is a function from m-by-n-by-s

complex matrices into R that satisfies the following properties:

e ||A|| >0|| and ||A|| = 0| if and only if A =0,

o |[aAl]=]afl|A

, for a scalar .,

e ||[A+B|[ <Al +|B

, where A and B are matrices in m-by-n-by-s dimensional

space.
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Definition 26 The 1 — norm and o — norm of A € C"™*"*S are defined as follows:

A1 = 1I£1a§ Z Z ]al | = the largest absolute block-column sum.

[|A||le = max Z Z |a§;§)| = =the largest absolute row-column sum.

Definition 27 The p —norm of A € C™*"*S is defined as follows:

m n ©p 1/p
b= (X X 1)

Definition 28 The Frobenius —norm of A € C"*""*S is defined as follows:

A|lF = \/2 Y Y a2
k=1i=1j=1

Definition 29 The 2 — norm of A € C"™*"*5 is defined as follows:

I|A]]2 = kmax (Hnﬁax1 [AWx||5) = \/Ak . where AK . is the largest eigenvalue of
- 2

(AK)*A¥ for all k. Moreover, it can be represent as ||A||3 = kn}ax (A

max) Where
A1£<1ax = max(| (Ak)*Ak - Akl‘ =

90

2.4 3-D Matrix Norm Inequalities

The 3-D matrix norm inequalities are as important as the 2-dimensional matrix norm
inequalities. They show the relationships between each other. In this section, we
firstly state the 3-dimensional matrix norm inequalities. Then, we comprehensively
prove each of the inequalities [8].

Let A € C"™*"* be a 3-D matrix, then the 3-matrix norms inequalities are as follows:

L ZalAlle < NIAll2 < sv/m|A]|»

1Al < [1A]]2 < sv/allA]l
3. Ll1Alle < Al < sy/m]A]|

4. LAl < ||A]] < ns?[|A]]s

1
sl < TlAllF < sv/nllAlly
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6. ﬁHAHQ < ||Al|r < \/r1713]|A||2 where r| = min(m,s), ry = min(n,s) and r3 <'s.

We basically used the similiar approach, that is used to prove the 2-dimensional
matrix norm inequalities, to prove 3-D matrix norm inequalities. To make it clear,
a 2-dimensional matrix is firstly induced to the vector. Then, the proofs are completed
by using the norm inequalities for the vector in some linear algebra books. Therefore,
we firstly induce the 3-D matrices to the 2-dimensional matrices. Then, we use the
2-dimensional matrix norm inequalities, which are already known, in our proofs [16].
Throughout all proofs, the following matrices are assumed as: A € C"*"*5,

x € sy e CX Ax € C™*1%S and Axy € C™*1 .

Proof. (#1) Let v € C" be a vector and M € C"™*" be a 2-dimensional matrix, then we
know \/LEHMHoo <||M|]2 < /m||M||e and |[v]|e < ||V|]2 < v/1|V]|w. We will use these

inequalities by making the required adaptions during the proof.
[|Axy[[oo

P bl n
[|A]]o = sup HII HH = sup (%) = sup (sup |;|c||xﬂy||:) where Axy € C"*1,
x#0 x#£0
By using |z < v/l ol and [}z < vl e have, .
sup L=
HAxyH _ /s [ZE S . #0
= S“P(S“P T, o7, )—S“P< T |z||y|z)—S“P (V ST )
x#0 \y#0 0 s x#£0 x#£0
On the other hand, since ||y|| < ||y| 2, we obtain,
[|Axy[[eo
oUP bl
y#0 _ ||AXHD<,
= sup (V ST )— sup (V”S—|x|2 )
x#0 x#0

We also have ||Ax||. < +/5||Ax]||2, then we reach,

< sup (\/—\f{ﬁj'z s\/ﬁ||A||2>. Thus, ||| < sv/71|A]|» is obtained.
x#£0
On the other part, in order to find an upper bound for ||A||5:

[|Axy[lo
A [Ax]]; y0 M2 1490L ) here Axy € €1
] “2—5“13 W = 39 TR )= SUP | SUP Tafepl; ) where Aw € €
x£0 x#£0
By using IIyIIoo <||y|2 and ||x[|e < V/5||x]|2, we get,
Sup\lﬁ;cly"\\z
SSUP(SUP B )ZS“P (\/ES“P—|x|| y||yﬁw):S“P (\/E—yﬁ)uu )
x£0 \ y£0 [[¥]]e0 x#£0 x£0
And since \|y||2 < V/s|[y||, we obtain,

[|Axy|lp

fuP [yl HAtz
< sup (V5 =sup { SThr
x#0

Moreover, we have||Ax| |2 g \/m||Ax||, therefore we reach,

< sup (S\/_||Ax|”m) = 51/m||A||. Hence, ||A||, < s4/m||A||- is obtained.
x£0
Consequently, if we combine the two inequalities we have obtained, we get

il < TIA]l2 < sy/m|A]]...
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Proof. (#2) Let v € C" be a vector and M € C™*" be a 2-dimensional matrix.

Remember that ——[|M||; < ||M]]> < /nl|M]|1 and |[v[]2 < []v]|1 < V/al][]2.

[Axylly

Il

|All1 = S%% = sig (%): sig (s%%) where Axy € C"*1,
X X X y

By taking into consideration these ||y||> < ||[y|]1 and ||x||]2 < /s||x||1, we write,

4ol
< sup (\/3 sup |x|2|y|2)'
y#0

x#0
And we know ||y||1 < +/n|y||2, so,
i A
o ol llAx]|
<sup \/E\/Ey IEE] = sup st—Hl :
x#£0 ? x#0 ?

When we finally use \/L%HAle < ||Ax||2, we get,

sup (s\/a'ﬁ;f';) = smsig e — s fm]A] .
X

Il2

x#£0
Thus, [|A|]; < sv/m||A]|> is obtained. In order to find an upper bound,
[|Axyl|p
b ol
Jall = sup 2. sup (s A5k )= s (VAR ) sinee [y < vl
X X X
and [[y[|; < \/3|‘!y||H2- Then, by using [[y[|2 < {ly[1, we have,
Axy
o D’ Al
= sup | Vsn— | = { sup { vsn. Ty ).
x#0 x#£0

Then we use ||Ax||> < v/s||Ax||; and obtain,

< sup (Vavaf )= svisup el = vl

As a result of the boundaries we found, we obtain #ﬁHAHl < ||A]|2 < sy/nl|Al|;.1
Proof. (#3) Let v € C" be a vector and M € C"™*" be a 2-dimensional matrix. We know
that = ||M||. < ||M|F < v/m]|M]]- and ||Vl < [[vl|F < V/nl[V]|.e since 2 —norm is

equal to Frobenius — norm in vectors.

