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SYMMETRY GROUP CLASSIFICATION OF SOME PROBLEMS IN
MATHEMATICAL PHYSICS

SUMMARY

In this thesis, some problems in physics and engineering sciences are examined by
symmetry methods. In the literature, there are a lot of methods to solve nonlinear
differential equations and these methods play an important role. One of these methods
is to use symmetry groups. We consider some symmetry group related methods to
solve problems in mathematical physics.

Firstly, we deal with the Noether symmetry classification of the nonlinear fin equation,
in which thermal conductivity and heat transfer coefficient are assumed to be functions
of the temperature. This classification includes Noether symmetries, first integrals
and some invariant solutions with respect to different choices of thermal conductivity
and heat transfer coefficient functions. In this thesis, Noether symmetries of the fin
equation are investigated using the partial Lagrangian approach.

Secondly, we consider Lienard II-type harmonic nonlinear oscillator equation as a
nonlinear dynamical system. Firstly, we examine the first integrals in the form
A(t,x)ẋ+B(t,x) and corresponding exact solutions, the integrating factors. In addition,
we analyze other types of the first integrals via λ -symmetry approach. It is shown
that the equation can be linearized by means of nonlocal transformation, which is
called Sundman transformation. Using the modified Prelle-Singer approach, time
independent first integrals are derived for the Lienard II-type harmonic nonlinear
oscillator equation.

The modified Prelle-Singer procedure is used for a class of second order nonlinear
ordinary differential equations and several physically interesting nonlinear systems
are solved. Prelle and Singer have proposed an algorithmic procedure to find the
integrating factor for the system of first order ordinary differential equation. Once
the integrating factor for the equation is determined then it leads to a time independent
integral of motion for the first order ordinary differential equation. The Prelle-Singer
method guarantees that if the first order ordinary differential equation has a first integral
in terms of elementary functions then this first integral can be found. This method has
been generalized to incorporate the integrals with non-elementary functions. Recently,
this theory is generalized to obtain general solutions for second order and higher order
ordinary differential equations without any integration.

Moreover, it is possible to consider some feasible algorithm to obtain first integral,
integrating factor and invariant solution and one can apply this algorithm to nonlinear
equation. The another method for application to nonlinear differential equation is
the transformation method. Considering this transformation procedure, a nonlinear
equation can be converted to a linear differential equation whose solutions are known.
It is well-known that Lie proves the general algorithm that all second order nonlinear
differential equations can be converted to second order linear differential equations
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by the method of change of variables, which is called Lie linearization test. In fact,
the mathematical procedure of linearizing transformation is quite diffucult work and
this can be applied to only second order ordinary differential equations that have
a eight-dimensional Lie algebra. Therefore, it is necessary to consider other type
of transformation techniques of nonlinear differential equations for linearization of
larger classes of equations. One of nonlocal transformations is of the form X =
F(t,x), dT = G(t,x)dt, which is called the generalized Sundman transformation.
This transformation is also called S-transformation and the equations that can be
linearized by means of S-transformations are called S-linearizable. In the second
problem, λ -symmetries via Lie symmetries, integrating factors, first integrals and
invariant solutions of Lienard II-type harmonic nonlinear oscillator equation are
obtained.

In third problem, we examine first integrals, transformation pair and invariant solutions
of fin equation by linearization methods. And we apply nonlocal transformation to
fin equation. The important relations λ -symmetry with Lie point symmetry, Prelle
Singer method with λ -symmetry and Lie symmetry are examined. The first integrals,
integrating factors, Sundman transformation pair and invariant solutions of fin equation
are found.
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MATEMATİKSEL FİZİKTEKİ BAZI PROBLEMLERİN SİMETRİ GRUP
SINIFLANDIRMALARI

ÖZET

Bir fonksiyonun türevleri arasındaki ya da fonksiyonun kendisi ve türevleri arasındaki
ilişkiyi açık olarak belirten denkleme diferansiyel denklem denir. Diferansiyel
denklemleri bağımsız değişkenlerin sayısına ve içerdikleri türevlerin türlerine göre
sınıflandırabiliriz. Denklemin tek bir bağımsız değişkeni varsa denklem adi
diferansiyel denklem, iki veya daha çok bağımsız değişken içeriyorsa kısmi
diferansiyel denklem olarak adlandırılır. Diferansiyel denklemler fiziksel olayların
modellemesinde kullanılmaktadır.

Doğa bilimleri ve mühendislikte önemli bir yere sahip olan ve fiziksel olayların
bir modellemesi olarak elde edilen lineer olmayan diferensiyel denklemlerin
integrallenebilirliği 1960’lardan beri uygulamalı matematiğin temel konularından
biri olmuştur. Lineer olmayan diferansiyel denklemlerin çözümlerinin elde
edilmesi her zaman mümkün olamamaktadır. Bu zorluktan dolayı öncelikli olarak
bu tip denklemlerin integrallenebilirliği üzerinde çalışılmıştır. Bununla birlikte
integrallenebilir lineer olmayan diferansiyel denklemlerin çözümlerini bulmak için bir
çok yöntem geliştirilmiştir. Simetri grupları ve korunum kanunları, bu yöntemlerden
bazılarıdır.

Bu tezde simetri grupları kullanılarak, fizik ve matematikteki bazı önemli problemler
incelenmiştir. Lineer olmayan diferansiyel denklemlerin analitik çözümlerinin
ve korunum kanunlarının bulunması problemi ele alınmıştır. Literatürde lineer
olmayan diferansiyel denklemleri çözmek için bir çok yöntem geliştirilmiştir, simetri
grupları bunlardan biridir. Öncelikle, analitik çözümlerin araştırılmasında en güçlü
yöntemler arasında gösterilen Lie simetri grupları ele alınmıştır. Sophus Lie, adi
diferansiyel denklemler bir dönüşüm altında değişmez kalırsa mertebelerinin bir
derece düşürülebileceğini göstermiştir. Bu şekilde, lineer olmayan diferansiyel
denklemlere Lie cebrini uygulayıp denklemi değişmez bırakarak mertebesini
indirgeyip denklemin çözümünü elde edebiliriz. n. basamaktan bir diferansiyel
denklemin Lie grubunu elde etmek için, bu Lie grubuna ait sonsuz küçük üreticin
n. uzanımını diferansiyel denkleme uyguladığımız zaman sonuç sıfır çıkmalıdır. Bu
uzanım diferansiyel denkleme uygulandığı zaman bulunan açılımdan çok belirli kısmi
diferansiyel denklemler sistemi elde edilir ve bu denklemler belirleyici denklemler
olarak adlandırılır. Lie grupları ile çalışmanın bir zorluğu, Lie grup teorisini
uyguladıktan sonra elde edilen belirleyici denklemleri çözmektir, bu zorluğu aşmak
için bazı matematiksel programlar kullanılabilir, bunun için bu tezdeki problemleri
incelerken Mathematica programı kullanılmıştır. Bu tezde, Lie grup teorisi bazı
fiziksel problemlere uygulanıp sonuçlar elde edilmiştir.

Fakat, bazı durumlarda Lie grup teorisi yetersiz kalır. Her diferansiyel denklem
Lie simetrilerine sahip olmayabilir. Bu durumda, simetrileri elde etmek ve
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sınıflandırmak için farklı yöntemler kullanılmaktadır. Bu yöntemlerden biri Noether
Teoremi’dir. Noether Teoremi, Alman matematikçi Noether tarafından bulunmuştur.
Bu teoremi uygulamak için öncelikle denklemin Lagrangian fonksiyonu elde edilir,
Lagrangian fonksiyonu Euler-Lagrange denklemlerini sağlamalıdır. Daha sonra bu
Lagrangian fonksiyonu yardımıyla denklemin ilk integralleri bulunur. Bu teorideki
en önemli kısım Lagrangian fonksiyonunun belirlenmesidir. Standard Lagrangian’a
sahip olmayan bir çok denklem vardır. Bu tür denklemler için kısmi Lagrangian
yöntemi geliştirilmiştir. Standart Lagrangian’a sahip olmayan denklemler için kısmi
Lagrangian kullanılarak Noether simetrileri ve ilk integralleri bulunabilir. Tezin bir
bölümünde kısmi Lagrangian yöntemi ele alınmıştır. Bu yöntem yardımıyla standard
Lagrangian fonksiyonuna sahip olmayan fiziksel bir denklem olan fin denklemi için
kısmi Lagrangian fonksiyonu belirlenmiştir. Sonrasında Noether teoremi kullanılarak,
denklemin Noether simetrileri ve ilk integralleri elde edilmiştir. Bu simetriler fin
denkleminin ısı-sıcaklık katsayılarına göre sınıflandırılmıştır. Daha sonra bu ilk
integraller kullanılarak denklemin değişmez çözümleri elde edilmiştir.

Lie simetrisine sahip olmayan denklemlerin simetrilerini elde etmek için diğer
bir yöntem Muriel ve Romero tarafından 2001 yılında tanımlanmıştır. Yeni bir
vektör alanı tanımlayarak, yeni bir uzanım formu elde etmişler ve elde ettikleri
simetrileri λ -simetrileri olarak adlandırmışlardır. Muriel ve Romero, bu yeni
teoride Lie simetrilerinden farklı olarak tanımladıkları yeni vektör alanını kullanarak
elde edilen belirleyici denklemlerin çözümünü sonsuz küçük fonksiyonlar ve λ
fonksiyonu cinsinden belirlemişlerdir. Bir diferansiyel denklemin λ -simetrileri,
integrasyon çarpanları ve ilk integralleri arasında önemli bir ilişki vardır. Özellikle,
λ -simetrileri, Lie simetrisi olmayan lineer ve lineer olmayan denklemler için
integrasyon çarpanlarının ve ilk integrallerinin bulunmasında etkili bir yöntemdir.
Bu tezde ele alınan bir diğer önemli ilişki Lie simetrilerinden λ -simetrilerinin elde
edilmesidir. Daha sonrasında λ -simetrileri kullanılarak integrasyon çarpanı ve ilk
integraller elde edilebilir.

Bu simetrileri bulmamızı sağlayan diğer bir yöntem Prelle-Singer yöntemidir. Bu
yöntem, Prelle ve Singer tarafından 1993 yılında ele alınmıştır ve zaman içinde Duarte
yöntemi geliştirmiştir. Prelle-Singer yönteminde R ve S fonksiyonları ile ifade edilen
üç adet belirleyici denklem vardır, bu denklemler çözülerek simetriler elde edilmeye
çalışılır. Muriel ve Romero 2009 yılında Prelle-Singer yöntemi ile λ -simetrileri
arasında bir ilişki kurmuşlardır. Bu ilişkiye göre, λ -simetrisi ve µ integrasyon çarpanı
olmak üzere R = −µ ve S = −λ eşitlikleri elde edilir. Bu yöntem kullanılarak, bazı
fiziksel denklemlerin λ -simetrileri, integrasyon çarpanları, ilk integralleri ve sırası
ile çözümleri elde edilmiştir. Lie, λ ve Prelle Singer yöntemleri arasında önemli
bir ilişki söz konusudur. λ -simetrileri kullanılarak Lie simetrileri, Prelle Singer
yöntemi kullanılarak öncelikle λ -simetrileri ve λ -simetrileri kullanılarak sonrasında
Lie simetrileri elde edilebilir.

Tezde kullanılan diğer bir yöntem ise lineerleştirmedir. Verilen denklem önce bazı
fonksiyonlara gore sınıflandırılıp daha sonrasında ait olduğu sınıfa dair kullanılan
algoritma ile farklı ilk integralleri elde edilmiştir. Lineeleştirme problemleri altında
incelediğimiz diğer bir dönüşüm Sundman dönüşümüdür. Duarte tarafından ortaya
atılan bu dönüşüm ile lineer olmayan bir denklem lineerleştirilebiliniyorsa, bu denklem
Muriel ve Romero tarafından S-lineerleştirilebilir olarak adlandırılmıştır. Tezde
S-dönüşümleri kullanılarak ilk integrallerin ve λ -simetrilerinin nasıl bulunduğu açıkca

xx



gösterilmiştir. Sonrasında bu λ -simetrilerinden denklemin integrasyon çarpanı ve
farklı ilk integralleri elde edilmiştir. Devamında bu λ -simetri bilgisi kullanılarak
Prelle-Singer yöntemine geçilmiş ve Hamiltonian ve Lagrangian fonksiyonları elde
edilmiştir. Bu tezde, lineer olmayan bir denklem için bir çok farklı yöntemle ilk
integraller, simetriler ve bunların yardımıyla denklemin çözümlerinin elde edilebildiği
açıktır.
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1. INTRODUCTION

Mathematical modeling of many problems in physics and engineering sciences involve

nonlinear ordinary differential equations. Therefore, the methods to solve a nonlinear

ordinary differential equations have been continuously developed in the literature; see

for example, [1,12].

It is always not possible to obtain solution of nonlinear equations. We can obtain

solutions of nonlinear equations by integrating these equations therefore integrability

of nonlinear equations is important. Moreover, a lot of methods have been improved

to obtain the solutions of nonlinear equations using integrability. Some of these

methods are called as Lie point symmetry, Noether symmetry, λ -symmetry, nonlocal

transformation, etc. In this thesis, we examine these methods and we obtain analytical

solutions and conservation laws of nonlinear differential equations by using these

methods.

1.1 Purpose of Thesis

The purpose of the thesis is to find analyze the analytic solutions and conservation laws

for nonlinear differential equations. There are a lot of methods to obtain these solutions

in literature. Some of these methods are Lie symmetry groups theory, Noether theory,

linearization methods, nonlocal transformations. In this thesis, some conservation law

methods are used and these methods are applied to the equations in mathematical

physics. Moreover, we aim to obtain solutions of nonlinear differential equations using

symmetry groups which are found by different conservation law methods.

