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SYMMETRY GROUP CLASSIFICATION OF SOME PROBLEMS IN
MATHEMATICAL PHYSICS

SUMMARY

In this thesis, some problems in physics and engineering sciences are examined by
symmetry methods. In the literature, there are a lot of methods to solve nonlinear
differential equations and these methods play an important role. One of these methods
is to use symmetry groups. We consider some symmetry group related methods to
solve problems in mathematical physics.

Firstly, we deal with the Noether symmetry classification of the nonlinear fin equation,
in which thermal conductivity and heat transfer coefficient are assumed to be functions
of the temperature. This classification includes Noether symmetries, first integrals
and some invariant solutions with respect to different choices of thermal conductivity
and heat transfer coefficient functions. In this thesis, Noether symmetries of the fin
equation are investigated using the partial Lagrangian approach.

Secondly, we consider Lienard II-type harmonic nonlinear oscillator equation as a
nonlinear dynamical system. Firstly, we examine the first integrals in the form
A(t,x)x+ B(t,x) and corresponding exact solutions, the integrating factors. In addition,
we analyze other types of the first integrals via A-symmetry approach. It is shown
that the equation can be linearized by means of nonlocal transformation, which is
called Sundman transformation. Using the modified Prelle-Singer approach, time
independent first integrals are derived for the Lienard II-type harmonic nonlinear
oscillator equation.

The modified Prelle-Singer procedure is used for a class of second order nonlinear
ordinary differential equations and several physically interesting nonlinear systems
are solved. Prelle and Singer have proposed an algorithmic procedure to find the
integrating factor for the system of first order ordinary differential equation. Once
the integrating factor for the equation is determined then it leads to a time independent
integral of motion for the first order ordinary differential equation. The Prelle-Singer
method guarantees that if the first order ordinary differential equation has a first integral
in terms of elementary functions then this first integral can be found. This method has
been generalized to incorporate the integrals with non-elementary functions. Recently,
this theory is generalized to obtain general solutions for second order and higher order
ordinary differential equations without any integration.

Moreover, it is possible to consider some feasible algorithm to obtain first integral,
integrating factor and invariant solution and one can apply this algorithm to nonlinear
equation. The another method for application to nonlinear differential equation is
the transformation method. Considering this transformation procedure, a nonlinear
equation can be converted to a linear differential equation whose solutions are known.
It is well-known that Lie proves the general algorithm that all second order nonlinear
differential equations can be converted to second order linear differential equations
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by the method of change of variables, which is called Lie linearization test. In fact,
the mathematical procedure of linearizing transformation is quite diffucult work and
this can be applied to only second order ordinary differential equations that have
a eight-dimensional Lie algebra. Therefore, it is necessary to consider other type
of transformation techniques of nonlinear differential equations for linearization of
larger classes of equations. One of nonlocal transformations is of the form X =
F(t,x), dT = G(t,x)dt, which is called the generalized Sundman transformation.
This transformation is also called S-transformation and the equations that can be
linearized by means of S-transformations are called S-linearizable. In the second
problem, A-symmetries via Lie symmetries, integrating factors, first integrals and
invariant solutions of Lienard II-type harmonic nonlinear oscillator equation are
obtained.

In third problem, we examine first integrals, transformation pair and invariant solutions
of fin equation by linearization methods. And we apply nonlocal transformation to
fin equation. The important relations A-symmetry with Lie point symmetry, Prelle
Singer method with A-symmetry and Lie symmetry are examined. The first integrals,
integrating factors, Sundman transformation pair and invariant solutions of fin equation
are found.
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MATEMATIKSEL FiZIKTEKI BAZI PROBLEMLERIN SIMETRI GRUP
SINIFLANDIRMALARI

OZET

Bir fonksiyonun tiirevleri arasindaki ya da fonksiyonun kendisi ve tiirevleri arasindaki
iliskiyi acik olarak belirten denkleme diferansiyel denklem denir. Diferansiyel
denklemleri bagimsiz degiskenlerin sayisina ve icerdikleri tiirevlerin tiirlerine gore
siniflandirabiliriz. Denklemin tek bir bagimsiz degigskeni varsa denklem adi
diferansiyel denklem, iki veya daha cok bagimsiz degisken igeriyorsa kismi
diferansiyel denklem olarak adlandirilir. Diferansiyel denklemler fiziksel olaylarin
modellemesinde kullanilmaktadir.

Doga bilimleri ve miihendislikte onemli bir yere sahip olan ve fiziksel olaylarin
bir modellemesi olarak elde edilen lineer olmayan diferensiyel denklemlerin
integrallenebilirligi 1960’lardan beri uygulamali matematigin temel konularindan
biri olmusgtur. Lineer olmayan diferansiyel denklemlerin c¢oziimlerinin elde
edilmesi her zaman miimkiin olamamaktadir. Bu zorluktan dolayr oncelikli olarak
bu tip denklemlerin integrallenebilirligi iizerinde c¢alisilmistir.  Bununla birlikte
integrallenebilir lineer olmayan diferansiyel denklemlerin ¢oziimlerini bulmak icin bir
cok yontem gelistirilmistir. Simetri gruplart ve korunum kanunlari, bu yontemlerden
bazilaridir.

Bu tezde simetri gruplari kullanilarak, fizik ve matematikteki baz1 dnemli problemler
incelenmistir.  Lineer olmayan diferansiyel denklemlerin analitik ¢6ziimlerinin
ve korunum kanunlarinin bulunmasi problemi ele alinmistir.  Literatiirde lineer
olmayan diferansiyel denklemleri ¢c6zmek i¢in bir ¢cok yontem gelistirilmistir, simetri
gruplar1 bunlardan biridir. Oncelikle, analitik ¢oziimlerin arastirilmasinda en giiclii
yontemler arasinda gosterilen Lie simetri gruplart ele alinmistir. Sophus Lie, adi
diferansiyel denklemler bir doniisiim altinda degismez kalirsa mertebelerinin bir
derece diisiiriilebilecegini gostermistir.  Bu sekilde, lineer olmayan diferansiyel
denklemlere Lie cebrini uygulayip denklemi de8ismez birakarak mertebesini
indirgeyip denklemin ¢oziimiinii elde edebiliriz. n. basamaktan bir diferansiyel
denklemin Lie grubunu elde etmek icin, bu Lie grubuna ait sonsuz kii¢iik iireticin
n. uzanimini diferansiyel denkleme uyguladigimiz zaman sonug sifir ¢itkmalidir. Bu
uzanim diferansiyel denkleme uygulandigi zaman bulunan acilimdan ¢ok belirli kismi
diferansiyel denklemler sistemi elde edilir ve bu denklemler belirleyici denklemler
olarak adlandirilir.  Lie gruplan ile ¢alismanin bir zorlugu, Lie grup teorisini
uyguladiktan sonra elde edilen belirleyici denklemleri ¢cozmektir, bu zorlugu agsmak
icin baz1 matematiksel programlar kullanilabilir, bunun i¢in bu tezdeki problemleri
incelerken Mathematica programi kullanmilmigtir. Bu tezde, Lie grup teorisi bazi
fiziksel problemlere uygulanip sonuclar elde edilmistir.

Fakat, bazi durumlarda Lie grup teorisi yetersiz kalir. Her diferansiyel denklem
Lie simetrilerine sahip olmayabilir. ~ Bu durumda, simetrileri elde etmek ve
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siniflandirmak icin farkli yontemler kullanilmaktadir. Bu yontemlerden biri Noether
Teoremi’dir. Noether Teoremi, Alman matematik¢i Noether tarafindan bulunmustur.
Bu teoremi uygulamak icin oncelikle denklemin Lagrangian fonksiyonu elde edilir,
Lagrangian fonksiyonu Euler-Lagrange denklemlerini saglamalidir. Daha sonra bu
Lagrangian fonksiyonu yardimiyla denklemin ilk integralleri bulunur. Bu teorideki
en onemli kisim Lagrangian fonksiyonunun belirlenmesidir. Standard Lagrangian’a
sahip olmayan bir ¢cok denklem vardir. Bu tiir denklemler i¢in kismi Lagrangian
yontemi gelistirilmigtir. Standart Lagrangian’a sahip olmayan denklemler icin kismi
Lagrangian kullanilarak Noether simetrileri ve ilk integralleri bulunabilir. Tezin bir
boliimiinde kismi Lagrangian yontemi ele alinmigtir. Bu yontem yardimiyla standard
Lagrangian fonksiyonuna sahip olmayan fiziksel bir denklem olan fin denklemi i¢in
kismi Lagrangian fonksiyonu belirlenmistir. Sonrasinda Noether teoremi kullanilarak,
denklemin Noether simetrileri ve ilk integralleri elde edilmistir. Bu simetriler fin
denkleminin 1si-sicaklik katsayilarina gore siniflandirilmigtir.  Daha sonra bu ilk
integraller kullanilarak denklemin degismez ¢oziimleri elde edilmistir.