SUP .
Ax||e o A .
1Al = SUPH i = Sup (#0—> < sup (Msupw)

w0 [l 0

x£0 v20 |1 [F[[y][F
i e i sl
= sup (\/ﬁ—) < sup <—) = sup (\/ﬁ )
x£0 ||x[|F w0\ |[Xl|F x40 ||x[|F
A A
< sup (w—sﬁ” "”F) — symsup LI _ o a5,
x40 ||| w20 |[x]|F
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Therefore, ||A|| < s\/n||A||F is obtained. On the other hand,

||Axy||F

sup
o lAxlle (0 M |Axy||r
lAllee = sup T = sup (| == | <sup | sup 1
AT A w0 \ y40 Ll .
|Axy||F [[Axy||F

1A%y b b il
= sup (\/Esup —) = sup <\/§—> <sup < —)
x#0

20 \ 320 |1 [oo] [Y[|eo ||x[|eo 2£0 [ |x[[eo
Ax||F AX||o AX||oo
s (Y (AT g e .
0 \ | [X[|eo #o ||x[|oo 120 |[X]|eo

Hence, ||A||r < si/m||Al||-. As a consequence, ﬁHAHw < ||Allr < syv/m]|A]|.H
Proof. (#4) Let v € C" be a vector and M € C™*" be a 2-dimensional matrix. We have
LMy < [IM|| < n|[M||y and |[v||1 < |||l < n|[v||1. After making the suitable
changes in these inequalities, the proof is presented as follows:
A
[Ax]]s 40 i [[Axy]]s
Jall = sup it — s ) <sup (sup 300 )
w0 Xl xz0 [[x[]1 x£0 \ y#£0 ”x” x|

[ [
PO

||Axy]|1 y#g b y#0
= sup (s sup—) = sup (sz—) < sup (sz—)
w20\ y£0 XYl /20 ¢ oo x40 ¢ fo
= sup (s2|| le) < sup (s2m|| adl ) :szmsup [1Ax]] :s2m||A||oo.
w0\ x| x40 [x]] oo w20 |[X]]o

Thus, we have ||A||; < ms?||A||. We now find upper bound,

|[Axy| |0

SUP ]
||Ax]|oo 20 Pl ||Axy] o
Al = sup == = sup | | <sup ( sup
w20 Xl 220\ [1¢]feo x£0 \y£0 L |y ][4

Axy| | oo Axy| |
x| sup L4l

1A h ol o Tl
= sup (nsup —) = sup (n—) <sup (ns—)
w0 \y20 (Il w0 [l 1 x40 1[4
AX||oo A
= sup(ns|| all )Ssup(nszH XHI):ns su Ay = ns?||A|];.
w0\l /T e [xlh w0 Tl

As a result, we have ||A|| < ns?||A]|;. Finally, the result follows after combining the

two inequality we have found.ll

Proof. (#5) Let v € C" be a vector and M € C"™*" be a 2-dimensional matrix. We know
TalMlly < [IM]|F < v/ul[M|| and ||v[]2 < |Iv[li < v/al[vll2 and ||yl[F = ||yll2. The
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proof is completed in the light of these facts.

[lAxyl[1
I
_ lAx][1 y#£0 [|Axy[[1
I|A|]1 = sup =sup| ———— ) <sup e T T—
w20 [l o\ Xl x£0 \y20 |y |
IIAxyHl [[Axy]];
1A, o Tl o T
= sup (\/Esup—) s p(\/_ >§sup (s—)
w0 Nz (PEIYIE) w0 [Ix[lh w0\ [l
A
_ Sup< ||Ax ||1) <\/—|| x||F> s/msup 1AM1E _ _ sv/mllAllr.
o VTl ) =00 [Ixllr w20 |[X[[F
Thus, [|Al]1 < sv/ml|A]|F.
In order to find the upper boundary:
Sup”ﬁxﬁHF
Ax o PIF Ax
Jalle = sup P —sup (728 ) <sup (s )
x;éO ||XHF x;éO H‘xHF X%O y;éO TT
[Axyllr Ayl
SR oD bl

A
= sup (\/nssup M) sup (\/ ol ) sup (\/ y70 )
340 v2o [yl /- a0 340 [Ix

_ sup(\/—H HF) Sp(\/—HAle) sy/msup 1AL _ _ svllAllL.

x40 [l /™ w20 e[ x£0 |11

[Ixl

Then, we get ||A||r < s\/n||A||;. Finally, after combining the inequalities for upper
and lower boundaries, the result follows.H

Proof. (#6) Let v € C" be a vector, M € C™*" be a 2-dimensional matrix and
ry = Rank(M). We have the following inequalities ||M||, < ||M||r < \/F||M]||2 and

[[v]|2 = ||v||F < +/T||[v||2 where r < n. In order to find the lower bound:

_ _ Axyl
||A||2—sup” b gup sup I
w0 P [Ix[l21y112
We know that ||x|r < \/_||x||2 and ||y||r < \/r3 wWhere ri = min(m,s), r3 < s then,
[lAxylIp
[[Axyl| b INF : :
< sup | sup gy )= SUp (/7173 R — | > and since [yllF = |Iy]]2s
x#0 \y#0 7 3 x#£0
sup 102
o y#0 Y . ||A A ﬁ l
= sup (/I3 | = sup (/7173 Hx s a final step, since
x#0 x#0
A
< )s;lg (, /71 r3||xx||LF> NGYTE sup H || = /r113||A||r Consequently, we obtain

|A]]2 < \/7173]|Al|F. On the other 31de we find the upper boundary as follows:

|Axy||F
X[ lIyllF

up Mz
[|Axyl| _ y#0 . )
< sup (sup |x||2|yF|2) = sup < 5D ), we know ||y||r < /73]|Y]|2;
x#£0 x#£0

LIAx|F

Al —SUP TllF < sup(sup
x#£0

)7 and since ||x||2 < [[x[[r and [[y[[2 = [[y|£;
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sup [lAxy]|
o IMIF

A .
= sig (w/r3”£|x—|2) = 31;18 (, /13 ||;C||2F) ; since ||Ax||p < /72||A||2 where
X X

ry = min(m,s)

< sup (\/E NG |Ax||2> = /r3r2||Al|2. The result follows by gathering together the
x#£0

EP

two inequalities for upper and lower boundaries.ll
Let A € C™** be a 3-D matrix. The coefficients for the 3-D matrix norm inequalities
can be obtained easily with the Table 2.1. Let ||A||s < Nyp||A||p and Nyp(m,n,s) is

obtained from the table:

Table 2.1 : Coefficient Table of the 3-D Matrix Norm Inequalities.

a\b | 2 F oo

1 1 s\/m s\/m ms>
2 s\/n 1 NGIE) s\/m
F s\/n NGIE) 1 sy/m
) ns? s\/n s\/n 1

2.5 Applicatios of the 3-Dimensional Matrix Norm Inequalities

In this section, we demonstrate that the 3-D norm inequalities we have proved hold for
the 3-D matrix norm values of the simulation and real data. Table 2.2 is obtained by
the 3-D matrix norm values which are obtained by the result of analysis of stochastic
differential equation (SDE) for stock market. The first column of Table 2.2 includes the
3-D norm values which are obtained by simulations of the interest rate that are updated
within %[-2,2] randomly at each step using Milstein method. The second column
consists of the 3-D norm values which are obtained by the result of the analysis of the

real interest rate by Stochastic Runge-Kutta (SRK) method [6, 7]. Firstly, we make a

Table 2.2 : 3-Dimensional Matrix Norm Obtained by Simulations

Norm Milstein SRK
1 —norm 3.9863 3.6732E+07
2 —norm 2.8489 2.8541E+06
Inf —norm 6.4641 1.1129E+10

Fro—norm 4.0322 4.3077E+07

similiar table as Table 2.1 for the coefficients of the 3-D matrix norm inequalities of

the 3-D matrix M € C1000x101x280 Therefore, we know that m = 1000, n = 101 and
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s = 280 since we defined a 3-D matrix as A”*"*%, Lastly, we can easily obtain Table

2.3 as shown below. A similiar table can be obtained for the other 3-D matrices in [19].