1.2 Literature Review

In this chapter, firstly we discuss the basic properties of Lie symmetry groups necessary

in later chapters for the study of differential equations. We use the study [2] as

reference to explain Lie symmetry groups, it is an important tool to understand the

other symmetry methods. Then we examine Noether theorem and some concept which
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is related to conservation laws and we consider the definition of partial Lagrangian

by using the study [12]. Then we examine some important definitions and theorems

corresponding to λ -symmetries. Moreover, we explain transformation methods with

some definitions.

In the literature, symmetry classifications of differential equations with respect to Lie

point symmetries and Noether symmetries have an important role for understanding

possible solutions of differential equations [1,9]. Noether symmetries can also be used

in finding the first integrals (conserved forms) of the nonlinear problems. The earliest

studies on Noether symmetries based on the Noether theorem are due to German

mathematician Emmy Noether [1]. Applications of the Noether theorem to differential

equations can provide some important information about the problems in mechanics,

physics, and engineering sciences [12,18]. In order to apply the Noether theorem, the

differential equations should have a standard Lagrangian. On the other hand, one can

apply the partial Lagrangian method to differential equations to investigate Noether

symmetries and first integrals by using Euler-Lagrange equations [12].

1.2.1 Lie symmetry groups

Lie symmetry group was developed to deal with the solution of differential equations.

Lie was influenced by lectures of Sylow on Galois theory, therefore Lie symmetry

groups are the extension of Galois methods for the study of differential equations. The

basic examination is that the simple constant that can by added to any indefinite integral

of dy/dx is in fact an element of a continuous symmetry group that convert solutions

of the differential equation into other solutions. This observation was used by Lie to

develop an algorithm when a differential equation has an invariance. If such a group

exists, then the order of a higher order ordinary differential equation can be reduced.

In this sense, Sophus Lie has introduced the concept of continuous groups in order to

extend different solution methods for ordinary differential equations and these groups

are called Lie groups. Lie proved that if an ordinary differential equation is invariant

under a one parameter Lie group of point transformations, then the order of ordinary

differential equation can be reduced by one.

A symmetry group of a system of differential equations is a group of transformations

which maps any solution to another solution of the system. Lie symmetry groups

2



include translations, rotations and scalings. First order ordinary differential equations

define a one parameter Lie group of point transformations.

Lie’s fundamental theorem demonstrates that groups can be described by their

infinitesimal generators. Lie groups and their infinitesimal generators can be extended

to follow up on the space of independent variables, dependent variables and derivatives

of the dependent variables.

Special solutions of differential equations are called similarity solutions or

invariant solutions, if a differential equation is invariant under Lie group of point

transformations.

Now, we examine the basic definitions and theorems for Lie symmetry groups to

explain the later concepts.

Definition 1.1 Let ϕ be a law of composition. The set G is called a group, if the

nonempty set G is satisfy the following axioms:

(i) Closure property: For any elements a and b of G, ϕ(a,b) is an element of G.

(ii) Associative property: For any elements a, b and c of G,

ϕ(a,ϕ(b,c)) = ϕ(ϕ(a,b),c). (1.1)

(iii) Identity element: There exists a unique identity element e of G such that for any

element a of G,

ϕ(a,e) = ϕ(e,a) = a. (1.2)

(iv) Inverse element: For any element a of G, there exists a unique inverse element a−1

in G such that

ϕ(a,a−1) = ϕ(a−1,a) = e. (1.3)

In addition to these conditions, if ϕ(a,b) = ϕ(b,a) holds for all elements a and b in G,

a group G is called Abelian.

Definition 1.2 Let x = (x1,x2, ...,xn) belongs to region D ⊂ Rn. The set of

transformations

x∗ = X(x;ε), (1.4)

3



defined for each x in D, depending on parameter ε . ϕ(ε,δ ) is a law of composition

of parameters ε and δ in S. A group of transformation on D satisfy the following

properties:

(i) For each parameter ε in S the transformations are one-to-one onto D, in particular

x∗ belongs to D.

(ii) S with the law of composition ϕ forms a group G.

(iii) x∗ = x when ε = e, i.e.

X(x;ε) = x. (1.5)

(iv) If x∗ = X(x;ε), x∗∗ = X(x∗;δ ), then

x∗∗ = X(x;ϕ(ε,δ )). (1.6)

Definition 1.3 If a group of transformations satisfy the following conditions in

addition (i)-(iv), this group is called one-parameter Lie group of transformations.

(v) The identity element e for ε = 0.

(vi) X is differentiable with respect to x in D and an analytic function of ε in S.

(vii) ϕ(ε,δ ) is an analytic function of ε and δ , ε ∈ S and δ ∈ S.

Definition 1.4 Let

x∗ = X(x;ε) (1.7)

be an one-parameter Lie group of transformations with identity ε = 0 and law of

composition ϕ . If we expanding (1.7) about ε = 0, we obtain

x∗ = x+ ε
(∂X

∂ε
(x;ε)|ε=0

)
+

ε2

2

(∂ 2X
∂ε2 (x;ε)|ε=0

)
+ ...

= x+ ε
(∂X

∂ε
(x;ε)|ε=0

)
+O(ε2). (1.8)

And

ξ (x) =
∂X
∂ε

(x;ε)|ε=0. (1.9)

Thus x + εξ (x) is called the infinitesimal transformation of the Lie group of

transformations and the terms of ξ (x) are called the infinitesimals of the equation

(1.7).
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Definition 1.5 The gradient operator is

∇ =
( ∂

∂x1

,
∂

∂x2

, ...,
∂

∂xn

)
. (1.10)

The infinitesimal generator of the one-parameter Lie group of transformations (1.7) is

defined as

X = X(x) = ξ (x).∇ =
n

∑
i=1

ξi(x)
∂
∂xi

. (1.11)

For any differential function F(x) = F(x1,x2, ...,xn),

XF(x) = ξ (x).∇F(x) =
n

∑
i=1

ξi(x)
∂F(x)

∂xi

. (1.12)

Definition 1.6 For any group transformation (1.7),

F(x∗)≡ F(x), (1.13)

if and only if F(x) is an invariant function of the Lie group of transformations (1.7).

Theorem 1.1 F(x) is invariant under (1.7) if and only if

XF(x)≡ 0. (1.14)

Definition 1.7 For a one parameter Lie group of transformations

x∗ = X(x,y;ε) = x+ εξ (x,y)+O(ε2),

y∗ = Y (x,y;ε) = y+ εη(x,y)+O(ε2), (1.15)

the infinitesimal generator is

X = ξ (x,y)
∂
∂x

+η(x,y)
∂
∂y
. (1.16)

Let yk = dky
dxk . We can extend (1.15) to (x,y,y1, ...,yk) space for k = 1,2, ..., and

k-prolongation is

y∗k = Yk(x,y,y1, ...,yk;ε) = yk + εηk(x,y,y1, ...,yk)+O(ε2), (1.17)

and the infinitesimal generator for k-prolongation is

Xk = ξ (x,y)
∂
∂x

+η(x,y)
∂
∂y

+η(1)(x,y,y1)
∂

∂y1

+ ... (1.18)

+η(k)(x,y,y1, ...,yk)
∂

∂yk

, (1.19)

where

η(k)(x,y,y1, ...,yk) =
Dη(k−1)

Dx
− yk

Dξ (x,y)
Dx

, η(0) = η(x,y). (1.20)
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Now, we summarize these definitions and theorems, therefore we consider first order

ordinary differential equation

dy
dx

= g(x), (1.21)

where x is the independent variable and y is the dependent variable. The solution of

this equation is

y = G(x) =
∫

g(x)dx. (1.22)

If we write the solutions of the form y−G(x) = 0, then y+ c−G(x) = 0 is also a

solution of the equation (1.21).

We study for a one-parameter group of transformations that leaves the surface equation

invariant by changing variables in the (x,y) plane according to

x → x(ε) = x+ εξ (x,y) x(ε = 0) = x (1.23)

y → y(ε) = y+ εη(x,y) y(ε = 0) = y, (1.24)

where one parameter group x → x and y → y in (1.21), so ξ = 0 and η = 0.

For ξ (x,y) and η(x,y), the first prolongation is

dy
dx

=
dy/dx
dx/dx

=
ε(ηx +ηy)

1+ ε(ξx +ξy)
→ ε(ηx +(ηy −ξx)−ξy) (1.25)

Thus,

η(1)(x,y,y(1)) = ηx +(ηy −ξx)−ξy). (1.26)

The surface equation must be same under the one-parameter group of transformations,

that is

F(x,y) = 0 → F(x(ε),y(ε))→ F(x+ εξ ,y+ εη) = F(x,y)+ ε(ξ
∂
∂x

+η
∂
∂y

)F(x,y).

(1.27)

And Lie point symmetry is

X = ξ
∂
∂x

+η
∂
∂y

. (1.28)

Thus, we obtain

F(x,y) = 0 and XF(x,y) = 0. (1.29)
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1.2.2 Noether theorem and first integrals

In this chapter, we use the study [12] as reference to explain some concept which is

related conservation laws.

Noether showed that how the symmetries of action integral first placed to conservation

laws for the corresponding Euler-Lagrange equations. Euler-Lagrange equations are

invariant under variational symmetries. Now, we examine these Noether symmetries.

Suppose that x is the independent variable and y = (y1, . . . ,ym) is the dependent

variable with coordinates yα with respect to x are given as following form

yα
x = yα

1 = Dx(yα), yα
s = Ds

x(y
α), s ≥ 2, α = 1,2, . . . ,m, (1.30)

where Dx is the total derivative operator [2-7], with respect to x, which is defined as

Dx =
∂
∂x

+ yα
x

∂
∂yα + yα

xx
∂

∂yα
x
· (1.31)

Here, the vector space of all differential functions of all finite orders is represented by

A that is universal space. Also, operators apart from total derivative operator (1.31)

are defined on space A .

Definition 1.8 The operator

δ
δyα =

∂
∂yα + ∑

s≥1
(−Dx)

s ∂
∂yα

x
, α = 1,2, . . . ,m, (1.32)

is called the Euler operator or Euler-Lagrange operator.

Definition 1.9 The generalized operator is given by

X = ξ
∂
∂x

+ηα ∂
∂yα + ∑

s≥1
ξ α

s
∂

∂yα
s
, (1.33)

where

ξ α
s = Ds

x(W
α)+ξ yα

s+1, s ≥ 2, α = 1,2, . . . ,m, (1.34)

and W α is the Lie characteristic function

W α = ηα −ξ yα
x , α = 1,2, . . . ,m. (1.35)

Here we can rewrite the generalized operator (1.33) in terms of characteristic function

as below

X = ξ Dx +W α ∂
∂yα + ∑

s≥1
Ds

x(W
α)

∂
∂yα

s
(1.36)
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and the Noether operator associated with a generalized operator X can be defined as

N = ξ +W α ∂
∂yα + ∑

s≥1
Ds

x(W
α)

∂
∂yα

s
· (1.37)

Now let us consider a kth-order system of ordinary differential equation

Eα(x,u,u(1),u(2), . . . ,u(k)) = 0, α = 1,2, . . . ,m. (1.38)

Definition 1.10 The first integral of the system I ∈ A can be written in the following

form

DxI = 0. (1.39)

Then the expression (1.39) is called the local conservation law for system (1.38).

Furthermore, DxI = O̧αEα is called the characteristic form of conservation law

(1.39) where the functions O̧α = (O̧1, . . . , O̧m) are the associated characteristics of

the conservation law (1.39).

Definition 1.11 Let L = L(x,(x,u,u(1),u(2), . . . ,u(α)) ∈ A , α≤k and nonzero

functions f β
α ∈ A be a partial Lagrangian and X be a Lie-Bäcklund operator of the

form of (1.33). If there exists a vector B ∈ A , B ̸= NL+C,C = constant, we have the

following relation

X(α)L+LDx(ξ ) =W α δL
δyα +Dx(B), (1.40)

where W = (W 1, . . . ,W m), B(x,y) is the gauge function, and W α ∈ A then X is

called a partial Noether operator coresponding to L and, X(α) is the α th prolongation

of the generalized operator (1.36). If we apply Euler-Lagrange operator (1.32) to

Lagrangian L, then we obtain following differential equations

δL
δuα = 0, α = 1,2, . . . ,m, (1.41)

which are called Euler-Lagrange equations and the Lagrangian L is called a standard

Lagrangian. However, if δL
δuα ̸= 0, the Lagrangian L is called as a partial Lagrangian

and the corresponding differential equations are called partial Euler-Lagrange

equations.

Definition 1.12 X is a Noether point symmetry corresponding to Lagrangian of the

system of differential equations (1.38) if there exists a function B(x,y). In addition, X
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is a Noether point symmetry corresponding to a Lagrangian of equation, then I is a

first integral associated with X, which is given by the expression [10]

I = ξ L+(η − y′ξ )Ly′ −B. (1.42)

1.2.3 Linearization methods

In this chapter, we use the study [20] as reference to explain some concept which is

related linearization methods.

The linearization technics deal with obtaining the general solutions of the nonlinear

equation by using the first integrals and λ -symmetries. Furthermore, it is a fact that

using linearization methods, a nonlinear second order equation can be converted to a

linear second order ordinary differential equation whose solutions are known. The first

linearization problem for differential equations is solved by Lie [10]. He shows that a

second order ordinary differential equation is linearizable by a change of variables if

and only if the equation has the form

ẍ+a2(t,x)ẋ2 +a1(t,x)ẋ+a0(t,x) = 0, (1.43)

where t is the independent variable and x is the dependent variable of the equation and

over dot denotes the derivative with respect to t [19].