Lie simetrisine sahip olmayan denklemlerin simetrilerini elde etmek icin diger
bir yontem Muriel ve Romero tarafindan 2001 yilinda tanimlanmustir.  Yeni bir
vektor alani tanimlayarak, yeni bir uzanim formu elde etmisler ve elde ettikleri
simetrileri A-simetrileri olarak adlandirmiglardir.  Muriel ve Romero, bu yeni
teoride Lie simetrilerinden farkli olarak tanimladiklar1 yeni vektor alanini kullanarak
elde edilen belirleyici denklemlerin ¢oziimiinii sonsuz kiiciik fonksiyonlar ve A
fonksiyonu cinsinden belirlemiglerdir. Bir diferansiyel denklemin A-simetrileri,
integrasyon carpanlar ve ilk integralleri arasinda 6nemli bir iliski vardir. Ozellikle,
A-simetrileri, Lie simetrisi olmayan lineer ve lineer olmayan denklemler igin
integrasyon carpanlarinin ve ilk integrallerinin bulunmasinda etkili bir yontemdir.
Bu tezde ele alinan bir diger 6nemli iliski Lie simetrilerinden A-simetrilerinin elde
edilmesidir. Daha sonrasinda A-simetrileri kullanilarak integrasyon c¢arpani ve ilk
integraller elde edilebilir.

Bu simetrileri bulmamizi saglayan diger bir yontem Prelle-Singer yontemidir. Bu
yontem, Prelle ve Singer tarafindan 1993 yilinda ele alinmistir ve zaman icinde Duarte
yontemi gelistirmistir. Prelle-Singer yonteminde R ve S fonksiyonlari ile ifade edilen
iic adet belirleyici denklem vardir, bu denklemler ¢oziilerek simetriler elde edilmeye
caligthr. Muriel ve Romero 2009 yilinda Prelle-Singer yontemi ile A-simetrileri
arasinda bir iligki kurmuslardir. Bu iligkiye gore, A-simetrisi ve  integrasyon carpant
olmak iizere R = —u ve S = —A esitlikleri elde edilir. Bu yontem kullanilarak, bazi
fiziksel denklemlerin A-simetrileri, integrasyon ¢arpanlari, ilk integralleri ve sirasi
ile ¢coztimleri elde edilmistir. Lie, A ve Prelle Singer yontemleri arasinda 6nemli
bir iligki s6z konusudur. A-simetrileri kullanilarak Lie simetrileri, Prelle Singer
yontemi kullanilarak oncelikle A-simetrileri ve A-simetrileri kullanilarak sonrasinda
Lie simetrileri elde edilebilir.

Tezde kullanilan diger bir yontem ise lineerlestirmedir. Verilen denklem Once bazi
fonksiyonlara gore siniflandirilip daha sonrasinda ait oldugu sinifa dair kullanilan
algoritma ile farkli ilk integralleri elde edilmistir. Lineelestirme problemleri altinda
inceledigimiz diger bir doniisiim Sundman doniisiimiidiir. Duarte tarafindan ortaya
atilan bu doniisiim ile lineer olmayan bir denklem lineerlestirilebiliniyorsa, bu denklem
Muriel ve Romero tarafindan S-lineerlestirilebilir olarak adlandirilmigtir.  Tezde
S-doniisiimleri kullanilarak ilk integrallerin ve A-simetrilerinin nasil bulundugu agikca
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gosterilmigtir.  Sonrasinda bu A-simetrilerinden denklemin integrasyon carpani ve
farkli ilk integralleri elde edilmistir. Devaminda bu A-simetri bilgisi kullanilarak
Prelle-Singer yontemine gecilmis ve Hamiltonian ve Lagrangian fonksiyonlar elde
edilmistir. Bu tezde, lineer olmayan bir denklem icin bir cok farkli yontemle ilk
integraller, simetriler ve bunlarin yardimiyla denklemin ¢oziimlerinin elde edilebildigi
aciktir.
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1. INTRODUCTION

Mathematical modeling of many problems in physics and engineering sciences involve
nonlinear ordinary differential equations. Therefore, the methods to solve a nonlinear
ordinary differential equations have been continuously developed in the literature; see

for example, [1,12].

It is always not possible to obtain solution of nonlinear equations. We can obtain
solutions of nonlinear equations by integrating these equations therefore integrability
of nonlinear equations is important. Moreover, a lot of methods have been improved
to obtain the solutions of nonlinear equations using integrability. Some of these
methods are called as Lie point symmetry, Noether symmetry, A-symmetry, nonlocal
transformation, etc. In this thesis, we examine these methods and we obtain analytical
solutions and conservation laws of nonlinear differential equations by using these

methods.

1.1 Purpose of Thesis

The purpose of the thesis is to find analyze the analytic solutions and conservation laws
for nonlinear differential equations. There are a lot of methods to obtain these solutions
in literature. Some of these methods are Lie symmetry groups theory, Noether theory,
linearization methods, nonlocal transformations. In this thesis, some conservation law
methods are used and these methods are applied to the equations in mathematical
physics. Moreover, we aim to obtain solutions of nonlinear differential equations using

symmetry groups which are found by different conservation law methods.

1.2 Literature Review

In this chapter, firstly we discuss the basic properties of Lie symmetry groups necessary
in later chapters for the study of differential equations. We use the study [2] as
reference to explain Lie symmetry groups, it is an important tool to understand the

other symmetry methods. Then we examine Noether theorem and some concept which
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is related to conservation laws and we consider the definition of partial Lagrangian
by using the study [12]. Then we examine some important definitions and theorems
corresponding to A-symmetries. Moreover, we explain transformation methods with

some definitions.

In the literature, symmetry classifications of differential equations with respect to Lie
point symmetries and Noether symmetries have an important role for understanding
possible solutions of differential equations [1,9]. Noether symmetries can also be used
in finding the first integrals (conserved forms) of the nonlinear problems. The earliest
studies on Noether symmetries based on the Noether theorem are due to German
mathematician Emmy Noether [1]. Applications of the Noether theorem to differential
equations can provide some important information about the problems in mechanics,
physics, and engineering sciences [12,18]. In order to apply the Noether theorem, the
differential equations should have a standard Lagrangian. On the other hand, one can
apply the partial Lagrangian method to differential equations to investigate Noether

symmetries and first integrals by using Euler-Lagrange equations [12].

1.2.1 Lie symmetry groups

Lie symmetry group was developed to deal with the solution of differential equations.
Lie was influenced by lectures of Sylow on Galois theory, therefore Lie symmetry
groups are the extension of Galois methods for the study of differential equations. The
basic examination is that the simple constant that can by added to any indefinite integral
of dy/dx is in fact an element of a continuous symmetry group that convert solutions
of the differential equation into other solutions. This observation was used by Lie to
develop an algorithm when a differential equation has an invariance. If such a group

exists, then the order of a higher order ordinary differential equation can be reduced.

In this sense, Sophus Lie has introduced the concept of continuous groups in order to
extend different solution methods for ordinary differential equations and these groups
are called Lie groups. Lie proved that if an ordinary differential equation is invariant
under a one parameter Lie group of point transformations, then the order of ordinary

differential equation can be reduced by one.

A symmetry group of a system of differential equations is a group of transformations

which maps any solution to another solution of the system. Lie symmetry groups

2



include translations, rotations and scalings. First order ordinary differential equations

define a one parameter Lie group of point transformations.