Table 2.3 : Matrix Norm Inequalities Coffiecient Table for M ¢ C!000x101>x280

a\b 1 2 F o0
1 1 885438 885438 64009000
2 2542.62 1 159.85 8854.38
F 2542.62 280 1 8854.38
o0 28280 254262  2542.62 1

As a final step, we can summarize the inequalities for 3-D matrix norm values which

are obtained for different methods in Table 2.4:

Table 2.4 : Inequalities for the 3-D Matrix Norm Value obtained by Milstein and
SRK Methods

Milstein SRK

2.30E —03 <2.849 <5.72E +04 1.39E 406 <2.85E +06 <2.83E 413
4.50FE —-04 <2849 <1.12E+04 1.44E 404 <2.85E+06 <2.94F + 11
2.30E—-03<4.032<5.72E4+04 1.39E4+06 <4.31E+07 <2.83E+13
1.42E —05 <6.464 <3.16E +07 1.55E -07 < 1.11E+10 <235E+15
4.50FE —-04 <4.032<1.12E+04 1.44E 404 <431E+07 <2.94FE 411
6 1.69E — 02 <4.032 <7.98E 402 1.13E 404 <4.31E+07 <4.56E 408

DN A W N~

# The number of the norm inequalities.

The norm inequalities are represented with respect to the related 3-D matrix norm.
Therefore, if we use a bigger size matrix, we obtain large interval. However, we can
obtain more optimal intervals in the cases that we use smaller dimensional matrices.
In addition to these, there are two different 3-D matrix norm values which are obtained
by two different methods of numerical solution of stochastic differential equation
called Milstein and SRK. The convergence rates for Milstein and SRK are 1.0 and
2.0, respectively (see [20]). Although the faster methods are prefered to analyze the
SDE, we can see that these preferences do not make any difference on the 3-D matrix
norm inequalities if we investigate Table 2.4. Thus, we can say that the 3-D norm

inequalities hold independent of the methods.
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3. THE MATRIX NORMS IN THE GAME THEORY

To the best of our knowledge, the matrix norms are not used even though the matrices
are used in the game theory. Therefore, we basically aim to combine the matrix
norms and the game theory in this chapter. For this reason, we focus on solving and
creating the two person zero sum matrix games by using the matrix norms of the payoff
matrix. We present and prove some theorems for the game value and the maximum and
minimum elements of the mixed strategy set ,p,qy and pyin, by using 1 — norm and
oo — norm of the payoff matrix. We propose a methodology that approximately solves
any two person zero sum matrix game without dealing with solving any equations.
We also illustrate the application of our methods for some zero sum matrix game
problems [10]. We start with a literature review of the game theory before presenting

our approaches.

3.1 Basics of the Game Theory

The game theory might be explained as a mathematical decision theory between
participants in a competitive environment [21]. The theory of game is came to
exist with the study of von Neumann in the very beginning of 20th century. The
improvements in this field are stepped up with the proof of minimax theorem [22]. In
the study, Theory of Games and Economic Behavior by John von Neumann and Oskar
Morgenstern in 1944, the fundamental principals of the game theory is presented [23].
Today, the game theory is an irreplaceable part of economic theory and mathematical
finance. Especially, it gives great opportunity to analyze the financial problems.
However, the usage area of this theory is not limited only with financial problems.
The game theory also has a wide range of application area in real life problems.
The essential purpose of the theory is to determine the optimal options from the
strategy set of participants in a competitive situation such as game of draughts, military
problems, criminal cases and so on. As an illustration, Kose et. al used the game

theory combining with geographical information systems to answer a military decision
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problem in [24]. Wang et. al modeled the interaction of a MIMI radar and a jammer as
a two person zero sum game in their paper [25]. Egorov and Sonin analyzed the battle
for throne by using game theory in [26]. We now continue with some basic definition

and important properties of the game theory.

Definition 30 (Game)The strategic form, or normal form, of a two person zero sum

game is denoted by a triplet (X,Y,A), where

1. X is a nonempty set, the set of strategies of Player I
2. Y is a nonempty set, the set of strategies of Player II

3. A is areal-valued function defined on X XY

To be clear, Player I selects x € X and Player II selects y € Y at the same time and
without knowing each other’s choices. Then their options are made known and I wins
A(x,y) from Player II, where A(x,y) may be anything such as liras, dollar or something
else. If A < 0, then Player I gives |A| amount to the Player II. As a summary, one’s loss

is the other’s gain.

Definition 31 (Constant Sum Game) A two player strategic form gaime is constant

sum if there exists a constant ¢ such that for each strategy profile a € X x Y [27].

Definition 32 (Zero Sum Game) A game is called zero sum if the sum of payoffs

equals to zero for any outcome [28].

Definition 33 (Solution of a Zero Game) Let A be the payoff matrix of a game and x;
and y; be the elements of the mixed strategy sets of the players. Then the game value

vis calculated as v =max ) a;;y; = min} a;;x; for all i, j [21].
i joi

Definition 34 (Mixed Strategies) Let (X,Y,A) be a normal form game, and any set
Z let I1(Z) be the set of all probability distribution over Z. Then the set of mixed
strategies for Player I( or Player II) is S; = I1(Z;) (or S;7 = I1(Zyy)) [27].

Definition 35 (The Minimax Theorem) For every finite two person zero sum game
[29],
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1. there is a number v, said to be the game value,

2. there is a mixed strategy set for Player I such that I’s average gain is at least v no

matter what Player II does,

3. there is a mixed strategy set for Player II such that I's average loss is at most v no

matter what Player I does.

If v = 0 then the game is said to be fair. If v > 0, then the game favors Player I. If the

game value is negative, then the game favor Player II.

Definition 36 (Saddle Point) A point that is simultaneously a row minimum and a

column maximum of the payoff matrix is called a saddle point [29].

Definition 37 (Pure Nash Equilibrium) An outcome, a combination of moves, is

pure Nash equilibrium if the each move involved is the best respond to the other moves.

3.2 A New Glance to the Game Value

We primarily debate and study about the game value and its boundaries in this section.
We start to achieve inequalities for the game value v with 2 x 2 matrix game. Then,
we generalize the inequalities for m x n matrix games. However, we firstly obtain
the inequalities in Lemma 1 and Lemma 2 depend on 1 — norm,c — norm of the
payoff matrix and a constant k consisting of the game value v. Then, we state some
new theorems and success to obtain the inequalities for the game value which include
only 1 —norm and o — norm of the payoff matrix [10]. Additionaly, we present the
consequences of the perturbation onto the game value and mixed strategy set.