Moreover, one of these methods is to obtain general solution by using the first integral

of the equation. It is known that the some solutions remain invariant under symmetry

group transformations; these solutions are called invariant (or similarity) solutions. It

is assumed that the ordinary second order differential equation of the form (1.43) has

the first integrals of the form

A(t,x)ẋ+B(t,x). (1.44)

In order to find the first integrals of the form (1.44), one can use a standard procedure

and apply it to the nonlinear differential equations. Then it is possible to present that

the first integrals of the form A(t,x)ẋ+B(t,x) can be obtained by using the linearization

methods [20].

From the mathematical point of view, the process of linearization outlined above is

a difficult task and it can only be applied to the second order ordinary differential

equations. Therefore, it is necessary to consider other type of transformation
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techniques of the nonlinear differential equations for linearization. In the literature,

it is shown that the equations of the form (1.43) can be transformed into the linear

equations XT T = 0 by means of nonlocal transformation of the form

X = F(t,x), dT = G(t,x)dt, (1.45)

which is known as the generalized Sundman transformation [21,24]. This

transformation is also called S-transformation and the equations that can be linearized

by means of S-transformation are called S-linearizable [21]. Duarte [22] proves that

S-linearizable equations must be of the form (1.43). A detailed review for the available

generalizations and recent contributions can be found in the references [25,26].

Another method to solve the nonlinear differential equations is to obtain λ -symmetries

of the equations. Muriel and Romeo [20] prove that the equations of the form (1.43)

have the first integrals of the form (1.44), λ -symmetries and the integrating factors

µ = A(t,x). They also show that the equation of the form (1.43) admits ν = ∂x for

λ -symmetry of the form [21]

λ (t,x, ẋ) = α(t,x)ẋ+β (t,x). (1.46)

The other method which is called modified Prelle-Singer procedure [27,28] is used to

apply it to a class of second order nonlinear ordinary differential equations and solved

several physically interesting nonlinear systems and identified a number of important

linearization procedures. Prelle and Singer have proposed an algorithmic procedure to

find the integrating factor for the system of first order ordinary differential equations.

Once the integrating factor for the equation is determined then it leads to a time

independent integral of motion for the first order ordinary differential equation. The

Prelle-Singer method guarantees that if the first order ordinary differential equation

has a first integral in terms of elementary functions then this first integral can be found.

This method has been generalized to incorporate the integrals with non-elementary

functions. Recently, this theory is generalized to obtain general solutions for second

order and higher order ordinary differential equations without any integration [28].

Now, we explain linearization methods in the following sections.
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1.2.3.1 The first integrals of the form A(t,x)ẋ+B(t,x)

In this section we examine the equations of the form (1.43) that have first integrals

of the form A(t,x)ẋ+B(t,x) for A ̸= 0. For this purpose we consider the following

notations

S1(t,x) = a1x −2a2t , (1.47)

S2(t,x) = (a0a2 +a0x)x +(a2t −a1x)t +(a2t −a1x)a1. (1.48)

Then one can say that if S1 = 0, then the equation (1.43) is S-linearizable if and only

if S2 = 0. By these definitions we have the following theorem to determine A(t,x) and

B(t,x).

Theorem 1.2 Let us assume that an equation (1.43) is S-linearizable, that is S1 = S2 =

0. In addition, let f (t) be the function defined by

f (t) = a0a2 +a0x −
1
2

a1t −
1
4

a1
2 (1.49)

and P = P(t,x) be a function such that

Pt =
1
2

a1, Px = a2. (1.50)

Thus using an equation (1.50) one can determine the function P = P(t,x) explicitly.

Similarly, let g = g(t) be a nonzero solution of the linear equation

g′′(t)+ f (t)g(t) = 0, (1.51)

and Q = Q(t,x) be a function such that

Qt = a0.g.eP, Qx =
(1

2
a1 −

g′

g

)
g.eP. (1.52)

Then, one can obtain the function Q = Q(t,x) from the equations (1.51) and (1.58).

Finally, functions A and B are determined as follows

A = g.eP, B = Q. (1.53)

Then one can say that if S1 ̸= 0, we have the following theorem to determine A(t,x)

and B(t,x).
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Theorem 1.3 Let us assume that S1 ̸= 0. In this situation the functions S3 = S4 = 0.

Let f (t) be the function defined by

f (t) = a0a2 +a0x −
1
2

a1t −
1
4

a1
2 (1.54)

and P = P(t,x) be a function such that

Pt = a1 +
S2

S1
, Px = a2. (1.55)

Thus one can determine the function P = P(t,x) explicitly. Similarly, let g = g(t) be a

nonzero solution of the linear equation

g′′(t)+ f (t)g(t) = 0, (1.56)

and Q = Q(t,x) be a function such that

Qt = a0eP, Qx =−
(S2

S1

)
eP. (1.57)

Then there exist a function Q = Q(t,x) due to the compatibility condition

[a0eP]x, [−
(S2

S1

)
eP]t (1.58)

Then, one can obtain the function Q = Q(t,x) from the equations (1.51) and (1.58).

Finally, functions A and B are determined as follows

A = eP, B = Q. (1.59)

1.2.3.2 The λ -symmetries and the integrating factors

Let us consider a second-order ordinary differential equation

ẍ = Φ(t,x, ẋ). (1.60)

Then one can say that the vector field υ = ∂x is a λ -symmetry of (1.60) if and only if

λ is a solution of the equation

Φx +λΦẋ = λt + ẋλx +Φλẋ +λ 2. (1.61)

Using coefficients a0,a1,a2 in (1.43), one can easily compute S1, S2 and then one can

obtain λ -symmetry for (1.43).
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Theorem 1.4 If S1 = S2 = 0, then λ -symmetry for (1.43) is determined using following

feasible algorithm.

h′(t)+h2(t)+ f (t) = 0, (1.62)

where f (t) is defined by (1.49). Then the β function is found as

β (t,x) = h(t)− 1
2

a1(t,x). (1.63)

Thus we find the λ -symmetry is the following form

λ =−a2(t,x)ẋ+h(t)− 1
2

a1(t,x). (1.64)

Theorem 1.5 We know that if S1 ̸= 0, then the functions S3 = S4 = 0.

In this situation, λ -symmetry for (1.43) is determined using following feasible

algorithm.

Let f (t) be the function defined by

f (t) = a0a2 +a0x −
1
2

a1t −
1
4

a1
2 (1.65)

γx +
1
2

S1 = 0 (1.66)

and

γt + γ2 + f = 0 (1.67)

From here,

S1γ =−1
2

S1t + fx. (1.68)

Thus we find the λ -symmetry is the following form

λ =−a2(t,x)ẋ+
(S2

S1

)
. (1.69)

Theorem 1.6 [1] If the equation (1.43) has the first integral of the form I = A(t,x)ẋ+

B(t,x), then the equation (1.43) has a integrating factor that has form µ = A(t,x).
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1.2.3.3 The nonlocal transformations

It is possible to show that the nonlinear second-order equations are linearizable

by means of generalized Sundman transformation. These nonlinear equations are

characterized in terms of the coefficients of the equations and constructive methods

to derive the linearizing Sundman transformation can be presented. Thus the

nonlinear ordinary differential equations can be solved by transforming them into

the linear ordinary equations whose solutions are known. These equations are called

S-linearizable. The second order S-linearizable equations have the first integrals of the

form A(t,x)ẋ+B(t,x). When a first integral of this form is known, we derive a method

to construct the Sundman transformation that linearizes the equation. Conversely, if

a linearizing Sundman transformation is known then a first integral of the form is

obtained. Now, we present the following theorem that the characterizes S-linearizable

equations by the coefficients of a given differential equations.

Theorem 1.7 We assume that the equation (1.43) is S-linearizable. If S1 = S2 = 0 and

φ(t) is the solution of the equation

φt +φ2 + f = 0, (1.70)

and the function f (t) is defined by (1.49).

Let C(x, t) be a solution of the following equations

Ct = a0 −C(
a1

2
+φ), (1.71)

Cx = (
a1

2
−φ)−Ca2. (1.72)

If F(x, t) is a solution of the equation

Ft =CFx, (1.73)

and

G = Fx exp(−P−
∫

φ(t)dt), (1.74)

and thus S-transformation pair F and G are defined.
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Theorem 1.8 We suppose that the equation (1.43) has a first integral as

I = A(t,x)ẋ+B(t,x). (1.75)

It can be written

A(t,x) =
Fx

G
, B(t,x) =

Ft

G
. (1.76)

The equation (1.43) can be linearized by (??). Dt is total derivative operator and the

equation

A(ẍ+a2(t,x)ẋ2 +a1(t,x)ẋ+a0(t,x)) = Dt(I(t,x, ẋ)), (1.77)

can be obtained. Consequently,

F(t,x) = φ(I(t,x)) (1.78)

and

G(t,x) =
Fx

A
or G(t,x) =

Ft

B
B ̸= 0. (1.79)

The transformation pair obtained by first integral.

1.2.3.4 Lagrangian and Hamiltonian description

Assuming the existence of a Hamiltonian

I(x, ẋ) = H(x, p) = pẋ−L(x, ẋ) (1.80)

where L(x, ẋ) is the Lagrangian and p is the canonically conjugate momentum, we have

∂ I
∂ ẋ

=
∂H
∂ ẋ

=
∂ p
∂ ẋ

ẋ+ p− ∂L
∂ ẋ

=
∂ p
∂ ẋ

ẋ. (1.81)

From equation (4.1) we identify

p =
∫ Iẋ

ẋ
dẋ+ f (x), (1.82)

where f (x) is an arbitrary function of x. Equation (1.82) has also been derived recently

by a different methodology. We take f (x) = 0 and substituting the known expression of

I into equation (1.82) and integrating it, we can obtain the expression for the canonical

momentum p.
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2. ON SYMMETRY GROUP CLASSIFICATION OF FIN EQUATION 1

In this chapter, we discuss the nonlinear fin equation and the corresponding

determining equations. This section also includes different cases corresponding to

different choices of thermal conductivity and heat transfer coefficient. Furthermore,

Noether point symmetries and first integrals for each different case are presented. In

addition, we present some invariant solutions.

2.1 Noether Symmetries of Fin Equation

In this section, we classify the Noether point symmetries of a fin equation. Noether

symmetries can also be used in finding the first integrals of the nonlinear problems.

We should apply Noether theorem to fin equation for obtaining Noether symmetries.

In order to apply the Noether theorem, the differential equations should have a standard

Lagrangian. On the other hand, one can apply the partial Lagrangian method to

differential equations to investigate Noether symmetries and first integrals by using

Euler-Lagrange equations. The fin equation has not standart Lagrangian, therefore,

we determine the partial Lagrangian and Noether symmetries of the fin equation by

applying partial Noether approach to a nonlinear fin equation.

We now consider Noether symmetry classification of the nonlinear fin equation [14-15]

y′′+
K′(y)
K(y)

(y′)2 − H(y)
K(y)

= 0, (2.1)

where K and H are thermal conductivity and heat transfer coefficient, respectively,

which are considered as functions of temperature, and y = y(x) is the temperature

function and x is dimensional spatial variable. The Lie point symmetries equation

(2.1) is investigated in the reference [16]. In this study, we consider the partial Noether

approach to analyze Noether symmetries of equation (2.1).

1This chapter is based on the paper Orhan Ö., Gün G. and Özer T., On symmetry group
classification of a fin equation. Journal of Inequalities and Applications, 2013, 2013:147,
doi:10.1186/1029-242X-2013-147.
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For the fin equation (2.1), we can write the Euler-Lagrange operator (1.32)

δ
αyα =

∂
∂yα −Dx

∂
∂yx

+D2
x

∂
∂yxx

, (2.2)

and the partial Lagrangian L for the fin equation (2.1) can be written as

L =
1
2
(y′)2

+
∫ H(y)

K(y)
dy, (2.3)

and if we apply Euler-Lagrange operator (2.2) to Lagrangian (2.3), then we obtain

δL
δy

=
H(y)
K(y)

− y′′. (2.4)

In addition, if we rewrite the fin equation in the following form

−y′′+
H(y)
K(y)

= (y′)2 K′(y)
K(y)

, (2.5)

then, the equation (2.4) becomes

δL
δy

= (y′)2 K′(y)
K(y)

· (2.6)

In relation (1.40), the partial Lagrangian (2.3) has at most first order derivatives and

then we can take α = 1 and write the following definition

W 1 δL
δy

= (η −ξ y′)
(

y′2
K′(y)
K(y)

)
= ηy′2

K′(y)
K(y)

−ξ y′3
K′(y)
K(y)

, (2.7)

and Dx(B) is defined in the form

Dx(B) = Bx + y′By. (2.8)

By application of the first prolongation of the generalized operator (2.7) X(1) to

Lagrangian (2.3), we get

X(1)L = η
H(y)
K(y)

+η1y′, (2.9)

where η1 is defined in the form [2-5]

η1 = ηx +(ηy −ξx)y′−ξy(y′)2. (2.10)

The expansion of form of (2.10) by using the definition of the first prolongation of the

Noether operator and relations (2.6)-(2.10) is written below

ηxy′+(ηy −ξx)y′2 −ξyy′3 +
1
2

ξxy′2 +
1
2

ξyy′3 +ξx

∫ H(y)
K(y)

dy+
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+ξyy′
∫ H(y)

K(y)
dy+η

H(y)
K(y)

+ξ
K′(y)
K(y)

y′3 −η
K′(y)
K(y)

y′2 −Bx − y′By = 0. (2.11)

The usual separation by powers of derivatives of y (2.11) reduces to the following

determining equations

−1
2

ξy +ξ
K′(y)
K(y)

= 0, (2.12)

ηy −
1
2

ξx −η
K′(y)
K(y)

= 0, (2.13)

ηx +ξy

∫ H(y)
K(y)

dy−By = 0, (2.14)

ξx

∫ H(y)
K(y)

dy+η
H(y)
K(y)

−Bx = 0. (2.15)

To find the infinitesimals ξ and η the determining equations (2.12)-(2.15) should be

solved together. First, from the solution of the equation (2.12) we have

ξ = K(y)2a(x), (2.16)

where a(x) is a function of x. The solution of equation (2.13) is

η =
1
2

a′(x)K(y)
∫

K(y)dy+K(y)b(x), (2.17)

where b(x) is a function of x. Thus, if we differentiate (2.14) with respect to x and

(2.15) with respect to y then we can eliminate the function B(x,y) from equations

(2.14)-(2.15) and we obtain the following single equation(1
2

a′(x)
∫

K(y)dy+b(x)
)

H ′(y)+
3
2

K(y)a′(x)H(y)

−1
2

a′′′(x)K(y)
(∫

K(y)dy
)
−K(y)b′′(x) = 0 (2.18)

which is a differential equation including unknown functions K(y), H(y), a(x) and

b(x). Using the equations (2.16)-(2.18) one can classify Noether symmetries and

corresponding first integrals of the nonlinear fin equation (2.1) based on different

forms of the thermal conductivity K(y) and heat transfer coefficient H(y) and

differential relations for a(x) and b(x).
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Case 1: K(y) = k(constant)

In equation (2.19) if we consider K(y) = k(constant) then we obtain the following

differential equation for H(y) function

(2b(x)+a′(x)ky)H ′(y)+3ka′(x)H(y)− k(2b′′(x)− ka′′′(x)) = 0. (2.19)

Now we analyze differential equation (2.19) for different H(y) functions corresponding

to different solutions of (2.18) and we get differential relations between functions a(x)

and b(x), which yield Noether symmetries and corresponding first integral for each

case.