Lie’s fundamental theorem demonstrates that groups can be described by their
infinitesimal generators. Lie groups and their infinitesimal generators can be extended
to follow up on the space of independent variables, dependent variables and derivatives

of the dependent variables.

Special solutions of differential equations are called similarity solutions or
invariant solutions, if a differential equation is invariant under Lie group of point

transformations.

Now, we examine the basic definitions and theorems for Lie symmetry groups to

explain the later concepts.

Definition 1.1 Let ¢ be a law of composition. The set G is called a group, if the

nonempty set G is satisfy the following axioms:
(i) Closure property: For any elements a and b of G, ¢(a,b) is an element of G.

(ii) Associative property: For any elements a, b and c of G,
¢(a,¢(b,c)):¢(¢(a,b),c). (1.1)

(iii) Identity element: There exists a unique identity element e of G such that for any

element a of G,

O(a,e) =¢(e,a) =a. (1.2)

(iv) Inverse element: For any element a of G, there exists a unique inverse element a™"

in G such that
d(a,a)=¢9(a'a)=e. (1.3)

In addition to these conditions, if ¢ (a,b) = ¢ (b, a) holds for all elements a and b in G,

a group G is called Abelian.

Definition 1.2 Let x = (x1,x2,...,x,) belongs to region D C R".  The set of

transformations

X =X(x;€), (1.4)



defined for each x in D, depending on parameter €. ¢(€,98) is a law of composition
of parameters € and & in S. A group of transformation on D satisfy the following

properties:

(i) For each parameter € in S the transformations are one-to-one onto D, in particular

x* belongs to D.
(ii) S with the law of composition ¢ forms a group G.
(iii) x* = x when € = e, i.e.
X(x;€) =x. (1.5)

(iv) If x* = X (x;€), x** = X(x*;8), then

X = X(x: (e, 8)). (1.6)

Definition 1.3 If a group of transformations satisfy the following conditions in

addition (i)-(iv), this group is called one-parameter Lie group of transformations.
(v) The identity element e for € = 0.
(vi) X is differentiable with respect to x in D and an analytic function of € in S.

(vii) ¢ (€,0) is an analytic function of € and 8, € € S and 6 € S.

Definition 1.4 Let
x"=X(x;¢€) (1.7)

be an one-parameter Lie group of transformations with identity € = 0 and law of

composition ¢. If we expanding (1.7) about € = 0, we obtain

X 2 /9°X
v =g (S (e)leno) + 5 (S (0E)lecs) + -
X
:x+£<¥(x;8)|8:0> +O(e?). (1.8)
And
£ = X (:8)lemo (1.9

Thus x + €&(x) is called the infinitesimal transformation of the Lie group of
transformations and the terms of &(x) are called the infinitesimals of the equation

(1.7).



Definition 1.5 The gradient operator is

Jd 0 0
V= (a—ﬂ,a—n,...,a—h). (1.10)

The infinitesimal generator of the one-parameter Lie group of transformations (1.7) is

defined as

X:X(x):é(x).V:i&(x)%. (1.11)
For any differential function F(x) = F (x1,x, ...,lx_,;), |
XF(x) = E(x).VF(x) = Zn}@-(x) agf?) . (1.12)
Definition 1.6 For any group transformation (1.7),
F(x*) = F(x), (1.13)

if and only if F (x) is an invariant function of the Lie group of transformations (1.7).

Theorem 1.1 F(x) is invariant under (1.7) if and only if

XF(x)

0. (1.14)

Definition 1.7 For a one parameter Lie group of transformations
X =X(x,yi€) = x+e§(x,y) + O(€?),

Y =Y (xy;8) =y+en(x,y) +0(e?), (1.15)

the infinitesimal generator is

d d
x y
Let y; = %. We can extend (1.15) to (x,y,y1,...,yx) space for k = 1,2, ..., and
k-prolongation is
yz = Yk(x>y7YI;--~aYk§8) :)’k‘f’gnk(xa%)’l;---y)’k) +0(£2)7 (L.17)

and the infinitesimal generator for k-prolongation is

0 d 0
Xk:é(xa)’)a_‘l‘n(xy)’)a_y‘|‘77(1)(x7y7)’1)g+ (118)
x 1
() J
+n (x7y7y17"'7yk)a_7 (119)
Yk

where

D=l DE(x,y) ©0) _
D Yy o T =1(x,). (1.20)
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Now, we summarize these definitions and theorems, therefore we consider first order

ordinary differential equation

dy
I = g(x), (1.21)

where x is the independent variable and y is the dependent variable. The solution of
this equation is

y=G(x) = /g(x)dx. (1.22)

If we write the solutions of the form y — G(x) = 0, then y+c¢— G(x) = 0 is also a

solution of the equation (1.21).

We study for a one-parameter group of transformations that leaves the surface equation

invariant by changing variables in the (x,y) plane according to
x—x(e)=x+¢€&(x,y) xX(e=0)=x (1.23)
y—=y(e) =y+enlxy) ye=0)=y, (1.24)

where one parameter group x — x and y — y in (1.21),s0 £ =0and n = 0.

For & (x,y) and 1 (x,y), the first prolongation is

dy _dy/dx _ &(n:+my)
di  di/dx  1+e(E+E)

— &(M+(ny—&) = &) (1.25)

Thus,
Wy, y M)y =n+ (ny — &) — &) (1.26)

The surface equation must be same under the one-parameter group of transformations,

that is

Fl3) =0 = F(R(E).3(6)) — Flx-ey-+em) = Flry) +e(E 5+ 1150 Flx),

(1.27)
And Lie point symmetry is
d d
X=— —. 1.28
S5t R (1.28)
Thus, we obtain
F(x,y)=0 and XF(x,y)=0. (1.29)



1.2.2 Noether theorem and first integrals

In this chapter, we use the study [12] as reference to explain some concept which is

related conservation laws.

Noether showed that how the symmetries of action integral first placed to conservation
laws for the corresponding Euler-Lagrange equations. Euler-Lagrange equations are

invariant under variational symmetries. Now, we examine these Noether symmetries.

Suppose that x is the independent variable and y = (y',...,y™) is the dependent

variable with coordinates y* with respect to x are given as following form
v =y =D(%), y=DiK%), s>2, a=1.2,...,m, (1.30)

where Dy is the total derivative operator [2-7], with respect to x, which is defined as

D —i_|_ ai+ o J .
X_ax yx aya yxxay)(cx

(1.31)

Here, the vector space of all differential functions of all finite orders is represented by
</ that is universal space. Also, operators apart from total derivative operator (1.31)

are defined on space 7.

Definition 1.8 The operator

)
5y +Z a=1.2,....m, (1.32)

s>1 x

is called the Euler operator or Euler-Lagrange operator.

Definition 1.9 The generalized operator is given by

X = 5 MRl —+ EX (1.33)
dy% s>Z:1 s 3y
where
EF=Di(WH)+&Ey%,, s>2, a=12,...m, (1.34)

and W% is the Lie characteristic function
We=n%—&%  q=1,2,...,m. (1.35)

Here we can rewrite the generalized operator (1.33) in terms of characteristic function

as below

d
dy¥

X = ngJrWO‘i +Y Dy(w*)

Iy P> (1.36)



and the Noether operator associated with a generalized operator X can be defined as

d d
N=E+W*—+) D{(W* . (1.37)
Now let us consider a kth-order system of ordinary differential equation
Eq (%, U, u(1), U)s - Uy) =0, o=1,2,....m. (1.38)

Definition 1.10 The first integral of the system I € o/ can be written in the following

form

D =0. (1.39)

Then the expression (1.39) is called the local conservation law for system (1.38).
Furthermore, D1 = Q%E is called the characteristic form of conservation law
(1.39) where the functions Q% = (017...,()’") are the associated characteristics of

the conservation law (1.39).