As a consequence, one may get some conditions, which may be used during
the game creation process, by using these theoretical results. In order to avoid
misunderstandings, we suppose the rows and columns of the payoff matrix for the
Player I and Player II, respectively. It is important to indicate that we analyze the
games in the view of the Player I that is the row player. One may use our approaches

for Player II, as well.

Lemma 1 Let (P,Q,A) be a finite two person zero sum game where A € R>*? is the

payoff matrix and P = {py,p2} and Q = {q1,q>} are the mixed strategy sets for the
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players and v represents the game value. Then,
HAH <v< HAH1 when v is positive,
—l|AlH <v< ||AH when v is negative,

hold where k = min{(v(|a| + |b|)), (v(|c| + |d]))}

Proof. We consider the payoff matrix as in the following form:

a b
=[edl
For v > 0 : Let ||A||w=|a| + |b|. Then, |a| + |b| > |c| + |d|. Therefore, we can write
the following inequality, ‘Il‘z:—H'd' < 1. Then, we obtain Gﬁ}kwd') < v by multiplying both

side of the previous inequahty by v. If we define k = v(|c| + |d|), we have the first

inequality as follows <v..(1)

’ ||AH
On the other hand, we know that v=ap+(1-p)c < |a| + |c| since p € [0,1]. Then, we
obtain the second inequality as v < ||A]; ...(2)

since ||A||1 = max{|a|+|c|,|b| +|d|}. We have

and (2).

, HAH <v < ||A]]; for v > 0 from (1)
For v < 0: Let ||A||; = |a| + |c| for the payoff matrix A, above.

Case 1. Whilea <0 and ¢ > 0:

We know that, 0 < p<1land0<1-—p<1,since p € [0,1]. Then we have, 0 > ap > a,
since a < 0. We also get, ¢ > (1 — p)c > 0, since ¢ > 0. We obtain the following by
adding these inequalities and using basic algebraic arrangements, ¢ > ap+ (1 — p)c >
a>a—c=—(|a]+ |c|])=—]|Al|1. Therefore, v > —||A||; where v=ap+ (1 — p)c.
Case 2. Assume a <0 and ¢ <O0:

We again have 0 < p<1land 0 <1—-p <1, and we get 0 > ap > a since a <0
and 0 > (1 — p)c > ¢ for ¢ < 0 with the similar approach in the previous case. By
using these inequalities, it is clear to obtain 0 > ap+ (1 — p)c > a+c. We also have
a+c=—(—a+(—c))=—(|lal+|c|]) = —||A||: by making basic algebraic tricks while
keeping a < 0 and ¢ < 0 in mind. Hence, the inequality v > —||A||; holds.

On the other hand, the inequality leltld] < 1 is valid for all the cases. Then we have,

ATl
v(||‘c/|mf‘) > vsince v < 0. As a result, we have —||A||; <v < HAII where k = v(|c| +
ld]).

The next lemma is a generalization of Lemma 2.1. In other words, the following lemma

is about m x n matrix game with the game value v € R.
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Lemma 2 (Generalization) Let A be a mxn real valued payoff matrix and v be the
game value of a two person zero sum game. Then,
Wg v §||A||1f0rpositive v,

—||Al]1 < v <1 for negative v,

HAIH

hold where k= max Y v|a;j| and ||Al|l =¥ |ay;| for fixed p.
1<i<m,i#p

Proof. We deal with the following m-by-n real valued payoff matrix

al - A
A=
anl - Amn
and we use v for positive game value v and v~ for negative v in the proof.

Case 1. For v':

Let ||Al|=Y/_ |ap;| for a fixed p. We have }7_,lap;| > max ¥"_, a;; by the

1<i<m,i#p
definition of co —norm. If we definem = max Y'_|a;;|, then we can rewrite the
1<i<m, t#p
inequality above as AT AH < 1, and also obtain TAll= AII <v" where k = vim.
Moreover, we can evaluate the game value v =Y, p;a;; for any j. Then, it is clear

that v < ¥ | |a;;| satisfies for all j since p € [0,1]. If we take the maximum of the
both side with respect to j then we get v < max}/", |a;;| = ||A]]1.

J
Case 2. For v

We already have the following inequality for vt < 1. However, we deal with

’ HAII

v~ in this case. Therefore, the upper boundary for negative game value is | Ak| | >V

where k =v - mand m = max z n |(Zi | .
. . j=11%1
1<i<m,i#p

In order to obtain the lower boundary for v—, we have v =Y | p;a;; for any ¢. On the
other hand, we can write that —|a;;|p; > —|a;;| in general since 0 < p; < 1. Therefore,

the inequality v= > Y7 | (—pilai|) > — X" |ai] > —||A||1 holds since Y, |a;| <

max Yoz, laij| = [|A[]1. Consequently, —[|A]l; <v= < Al

As we can see in the statement of the lemmas above, k depends on the game value v so
far. In the following corollary we improve our approaches to get rid of the game value

in k.

Corollary 1 Let (P,Q,A) be a finite two person zero sum game where A € R™*" is the

payoff matrix, v is the game value and m =  max Z?: 1 |aij|. Then,
1<i<m,i#p
ifv>1

e < v s [l

ifv<—1,—|[Al| <v< -

m
[|A]f]oo"
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The next theorem will generalize all the approaches we used above. The essential
purpose of the following theorem is to give the boundaries for the game value just by

calculating the related matrix norms of the payoff matrix.

Theorem 1 (Main Theorem) Let A € R>*? be a payoff matrix for two person zero

sum matrix game and v be the game value where

a b
a=[e ]
then,
if [v| > 1, then AT
ifv| <1, and v # 0, then HAH < |v| < | H|d|'

Proof. We have the followings by Lemma 1: |ﬁ|A+II|f| < 1 where ||A]]e =

v < ||A||1 when v is positive and —||A||; < v when v is negative.

a) Forv > 0:

i.Ifv>1= |ﬁ|A+|||i| <v <||A||1 by using the results of Lemma 1.

. IfO<v<l=Letk '=v=k= % > 1, then we have the following by using (i),

le[+|d]| 1A ]]eo

T < k<Al = @ <v<mg

b) For v < 0O:

iIfv<—1=v<—1 <k o ) <v < — KD by Lemma 1.

i If-1<v<O=Lett '=v=r=1<-1

We have the following inequality by using (i), —||Al|; <t < — sz'. Then, we can
: _ All

write that BESE <v<-— ||AH1

After making some arrangement for the inequalities we found in (a) and (b), the results

follow,

'ﬁ'/iﬂ'ff' < |v| < J|A[|; when [v| > 1,

1 ||A]|oo

T < vl < (i when [v| < 1,and v # 0.

Before generalizing Main theorem, we give a definition that is going to be used in
Generalized Main Theorem.

Definition. Ler A € R™*" be a real valued matrix, and let ||A||- be the sum of absolute
values of the h'" row’s entries, then the matrix B € RU"=DX1 is obtained by deleting h'"
row of the matrix A is called a row-wise induced matrix of A. Similarly, let A€ R™*"

be a real valued matrix, and let ||A||| be the sum of absolute values of the s column’s
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entries, then the matrix B € R"™ "=V is obtained by deleting s'" column of the matrix

A is called a column-wise induced matrix of A.