Case 1.1: H(y) = h(constant)

For this case the equation (2.19) becomes

3hka′(x)−2kb′′(x)− k2ya′′′(x) = 0. (2.20)

In (2.20) it is clear that a′′′(x) = 0, 3ha′(x)− 2b′′(x) = 0. From the solutions of a(x)

and b(x) we obtain the following infinitesimal functions

ξ = k2(c1 + xc2 + x2c3),

η =
1
2

k2y(c2 +2xc3)+ k
(

3
4

hx2c2 +
1
2

hx3c3 + c4 + xc5

)
, (2.21)

and the corresponding Noether symmetries

X1 = k2 ∂
∂x

, X2 = k2x
∂
∂x

+(
1
2

k2y+
3
4

khx2)
∂
∂y

, X3 = k2x2 ∂
∂x

+(k2xy+
1
2

hkx3)
∂
∂y

,

X4 = k
∂
∂y

, X5 = kx
∂
∂y

· (2.22)

By using relations (2.14) and (2.15) the function B(x,y) is found in the form below

B(x,y) =
1
4

h2x3c2 +
3
2

hkxyc2 +
1
8

h2x4c3

+
3
2

hkx2yc3 +
1
2

k2y2c3 +hxc4 +
1
2

hx2c5 + kyc5, (2.23)

where ci, i = 1, ...,5 are constants. Thus, the first integrals (conserved forms) for

the nonlinear fin equation (2.1) can be calculated by using expression (2.12) and by

considering each group parameter ci.
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I1 = hky− 1
2

k2(y′)2, I2 =
1
8
(−2h2x3 −4hkxy+2k(3hx2 +2ky)y′−4k2x(y′)2),

I3 =
1
8
(−h2x4 −4hkx2y−4k2y2 +2k(2hx3 +4kxy)(y′)−4k2x2(y′)2), (2.24)

I4 =−hx+ ky′, I5 =−1
2

hx2 − ky+ kxy′.

Case 1.2: H(y) = y

Based on the similar calculation in the first case if we take H(y) = y, we obtain the

infinitesimals ξ and η by solving equations 4a′(x)− ka′′′(x) = 0, b(x)− kb′′(x) = 0

ξ = k2(
1
2

e
−2x√

k
√

k(e
4x√

k c1 − c2)+ c3),

η =
1
2

k2y(2e
2x√

k c1 − (e
−2x√

k (e
4x√

k c1 − c2))+ k(e
x√
k c4 + e

−x√
k c5), (2.25)

where ci, i = 1, ...,5 are constants.

The corresponding generators are

X1 = (
1
2

e
2x√

k k
5
2 )

∂
∂x

+(
1
2

e
2x√

k k2y)
∂
∂y

,

X2 = (−1
2

e
−2x√

k k
5
2 )

∂
∂x

+(
1
2

e
−2x√

k k2y)
∂
∂y

,

X3 = k2 ∂
∂x

, X4 = (e
x√
k k)

∂
∂y

, X5 = (e
−x√

k k)
∂
∂y

, (2.26)

and the gauge function is

B(x,y) = e
−2x√

k
√

k
(

1
2

e
4x√

k ky2c1 −
1
2

ky2c2 + e
3x√

k yc4 − e
x√
k c5y

)
+ c6, (2.27)

where c6 is an arbitrary constant and the first integrals are found by using the

expression (2.12)

I1 =
1
4

e
2x√

k

(
− k

3
2 y2 +2k2yy′− k

5
2 (y′)2

)
, (2.28)

I2 =
1
4

e
−2x√

k

(
k

3
2 y2 +2k2yy′+ k

5
2 (y′)2

)
, (2.29)

I3 =
1
2

(
ky2 − k2(y′)2

)
, I4 = e

x√
k (ky′−

√
ky), (2.30)

I5 = e
−x√

k (
√

ky+ ky′). (2.31)

Case 1.3: H(y) = yn, n > 1

In equation (2.19), if we take H(y) = yn then we obtain

2ny(−1+n)b(x)+3kyna′(x)+ knyna′(x)−2kb′′(x)− k2ya′′′(x) = 0, (2.32)
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which gives a′(x) = 0 and b(x) = 0 gives ξ and η

ξ = k2c1, η = 0, B(x,y) = 0, (2.33)

where c1 is a constant and then the infinitesimal generator corresponding to (3.30) is

X = k2 ∂
∂x

, (2.34)

and the first integral is written similar to the previous case

I =−−2ky1+n + k2(1+n)(y′)2

2(1+n)
· (2.35)

Case 1.4: H(y) = Exp(y)

For this case it is clear that the infinitesimal functions are

ξ = k2c1, η = 0, B(x,y) = 0, (2.36)

where c1 is a constant and the generator is

X = k2 ∂
∂x

, (2.37)

and the first integral is

I = eyk− 1
2

k2(y′)2· (2.38)

Case 1.5: H(y) = 1
my+n

For this case the infinitesimals are found as below

ξ = k2c1, η = 0, B(x,y) = 0, (2.39)

where c1 is an arbitrary constant and the generator is

X = k2 ∂
∂x

, (2.40)

and the first integral is

I =
k log(k(n+my))

m
− 1

2
k2(y′)2. (2.41)

Case 1.6: Arbitrary f unction H(y)

We find that

ξ = k2c1, η = 0, B(x,y) = 0, (2.42)
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where c1 is a constant and the generator is

X = k2 ∂
∂x

, (2.43)

and the first integral is

I = k
∫

H(y)dy− 1
2

k2(y′)2· (2.44)

Case 2: K(y) = kExp(αy), k and β are constants.

In the equation (2.18) if we take K(y) = kExp(βy), we obtain the following

differential equation in terms of H(y) function

(2αb(x)+a′(x)eyαk)H ′(y)+3eyαkαa′(x)H(y)− eyαk(2αb′′(x)+ eyαka′′′(x)) = 0,

(2.45)

and consider following cases as the solutions of (2.42) and get the mathematical

relations between functions a(x) and b(x).

Case 2.1: H(y) = h(constant).

For this case the differential equation (2.42) yields

eyαk
(
3hαa′(x)+2αb′′(x)+ eyαka′′′(x)

)
= 0. (2.46)

In (3.43) k ̸= 0 then the term in the parenthesis must be zero, which gives a′′′(x) = 0

and 3ha′(x)+2b′′(x) = 0, then the infinitesimal functions are found as below

ξ = e2yαk2(c1 + xc2 + x2c3),

η =
e2yαk2(c2 +2xc3)

2α
+ eyαk(

3
4

hx2c2 +
1
2

hx3c3 + c4 + xc5), (2.47)

where ci, i = 1, ...,5 are constants and we have following five infinitesimal generators

X1 = (e2yαk2)
∂
∂x

, X2 = (e2yαk2x)
∂
∂x

+(
3
4

eyαhkx2 +
e2yαk2

2α
)

∂
∂y

,

X3 = (e2yαk2x2)
∂
∂x

+(
1
2

eyαhkx3 +
e2yαk2x

α
), X4 = eyαk

∂
∂y

, X5 = eyαkx
∂
∂y

,

(2.48)

and we have the gauge function

B(x,y) =
1

8α2 4
(
e2yαk2c3 −4eyαkα(h(4c1 + x(c2 + xc3))−2c5)
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+hxα2(hx2(2c2 + xc3)+8c4 +4xc5)
)
, (2.49)

and the corresponding first integrals

I1 =
eαyhk

α
− 1

2
e2αyk2α2(y′)2,

I2 =−2eyhkxα +h2x3α2 − eαykα(2eαyk+3hx2α)y′+2e2αyk2xα2(y′)2

4α2 ,

I3 =−4e2αyk2 +4eαyhkx2α +h2x4α2 −2eαykα(4eαykx+2hx3α)(y′)+4e2αyk2x2α2(y′)2

8α2 ,

(2.50)

I4 = eαykα2y′−hx, I5 = eαykxy′− 1
2

hx2 − eαyk
α

·

Case 2.2: Arbitrary H(y)

For an arbitrary H(y) function we obtain infinitesimal functions in the form

ξ = e2yαk2c1, η = 0, (2.51)

where c1 is a constant and the infinitesimal generator is

X = e2αyk2 ∂
∂x

, (2.52)

and the gauge function is

B(x,y) = 2kαc1

∫
e2αy

(∫
e−αyH(y)dy

)
dy, (2.53)

and the first integral is calculated as follow

I =−1
2

k
(
−2e2αy

∫
e−αyH(y))dy+4α

∫
e2αy(

∫
e−αyH(y)dy)dy+ e2αyk(y′)2

)
·

(2.54)

Case 2.3: H(y) = h
(βy+γ)2 , β and γ are arbitrary constants

For this case the infinitesimals ξ and η are

ξ = e2yαk2c1, η = 0, (2.55)

where c1 a constant and the infinitesimal generator is

X = e2αyk2 ∂
∂x

, (2.56)
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and the gauge function is

B(x,y) =−e−
αγ
β hkαc1

β 2

(
e

2α(yβ+γ)
β ExpIntegralEi(−α(yβ + γ)

β
)

+ExpIntegralEi(
α(yβ + γ)

β
)
)
, (2.57)

where ExpIntegralEi is a special function on the complex plane, for real nonzero values

of x, the exponential integral Ei(x) is defined as

Ei(x) =
∫ x

−∞
(
et

t
)dt, (2.58)

and the first integral is

I =
1

2β 2(γ +βy)
e−

αγ
β
(
−2(e

αγ
β +αyhkβ −hkαExpIntegralEi(α

(γ + yβ
β

))(γ +βy)
)

−e−
αγ
β +2αyk2β 2(γ +βy)(y′)2). (2.59)

Case 3: K(y) = kyβ , β ̸=−1

If we take H(y) = h is constant, then we obtain the following equation

−3h(1+β )a′(x)+2(1+β )b′′(x)+ ky1+β a′′′(x) = 0, (2.60)

and we find the infinitesimals functions from solutions of a′′′(x) = 0 and −3h(1+

β )a′(x)+

2(1+β )b′′(x) = 0

ξ = k2y2β (c1 + xc2 + x2c3),

η =
k2y1+2β (c2 +2xc3)

2(1+β )
+ kyβ (

3
4

hx2c2 +
1
2

x3c3 + c4 + xc5), (2.61)

where ci, i = 1, ...,5 are constants. In this case we have following five infinitesimal

generators

X1 = k2y2β
∂
∂x

, X2 = k2xy2β ∂
∂x

+(
3
4

hkx2yβ +
k2y1+2β

2(1+2β )
)

∂
∂y

, (2.62)

X3 = k2x2y2β ∂
∂x

+(
1
2

kx3yβ +
k2xy1+2β

(1+2β )
)

∂
∂y

,

X4 = kyβ ∂
∂y

, X5 = xkyβ ∂
∂y

(2.63)

and the gauge function is

B(x,y)=
1
8
(
hx(hx2(2c2+xc3)+8c4+4xc5)+

4ky1+β

(β −1)(β +1)2

(
−h(1+β )(3x(c2+xc3)
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+β (4c1 + x(c2 + xc3)))+(β −1)(kyβ c3 +2(β +1)c5))
)
. (2.64)

Using this equation (2.59) we obtain three first integrals

I1 =−kyβ (−2hy+ k(1+β )yβ y′2)
2(1+β )

,

I2 =− 1
4(1+β )

(
(hx− kyβ y′)(hx2(1+β )+2ky1+β −2kx(1+β )yβ y′)

)
,

I3 =− 1
8(1+β )2 (hx2(1+β )+2ky1+β −2kx(1+β )yβ y′)2, (2.65)

I4 =−hx+ kyβ y′, I5 =
hx2

2
− ky(1+β )

1+β
+ kxyβ y′.