Definition 1.11 Let L = L(x,(x,u,u(1),upy, -, Uq)) € &, a<k and nonzero
functions fg € o be a partial Lagrangian and X be a Lie-Bdicklund operator of the
form of (1.33). If there exists a vector B € o7/, B# NL+ C,C = constant, we have the
following relation

oL

X(q)L+LDx(8) :Wam + Dx(B), (1.40)

where W = (W' ... ,W™), B(x,y) is the gauge function, and W* € <f then X is
called a partial Noether operator coresponding to L and, X4 is the a' prolongation
of the generalized operator (1.36). If we apply Euler-Lagrange operator (1.32) to
Lagrangian L, then we obtain following differential equations

5L _

5a=0 a=12..m (1.41)

which are called Euler-Lagrange equations and the Lagrangian L is called a standard
Lagrangian. However, if SSTL[X =0, the Lagrangian L is called as a partial Lagrangian
and the corresponding differential equations are called partial Euler-Lagrange

equations.

Definition 1.12 X is a Noether point symmetry corresponding to Lagrangian of the

system of differential equations (1.38) if there exists a function B(x,y). In addition, X

8



is a Noether point symmetry corresponding to a Lagrangian of equation, then I is a

first integral associated with X, which is given by the expression [10]

I=EL+(n—-y¢&)Ly—B. (1.42)

1.2.3 Linearization methods

In this chapter, we use the study [20] as reference to explain some concept which is

related linearization methods.

The linearization technics deal with obtaining the general solutions of the nonlinear
equation by using the first integrals and A-symmetries. Furthermore, it is a fact that
using linearization methods, a nonlinear second order equation can be converted to a
linear second order ordinary differential equation whose solutions are known. The first
linearization problem for differential equations is solved by Lie [10]. He shows that a
second order ordinary differential equation is linearizable by a change of variables if

and only if the equation has the form
X4 ay(t,x)%% +ay (t,x)i +ag(t,x) =0, (1.43)

where ¢ is the independent variable and x is the dependent variable of the equation and

over dot denotes the derivative with respect to ¢z [19].

Moreover, one of these methods is to obtain general solution by using the first integral
of the equation. It is known that the some solutions remain invariant under symmetry
group transformations; these solutions are called invariant (or similarity) solutions. It
is assumed that the ordinary second order differential equation of the form (1.43) has
the first integrals of the form

A(t, %)%+ B(1,x). (1.44)

In order to find the first integrals of the form (1.44), one can use a standard procedure
and apply it to the nonlinear differential equations. Then it is possible to present that
the first integrals of the form A(#,x)x+ B(t,x) can be obtained by using the linearization

methods [20].

From the mathematical point of view, the process of linearization outlined above is
a difficult task and it can only be applied to the second order ordinary differential

equations. Therefore, it is necessary to consider other type of transformation

9



techniques of the nonlinear differential equations for linearization. In the literature,
it is shown that the equations of the form (1.43) can be transformed into the linear

equations X77 = 0 by means of nonlocal transformation of the form
X =F(t,x), dT =G(t,x)dt, (1.45)

which is known as the generalized Sundman transformation [21,24]. This
transformation is also called S-transformation and the equations that can be linearized
by means of S-transformation are called S-linearizable [21]. Duarte [22] proves that
S-linearizable equations must be of the form (1.43). A detailed review for the available

generalizations and recent contributions can be found in the references [25,26].

Another method to solve the nonlinear differential equations is to obtain A-symmetries
of the equations. Muriel and Romeo [20] prove that the equations of the form (1.43)
have the first integrals of the form (1.44), A-symmetries and the integrating factors
1 = A(t,x). They also show that the equation of the form (1.43) admits v = d, for

A-symmetry of the form [21]

Alt,x,%) = o(t,x)5+ B (t,x). (1.46)

The other method which is called modified Prelle-Singer procedure [27,28] is used to
apply it to a class of second order nonlinear ordinary differential equations and solved
several physically interesting nonlinear systems and identified a number of important
linearization procedures. Prelle and Singer have proposed an algorithmic procedure to
find the integrating factor for the system of first order ordinary differential equations.
Once the integrating factor for the equation is determined then it leads to a time
independent integral of motion for the first order ordinary differential equation. The
Prelle-Singer method guarantees that if the first order ordinary differential equation
has a first integral in terms of elementary functions then this first integral can be found.
This method has been generalized to incorporate the integrals with non-elementary
functions. Recently, this theory is generalized to obtain general solutions for second

order and higher order ordinary differential equations without any integration [28].

Now, we explain linearization methods in the following sections.

10



1.2.3.1 The first integrals of the form A (7, x)x + B(z,x)

In this section we examine the equations of the form (1.43) that have first integrals
of the form A(z,x)x+ B(z,x) for A # 0. For this purpose we consider the following

notations

S1(t,x) = aj, —2ay,, (1.47)

S2(t,x) = (apaz +aoy), + (a2, — a1y), + (a2, — ay)ap. (1.48)

Then one can say that if S; = 0, then the equation (1.43) is S-linearizable if and only
if S» = 0. By these definitions we have the following theorem to determine A(z,x) and

B(t,x).

Theorem 1.2 Let us assume that an equation (1.43) is S-linearizable, that is S| = S> =
0. In addition, let f(t) be the function defined by

| 1
f0)=cmaz+aMc—§au——Zaf (1.49)

and P = P(t,x) be a function such that

1
P = Eal’ P.=as. (1.50)

Thus using an equation (1.50) one can determine the function P = P(t,x) explicitly.

Similarly, let g = g(t) be a nonzero solution of the linear equation
g'(1)+f(1)g(t) =0, (151)
and Q = Q(t,x) be a function such that
0= ao.g.eP, O, = (%al — %)g.ep. (1.52)

Then, one can obtain the function Q = Q(t,x) from the equations (1.51) and (1.58).

Finally, functions A and B are determined as follows
A=gel, B=0. (1.53)
Then one can say that if S| # 0, we have the following theorem to determine A(¢,x)

and B(t,x).
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Theorem 1.3 Let us assume that S| # 0. In this situation the functions S3 = S4 = 0.

Let f(t) be the function defined by

1 1
f(1) = aoay +ao, — Sar, — g’ (1.54)
and P = P(t,x) be a function such that
S
Pr:alJrS—z, Py =as. (1.55)
1

Thus one can determine the function P = P(t,x) explicitly. Similarly, let g = g(t) be a

nonzero solution of the linear equation

g'(t)+f()g(t) =0, (1.56)

and Q = Q(t,x) be a function such that

O = aOePa Or=— (%)ep- (1.57)

Then there exist a function Q = Q(t,x) due to the compatibility condition

S2

laoe’ e, [— (S_l)ep]z (1.58)

Then, one can obtain the function Q = Q(t,x) from the equations (1.51) and (1.58).

Finally, functions A and B are determined as follows
A=¢", B=0. (1.59)

1.2.3.2 The A-symmetries and the integrating factors

Let us consider a second-order ordinary differential equation
X=®(t,x,x). (1.60)

Then one can say that the vector field v = dy is a A-symmetry of (1.60) if and only if

A is a solution of the equation
@, + AD; = Ay +xA, + DA+ A% (1.61)

Using coefficients ag,ay,a; in (1.43), one can easily compute Sy, S> and then one can

obtain A-symmetry for (1.43).
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Theorem 1.4 IfS|; =S, =0, then A-symmetry for (1.43) is determined using following
feasible algorithm.
H (1) + k(1) + f(t) =0, (1.62)

where f(t) is defined by (1.49). Then the B function is found as

ﬁm@:hm—%m@@. (1.63)

Thus we find the A-symmetry is the following form

A =—ax(t,x)x+h(t)— %al(t,x). (1.64)

Theorem 1.5 We know that if S| # O, then the functions S3 = S4 = 0.

In this situation, A-symmetry for (1.43) is determined using following feasible

algorithm.