Theorem 2 (Generalized Main Theorem) Let A be a mxn payoff matrix and v be

the game value for a two person zero sum game. Then,

. Bl|eo
if [v| > 1,then HAHw

if [v| < 1,and v # 0,then m <y < }‘BHma

<l <Ak

where B is the row-wise induced matrix of A.

Proof. The proof can be done by using Lemma 2 and Main Theorem, directly.

Remark 1 For two person zero sum games we should investigate the game value from
the view of each player. Therefore, we obtain two different inequalities for the same
game value. Note that, in order to get the optimum interval for the game value, one

should compare the inequalities obtained for each player.

Moreover, Main Theorem’s results may not be the best way to solve 2 x 2 matrix
games since they can be easily solved by using well-known methods. However, one
may prefer to use these inequalities for a bigger size matrix game so that they may

have an idea about the approximated game value without solving any equations.

The following proposition shows us how the game value v and the mixed strategy sets

change under a perturbation.

Proposition 13 Let A be a 2 X 2 payoff matrix for two person zero sum game and v be
a game value, then the value of the perturbated game A + X with all positive entries
(or A+Y with all negative) is v+ x (or v+y) and the mixed strategy set is invariant,

where X (or Y) € R**? with all entries x (ory), and x = |min(A)| (or y = —|max(A)).

Proof. We are going to prove the proposition only for positive perturbation, the

proof for negative perturbation can be done by similar approach. The probability

of the strategies and game value for A are p = (a_b‘)i% andv=ap+c(l—p)=

%, respectively, by the equalizing strategies [7].
Let
| at+x b+x
ArX= { c+x d+x 1
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be the payoff matrix for perturbated game where X € R**? is a matrix with x;; = x.

By equalizing strategies, we calculate the probability of the strategy as below:

(a+x)p1+(c+x)(1—p1) = (b+x)p1+(d+x)(1-p1)
api1+pix+c(1—p1)+x(1—p1) = bpi+xp1+d(1—p1)+x(1—py)
api+c—cp1 = bpi+d—dp;

d—c = api+dpi—cp1—bp
d—-c
(a—b)+(d—c)

pP1 =

As it can be seen p; = p. This means, the mixed strategy set is invariant under any
perturbation of the payoff matrix. Now, let v, be the game value of the pertubated
matrix game A +X. Then, we can evaluate vy as vy = (a+x)p+ (c+x)(1 —p) =

ap+c(1 —p)+x. Hence, vy = v+ x.0

Corollary 2 Any matrix game can be converted to a matrix game with fully or

partially negative (or positive) entries with the same strategy set.

According to Corollary 2, we will prove the following theorems for the payoff matrix

with positive entries.

Remark 2 Notice that we gave the lemmas and theorems for v # 0. The next corollary
helps us to create a matrix game with v = 0. To make it clear, we firstly create a matrix
game with the game value except zero using the given theorems. Lastly, we perturbate
the payoff matrix and the game value by using the Proposition 13. We will illustrate

this situation in Section 3.4 (see last part of Example 2).

Corollary 3 Any matrix game with the game value v # 0 can be converted to a matrix

game with the game value v = 0 under the same strategies.

Apart from the Corollary 2 and 3, we will give the next proposition and lemma for the
zero sum game with the game value v = 0. However, we suggest to use the Corollary

2 and 3 in order to create a matrix game with v = 0.

Proposition 14 Let A € R**? be a payoff matrix of a zero sum game and v = 0, then

the columns (and also the rows) of A are linearly dependent.
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Proof. Let A be the payoff matrix,
a b
= le ]
Then, since v = 0, we can write the following system by using the equalizing strategies,
pa+(l—p)c = 0 3.1)
pb+(1—p)d = 0 (3.2)

The coefficent matrix of this system is A”. First, we multiply (3.1) by d, then we
obtain,

pad+ (1 —p)cd =0 (3.3)
In addition, if we multiply (3.2) by ¢, then we get,
pbc+(1—p)ed =0 (3.4)
Consequently, we have the following equality from (3.3) and (3.4),
pad+ (1 —p)ed — pbc — (1 — p)ed =0 (3.5)

Lastly, we have p(ad — bc) + (1 — p)(cd — cd) = 0 by (3.5), since p # 0, and then
ad — bc = 0 which is the determinant of the coefficient matrix A”. Hence, |AT| =
|A| = 0 which means the columns and also the rows of the payoff matrix A are linearly

dependent. W

Lemma 3 Let A € R™*" be a payoff matrix of the zero sum game and the game value

v =0 then, — Hi”“’ <v <min{||Al|1,1— Hi”""} holds where B is the row-wise induced

matrix of A.

Proof. Let A € R™*" be a payoff matrix of the zero sum game and v = 0. We know that

||A||s > [|B||, where B is the row-wise induced matrix of A. Then, we have 1 > Hﬁ”""
or equivalently —1 < — H/I:H” < 0 = v. Therefore, we can write v =0 <1 — Hf“”. We

also have the following inequality from the previous theorems v < ||A||;. Hence, the

|IB||o-
lA]le-

<v < min{||A||1,1— L= m

result follows by using these inequalities, — ~ TA|
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3.3 Extrema for the Game Strategies

In this section, we try to find some boundaries for the maximum and minimum
elements in the mixed strategy set. Therefore, we give some theorems about these
strategies. Throughout the paper, we use p;,q and py,i, for the greatest and the smallest

elements of the mixed strategy set of the players, respectively.

Firstly, we present the next theorem which helps us to find the lower and upper
boundaries for py,qx and pyin, respectively. Then, we state the min-max theorem to
show the relationship between p,,,, and p,i,. Finally, we generalize the first theorem

of this section.

Theorem 3 Let A € R**? be a payoff matrix with positive entries for two person zero
sum game. Then,

Pmax > L where L = max{1 — ||AH1 ||BH1 }

Pmin < U where U = min{1 — IBlh HAHI}

hold where B is the column-wise induced matrix of A.

Proof. Let
a b
St
be the payoff matrix of a two person zero sum game.
As a beginning, let us suppose that ||A||j=a+c, so a+c > b+d.

We also know the following equality from the method of equalizing strategy for the

solution of a zero sum game, v=ap+ (1 —p)c=bp+ (1 — p)d.

Additionally, we can obtain (a+ ¢)pmax > (b+d) pmax and (@ + ¢)pmin > (b + d) pmin
by making some algebraic arrangement in the equality above. Therefore we can write
the following inequality by combining these inequalities,

(b+d) pmin < (a+¢)pmin < v < (b+d)Ppax < (@+ ) pmax (1)

We obtain by (1), ppin < HC Alh .(2)

where B is the column-wise induced matrix of A.

L A—
and ppax > brd — “g||1

We have 2 elements in the mixed strategy set since the game is a 2 X 2 matrix game, SO
that pyuax + Pmin = 1 ...(3)
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Moreover, we get puax + Pmin < ﬁ + pmax from (2) and (3). Then, we obtain, 1 —

<pmax Hence pmax>LWh€I‘eL ma.x{l ||AH1 HBHI}

HAH
On the other hand, we have p,;;, < #C =T VH from the inequality in (2). We know
that 1 = puin + Pmax > I\BH + Pmin- Thus, ppin < U where U = min{1 — ||BH1 HAHI} [ |

Now, we represent the relationships between p;,4x and p,;,, with the following theorem.