Case 2.1: K(y) = kyβ , β =−1

For this case the equation (2.18) is equal to

3ha′(x)−2b′′(x)− ka′′′(x)lny = 0, (2.66)

and by using the (2.61) the infinitesimals functions become that

ξ =
k2

y2 (c1 + xc2 + x2c3),

η =
1
y

(
k(

3
4

hx2c2 +
1
2

hx3c3 + c4 + xc5)+ k2(c2 +2xc3)lny
)
, (2.67)

where ci, i = 1, ...,5 are constants and the infinitesimal generators are

X1 =
k2

y2
∂
∂x

, X2 =
k2x
y2

∂
∂x

+
k(3hx2 +2klny)

4y
∂
∂y

,

X3 =
k2x2

y2
∂
∂x

+
k(2hx3 +4hkxlny)

4y
∂
∂y

, (2.68)

X4 =
k
y

∂
∂y

, X5 =
kx
y

∂
∂y

,

and the gauge function is

B(x,y) =
1
8
(hx(4k(c2 + xc3)+hx2(2c2 + xc3)+8c4 +4xc5)

+4k(h(−2c1 + x(c2 + xc3)+2c5)lny+4k2c3lny2). (2.69)

And we have four first integrals

I1 =
k
2
(h+2hlny− ky′2

y2 ),
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I2 =
ky′−hxy

4y2

(
(hx2 +2klny)y−2kxy′

)
,

I3 =− 1
8y2

(
(hx2 +2klny)y−2kxy′

)2
, (2.70)

I4 =
ky′

y
−hx, I5 = kx

y′

y
− klny− hx2

2
.

2.2 Invariant Solutions

Some group invariant solutions of nonlinear fin equation (2.1) can be constructed

from the Noether symmetries and the first integrals. In this section we consider some

different special cases to present invariant solutions of (2.1).

Case 1. For the case K(y) = k(constant) and H(y) = h(constant) the first conservation

law is

I = hky− 1
2

k2(y′)2, (2.71)

then the expression DxI = 0 gives the following invariant solution of the fin equation

(2.1)

y(x) =
4c+2h2x2 −2

√
2h2kxc1 +h2k2c2

1
4hk

, (2.72)

where c, c1 are constants.

Case 2. As another case if we consider K(y) = k(constant) and H(y) = y, then the first

integral becomes

I =
1
4

e
−2x√

k

(
k

3
2 y2 +2k2yy′+ k

5
2 (y′)2

)
, (2.73)

and Dx = 0 yields the following solution

y(x) =−
√

c
e

x√
k

k
3
4
+ e−

x√
k c2, (2.74)

where c, c2 are constants. This solution (2.4) is the group invariant solution that

satisfies the original the fin equation (2.1).

Case 3. As the third case we consider K(y) = k(constant) and H(y) = y and find the

conserved form as below

I =
1
2

e
−2x√

k

(
e

2x√
k ky2 − e

2x√
k k2(y′)2

)
, (2.75)
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and (2.5) gives the following invariant solution

y(x) =
e−

x+kc3√
k (e2

√
kc3 +8ce

2x√
k )

4k
. (2.76)

Case 4. The choice of K(y) = kExp(αy) and H(y) = h(constant) yields the

conservation law

I =
eαyhk

α
+

1
2

e2αyk2α2(y′)2, (2.77)

and by integration of (2.8) we find the group invariant solution in the following form

y(x) =
1
α

ln(
cα
hk

+
1
2k

hx2α +
hxα

3
2

√
2

c4 +
1
4

hkα2c2
4), (2.78)

where c4 is a constant and which satisfies the fin equation (2.1).
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Table 2.1 : The table of Noether symmetries of fin equation

Thermal Heat
coefficient Infinitesimal and first integrals

k(constant) H(y) ξ = k2c1, η = 0, I = k
∫

H(y)dy− 1
2k2y′2

k(constant) h ξ = k2(c1 + xc2 + x2c3)

η = 1
2 k2y(c2 +2xc3)+ k

(3
4 hx2c2 +

1
2 hx3c3 + c4 + xc5

)
I1 = hky− 1

2k2y′2

I2 =
1
8(−2h2x3 −4hkxy+2k(3hx2 +2ky)y′−4k2xy′2

I3 =
1
8(−h2x4 −4hkx2y−4k2y2 +2k(2hx3 +4kxy)y′

I4 =−hx+ ky′, I5 =−1
2hx2 − ky+ kxy′

k(constant) 1
my+n ξ = k2c1, η = 0, I = k log(k(n+my))

m − 1
2k2y′2

k(constant) ey ξ = k2c1, η = 0, I = eyk− 1
2k2y′2

k(constant) y ξ = k2(1
2 e

−2x√
k
√

k(e
4x√

k c1 − c2)+ c3)

η = 1
2 k2y(2e

2x√
k c1 − (e

−2x√
k (e

4x√
k c1 − c2))+ k(e

x√
k c4 + e

−x√
k+c5 )

I1 =
1
4e

2x√
k

(
− k

3
2 y2 +2k2yy′− k

5
2 (y′)2

)
I2 =

1
4e

−2x√
k

(
k

3
2 y2 +2k2yy′+ k

5
2 (y′)2

)
I3 =

1
2

(
ky2 − k2(y′)2

)
, I4 = e

x√
k (ky′−

√
ky)

I5 = e
−x√

k (
√

ky+ ky′)

k(constant) yn ξ = e2yαk2c1, η = 0, I = 2ky1+n−k2(1+n)(y′)2

2(1+n)

kExp(αy) H(y) ξ = e2yαk2c1, η = 0
I = k(2e2αy∫ e−αyH(y))dy
−2α

∫
e2αy(

∫
e−αyH(y)dy)dy− 1

2e2αyky′2

kExp(αy) h(sabit) ξ = e2yαk2(c1 + xc2 + x2c3)

η = e2yα k2(c2+2xc3)
2α + eyαk(3

4 hx2c2 +
1
2 hx3c3 + c4 + xc5)

I1 =
eαyhk

α − 1
2e2αyk2α2(y′)2

I2 =−2eyhkxα+h2x3α2−eαykα(2eαyk+3hx2α)y′+2e2αyk2xα2(y′)2

4α2

I3 =− 1
8α2 (4e2αyk2 +4eαyhkx2α +h2x4α2

−2eαykα(4eαykx+2hx3α)(y′)+4e2αyk2x2α2(y′)2

I4 = eαykα2y′−hx, I5 = eαykxy′− 1
2hx2 − eαyk

α
kExp(αy) h

(βy+γ)2 ξ = e2yαk2c1, η = 0

I = 1
2β 2(γ+βy)e

− αγ
β
(
−2(e

αγ
β +αyhkβ

−hkαExpIntegralEi(α (γ+yβ
β ))(γ +βy)

)
)
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3. ANALYSIS OF LIENARD II-TYPE OSCILLATOR EQUATION BY
SYMMETRY TRANSFORMATION METHODS 1

In this chapter, we discuss the nonlinear Lienard II-type harmonic nonlinear oscillator

equation and the corresponding linearization methods. Furthermore, the first integral,

the λ -symmetry, the integrating factor and transformation pair are presented. We apply

modified Prelle-Singer method to the Lienard II-type harmonic nonlinear oscillator

equation to obtain Lie symmetries, the first integrals, λ -symmetries, the integrating

factors and the Lagrangian-Hamiltonian functions.

3.1 The First Integral, λ -symmetry and the Integrating Factor of Lienard II-type

Harmonic Nonlinear Oscillator Equation

We consider the following nonlinear Lienard II-type harmonic nonlinear oscillator

equation, which possesses exact periodic solution, exhibiting the characteristic

amplitude-dependent frequency of nonlinear oscillator in spite of the sinusoidal nature

of the solution of equation [29]

ẍ(t)− 2ẋ2(t)
3x(t)

+
ω2x(t)

3
= 0, (3.1)

where x is the position coordinate, which is a function of time t and ω is the strength

of the forcing, in which these parameters indicate nonlinearity. The Lienard II-type

harmonic nonlinear oscillator equation has a natural generalization in three dimensions

and these systems can be also quantized exhibiting many interesting features and can

be interpreted as an oscillator constrained to move on a three-sphere. In this section,

we investigate the first integral of the form A(t,x)ẋ+B(t,x) of equation (3.1).

Proposition 3.1 The equation of the form

ẍ+ f (x)ẋ2 +g(x) = 0, (3.2)

1This chapter is based on the paper Orhan Ö. and Özer T., Analysis of Lienard II-type oscillator
equation by symmetry transformation methods. Advance in Difference Equations, 2016, 2016:259,
doi:10.1186/s13662-016-0966-4.
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where f (x) and g(x) are arbitrary functions of x and over dots denote differentiation

with respect to t, is called quadratic Lienard-type equation. Quadratic Lienard type

equations are linearizable if and only if these equations must satisfy the following

condition

g′(x)+ f (x)g(x) = γ, (3.3)

where γ is an arbitrary constant. This condition is called the isochronous condition.

A dynamical system is called isochronous if it features in its phase space an open,

fully-dimensional region where all its solutions are periodic in all its degrees of

freedom with the same, fixed, period. In order to the Lienard II-type harmonic

nonlinear oscillator equation belongs to this class, it must satisfy isochronous

condition to be linearized. Thus if we apply (3.3) to the equation (3.1), we see that

Lienard II-type harmonic nonlinear oscillator equation satisfy isochronous condition.

Proof: Firstly, we compute S1 function for the nonlinear Lienard II-type harmonic

nonlinear oscillator equation to classify equation. The Lienard II-type harmonic

nonlinear oscillator equation is form of (1.43) and we know the coefficients of (3.1) by

like that

a2(t,x) =−2ẋ2(t)
3x(t)

, a1(t,x) = 0, a0(t,x) =
ω2x(t)

3
. (3.4)

Using these coefficients, we obtain S1 = 0, which is given by (1.47). Thus, we know

from Theorem 1 that S2 must be zero if S1 = 0. The function S2 is compute for the

Lienard II-type harmonic nonlinear oscillator equation and the function S2 is found

zero.

3.1.1 The first integral of the form A(t,x)ẋ+B(t,x) and the invariant solutions

It can be shown that the Lienard II-type harmonic nonlinear oscillator equation (3.1)

has the first integral of the form A(t,x)ẋ+B(t,x) by determining functions A and B

using a procedure given above. Then, the equation can be integrated by using this first

integral and the exact solution of the equation can be obtained.

For this purpose, let P = P(t,x) be a function such that

Pt = 0, Px =
−2
3x

. (3.5)

Using (1.50) we obtain function P = P(x) like this

P(x) =
−2logx

3
. (3.6)
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If we compute f (t) using the formula (1.49) we obtain

f (t) =
ω2

9
. (3.7)

Let us g = g(t) is a nonzero solution of the equation (1.51) then if we substitute (3.7)

in equation (1.51), we obtain the following equation

g′′(t)+
ω2

9
g(t) = 0. (3.8)

The solution of this differential equation yields

g(t) = c1cos(
ωt
3
)+ c2sin(

ωt
3
). (3.9)

If we substitute the functions P(x) and g(t) into (1.58) we obtain the following

equations

Qt =
1
3

x
1
3 ω2(c1cos(

ωt
3
)+ c2sin(

ωt
3
)), (3.10)

Qx =
−1

3ω(c1cos(ωt
3 )+ c2sin(ωt

3 ))

x
2
3

. (3.11)

From solutions of (3.10) and (3.11) we have

Q(t,x) = c3 −ωx
1
3 (c2cos(

ωt
3
)− c1sin(

ωt
3
)). (3.12)

Then, we substitute these solutions into (1.59) we obtain the functions A(t,x) and

B(t,x) as follows

A(t,x) =
(c1cos(ωt

3 )+ c2sin(ωt
3 ))

x
2
3

, (3.13)

B(t,x) = c3 −ωx
1
3 (c2cos(

ωt
3
)− c1sin(

ωt
3
)). (3.14)

Thus, the first integral of the Lieanard II-type nonlinear harmonic oscillator equation

(3.1) is written as

I = c3 −ωx
1
3
(
c2cos(

ωt
3
)− c1sin(

ωt
3
)
)
+

(
c1cos(ωt

3 )+ c2sin(ωt
3 )

)
ẋ

x
2
3

, (3.15)

and from Theorem 3, the integrating factor is

µ =
(c1cos(ωt

3 )+ c2sin(ωt
3 ))

x
2
3

. (3.16)

Group invariant solutions of this nonlinear equation can be constructed from the first

integral, that is, from (4.2) the invariant solution of the equation (3.1) is determined

x(t) =
ωc2

1c5cos(ωt
3 )+(c4 − c3 +ωc1c2c5sin(ωt

3 ))3

ω3c3
1

, (3.17)
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Figure 3.1 : Phase portrait of the equation (3.17) for different values of ω .

where c1, c2, c3, c4, c5 are constants.

The phase plane method refers to graphically determining the existence of limit cycles

in the solutions of the oscillator equations. The solutions to the nonlinear differential

equation are a family of functions. Graphically, this can be plotted in the phase plane

like a two-dimensional vector field. Vectors representing the derivatives of the points

with respect to a parameter time t at representative points are drawn. With enough

of these arrows in place the system behavior over the regions of plane in analysis can

be visualized and limit cycles can be identified. Then a phase portrait is a geometric

representation of the trajectories of a dynamical system in the phase plane. Each set of

initial conditions is represented by a different curve, or point.

The phase portraits are an invaluable tool in studying dynamical systems. They consist

of a plot of typical trajectories in the state space. This reveals information such as

whether an attractor, a repeller or limit cycle is present for the chosen parameter value.

The concept of topological equivalence is important in classifying the behavior of

systems by specifying when two different phase portraits represent the same qualitative

dynamic behavior. A phase portrait graph of a dynamical system depicts the system’s

trajectories.