Let f(t) be the function defined by

1 1

f(t):a()aZ"f’an_Ea]t_Za]z (1.65)
'}6;4—%51 =0 (1.66)
and
WY Hf=0 (1.67)
From here,
&7=—1&rhﬂ. (1.68)

2
Thus we find the A-symmetry is the following form

A:—@@Jn+(%>. (1.69)

Theorem 1.6 [1] If the equation (1.43) has the first integral of the form [ = A(t,x)x+

B(t,x), then the equation (1.43) has a integrating factor that has form u = A(t,x).
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1.2.3.3 The nonlocal transformations

It is possible to show that the nonlinear second-order equations are linearizable
by means of generalized Sundman transformation. These nonlinear equations are
characterized in terms of the coefficients of the equations and constructive methods
to derive the linearizing Sundman transformation can be presented. Thus the
nonlinear ordinary differential equations can be solved by transforming them into
the linear ordinary equations whose solutions are known. These equations are called
S-linearizable. The second order S-linearizable equations have the first integrals of the
form A(t,x)x+ B(t,x). When a first integral of this form is known, we derive a method
to construct the Sundman transformation that linearizes the equation. Conversely, if
a linearizing Sundman transformation is known then a first integral of the form is
obtained. Now, we present the following theorem that the characterizes S-linearizable

equations by the coefficients of a given differential equations.

Theorem 1.7 We assume that the equation (1.43) is S-linearizable. If S1 = S, = 0 and

@(t) is the solution of the equation
o+ +f=0, (1.70)

and the function f(t) is defined by (1.49).

Let C(x,t) be a solution of the following equations

G =a—C(5 +0), (1.71)
ag
G=(5 —9)~Ca. (1.72)

If F(x,t) is a solution of the equation
F, = CF,, (1.73)

and
G = Fexp(—P — / o(1)d1), (1.74)

and thus S-transformation pair F and G are defined.
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Theorem 1.8 We suppose that the equation (1.43) has a first integral as

I =A(t,x)%+ B(t,x). (1.75)
It can be written
F; F
Alt,x)=—=, B(t,x)=—. 1.76
( 7x) G7 ( 7x) G ( )

The equation (1.43) can be linearized by (??). D; is total derivative operator and the
equation

A(E+ax(t,x)3* +ay (t,x)i +ao(t,x)) = D (I(t,x,%)), (1.77)

can be obtained. Consequently,

F(t,x) = @(I(t,x)) (1.78)
and
G(t,x) = % or G(t,x)= % B #0. (1.79)

The transformation pair obtained by first integral.

1.2.3.4 Lagrangian and Hamiltonian description

Assuming the existence of a Hamiltonian
I(x,x) =H(x,p) = px— L(x,x) (1.80)

where L(x,x) is the Lagrangian and p is the canonically conjugate momentum, we have

Jdl JH Jdp, JL _dp,
From equation (4.1) we identify
L .
p= /;dx—i—f(x), (1.82)

where f(x) is an arbitrary function of x. Equation (1.82) has also been derived recently
by a different methodology. We take f(x) = 0 and substituting the known expression of
I into equation (1.82) and integrating it, we can obtain the expression for the canonical

momentum p.
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2. ON SYMMETRY GROUP CLASSIFICATION OF FIN EQUATION !

In this chapter, we discuss the nonlinear fin equation and the corresponding
determining equations. This section also includes different cases corresponding to
different choices of thermal conductivity and heat transfer coefficient. Furthermore,
Noether point symmetries and first integrals for each different case are presented. In

addition, we present some invariant solutions.

2.1 Noether Symmetries of Fin Equation

In this section, we classify the Noether point symmetries of a fin equation. Noether
symmetries can also be used in finding the first integrals of the nonlinear problems.
We should apply Noether theorem to fin equation for obtaining Noether symmetries.
In order to apply the Noether theorem, the differential equations should have a standard
Lagrangian. On the other hand, one can apply the partial Lagrangian method to
differential equations to investigate Noether symmetries and first integrals by using
Euler-Lagrange equations. The fin equation has not standart Lagrangian, therefore,
we determine the partial Lagrangian and Noether symmetries of the fin equation by

applying partial Noether approach to a nonlinear fin equation.

We now consider Noether symmetry classification of the nonlinear fin equation [14-15]

K/<)’> / Z_M _
k) ?) TR = @D

where K and H are thermal conductivity and heat transfer coefficient, respectively,

y// +

which are considered as functions of temperature, and y = y(x) is the temperature
function and x is dimensional spatial variable. The Lie point symmetries equation
(2.1) is investigated in the reference [16]. In this study, we consider the partial Noether

approach to analyze Noether symmetries of equation (2.1).

IThis chapter is based on the paper Orhan O., Giin G. and Ozer T., On symmetry group
classification of a fin equation. Journal of Inequalities and Applications, 2013, 2013:147,
doi:10.1186/1029-242X-2013-147.
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For the fin equation (2.1), we can write the Euler-Lagrange operator (1.32)

0 d d , 0
—=—-D D 2.2
oy dy® xayx+ xg)’xx, 2.2)
and the partial Lagrangian L for the fin equation (2.1) can be written as
1,2 [HO)
L=307+ [ Zrqdr 2.3)
20 ko)

and if we apply Euler-Lagrange operator (2.2) to Lagrangian (2.3), then we obtain

oL H
i (y) _y//. (2'4)
5y K(y)
In addition, if we rewrite the fin equation in the following form
H(y) 2K'(y)
1 /
V5= ; (2.5)
k0 ") &Ko)
then, the equation (2.4) becomes
oL / ZK/(y)
— =) —— (2.6)
Sy - )

In relation (1.40), the partial Lagrangian (2.3) has at most first order derivatives and

then we can take & = 1 and write the following definition

oL _ ’ /2K/(Y) N /2K/()’) /3K/()’)
W15—y = (n—fiy)(y W) =y X0) —&y X0) (2.7

and D, (B) is defined in the form
Dy(B) = By +Y'B,. (2.8)

By application of the first prolongation of the generalized operator (2.7) X(y) to

Lagrangian (2.3), we get

H(y)

XL=n—=+n"y, (2.9)
where nl is defined in the form [2-5]
1 _ ! /N2
n =+ My —8&)y —&0)" (2.10)

The expansion of form of (2.10) by using the definition of the first prolongation of the

Noether operator and relations (2.6)-(2.10) is written below

1 1 H(y)
/ _ n_ B e g2 e 13
Mo+ (1= £y — 8"+ 5807+ 580+ & [ T av
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+5ny/ ?8‘”*”?8 +5I[<</((yy))y'3 _n%ylz_Bx_y/By —0. (211

The usual separation by powers of derivatives of y (2.11) reduces to the following

determining equations

K'(y)
§y+§K(y) 0, (2.12)
ny—%éx nlli((yy)) 0, (2.13)
nx+e§y/ %dy—By —0, (2.14)
HY) o HO)
Ex / K(y)dy+n 0] B, =0. (2.15)

To find the infinitesimals & and 1 the determining equations (2.12)-(2.15) should be

solved together. First, from the solution of the equation (2.12) we have

& =K(y)*a(x), (2.16)

where a(x) is a function of x. The solution of equation (2.13) is

1
n=5d (XK() / K(y)dy+K(y)b(x), (2.17)
where b(x) is a function of x. Thus, if we differentiate (2.14) with respect to x and
(2.15) with respect to y then we can eliminate the function B(x,y) from equations

(2.14)-(2.15) and we obtain the following single equation
1 3
34/ / K(y)dy+b<x>)ﬂ/<y> + 5K (WH()

~d"( / K(y dy K(y)b"(x) =0 (2.18)

which is a differential equation including unknown functions K(y), H(y), a(x) and
b(x). Using the equations (2.16)-(2.18) one can classify Noether symmetries and
corresponding first integrals of the nonlinear fin equation (2.1) based on different
forms of the thermal conductivity K(y) and heat transfer coefficient H(y) and

differential relations for a(x) and b(x).
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Case 1: K(y) = k(constant)
In equation (2.19) if we consider K(y) = k(constant) then we obtain the following

differential equation for H(y) function
(2b(x) +d' (x)ky)H' () + 3kd' (x)H (y) — k(2b" (x) — ka"" (x)) = 0. (2.19)

Now we analyze differential equation (2.19) for different H(y) functions corresponding
to different solutions of (2.18) and we get differential relations between functions a(x)
and b(x), which yield Noether symmetries and corresponding first integral for each

case.