Theorem 4 (Min-Max Theorem for the Game Strategies)
Let A € R™*" be the payoff matrix. Then,

= pmm < Pmax < I— ( - 1)pmin and

m—1

1— (m_ 1)pmax S DPmin S 1_”1’%1”,

hold where p;.x and pi, are the greatest and the smallest elements of the mixed

strategy set, respectively.

Proof. In the view of the row side player we have p; +...4+ ppin+ ... + Pmax+ .. +Pm =
1 since A™*" € R. We can rewrite this equality as, p; + ... 4+ pmin + --- + Pm = 1 — Pmax
or pi + ... + Pmax + --- + Pm = 1 — pmin. Notice that we have (m — 1) terms on the left
hand side of it. Therefore, we have (m— 1)ppin < 1 — Ppmax o (M — 1) pax > 1 — Pin,

1 pmax
m—

respectively. Hence, we have 1 — (m — 1) ppin > Pmax and ppin < Or pmax >

l;l#l"” and 1 — (m— 1) pimax < Pmin the result follows. W

Theorem 5 Let A € R™" be the payoff matrix with positive entries. Then, the
boundaries for pmax and ppin which are the greatest and the smallest elements of the

mixed strategy set, respectively, are as follows,

vV
R }

Pmax > L where L = max{ T TIBIT

vl
B
Pmin < U where U = min{ m” ]”1 : Hl\v|||1}

where B is the column wise induced matrix of A.

Proof. First, let ||A||1 =ay+ay+...+a,; and ||B||1 =ay;+ axy + ... + ay, for fixed
k and t (i.e. k,t <n), then we have,
V = pidis + P2a; + ...+ DPmQmt < pmax(alt +ay + ...+ amt) = pmax||B||l~ HCI’ICC,

pmax Z Hé}Hl .
Similarly, we can find an upper bound for p,,;, with the same approaches,

V= piraix+ prax~+ ...+ Pm@mk > Pmin(@1x + a2k + ... + @) = Pmin||Al1-

Therefore, we have pi, < m.
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On the other hand, we know that p; +p2 + ...+ p, = 1.

l=pi+p2+...+Pmax+ ... +Pm=> H|B||| + (m — 1) pyin by the above inequality for
vl

mﬂ" > Pmin - Therefore, ppi, < U where U =

Pmax- After some arrangement,

1‘*\ulev||| V|
. 1 v
min .
{ m—1 HAHI}

Lastly, we can obtain the other lower boundary for p,,,, with the same process, 1 =

pr+p2+ .t pmint o+ pm < H/|4||| + (m— 1) ppmax by using the inequality for py,.
V] V]

1-
Then, pmax > mH L Hence, pyayx > L where L = max{ IAH1 ‘g‘\h}‘.

3.4 Applications

In this section, we will illustrate the usage of our novel approaches for the game theory

with the some test examples.

Example 1.(Game Creation) Assume that we want to create a 2 X 2 positive entries
zero sum matrix game with the game value v = 5 and the mixed strategies p; = py = %

Let A be the payoff matrix of the game where
a b
o]

Suppose that ||A||; = a+c and ||A|| = a+ b. Firstly, we will use Main Theorem to

obtain the first condition, |‘c||:|“d‘ < | < ||Al1=%¢ <5 < a+c. Then, we have two
conditions by using the inequality above,

c+d<5a+5b..(1)

at+c>5..2)

In order to obtain more conditions, we use the inequalities for maximum and minimum
strategies by Theorem 5.

Case I. Let’s assume that pj,,q > 1 — % and pyin < 1— ”BH] where m = 2 since A is
2-by-2 matrix. By using the above inequalities we obtain,

Pmax > 1= 22-=10>a+c ..(3)

Pmin < 1= 523=10<b+d ..(4)

Case II. Suppose that, p,ax > 1 — HAH] and pyin < m.

We already have boundary from the previous case with the inequality (3) for pjux.

Moreover, the inequality for py,;, is % < . Hence, we have a+c¢ < 10 which is the

+c

exactly same with the inequality (3).
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v
[1B[1}

Case III. Now assume that, p,q, > and pyin < 1— —t.

HB [N
We have b+d > 10 by using the inequality for p,,,., which is the same as the inequality
(4). Since the inequality for p,,;, is the same as in Case I, we obtain the inequality (4)
again.

Case IV. Suppose that p,qc > i BH and pyin < m.

By using the above inequality for p,,,x we have b+d > 10 by the assumption for p,,,y,
that is same as (4). Moreover, we obtain a 4+ ¢ < 10 by using the inequality for p;,in,
which is exactly the same as (3).

After these analysis, for example, we can choose the payoff matrix’s entries as a=4,

b=7, c=6 and d=3 which hold for each cases. Hence, the payoff matrix A is
4 7
=53]
Example 2.(Perturbated Game) The purpose of this example is to show how we
create a matrix game with negative entries and we also create a matrix game with the
game value v = 0 by using our approach.

Let A be the payoff matrix as in Example 1. In that example, the game value is v =5,

and the probabilities of the strategies are p; = p, =0.5.
4 7
o3
We choose y = —|max(A)| = —7 by using Proposition 13 in order to obtain the negative

entries for the payoff matrix. Here the matrix Y is in the following form
-7 =7
=[5 3]
Then, the payoff matrix P = A +Y of the perturbated game, which is obtained by using

Proposition 2.6, is

-3 0
Sl
If we calculate the game value by Proposition 13, we get v = —2 and the probabilities

are the same as before.

Now, we see how we create matrix game with v = 0. Firstly, we need to create the

payoff matrix A as in Example 1. Then, in order to create the matrix game with v = 0
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according to Proposition 13, we choose y = —v = —5 where v = 5 is the game value

of the matrix game A. Here, P is the payoff matrix obtained by A+,

Sl
where ¥ € R**? is matrix with yij = —5. The determinant of P is zero which is
consistent with Proposition 14. Hence, the game value v of the matrix game P is 0
and the mixed strategy set is invariant.
Example 3.(3 x 3 Game)In this example, we create a bigger size zero sum matrix
game. Suppose that we want to create a 3 X 3 zero sum matrix game with the game
value v = 2 and the mixed strategies p; = 0.30, p» = 0.25 and p3 = 0.45. Let A be the

payoff matrix of the game where

A=

o0 XA
S
> 0

Let’s assume that [|A[; = [a| + |d| +|g|. [|B[1 = [b| + |e| 4 |A], [|Al|e = [a] 4 |b] + ]
and ||B||« = |d| + |e| + | f| where B is the corresponding induced matrix of the payoff
matrix A. We firstly obtain some conditions by using GMT as follows,

SRl <2 < lal + 1] +g]

|d] +le| + |f1 < 2(|al + [b] +|])...(D)

jal +1d] + g >2..(2)