Remark 1: We see in the Figure 3.1, the solution of the oscillator equation constitute

limit cycle in the phase plane. The limit cycle begins as circle and, with varying ω ,

become increasingly sharp.
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Figure 3.2 : Phase portrait of the equation of (3.17) for values x(m), ẋ(m/sec) and
ẍ(m/sec2).

Remark 2: The blue line shows the position x over time, and the red line shows the

rate of change x, in other words the velocity ẋ, over time and the purple line shows the

rate of change of the velocity, that is acceleration, over time in Figure 3.2. These are

the three states of the system, simulated over time. The way to interpret this simulation

is, if we start the system at x = 0, ẋ = 0 and ẍ = 0, and simulate for 20 seconds, this is

how the system would behave.

Furthermore, one can determine the corresponding Hamiltonian form related with the

first integral (4.52). First, the canonical conjugate momentum is

p =
log(ẋ)(c1 cos( tω

3 )+ c2 sin( tω
3 ))

x
2
3

(3.18)

The Hamiltonian function that corresponding to canonical conjugate momentum

H = c3 −ω(c2 cos(
tω
3
)− c1 sin(

tω
3
))x

1
3 +

c1 cos( tω
3 )+ c2 sin( tω

3 ))ẋ

x
2
3

(3.19)

Then the corresponding Lagrangian is

L =
ω(c2 cos( tω

3 )− c1 sin( tω
3 ))x+(log(ẋ)−1)(c1 cos( tω

3 )+ c2 sin( tω
3 ))ẋ− c3x

2
3

x
2
3

.

(3.20)
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Now, one can see the graph of the solution. The graph of a dynamical system depicts

stable steady states and unstable steady states in a state space. The axes are of state

variables. In this case we deal with the rate of change (velocity) ẋ and the rate of

change of the velocity (i.e the acceleration) denoted ẍ as states of the equation.

-1 1 2 3 4 5
x

-7

-6

-5

-4

-3

-2

-1

p

Figure 3.3 : The graph of the conjugate momentum p is given (3.18) depending on
position x.

The graph of the (3.17) corresponding to the conjugate momentum (3.18) for four

different values ω = 0.1, ω = 0.3, ω = 0.5 and ω = 0.8 with ω is shown with four

different colors in Figure 3.3
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Figure 3.4 : The graph of the conjugate momentum p over t.
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Remark 3: The trajectories are open curves representing unbounded motions in Figure

3.4.

Now, we can obtain the following contour plot graph for conjugate momentum. Firstly,

we find the argument t in terms of x and ẋ. Using this relation we can rewrite canonical

conjugate momentum p in terms of x and ẋ and we obtain this diagram for different

values of ω .

A contour plot is a graphical technique for representing a 3-dimensional surface by

plotting constant z slices, called contours, on a 2-dimensional format. That is, given

a value for z, lines are drawn for connecting the (x,y) coordinates where that z value

occurs. The contour plot is an alternative to a 3-D surface plot. The independent

variables are usually restricted to a regular grid. An additional variable may be required

to specify the z values for drawing the iso-lines. If the function do not form a regular

grid, you typically need to perform a 2-D interpolation to form a regular grid. The

contour plot is used to answer the question "How does z change as a function of x and

y?"

3.0 3.5 4.0 4.5 5.0

0.20

0.21

0.22

0.23

0.24

0.25

-1

1

Figure 3.5 : The contour plot for conjugate momentum p.

3.2 The λ -symmetry and the Nonlocal Transformation Pair of the Equation

We can characterize the second-order ordinary differential equation that can be

linearized by means of nonlocal transformations. This characterization is given in

terms of the coefficients of the equation and determines the second-order ordinary
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differential equations that admit λ -symmetries. There is a systematic method to find

λ -symmetries. These λ -symmetries can be used to reduce order of equation. Second

order ordinary differential equation can be integrated by a unified procedure based on

λ -symmetries. The equation of the form (1.43) admit v= ∂x as λ -symmetries for some

function λ of the form

λ (t, ẋ, ẍ) = α(t,x)ẋ+β (t,x). (3.21)

Proposition 3.2 We consider an equation (3.1) and S1, S2 are the functions defined by

(1.47), (1.48). The condition S1 = S2 = 0 is satisfied if and only if ∂x is a λ -symmetry

of (3.1) for λ = 1
3ω tan(1

3(−ωt +9ωc1))− 2ẋ
3x .

Proof: To obtain the λ -symmetry of the equation, firstly we substitute the function

f (t) (3.7) into (1.62) and the following differential equation is found

h′(t)+h2(t)+
ω2

9
= 0. (3.22)

From the solution of this differential equation we have

h(t) =
1
3

ω tan(
1
3
(−ωt +9ωc1)). (3.23)

We substitute the function h(t) in (1.63), the function β is found as

β (t,x) =
1
3

ω tan(
1
3
(−ωt +9ωc1)). (3.24)

And thus we find the λ -symmetry of the form (1.64)

λ =
1
3

ω tan(
1
3
(−ωt +9ωc1))−

2ẋ
3x

. (3.25)

Proposition 3.3 The equation (3.1) has a transformation pair F and G then the

equation can be linearized. Then the first integral is obtained from this transformation

pair.

Proof: For given equation (3.1), we know S1 = 0 and thus S2 = 0. In this situation, we

first obtain the transformation pair F and G. For this purpose, we consider an algorithm

to determine nonlocal transformation pair of oscillator equation which is linearizable

under the nonlocal transformation. If φ(t) is the solution of equation
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φt +φ2 +
ω2

9
= 0, (3.26)

And then f (t) is computed in (3.7). Solving (4.9) we obtain φ(t) function like this

φ =
1
3

ω tan(
1
3
(−ωt +9ω)). (3.27)

Let C(t,x) be a solution of the following equations

Ct =
ω2x

3
−C

1
3

ω tan(
1
3
(9ω −ωt)), (3.28)

Cx =−1
3

ω tan(
1
3
(9ω −ωt))+

2C
3x

, (3.29)

Solving these equations we can obtain

C(t,x) = xω tan(
1
3
(ωt −9ω)). (3.30)

If F(t,x) is a solution of the equation

Ft =CFx, (3.31)

And the following partial differential equation is obtained if we substitute the function

C(t,x) in (4.15)

Ft −Fxxω tan(
1
3
(ωt −9ω)) = 0, (3.32)

If we solve this partial differential equation, the function F(t,x) is found

F(t,x) = ψ(xsec(
1
3
(ωt −9ω))3). (3.33)

And if we substitute these functions, G is given

G = x
2
3 sec

1
3
(ωt −9ω))4ψ ′(xsec(

1
3
(ωt −9ω))3), (3.34)

And thus S-transformation pair F and G are found

F = ψ(xsec(
1
3
(ωt −9ω))3), G = x

2
3 sec

1
3
(ωt −9ω))4ψ ′(xsec(

1
3
(ωt −9ω))3).

(3.35)

And one can integrate the equation using this nonlocal transformation.

Now, we can derive the first integral from transformation pair. Firstly we find the

functions A(t,x) and B(t,x) using these equations

A(t,x) =
Fx

G
, B(t,x) =

Ft

G
. (3.36)
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And A(t,x) and B(t,x) are obtained like this

A(t,x) =
cos(3ω − tω

3 )

x
2
3

, B(t,x) = x
1
3 ω cos(3ω − tω

3
) tan(

1
3
(ωt −9ω)). (3.37)

And the first integral is found using transformation pair,

I = x
1
3 ω cos(3ω − tω

3
) tan(

1
3
(ωt −9ω))+

cos(3ω − tω
3 )

x
2
3

ẋ. (3.38)

The solution of equation corresponding to this first integral is found

x(t) =
1

ω3 (c
3
1ω3 cos(

1
3
(t −9)ω)3 +3c2

1c2ω2 cos(
1
3
(t −9)ω)2 sin(

1
3
(t −9)ω))+

+3c1c2
2ω cos(

1
3
(t −9)ω)sin(

1
3
(t −9)ω)2 + c3

2 sin(
1
3
(t −9)ω)3). (3.39)

And the conjugate momentum is corresponding to this solution is given

p =
cos(1

3(t −9)ω) log(ẋ)

x
2
3

. (3.40)

The Lagrangian is obtained

L =
−ω sin(1

3(t −9)ω)x+ cos(1
3(t −9)ω)(log(ẋ)−1)ẋ

x
2
3

. (3.41)

Finally the Hamiltonian function corresponding to conjugate momentum p is

H =
ω sin(1

3(t −9)ω)x+ cos(1
3(t −9)ω)ẋ

x
2
3

. (3.42)

Hence, one can obtain the graphs of these solutions by Figure 3.6 and Figure 3.7.

Remark 4: The solution (3.39) of the oscillator equation constitute limit cycle. The

limit cycle begins as circle and, is changing for different choices of ω .

3.3 The Extended Prelle-Singer Method and λ -symmetry Relation

In this section, we consider other types of the first integrals and the exact solutions

by using the Prelle-Singer method procedure and its relation with λ -symmetry. This

method provides not only the first integrals but also integrating factors. Moreover,

one can define the Hamiltonian and Lagrangian forms of the differential equations by

using the extended Prelle-Singer method. In this section, we consider the first integrals

and exact solutions of the Lienard II-type harmonic nonlinear oscillator equation by

the approach related with the Prelle-Singer, λ -symmetry and Lie point symmetry as a

different concept from the mathematical point of view.
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Figure 3.6 : The graph of the position is given in (3.39) over time t for different
values of ω .
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Figure 3.7 : The graphs of the position x is given (3.39), the velocity ẋ and the
acceleration ẍ over time t for different values of ω .
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3.3.1 The time-independent first integrals

For the Lienard II-type oscillator equation (3.1) one can write

ϕ =
2ẋ2(t)
3x(t)

− ω2x(t)
3

(3.43)

If this equation has a first integral I(t,x, ẋ) = C, with a constant C, then the total

differential for the first integral can be written

dI = Itdt + Ixdx+ Iẋdẋ = 0. (3.44)

Substituting equation (3.44) in the formula ϕdt − dẋ = 0 and adding a null term

S(t,x, ẋ)ẋdt −S(t,x, ẋ)dx, we obtain the following relation

(ϕ +Sẋ)dt −Sdx−dẋ = 0. (3.45)

Multiplying (3.44) by the factor R(t,x, ẋ) is called the integrating factor, hence we

obtain

dI = R(ϕ +Sẋ)dt −RSdx−Rdẋ = 0. (3.46)

It is clear that equations (3.44) and (3.46) yield the following relations

It = R(ϕ +Sẋ), Ix =−RS, Iẋ =−R. (3.47)

Then using the compatibility conditions, namely Itx = Ixt , Itẋ = Iẋt , Ixẋ = Iẋx, (3.47)

provide us the following system of coupled nonlinear differential equations in terms of

S, R and ϕ

St + ẋSx +ϕSẋ =−ϕx +ϕẋS+S2, (3.48)

Rt + ẋRx +ϕRẋ =−(ϕẋ +S)R, (3.49)

Rx −SRẋ −RSẋ = 0, (3.50)

where the last equation (3.50) is called compatibility equation. In addition one can

determine the first integral I by using R and S functions with the following relations

I = r1 − r2 −
∫
[R+

d
dẋ

(r1 − r2)]dẋ, (3.51)
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where

r1 =
∫

R(ϕ + ẋs)dt, r2 =
∫
(RS+

d
dx

r1)dx. (3.52)

First of all, we consider the time-independent first integral case, that is It = 0. One can

easily find S from the first equation in (3.47) like this

S =
−ϕ
ẋ

=
xω2

3ẋ
− 2ẋ

3x
, (3.53)

for ϕ (3.43). Substituting this form of S into equation (3.49) we get

R(
2ẋ2 + x2ω2

3xẋ
)+Rẋ(

2ẋ2

3x
− xω2

3
)+Rxẋ+Rt = 0. (3.54)

The equation (3.54) is a first order linear partial differential equation. To solve this

equation we assume R of the form

R =
ẋ

(A(x)+B(x)ẋ+C(x)ẋ2)r , (3.55)

where A(x), B(x) and C(x) are functions of x and r is a constant. If we substitute (3.55)

into the equation (3.54), then we obtain a set of equations in terms of ẋ and its powers.

From the solutions of these equations we have

A(x) = c1x
2
3+

4
3r ω2 + c3x

4
3r , (3.56)

B(x) = c2x−
2(r−2)

3r , (3.57)

C(x) = c1x−
4(r−1)

3r , (3.58)

where c1, c2 and c3 are arbitrary constants. If we substitute these functions into the

equation (3.55) then we find

R = ẋ
(

c3x
4
3r + c1x−

4(r−1)
3r ẋ2 + c1x

2
3+

4
3r ω2

)−r
, (3.59)

and if we substitute the functions R (3.59) and S (3.53) into the equations (3.48)-(3.50),

it is possible to check that these equations are satisfied. Thus, one can determine the

first integral of the Lienard II-type equation from the relation (3.51)

I =
x

4(−1+r)
3r

(
x

4
3 (−1+ 1

r )(c3x
4
3 + c1(ẋ2 + x2ω2))

)1−r

2c1(r−1)
, (3.60)
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and for example r =−2, invariant solution of the Lienard II-type equation is

x(t) = e−i(t+c4
√

c1)ω
(

e
2
3 i(t+c4

√
c1)ω − c3c1ω2

)3
. (3.61)

Furthermore, one can determine the corresponding conjugate momentum related with

the first integral (3.60),

p =−
c2

1ẋ5

5 + 2
3c1x

4
3 ẋ3(c3 + c1x

2
3 ω2)+ x

8
3 ẋ(c3 + c1x

2
3 ω2)2

x4 (3.62)

Then the corresponding Lagrangian is,

L=−
ẋ
(

c2
1ẋ5

5 + 2
3c1x

4
3 ẋ3(c3 + c1x

2
3 ω2)+ x

8
3 ẋ(c3 + c1x

2
3 ω2)2

)
x4 +

(c3x
4
3 + c1(ẋ2 + x2ω2))3

6c1x4

(3.63)

And the corresponding Hamiltonian form related with the first integral (3.60),

H =−(c3x
4
3 + c1(ẋ2 + x2ω2))3

6c1x4 . (3.64)

Thus, we can examine the relation between Hamiltonian function and the position x

with the following contour plot graph.
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Figure 3.8 : The contour plot of Hamiltonian function in terms of x and ẋ.
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3.3.2 The solution of the nonlinear oscillator harmonic equation using the

λ -symmetries based on linearization method

In this section, we examine an another method to investigate symmetries of the

nonlinear equations. We construct the first integral directly from λ -symmetry. The

procedure essentially involves the following four steps.