Case 1.1: H(y) = h(constant)

For this case the equation (2.19) becomes

3hka' (x) — 2kb” (x) — k*yd" (x) = 0. (2.20)

In (2.20) it is clear that ¢’ (x) = 0, 3hd'(x) — 2b"(x) = 0. From the solutions of a(x)

and b(x) we obtain the following infinitesimal functions
E =k (c) +xcr +x%c3),
1> 3.2 1 3
n= Ek y(ea +2xc3) +k th cz+§hx c3+cq+xcs |, (2.21)

and the corresponding Noether symmetries

d d 1 3 d d 1 d
X =k =, Xp=kx— 4+ (=k*v+ "khx*)=—, X3=k*x*=— +(k* —hkx) —
! ox’ 2 x8x+<2 y—|—4 o )(9y’ 3 . 8x+( xy+2 . )ay’
d d
Xy = ko Xe — kx—. 2.22
4 ay? 5 xay ( )

By using relations (2.14) and (2.15) the function B(x,y) is found in the form below
_ l 2.3 E l 2.4
B(x,y) = 4h x’cy+ thxycz—i— 8h x'c3

3 1 1
+§hkx2y03 + §k2y203 ~+ hxcy + Ehx2C5 + kycs, (2.23)

where c¢;,i = 1,...,5 are constants. Thus, the first integrals (conserved forms) for
the nonlinear fin equation (2.1) can be calculated by using expression (2.12) and by

considering each group parameter c;.
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1 1
I = hky — 51<2 ()2, L= 3 (—2h%x> — dhkxy 4 2k(3hx? 4 2ky)y’ — 4k*x(y')?),
1
L= 3 (—h2x* — Ahkx®y — 4Ky 4 2k(2hx> + 4kxy) (y') — 422 (y)?), (2.24)
1
Ii=—hx+k/, I5= —Ehx2 —ky+kxy'.
Case 1.2: H(y) =y
Based on the similar calculation in the first case if we take H(y) =y, we obtain the
infinitesimals & and 1 by solving equations 4a’(x) — ka"' (x) = 0, b(x) —kb" (x) =0

1 =2 4
&= kz(ze vk \/l;(eﬁcl —c2)+c3),

1 2 2 4x x —x
n= Ekzy(Ze\/I?cl — (e vk (evkey —2)) +k(eviea +evies), (2.25)

where ¢;,i = 1,...,5 are constants.

The corresponding generators are

1 25 9 1 = d
Xi = (—evVik?)— 4 (—evVEik2y) —
1 =2 5 4 1l ==, d
X =(——eVkk2)— —e Vkk7y)—
= (e TR 2o+ (VTR o
d d = d
Xs =k =, X4=(eVhk)=—, Xs5= (evVkk)= 2.26
3 o X (e )ay, 5= (e )By’ (2.26)
and the gauge function is
2 1 & 1, 5, 3x x
B(x,y):e\/%\/l; Eeﬁky cl—iky cy+evkycy —evkesy | +cg, (2.27)

where cg is an arbitrary constant and the first integrals are found by using the

expression (2.12)

L= %e% (— k32 4202y — k3 (y’)z), (2.28)
L= %e}g <k%y2 L2y k3 (y’)z), (2.29)
L= %(ky2 - kz(y’f), Iy =eVi(ky' — Vi), (2.30)
Is = evi (Vky + k). 2.31)

Case13: H(y)=y",n>1
In equation (2.19), if we take H(y) = y" then we obtain
2nyTI b (x) 4 3ky"d (x) + kny'd (x) — 2kb" (x) — K2yd" (x) = 0, (2.32)
21



which gives a’(x) = 0 and b(x) = 0 gives & and n

E=kc, n=0, B(x,y) =0,

(2.33)

where ¢ is a constant and then the infinitesimal generator corresponding to (3.30) is

9

X =k
ox’

and the first integral is written similar to the previous case

—2ky" ™+ K2 (14-n)(y)?

= 2(1+n)

Case 1.4: H(y) = Exp(y)

For this case it is clear that the infinitesimal functions are
2
észI, n:()a B(x,y):O,

where ¢ is a constant and the generator is

and the first integral is

1
[=¢e"k— Ekz(y')z-

Case 1.5: H(y) = my1+n

For this case the infinitesimals are found as below
E=kc;, n=0, B(xy) =0,

where ¢ is an arbitrary constant and the generator is

d
X =k=
ox’
and the first integral is

] — klog(k(n+my)) o %k2(yl)2‘

m

Case 1.6: Arbitrary function H(y)
We find that
£=Kc, n=0, Bxy) =0,
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(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



where ¢ is a constant and the generator is
X =k (2.43)

and the first integral is

1
I=k / H(y)dy — 51<2(y’)2- (2.44)

Case 2: K(y) = kExp(ay), k and 3 are constants.

In the equation (2.18) if we take K(y) = kExp(PBy), we obtain the following

differential equation in terms of H(y) function

(2ab(x) +d (x)e’*k)H'(y) + 3e"%kad (x)H (y) — &%k (2ab” (x) + e %ka’ (x)) = 0,
(2.45)
and consider following cases as the solutions of (2.42) and get the mathematical

relations between functions a(x) and b(x).

Case 2.1: H(y) = h(constant).

For this case the differential equation (2.42) yields
&%k (3hod (x) +2ab” (x) + " %ka’" (x)) = 0. (2.46)

In (3.43) k # 0 then the term in the parenthesis must be zero, which gives a”’(x) =0

and 3hd’(x) +2b" (x) = 0, then the infinitesimal functions are found as below

E = ePk% (¢ + xcp +x%c3),

ek (cy +2xc3)
20

3 1
n= + eyak(ZhXZCQ + Ehx363 + ca +xcs), 2.47)

where ¢;,i = 1,...,5 are constants and we have following five infinitesimal generators

d d 3 k2 9
X, — 2y 2 X, — 2y0i 7,2 Zoya 2
1 = (e?% )8x’ ) = (7% x)ax—i—(4e hkx” + g )_By’
0 1 ek x d 0
Xz = (e®%*x?) 5 + (5% hkx® Xy = %=, Xs5=e%kx=-
3= (e X)ax+(ze X + ), Xy=e 5y e x&y,
(2.48)

and we have the gauge function

1
——4 (P23 — de"%kau(h(der +x(ca +xc3)) — 2c5)
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+hxa* (hx* (2c2 + xc3) + 8ca + dxcs)), (2.49)

and the corresponding first integrals

e®hk 1
| = - _ EeZaykZOﬂ(yl)Z’

; 20 hkxa + h2x3 a2 — e®kou(2e®k + 3hx o)y + 22 k2x o2 (y')?
2= - ’

402
e 4e2% k2 + 4e® hkx® o0+ W2 x* o — 2e@ ko (4e®kx + 2hx3 ) () + 42 I a? (y')?
3= 302 )
(2.50)
1 Xk
L = e®ka’y —hx, Is=e®kxy — —hx* — .
2 o
Case 2.2: Arbitrary H(y)
For an arbitrary H (y) function we obtain infinitesimal functions in the form
E=eP%c;, n=0, 2.51)
where ¢ is a constant and the infinitesimal generator is
2072 J
X =k —, (2.52)
dx
and the gauge function is
B(x,y) = 2koic, / e < / e“yH(y)dy> dy, (2.53)

and the first integral is calculated as follow

. _% . (_2ezay / D H(y))dy +4a / > ( / e~ ®'H(y)dy)dy +&** k(y’)z) '

(2.54)
. _ __h .
Case 2.3: H(y) = By B and 7y are arbitrary constants
For this case the infinitesimals & and 1) are
E=e?%%c;, n=0, (2.55)
where ¢ a constant and the infinitesimal generator is
20ty7,2 J
X =%k — (2.56)

ox’
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and the gauge function is

ay
B 2a(yB+7)
B(x,y) = _e[;z# (e B EprntegralEi(—W)
+ExplntegralEi(W)) , (2.57)

where ExplntegralEi is a special function on the complex plane, for real nonzero values

of x, the exponential integral Ei(x) is defined as

X t
Ei(x) = / (£)at, (2.58)
and the first integral is
= 2;(%7 (- 2(e%/+ayhk/3 — hk(XEprntegralEi(am—yﬁ))(}/—i— By))
2B%(y+By) B
e T PRB (y+ By)()?). (2.59)
Case 3: K(y) = kyP, B # —1
If we take H(y) = h is constant, then we obtain the following equation
—3h(1+ B)d (x) +2(1 + B)b" (x) + ky' TPa" (x) = 0, (2.60)

and we find the infinitesimals functions from solutions of a”(x) = 0 and —3A(1 +
B)a'(x)+
2(1+B)b"(x)=0