We now make the case analysis by using Theorem 5 in order to get other conditions for
game creation. As we see in the previous example, the game can be created by using
any of the cases. Therefore, we will use the case

V] [v]

> U 404 p < T
Pmax 2 — =1 a0d Pmin > — =1
2

where m = 3 since the payoff matrix A is 3-by-3.
=2

Pmax = 0.45 = 29—0 > M. We have the following inequality by making
arrangements, 20 > |a| + |d| + |g|...(3)
We find another condition by using the inequality for p,,,

-2
Pmin =025 = } < —LE We get, 4 < |b| + |e| +|]...(4)
Hence, we need to determine the entries of the payoff matrix A accoring to the
inequalities (1), (2), (3) and (4). If we choose the entries as a = 3.38, b = 0.45, c = 3.6,
d=—14,e=4, f=1.4,g=3.55h=2.35 and k = —0.2. Thus, the payoff matrix is

338 045 3.6
A=| —-14 4 1.4
3.55 235 —-0.2
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3
If we solve this game with known methods, we get the game value v = ) p;a; ~ 2
i=1
for any k = 1,2,3 and the mixed strategy set P = {0.45,0.3,0.25}. Consequently, we

succesfully created the zero sum matrix game with our methods.

Example 4.(The real data) The intention of this example is to show that the theorems
in our paper hold for any zero sum matrix game. Let the payoff matrices D and D’
be obtained from the given inequalities in [24] for defender and attacker, respectively.
The game value of this game for each case is given as v = 0.5791 in the paper since
the problem is two person zero sum game (see [24]). The payoff matrix D in [24] is
0.4298 0.4298 0.9253 0.9253 0.0936 0.5293
D= 0.4073 0.6989 0.4073 0.4804 0.5311 0.7425
0.7208 0.5616 0.5616 0.4726 0.7625 0.1954
Firstly, we investigate the game from the defender’s side. The maximum and minimum
elements of the mixed strategy set are given as pjux = 0.5340, pin = 0.1726 in the

corresponding paper.

In this case, the matrix norms of the payoff matrix D, D and D* are ||D||;= 1.8942,
||D|| = 3.3331, ||D||; = 1.8783 and ||D*||. = 3.2745, where D and D* are the
column-wise and row-wise induced matrix of D, respectively. Then, we find the
boundaries for the approximated game value w by using Generalized Main Theorem
(GMT),

o < < 15

||D]]oo 3.3331
T = 18942 < ]w[ 35715 = 0.5279 <w < 1.0179 ...(1)

We now find the boundaries for p},,, and p}; by using Theorem 5, m = 3 in this case

since D € R3*6.

0.5791
P > L where L = max{ —E ?g;g;} = max{0.3471,0.3083}. Hence,
Pl > 0.3471.

P < U where U = min{ 15508 05191y i (0.2458,0.3057}. Thus, ply, <
0.2458. Therefore, we see that the inequalities above hold for the given p,,,, and
Pmin-

Secondly, we consider the game from attacker’s side. We know the game value for the

attacker is v =0.5791 as well.

The required matrix norms are ||D7||; = 3.3331, ||D7 || = 1.8942, ||(DT)*||.. =
1.8783 and ||(DT)**||; = 3.2745, where (DT)* and (DT)** are the row-wise and
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column-wise induced matrix of the payoff matrix D7, respectively. By using GMT,

107 |
(1ID")*le

Consequently, we obtain the optimum interval as 0.5279 < w < 1.009 from (1) and (2)

<|w| < = 57 < W < 1553 = 0.3 <w < 1.009 ...2)

HDTHI
in the light of Remark 1. As a result of the fact that the actual game value v = 0.5791

falls into the optimum interval.

The given maximum and minimum elements of the strategy set are py,, = 0.5522 and
pmin = 0 for the attacker in [24]. So, the boundaries for p,,,. and p,;, can be found
similarly by using Theorem 3.3 (m = 6 since DT & R®*3).

0.5791
> L where L = max{ 2250 95191} — 11x(0.1653,0.1769}. Thus,
DPae = 0.1769.

$378 0.5791 , x

Poin < U where U = mzn{6—, 33531 = min{0.1646,0.1737}. Hence p;,;, <
0.1646.

p max

It is clear from the above analyses that our approaches work for a real life military

problem, which is designed as a two person zero sum matrix game, as well.

It is valuable to emphasis the following remark before we calculate and compare the

approximated game value v, with v by using our results.

Remark 3 [t is very important to notice that the approximated game value v, must
fall in the optimum interval we have found for the game value, and the probabilities
must be chosen by taking consideration of the inequalities for pyax and ppin. Moreover,
we must obey the principal of the probability theory in order to decide the rest of the

elements in the mixed strategy set. That is, total sum of the strategies must be 1.

We firstly calculate the approximated game value v}, by using the inequalities we

app
found for pjy and py, for the defender. We know that py,,. > 0.3471 and p},,;, <

0.2458. Firstly, we need to decide p}™, and p- for the strategies since the

*
p max

player has 3 options in this case. We can determine the strategies of the game with the

following steps:

1. Choose pyax (Or pmin) by using the related inequality.
2. Use Min-Max Theorem to find a new interval for p,i, (Or ppax).

3. Choose ppin (OF pyax) from the new interval.
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4. Find the probability sum of the rest of the strategies and determine them one by

one, arbitrarily.
5. Distribute them in any order you want by keeping Remark 3 in your mind.

6. Evaluate v,).

For example, we choose the strategy scenario as p);, = 0.22, p7* = 0.38 and p},, =

0.40 according to these steps. While we attempt to evaluate v, , we can distribute

app’
P P @and prin any order we want by keeping Remark 3 in our mind. However,
the possible distributions do not make significant differences onto the game value as
long as we take account the optimum interval for the game value. So that, we deal with
the mixed strategy set S* = {0.22,0.38,0.40} for this scenario. In accordance with
Remark 3, we can use any column we want when we evaluate the approximated game
value. In this perspective, as an example, we calculate the approximated game value

Vapp for the zero sum matrix game by using the first column of the payoff matrix D,

Vapp = (0.4298 x 0.22) + (0.4073 x 0.38) + (0.7208 x 0.40) = 0.5377. The absolute
error for this scenario is [V — vgpp| = |0.5791 —0.5377| = 0.041 which is a quite small

error. Moreover, one may find better approximated game value using the different

column for this case or totally different scenario.

Now, we calculate the v,,, for the attacker. We first need to determine the strategies
as in the defender’s case by following the steps above. We have 6 elements in
the mixed strategy set for this case. Here, we choose p;* = 0.05, pi* = 0.15,

= 0.15, p3* = 0.15, p}* = 0.11 and p;, . = 0.39. In this application, we work
with §* = {0.15,0.39,0.15,0.15,0.11,0.05} as mixed strategy set in this scenario.
For instance, we prefer to use the third column of the payoff matrix D while we
app = (0.7208 x 0.15) 4 (0.5616 x 0.39) +(0.5616 x 0.15) +
(0.4726 x 0.15) + (0.7625 x 0.11) + (0.1954 x 0.05) = 0.5759. The absolute error is
[V —vapp| =10.5791 — 0.5759| = 0.003. As in the defender’s case, one may find better

evaluate the v,,,. Thus, v,

approximated game value by choosing different column or distribution for the strategy

set.