1. Find a first integral w(t,x, ẋ) of υ [λ ,(1)], that is particular solution of the equation

wx +λwẋ = 0. (3.65)

where subscripts denote partial derivative with respect to that variable and υ [λ ,(1)] is

the first order λ -prolongation of the vector field υ .

2. Evaluate A(w) and express A(w) in terms of (t,w) as A(w)=F(t,w) and the operator

A is defined the following form

A = ∂t + ẋ∂x +ϕ(t,x, ẋ)∂ẋ. (3.66)

3. Find a first integral G of ∂t +F(t,w)∂w.

4. Evaluate I(t,x, ẋ) = G(t,w(t,x, ẋ)). Then I(t,x, ẋ) is a first integral and µ(t,x, ẋ) = Iẋ

is an integrating factor of the given second order equation.

Now we introduce a first integral and an exact solution of the nonlinear oscillator

harmonic equation by using λ -symmetry (4.8) which is found by linearization method.

We first consider the λ -symmetry (4.8) of the nonlinear oscillator harmonic equation

(3.1). The null S function can be written

S =−λ =
1
3

ω tan(
1
3
(−ωt +9ωc1))−

2ẋ
3x

. (3.67)

From (3.65) we have

w =
ẋ− xω tan(3ω − tω

3 )

x
2
3

. (3.68)

Hence one can evaluate A(ω) as the application of the operator A (3.66) to w (3.68)

A(w) = A = ∂t + ẋ∂x +(
σx

1+σx2 ẋ2 − ω2x
1+σx2 )∂ẋ, (3.69)

and derive A(ω) in terms of (t,ω) as A(ω) = F(t,ω), that is,

F(t,w) =−1
6

wω sec(
1
3
(t −9)ω)sin(6ω − 2tω

3
). (3.70)
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In the last step one can find a first integral G of ∂t +F(t,ω)∂ω from the first order

partial differential equation of the form

Gt +

(
−1

6
wω sec(

1
3
(t −9)ω)sin(6ω − 2tω

3
)

)
Gw = 0. (3.71)

which the solution is

G(t,w) = c1

(
wcos(

1
3
(t −9)ω)

)
, (3.72)

where c1 is an arbitrary constant. Finally, one can express G(t,w) in terms of (t,x, ẋ)

using (3.68) to find the first integral

I =
cos(1

3(t −9)ẋ− xω tan(3ω − tω
3 ))

x
2
3

. (3.73)

The integrating factor can be deduced from the first integral by differentiating it with

respect to ẋ. Thus we find the integrating factor of the form

µ =

(
cos(1

3(t −9)ω)
)

x
2
3

. (3.74)

And the function R can be written like this

R =−µ =−
(
cos(1

3(t −9)ω)
)

x
2
3

. (3.75)

It is easy to check again that the functions S and R satisfy equations (3.48)-(3.50).

Thus, the different exact solution of the Lienard II- type nonlinear harmonic oscillator

equation is

x(t) =
(c1ω cos(1

3(t −9)ω)+ csin(1
3(t −9)ω))3

ω3 , (3.76)

where c is an arbitrary constant. Now, we see the the graph of the corresponding to the

equation (3.76) by Figure 3.9. Then, Figure 3.10 shows the rate of x(m) is given by

equation (3.76), ẋ(m/sec) and ẍ(m/sec2) depend on time t.

Furthermore, it is possible to show that one can find other forms of the first integrals

and the integrating factors rather then the forms given by (3.73) and (3.74) for the same

null S function. With this aim, we consider again (3.65) and substitute this form of S

into the equation (3.49) to find

(Rt + ẋRx)3x+R(2ẋ+2ω tan(
1
3
(−ωt +9ωc1)))+Rẋ(2ẋ2 − x2ω2) = 0. (3.77)
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Figure 3.9 : The graph of the position is given in (3.76) versus time t.
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Figure 3.10 : The graphs of the position is given by equation (3.76), the velocity and
the acceleration versus time t.
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The equation (3.77) is a first order linear partial differential equation in terms of R =

R(t,x, ẋ) and it is known that any particular solution is sufficient to construct an integral

motion. For this purpose, to seek a particular solution for R one can make a suitable

ansatz instead of looking for the general solution by assuming R to be of the form

R =
3x

(A(t,x)+B(t,x)ẋ)r , (3.78)

where A and B are functions of their arguments and r is a constant, which are all to be

determined. The denominator of the function S should be numerator of the function

R. Since the denominator of S is 3x, we fix a numerator of R as 3x. Then substituting

(3.78) into (3.77) yields

−3(A(t,x)(−5ẋ+xω tan(3ω− tω
3
))+B(t,x)((−5+2r)ẋ2−rx2ω2+xẋω tan(3ω− tω

3
))+

3rx(At(t,x)+ ẋ(Bt(t,x)+Ax(t,x)+ ẋBx(t,x)))) = 0. (3.79)

From the solutions of A(x, t) and B(x, t) the integrating factor R using (3.51), for

example, r=-1, is written

R =−µ = 3cos(
1
3
(t −9)ω)(c1x

2
3 + c2ẋcos(

1
3
(t −9)ω)− c2xω sin(3ω − tω

3
)),

(3.80)

and the corresponding time-dependent first integral is

I =− 3

4x
4
3
(c2ẋ2 + c2x2ω2 + c2(ẋ2 − x2)cos(

2
3
(t −9)ω)−4c1x

5
3 ω sin(3ω − tω

3
)+

4cos(
1
3
(t −9)ω)(c1x

2
3 ẋ− c2xẋω sin(3ω − tω

3
)), (3.81)

where c1 and c2 are arbitrary constants. But it is clear that it is not easy to find

an explicit solution for (3.81). Then, one can obtain the Hamiltonian function

corresponding to the first integral (3.81), the conjugate momentum is given

p =−
3cos(1

3(t −9)ω)(x
2
3 log(ẋ))(c1 − c2x

1
3 ω sin(3ω − tω

3 )+ c2 cos(1
3(t −9)ω)ẋ

x
4
3

.

(3.82)

The corresponding Lagrangian is

L =
1

2x
4
3

(
3c2x2ω2 sin(

1
3
(t −9)ω)2 −6c1x

5
3 ω sin(3ω − tω

3
)+3x

2
3 (log(ẋ)−1)
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(−2c1 cos(
1
3
(t −9)ω)+ c2x

1
3 ω sin(6ω − 2tω

3
)ẋ−3c2 cos(

1
3
(t −9)ω)2ẋ2

)
, (3.83)

and the Hamiltonian is

H =− 3

2x
4
3

(
c2x2ω2 sin(

1
3
(t −9)ω)2 −2c1x

5
3 ω sin(3ω − tω

3
)

+ẋ(2c1x
2
3 cos(

1
3
(t −9)ω)− c2xω sin(6ω − 2tω

3
)+ c2 cos(

1
3
(t −9)ω)2ẋ2)

)
. (3.84)
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4. LINEARIZATION PROPERTIES, FIRST INTEGRALS, NONLOCAL
TRANSFORMATION FOR HEAT TRANSFER EQUATION 1

In this section, we examine fin equation belongs to this class of the equation

ẍ+a2(t,x)ẋ2 +a1(t,x)ẋ+a0(t,x) = 0. (4.1)

Fin is used in a large number of applications to increase the heat transfer from surfaces.

Interest has been instilled by frequent encounters of fin problems in many engineering

applications to enhance heat transfer. Typically, the fin material has a high thermal

conductivity. The fin is exposed to a flowing fluid, which cools or heats it, with the high

thermal conductivity allowing increased heat being conducted from the wall through

the fin. The design of temperature reduction fin is encountered in many situations and

we thus examine heat transfer in a fin as a way of defining some criteria for design.

To obtain first integral, integrating factor and invariant solution, it is possible to

consider some feasible algorithm and one can apply this algorithm to nonlinear fin

equation that is the form (4.1). The another method for application to nonlinear

differential equation is transformation method. Considering this transformation

procedure, a nonlinear equation can be converted to a linear second order ordinary

differential equation whose solutions are known. It is well-known that Lie [10] proves

the general algorithm that all second order nonlinear differential equation can be

converted to linear differential equations by the method of change of variables, which

is called Lie linearization test. In fact, the mathematical procedure of linearizing

transformation is quite diffucult work and this can be applied to only second order

ordinary differential equations that have a eight-dimensional Lie algebra. Therefore,

it is necessary to consider other type of transformation techniques of nonlinear

differential equations for linearization of larger classes of equations. In recent years,

1This chapter is based on the paper Orhan Ö. and Özer T., Linerization properties, first integrals,
nonlocal transformation for heat transfer equation. International Journal of Modern Physics B, 2016,
30, 1640024, doi:10.1142/S0217979216400245
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some studies on the linearization through transformation involving nonlocal terms has

been carried out [30,31]. Then we apply Sundman transformation to fin equation.

4.1 The First Integral of the Form A(t,x)ẋ+B(t,x) and Integrating Factor of Fin

Equation

We now consider the nonlinear fin equation,

ẍ+
K′(x)
K(x)

ẋ2 − H(x)
K(x)

= 0, (4.2)

where K(x) and H(x) are thermal conductivity and heat transfer coefficient,

respectively, which are considered as functions of temperature, and x = x(t) is the

temperature function and t is dimensional spatial variable. The Noether symmetries

of Eq. (4.2) is investigated and obtained first integrals corresponding to Noether

symmetries in [2].

Proposition 4.1 If S1 = S2 = 0, then there is the following relation between K(x) and

H(x)

K(x) =−H ′(x)
σ

, (4.3)

where σ is a constant.

Proof: From the Eq. (4.2), we have

a2(t,x) =
K′(x)
K(x)

, a1(t,x) = 0, a0(t,x) =−H(x)
K(x)

. (4.4)

Using these coefficients, we obtain S1 = 0, which is given by (1.47). Thus, we know

from Theorem 1 that S2 must be zero if S1 = 0. Now we obtain the relation the

functions K(x) and H(x) using this knowledge. The function S2 is

S2 =

(
−H(x)

K(x)
K′(x)
K(x)

−
(

H ′(x)K(x)−H(x)K′(x)
K(x)2

))
x
. (4.5)

By simplifying (4.5) one can have

S2 =

(
−H ′(x)

K(x)

)
x
, (4.6)

Since S2 must be zero for S1 = 0, then we write

S2 =

(
−H ′(x)

K(x)

)
x
= 0. (4.7)
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The integration of (4.7) gives

S2 =

(
−H ′(x)

K(x)

)
= σ , (4.8)

thus we have the following relation

K(x) =−H ′(x)
σ

, (4.9)

where σ is a constant.

4.1.1 The first integrals of the form A(t,x)ẋ+B(t,x) and the invariant solutions

The fin equation has the first integrals of the form A(t,x)ẋ+B(t,x), we can calculate

the functions A and B using a following procedure for the equation. Then, the equation

can be integrated by these first integrals and solutions of the equation can be obtained

using these first integrals.

Proposition 4.2 The Eq. (4.2) has the first integral of the following form

I =
(c2 cos(

√
σt)− c1 sin(

√
σt))H(x)+ c3

√
σ√

σ
− (c1 cos(

√
σt)+ c2 sin(

√
σ t)H ′(x)ẋ

σ
,

(4.10)

where c1,c2,c3, σ are arbitrary constants.

Proof: Let P = P(t,x) be a function such that

Pt = 0, Px =
K′(x)
K(x)

. (4.11)

Using (4.11), we obtain function P = P(t,x) like this

P(x) = logK(x). (4.12)

We know K(x) = −H ′(x)
σ from (4.9) and substituting this relation into (4.5), we obtain

function P = P(t,x)

P(x) = log
(
−H ′(x)

σ

)
. (4.13)

Using the formula (1.49), we obtain

f (t) =−H ′(x)
K(x)

, (4.14)

and by using a relation K(x) = −H ′(x)
σ in (4.14) we have

f (t) = σ , (4.15)
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where σ is a constant. If we substitute (4.15) in Eq. (1.51), we obtain the following

equation

g′′(t)+σg(t) = 0. (4.16)

The solution of the equation (4.16) is

g(t) = c1 cos(
√

σt)+ c2 sin(
√

σt). (4.17)

If we substitute P(x) and g(t) functions into (1.58), then one can write the system of

equations

Qt = H(x)(c1 cos(
√

σt)+ c2 sin(
√

σt)), (4.18)

Qx =−(−
√

σc2 cos(
√

σ t)+
√

σc1 sin(
√

σt))H ′(x)
σ

, (4.19)

which gives the solution

Q(t,x) =
(c2 cos(

√
σ t)− c1 sin(

√
σt))H(x)+ c3σ√

σ
. (4.20)

As a result the functions A(t,x) and B(t,x)

A(t,x) =−(c1 cos(
√

σt)+ c2 sin(
√

σ t))H ′(x)
σ

, (4.21)

B(t,x) =
(c2 cos(

√
σt)− c1 sin(

√
σt))H(x)+ c3σ

σ
. (4.22)

are found.