& =Ky (1 +xc2 +x%¢3),

k2 1+28 2 1
n= Y 2(1(3%;_) xes) —|—kyﬁ( hx?ey + 5% 3es+¢y +xcs), (2.61)
where c¢;,i = 1,...,5 are constants. In this case we have following five infinitesimal
generators
0 o 3 K2yit2B 9
X| =2y B—, Xp =k — hkzﬁ — 2.62
2, 142
kzzzﬁa (kxyﬁ k~xy B)a
ox " (1+2B)"0
d d
Xy =kyP=—, X5=xkyP— (2.63)
dy dy
and the gauge function is
B(x,y) 1(h (hx*(2¢2+xc3) +8ea +4xces) + 7 (=h(1+B)(3x(c2+xc3)
x,y) = = (hx(hx”(2co +xc3 c4+4xcs — x(cy+xc3
8 (B-1)(B+1)?
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+B(dct +x(ca+xe3))) + (B —1)(kyPes +2(B+1)es))).

Using this equation (2.59) we obtain three first integrals

kP (=2hy +k(1+B)yPy?)

I =
P
2T 41+ B)
P
3T 8(1+B)
14:_hx+kyﬁ ,7

Case 2.1: K(y) =kyP, p = —1

2(1+PB)

hx2 ky(]+ﬁ)

Is=—

For this case the equation (2.18) is equal to

2 1+p

Y

(0= kyPy') (2 (14 B) + 20y ™4P —2kx(1 4 B)yPy) )

S (2 (1+ B) +2ky" P —2kx(1 4 B)yP )2,

+kxyPy' .

3ha' (x) —2b" (x) — ka" (x)Iny = 0,

and by using the (2.61) the infinitesimals functions become that

2

= )7(01 +xco +X26‘3),

1 3 1
n= 5 (k(zhxzcz + Ehx3C3 +cq4xes) + K (cr + ZXC3)IHY) ;

where ¢;,i = 1,...,5 are constants and the infinitesimal generators are

dy’

) Kx 0 k(3hx*+2kiny) 0
Xi1=>5+5-, Xo=—>-+ B
y? 0x y? dx 4y
Kx? 0 k(2hx? + 4hkxlny) o
X3 — 2 7. + BN
y2 ox 4y dy
¥ k 0 ¥ kx 0
4 = 7 5= T 3
ydy y dy

and the gauge function is

1
B(x,y) = g(hx(4k(02 +xc3) + hX2(2C2 +xc3) + 8c4 + 4xcs)

+4k(h(—2cy 4 x(c2 4 xc3) + 2¢5)Iny + 4k> c3lny?).

And we have four first integrals

k
Il:i(

2
h+ 2hiny — kj—z
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(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)



ky' —h
L= yszy<(hx2—|—2klny)y—2kxy'),
1 2 "\ 2
h=—g5 ((hx + 2kiny)y — 2kxy> : (2.70)
y
k' / h 2
Iy = l—hx, Is :kxy——klny—i.
y y 2

2.2 Invariant Solutions

Some group invariant solutions of nonlinear fin equation (2.1) can be constructed
from the Noether symmetries and the first integrals. In this section we consider some

different special cases to present invariant solutions of (2.1).

Case 1. For the case K(y) = k(constant) and H (y) = h(constant ) the first conservation
law is

1
I = hky — zkz(y’)z, (2.71)

then the expression D,/ = 0 gives the following invariant solution of the fin equation

2.1)
b+ 2h%x% — 27/2h2kxey + hzkzc%

2.72
4hk ’ 2.72)

y(x)

where ¢, ¢ are constants.

Case 2. As another case if we consider K(y) = k(constant) and H(y) =y, then the first
integral becomes
1 =2«

I=eh (k% V2 42Ky k3 (y’)2> , 2.73)

and D, = 0 yields the following solution

e vk _x
y(x) = —Ve— +e Vicy, (2.74)
ka
where ¢, ¢, are constants. This solution (2.4) is the group invariant solution that

satisfies the original the fin equation (2.1).

Case 3. As the third case we consider K(y) = k(constant) and H(y) = y and find the
conserved form as below

—2x 2x

1 =2/ 2 2
I=3eh (Mkyz _ eﬂ?kz(y’)2>, (2.75)
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and (2.5) gives the following invariant solution

_ xtkes 2
e Vk (62\/&3 + 8ce Vi)

y(x) = P . (2.76)

Case 4. The choice of K(y) = kExp(oay) and H(y) = h(constant) yields the

conservation law
Dhk 1
1= ¢ + 3 e2ayk2oc2(y/)2, 2.77)

and by integration of (2.8) we find the group invariant solution in the following form

3
1 ca 1 hxo2 1

= —In(—= + —hx? -
y(x) an(hk+2kxa+\/§c4+4

hka*c3), (2.78)

where ¢4 is a constant and which satisfies the fin equation (2.1).
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Table 2.1 : The table of Noether symmetries of fin equation

Thermal Heat
coefficient Infinitesimal and first integrals
k(constant) H(y) E=Kc, n=0, I=k[H(y)dy—5k*y"
k(constant) h & =k*(c1 +xcz +x%¢3)
N = 1k2y(ca +2xc3) +k (3hx*cr + Ahxdcs + ca + xcs)
Iy = hky — 3k*y'*
b = §(—21%x3 — dhkxy + 2k(3hx® + 2ky)y — 4k>xy”
I = §(—h*x* — 4hkx*y — 4k>y? + 2k (2hx> + dkxy)y
Iy = —hx+ky', Is= —%hx2 —ky +kxy
k(constant) my1+n E=k’c, n=0, I= —klog(k(r;l+my)) - %kzy’2
k(constant) €’ E=kc;, n=0, I=ek—3k%"?
k(constant) 'y &= kz(%e;f/g VE(eVeey —c2) +c3)
n= %k2y(2e%c1 - (e%kx (e%cl —)) —i—k(eﬁw, + e Viees)
2
I = beh (= kiy? 4 200y — KR ()2
ﬁ
=4k (Kiy? 4+ 23 + k3 ()2
E=4(k?—R()?), L=ev(ky — V)
Is = eVt (VEy + k)
I+n_12 N2
k(constant) y" E=e%2c;, n=0 I=2 - ;(kH(_%")(y)

kExp(ay) — H(y) E=eD%c;, n=0
I=k(2e** [~ H(y))dy
—2a [ &® (e P H(y)dy)dy — 3¢*®ky”

kExp(ay)  h(sabir) & = e®%k2(cy +xcp +x%¢3)
= P at2xey) | @ %k(3hx’cy + Jhx’cs + 4 +xcs)
I = eai# _ %ezaykzaz(y/)z
L= _Zeyhkxa+h2x3a2—eo‘yka(Zez;kz-Hhxza)y’+262"‘yk2xa2(y’)2
I = — 5 (422 4 4e™hkx o0+ WP x* o
—2e%ka(4e®kx+2hx3 o) (y) + 4> P I’ (y)?
L = e®ka?y —hx, Is=e%kxy — hx® — ek

a
KExp(ay) gl =%, n=0
_oy ay
1= gy * (—2(e? “nkp
—hkaExplm‘egralEi(a%))(}’—Fﬁy)))
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3. ANALYSIS OF LIENARD II-TYPE OSCILLATOR EQUATION BY
SYMMETRY TRANSFORMATION METHODS !

In this chapter, we discuss the nonlinear Lienard II-type harmonic nonlinear oscillator
equation and the corresponding linearization methods. Furthermore, the first integral,
the A-symmetry, the integrating factor and transformation pair are presented. We apply
modified Prelle-Singer method to the Lienard II-type harmonic nonlinear oscillator
equation to obtain Lie symmetries, the first integrals, A-symmetries, the integrating

factors and the Lagrangian-Hamiltonian functions.