In the corresponding paper, the authors create two different linear systems which
include 6 and 3 inequalities for the attacker and defender, respectively. Then, they

solve each of the systems by using linear programming method. Contrast to this, we
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only use 1 —norm and o — norm of the payoff matrix to evaluate the approximated

game value without solving any equation with the methodology above. This is one of

the most important advantage part of our approaches.

Finally, we summarize our approaches in Figure 3.1 which may be as a guide for the

practitioners.

—

GAME SOLUTION

Find the boundaries for

the game value by using
GMT.

Choose Py (OF Pryin) With

Theorem 5.

Use min-max theorem to
find a new interval for
Puin (or pmax)'

Choose pyip (OF Prax) from.

the new interval.

Determine the rest of the
strategies according to
Remark 3.

Distirbute them in any
order you want by
keeping Remark 3 in your|
mind.

Evaluate vy,

Two Person Zero Sum

GAME CREATION

Determine the game
value.

Decide Prmax and Pmin

elements of the mixed
strategy.

Use Theorem 5 and GMT
to obtain the conditions
for the entries of the
payoff matrix.

Choose suitable entries
with respect to the
inequalities in the

previous step.

Create the payoff matrix
with the entries you

chose in the previous step.

(Optional)

Generate new matrix
game by Proposition 13.

Figure 3.1 : Flowchart for the solution and creation of the two person zero sum

matrix games



4. CONCLUSIONS

Firstly, we present some basic concepts for the 3-dimensional matrices in this study.
In addition to this, we prove some important propositions by using the new definitions
for the 3-D matrices. We define the determinant vector and condition number vectors
for the 3-D matrices. We also present the singular and nonsingular 3-D matrices
based on the definition of the determinant vector. Beside these, we also introduce the
ill-conditoned and well-conditioned 3-dimensional matrix by using the definition of the
condition number vector. Moreover, we state and prove the Cauchy-Schwarz inequality
and some other inequalities about the 3-D matrix norms. Furthermore, we demonstrate
that the Frobenius —norm 1s invariant under multiplication by a unitary matrix and the
2 —norm is invariant under left-handside multiplication by a unitary matrix. Finally, we
exemplify the usage of the new and extended definitions for 3-dimensional matrices.
We believe that these definitions and propositions will contribute to the development

of the 3-dimensional matrix theory.

Secondly, in addition to the fundamental concept of the 3-dimensional matrices, we
present the 3-dimensional matrix norm inequalities. We prove the 3-D matrix norm
inequalities with a similiar approach as it is proved for the 2-dimensional matrix
norm inequalities. The relationships between these 3-D norms can be clearly seen
with the inequalities. Moreover, the upper and lower bound can be quickly and
approximately found for any 3-dimensional matrix norm by using the related 3-D
matrix norm inequalities and norms which can be easily computed such as || - ||, || - |1
norms. Therefore, the computational cost for the analysis, which uses the 3-D matrix
norms, decreases. Hence, the evaluation process will be completed fast. The situations
,which we have to select data depending on the norm values, may be done quickly by

calculating one of the following norms ||+ ||c, || - |

1, that can be easily evaluated. In the
case that we need to use other norms, we can use the 3-D matrix norm inequalities and
find an interval, that may help us to determine whether we need that norm or not, for

those norms. However, it is important to notice that it is tedious and time-consuming
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to calculate || - ||, || - || norms even for 2-dimensional matrices, it will obviously be
more time-consuming than 2-dimensional matrix norms for 3-D matrix norms since
the 3-dimensional matrices have more entries. For this reason, it may be easier to
find the values of those norm with a proper choices by using the norm inequalities
for 3-D matrices. On the other hand, one may use the 3-dimensional matrix norm
inequalities to analyze the matrix based algorithms since they require the usage of
the matrix norms. One may switch from one norm to another easily. As a result of
this, analysis of some simulations and algorithms may be completed with a smaller
computational cost. Consequently, the matrix norms, which have a wide range of use

in science, get a new point of view and dimension with the 3-dimensional matrices.

Thirdly, we introduce the matrix norms to the game theory. Even though the matrices
are used in the theory of game, the matrix norms do not take a part in it. Therefore,
we bring them together and present a new point of view to the game theory. Another,
interesting part of this study is that the studies about game theory mostly centered
upon solving a game and there are very less of paper that study on game creation in the
literature. Therefore, we mainly focus on creating a zero sum matrix game in addition
to solving it in this paper. In order to combine the matrix norms and the game theory,
we stated and proved some theorems, which are based on 1 —norm and e — norm of
the payoff matrix, for the game value of a two person zero sum matrix game. Hence,
we present a new perspective to the solution and creation of the two person zero sum
game by using the matrix norm of the payoff matrix. We state and prove some theorems
for the game value so that we achieve to obtain boundaries, which are only based on
1 — norm and o — norm of the payoff matrix, for the game value. Moreover, we show
how to obtain the game value of the pertubated matrix game with the original payoff

matrix while the mixed strategy set is invariant.

Moreover, we work on the maximum and minimum elements of the mixed strategy set
and exhibit some theorems. We find the lower and upper boundaries of p;,.x and ppin
for m x n matrix game with these theorems, respectively. Additionally, we demonstrate

the relationship between p;,4x and p,,;,;, with min-max theorem for the game strategies.

We also examine and show the consistency of our approaches with some test examples.
First, we create two person zero sum matrix games by using our theorems. Clearly, it

can be seen that the given inequalities and theorems may be used easily for 2 x 2 matrix
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games. However, we generalize our methods for m x n zero sum matrix game. In this
case, there will be m.n entries to determine, which means that the number of conditions
to be determined will be more than in the case of 2 X 2 zero sum matrix games. So, it
may be difficult to decide all conditions. However, it is not impossible to determine it

all if we carefully use the inequalities for the game value v, py,.c and ppin.

Then, we exhibit the applications of our method to the perturbated games and obtain
their payoff matrix and the game values. Moreover, we analyze the simulation results
of a real life military problem, which is designed as a two person zero sum game and
is solved with linear programming method in the corresponding paper, and we find
the approximated game value for this game. Comparison of our result with the actual

game value shows that the approximated game value is very close to the actual one.

Although any zero sum matrix game can be solved by using linear programming or
other well-known methods in the literature, our approaches may solve and obtain
approximated game value without solving any linear system. If we consider a big
size matrix game, the usage of linear programming methods may be tedious and
time-consuming. On the other hand, one may get an approximated game value faster
while the computational cost may decrease by using our approaches. In addition to
simplicity of our methods’ application, this is one of the most important result and
advantage part of our work. We believe that this study bring a new point of view to the

game solution and creation process.

Consequently, we generalized some definitions and properties of the 2-dimensional
matrices to 3-dimensional matrices. Moreover, we introduced the 3-dimensional
matrix norm inequalities. Moreover, we combined the game theory with the matrix
norms. We believe that all these contributions of 3-dimensional matrices will help the
development of the 3-dimensional matrix theory. We also believe that we brought a

new perspective to the game theory with the use of matrix norms.
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