Proposition 4.3 I = Aẋ+B is a first integral of (4.2). In this case, the function A is an

integrating factor, thus an integrating factor of (4.2) is obtained

µ =−(c1 cos(
√

σt)+ c2 sin(
√

σt))H ′(x)
σ

. (4.23)

Now, using the equations (4.10) and (4.23) one can classify first integrals and

integrating factor of the nonlinear fin equation (4.2) based on different forms of heat

transfer coefficient H(x).

Case 1: Firstly we take H(x) = x, we find the first integral of (4.2) for the function

H(x),

I =
(c2 cos(

√
σt)− c1 sin(

√
σt))x+ c3

√
σ√

σ
− (c1 cos(

√
σ t)+ c2 sin(

√
σt))ẋ

σ
. (4.24)
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Some group invariant solutions of a nonlinear fin equation can be constructed from the

first integrals. Now, we consider the first integral of special cases H(x) = x to present

the invariant solutions of (4.2).

For the case H(x) = x, the first conservation law is found (4.24) then the expression

DtI = 0 gives the following invariant solution of fin equation (4.2),

x(t) =
√

σ(−c5 + c3 sin(
√

σt))
c1

+ c4(c1 cos(
√

σt)+ c2 sin(
√

σt)), (4.25)

where c1, c2, c3, c4, c5 and σ are constants.

If we take H(x) = x, we find the integrating factor of (4.2)

µ =−c1 cos(
√

σt)+ c2 sin(
√

σt)
σ

. (4.26)

Case 2: We now take H(x) = ex and we find the first integral of (4.2) for H(x)

functions,

I =
ex(c2 cos(

√
σt)− c1 sin(

√
σt))+ c3

√
σ√

σ
− ex(c1 cos(

√
σt)+ c2 sin(

√
σt))ẋ

σ
.

(4.27)

Then the invariant solution of fin equation corresponding to first integral (4.27) is

x(t) = Log(
c2

1c4 cos(
√

σt)+(
√

σ(−c5 + c3)+ c1c2c4)sin(
√

σt)
c1

) (4.28)

and the integrating factor of (4.2) for H(x) = ex is,

µ =−(c1 cos(
√

σt)+ c2 sin(
√

σt))ex

σ
. (4.29)

Case 3: H(x) = 1
mx+n ; m,n are constants. For this case, the first integral is

I =
(c2 cos(

√
σt)− c1 sin(

√
σt))+ c3

√
σ(n+mx)√

σ(n+mx)
+

m(c1 cos(
√

σt)+ c2 sin(
√

σt)ẋ
σ(n+mx)2

(4.30)

and the invariant solution that corresponding to (4.30) is

x(t)=
c2

1c4 cos(
√

σt)+(
√

σ(−c5 + c3)+ c1c2c4)sin(
√

σ t)+ cos(
√

σt)− c1 sin(
√

σ t))
c1

(4.31)

where c1, c2, c3, c4, c5 and σ are constants and the integrating factor is

µ =−m(c1 cos(
√

σt)+ c2 sin(
√

σt))
σ(mx+n)2 . (4.32)
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Case 4: H(x) = h
(βx+γ)2 ; h, β and γ are arbitrary constants.

I =
h(c2 cos(

√
σt)− c1 sin(

√
σt))+ c3

√
σ(xβ + γ)2

√
σ(xβ + γ)2 +

2hβ (c1 cos(
√

σt)+ c2 sin(
√

σt)ẋ
σ(xβ + γ)3

(4.33)

and the invariant solution is

x(t) =−σc5βγ −σβγc3

σc5β 2 −σβ 2c3
− 1

c1 cos(
√

σt)+ c2 sin(
√

σt)c4 − σβ 2(c5−c3)sin(
√

σt)
hc1 cos(

√
σt)+c2 sin(

√
σt)

(4.34)

and the integrating factor is

µ =−2hβ (c1 cos(
√

σt)+ c2 sin(
√

σt))
σ(βx+ γ)3 . (4.35)

Case 5: H(x) is a general power law. In this case, we have H(x) = hxβ , β ̸=−1. The

choice of H(x) = hxβ yields

I =
hxβ (c2 cos(

√
σt)− c1 sin(

√
σ t))+ c3

√
σ√

σ
− hxβ−1β (c1 cos(

√
σt)+ c2 sin(

√
σt)ẋ

σ
(4.36)

and the integrating factor of (4.2) corresponding to this choose is given by

µ =−hx−1+β β (c1 cos(
√

σ t)+ c2 sin(
√

σt))
σ

. (4.37)

Case 6: H(x) is a general power law. In this case, we have H(x) = hxβ , β =−1. We

obtain the first integral

I =
hx−β (c2 cos(

√
σt)− c1 sin(

√
σt))+ c3

√
σ√

σ
+

hx−1−β β (c1 cos(
√

σt)+ c2 sin(
√

σt)ẋ
σ

(4.38)

and by integration of (4.38) we find the group invariant solution in the following form

x(t) =
(hc2

1c4 cos(
√

σt)+(
√

σ(−c5 + c3)+hc1c2c4)sin(
√

σt)
hc1

)−1
β
. (4.39)

The integrating factor is

µ =−hx−1−β β (c1 cos(
√

σ t)+ c2 sin(
√

σt))
σ

. (4.40)

where c1,c2,c3,c4, σ are arbitrary constants.

Now, one can see the graph of the solution using phase plane method in Figure 4.1 and

Figure 4.2.
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The phase plane method refers to graphically determining the existence of limit cycles

in the solutions of the equations. The solutions to the nonlinear differential equation

are a family of functions. Graphically, this can be plotted in the phase plane like a

two-dimensional vector field. Vectors representing the derivatives of the points with

respect to a parameter time t at representative points are drawn. With enough of

these arrows in place the system behavior over the regions of plane in analysis can

be visualized and limit cycles can be identified. A phase portrait graph of a system

depicts the system’s trajectories and stable steady states and unstable steady states in a

state space. The axes are of state variables. In this case we deal with the rate of heat

transfer ẋ and the rate of change of heat transfer denoted ẍ as states of the equation.
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x

Figure 4.1 : The graph of the equation (4.25) for case 1 by different values of σ .

Remark 1: Red curve is found for σ=1, blue curve is found for σ=1.1, green curve

is sketched for σ=1.2 and purple curve is denoted for σ=1.3. In the Figure 4.1 can be

seen that the solution of the equation constitutes limit cycle in the phase plane. The

limit cycle begins as circle and, with varying σ , becomes increasingly sharp.

Remark 2: The blue line shows the solution x over time, the red line shows the rate of

heat transfer that is ẋ and the purple line shows the rate of change of heat transfer over

time in Figure 4.2. These are the three states of the system, simulated over time.
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Figure 4.2 : The graph of the equation (4.25) of for values x, ẋ and ẍ of case 1.

4.2 Nonlocal Transformation Pair of Fin Equation

The second order nonlinear differential equation can be linearized by the nonlocal

transformation.

Proposition 4.4 The fin equation has the following transformation pair F and G and

then this transformation pair can linearize the fin equation.

Proof: For given equation (4.2), it is known that S1 = 0 and thus S2 = 0. In this

situation, we use the following procedure to obtain the transformation pair F and G.

If one substitutes f (t) = σ is into (1.70), then the following differential equation is

obtained,

ωt +ω2 +σ = 0, (4.41)

And from solution of (4.41), we find

ω(t) =
√

σ cot(t
√

σ). (4.42)

And the function C(t,x) must satisfy the following systems

Ct(t,x) =−
√

σ cot(t
√

σ)C(t,x)+
σH(x)
H ′(x)

, (4.43)
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Cx(t,x) =−
√

σ cot(t
√

σ)− C(t,x)H ′′(x)
H ′(x)

. (4.44)

From (4.43) we have

C(t,x) = csc(t
√

σ)−
√

σ cot(t
√

σ)H(x)
H ′(x)

. (4.45)

Since the Eq. (4.45) should satisfy the Eq. (4.44), the function H(x) must be the

following form

H(x) = c1 + c2x. (4.46)

By (1.73), F(t,x) is found

F(t,x) = φ
( 1

c2
√

σ
(−c2 cot(t

√
σ)+ c1

√
σ csc(t

√
σ))+ c2x

√
σ csc(t

√
σ)

)
. (4.47)

And G(t,x) would be determined by

G(t,x) =
1
c2

csc(t
√

σ)
2φ ′

(
− cot(t

√
σ)√

σ
+

(c1 + c2x)csc(t
√

σ)

c2

)
. (4.48)

The pair F and G linearizes Eq. (4.2) by means of the Sundman transformation.

Now we obtain the first integrals of the form Aẋ + B of Eq. (4.2) by using this

transformation pair.

The functions A and B are obtained by

A = c2 sin(t
√

σ), (4.49)

and

B = c2 − (c1 + c2x)
√

σ cos(t
√

σ), (4.50)

and the first integral can be obtained in the following form

I = c2 sin(t
√

σ)ẋ+ c2 − (c1 + c2x)
√

σ cos(t
√

σ). (4.51)

The corresponding invariant solution is

x(t) = c3 sin(t
√

σ)+
1
c2

(c2 cot(t
√

σ)√
σ

− c1 csc(t
√

σ)
)

sin(t
√

σ), (4.52)

where c1, c2, c3, σ are constants.
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Now, one can see the graph of the solution.
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Figure 4.3 : The position-time graph of (4.52) for different values of σ .
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5. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the first problem is to analyze Noether symmetry group classification

of nonlinear fin equation, which is second order nonlinear ordinary differential

equation. Here, we consider thermal conductivity and heat transfer coefficient as

variable functions of temperature, and the nonlinear fin equation is considered in

a one-dimensional model describing heat transfer in rectangular fins. From the

mathematical point of view, it can be said that this problem is highly nonlinear. Here,

we consider to apply partial Lagrangian approach for the classification in this problem.

For different heat transfer coefficient and thermal conductivity functions we obtain

Noether point symmetry algebras. Finally, we find the corresponding new first integrals

for each case, the results are presented in a table and for each case some invariant

solutions are obtained from the first integrals (conserved forms). This study can be

considered as one of the first studies on Noether symmetry classification of differential

equations in the literature. In addition, it is important to mention that λ -symmetry

method is another new approach to find first integrals for differential equations.

In this first problem, one dimensional heat transfer of nonlinear fin with temperature

dependent both thermal conductivity and heat transfer coefficient investigated with

some methods. In this study we analyze first integrals, integrating factor and

nonlocal transformation pair of fin equation, which is second order nonlinear ordinary

differential equation. Here, we consider thermal conductivity and heat transfer

coefficient as variable functions of temperature and the nonlinear fin equation is

considered in a one-dimensional model describing heat transfer in rectangular fins.

For different heat transfer coefficient and thermal conductivity functions we obtain

first integrals, integrating factor and nonlocal transformation pair. Finally, we find the

corresponding first integrals for each case.

The second problem is that the Lienard II-type nonlinear harmonic oscillator equation

has a natural generalization in three dimensions and these systems can be also

quantized exhibiting many interesting features and can be interpreted as an oscillator
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constrained to move on a three-sphere. As such the considered problem is highly

nonlinear. In this problem, we analyze the first integral of the form A(t,x)ẋ+B(t,x),

the λ -symmetries and the integrating factors of the Lienard II-type nonlinear harmonic

oscillator equation, which is second order nonlinear ordinary differential equation.

We have characterized the second order nonlinear ordinary differential equations and

this characterization is given by the coefficients of the equation and also determines

the first integral, the λ -symmetry and the integrating factor. Thus, the Lienard II-type

nonlinear harmonic oscillator equation is classified by using functions S1 and S2 and

the first integral of the form A(t,x)ẋ+B(t,x) is obtained by an algorithm. Moreover,

it is presented some properties and characterization of the equation that admits a

vector field as λ -symmetry. Linearization, the symmetries and the transformation

of equations play a crucial role. Furthermore, the nonlinear second order ordinary

differential equations can be linearized by Sundman transformation. Finally, we apply

Sundman transformation to Lienard II-type nonlinear harmonic oscillator equation.

Then, we have identified the time independent first integrals for the Lienard

II-type nonlinear harmonic oscillator equation using the modified Prelle-Singer

approach. Moreover, we have constructed the appropriate functions Lagrangian

and Hamiltonian from the time independent first integrals and transformed the

corresponding Hamiltonian forms to standart Hamiltonian forms. The important point

of the Prelle-Singer procedure lies in finding the explicit solutions satisfying all three

determining equations (3.48)-(3.50). In our study, we have taken specific ansatz forms

to determine the null forms S, and the integrating factor R. Finally, from our detailed

analysis we have shown these results with the phase portraits depending on the choice

of parameters and using these phase portraits we interpret geometric meanings of

the solutions. And using the Hamiltonian and the conjugate momentum function we

demonstrate relation between solution and Hamiltonian and conjugate momentum by

contour plot portrait.

The third problem is linearization methods for fin equation which is one dimensional

heat transfer of nonlinear fin with temperature dependent both thermal conductivity

and heat transfer coefficients. In this problem, we analyze first integrals, integrating

factor and nonlocal transformation pair of fin equation, which is second order nonlinear

ordinary differential equation. Here, we consider thermal conductivity and heat
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transfer coefficients as variable functions of temperature and the nonlinear fin equation

is considered in a one-dimensional model describing heat transfer in rectangular fins.

From the mathematical point of view, it can be said that this problem highly nonlinear.

For different heat transfer coefficient and thermal conductivity functions we obtain

first integrals, integrating factor and nonlocal transformation pair using linearization

metods. Finally, we find the corresponding first integrals for each case for this problem.
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