3.1 The First Integral, A-symmetry and the Integrating Factor of Lienard II-type

Harmonic Nonlinear Oscillator Equation

We consider the following nonlinear Lienard II-type harmonic nonlinear oscillator
equation, which possesses exact periodic solution, exhibiting the characteristic
amplitude-dependent frequency of nonlinear oscillator in spite of the sinusoidal nature

of the solution of equation [29]

-2 2
(1) — 23’;((;)) L2 ;(t) —0, 3.1)

where x is the position coordinate, which is a function of time # and ® is the strength
of the forcing, in which these parameters indicate nonlinearity. The Lienard II-type
harmonic nonlinear oscillator equation has a natural generalization in three dimensions
and these systems can be also quantized exhibiting many interesting features and can
be interpreted as an oscillator constrained to move on a three-sphere. In this section,

we investigate the first integral of the form A(z,x)x + B(t,x) of equation (3.1).

Proposition 3.1 The equation of the form

i+ f(x)2+g(x) =0, (3.2)

I'This chapter is based on the paper Orhan O. and Ozer T., Analysis of Lienard II-type oscillator
equation by symmetry transformation methods. Advance in Difference Equations, 2016, 2016:259,
doi:10.1186/s13662-016-0966-4.
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where f(x) and g(x) are arbitrary functions of x and over dots denote differentiation
with respect to t, is called quadratic Lienard-type equation. Quadratic Lienard type
equations are linearizable if and only if these equations must satisfy the following
condition

gx)+f(xglx) =7, (3.3)
where Y is an arbitrary constant. This condition is called the isochronous condition.
A dynamical system is called isochronous if it features in its phase space an open,
fully-dimensional region where all its solutions are periodic in all its degrees of
freedom with the same, fixed, period. In order to the Lienard IlI-type harmonic
nonlinear oscillator equation belongs to this class, it must satisfy isochronous
condition to be linearized. Thus if we apply (3.3) to the equation (3.1), we see that

Lienard Il-type harmonic nonlinear oscillator equation satisfy isochronous condition.

Proof: Firstly, we compute S; function for the nonlinear Lienard II-type harmonic
nonlinear oscillator equation to classify equation. The Lienard II-type harmonic
nonlinear oscillator equation is form of (1.43) and we know the coefficients of (3.1) by

like that

25i(1) ®>x(t)
3x(t)’ 3
Using these coefficients, we obtain S1 = 0, which is given by (1.47). Thus, we know

a(t,x) = — a(t,x) =0, ap(t,x)= (3.4)

from Theorem 1 that S> must be zero if 1 = 0. The function S, is compute for the
Lienard II-type harmonic nonlinear oscillator equation and the function S, is found

Z€10.

3.1.1 The first integral of the form A(z,x)x + B(z,x) and the invariant solutions

It can be shown that the Lienard II-type harmonic nonlinear oscillator equation (3.1)
has the first integral of the form A(¢,x)x + B(z,x) by determining functions A and B
using a procedure given above. Then, the equation can be integrated by using this first

integral and the exact solution of the equation can be obtained.

For this purpose, let P = P(¢,x) be a function such that

-2
P =0 P =—. (3.5
3x
Using (1.50) we obtain function P = P(x) like this
=21
P(x) = ;gx- (3.6)
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If we compute f(z) using the formula (1.49) we obtain

flt)=—. (3.7)

Let us g = g(¢) is a nonzero solution of the equation (1.51) then if we substitute (3.7)

in equation (1.51), we obtain the following equation

¢'(1)+ 5-8(1) =0. (38)

The solution of this differential equation yields

t
)+ cosin(—

) (3.9)

t
g(t) = clcos(?

If we substitute the functions P(x) and g(¢) into (1.58) we obtain the following

equations
1 t t
0= gx% a)z(clcos((g )—l—czsin(%)), (3.10)
1 wt - O
—z0(c1cos(%) + cosin(2L))
O, =—2 2, L (3.11)
X3
From solutions of (3.10) and (3.11) we have
1 1
O(t,x) 263—a)x%(c200s(%) —clsin(%)). (3.12)

Then, we substitute these solutions into (1.59) we obtain the functions A(¢,x) and

B(t,x) as follows
(crcos(G) + casin(F))

At,x) = : , (3.13)
x3
B(t,x) =c3— wx3 (czcos(%t) - clsin(%t)). (3.14)

Thus, the first integral of the Lieanard II-type nonlinear harmonic oscillator equation

(3.1) is written as

t t )+ b
I=c3 _ oxt (czcos(%) —clsin(%)) I (crcos(%) 2czsln( 3 ))x7 3.15)
X3

and from Theorem 3, the integrating factor is

. (crcos(% )—iz-czszn(%))‘ (3.16)

X3

Group invariant solutions of this nonlinear equation can be constructed from the first

integral, that is, from (4.2) the invariant solution of the equation (3.1) is determined

wciescos(S) + (ca — c3+ ocieacssin(%))?

w3c}
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N ! ‘ / — t(seC)
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-0.02+
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Figure 3.1 : Phase portrait of the equation (3.17) for different values of .

where c1, ¢3, 3, ¢4, c5 are constants.

The phase plane method refers to graphically determining the existence of limit cycles
in the solutions of the oscillator equations. The solutions to the nonlinear differential
equation are a family of functions. Graphically, this can be plotted in the phase plane
like a two-dimensional vector field. Vectors representing the derivatives of the points
with respect to a parameter time ¢ at representative points are drawn. With enough
of these arrows in place the system behavior over the regions of plane in analysis can
be visualized and limit cycles can be identified. Then a phase portrait is a geometric
representation of the trajectories of a dynamical system in the phase plane. Each set of

initial conditions is represented by a different curve, or point.

The phase portraits are an invaluable tool in studying dynamical systems. They consist
of a plot of typical trajectories in the state space. This reveals information such as
whether an attractor, a repeller or limit cycle is present for the chosen parameter value.
The concept of topological equivalence is important in classifying the behavior of
systems by specifying when two different phase portraits represent the same qualitative
dynamic behavior. A phase portrait graph of a dynamical system depicts the system’s

trajectories.

Remark 1: We see in the Figure 3.1, the solution of the oscillator equation constitute
limit cycle in the phase plane. The limit cycle begins as circle and, with varying @,

become increasingly sharp.
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states

t(sec)

Figure 3.2 : Phase portrait of the equation of (3.17) for values x(m), %(m/sec) and
¥(m/sec?).
Remark 2: The blue line shows the position x over time, and the red line shows the
rate of change x, in other words the velocity X, over time and the purple line shows the
rate of change of the velocity, that is acceleration, over time in Figure 3.2. These are
the three states of the system, simulated over time. The way to interpret this simulation
is, if we start the system at x = 0, X = 0 and X = 0, and simulate for 20 seconds, this is

how the system would behave.

Furthermore, one can determine the corresponding Hamiltonian form related with the

first integral (4.52). First, the canonical conjugate momentum is

_ log(x)(c1cos(*P) +casin(§))

X

(3.18)

P

WIN

The Hamiltonian function that corresponding to canonical conjugate momentum

0) 110 : t .
H = t t@ C1COS(5 )+ crsin(5-) )X
C3 w(C2COS(—3 )—Cl Sln(?))x% 1 ( 3 ) 2 ( 3 ))

(3.19)

2
X3
Then the corresponding Lagrangian is

I @(cycos(%) —cysin(2))x+ (log(x) — 1)(ci cos(5) +cosin(52) )% — 3x3 ‘

SN

X

(3.20)
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Now, one can see the graph of the solution. The graph of a dynamical system depicts
stable steady states and unstable steady states in a state space. The axes are of state
variables. In this case we deal with the rate of change (velocity) X and the rate of

change of the velocity (i.e the acceleration) denoted i as states of the equation.

_7}

Figure 3.3 : The graph of the conjugate momentum p is given (3.18) depending on
position x.

The graph of the (3.17) corresponding to the conjugate momentum (3.18) for four
different values ® = 0.1, ® = 0.3, ® = 0.5 and w = 0.8 with @ is shown with four

different colors in Figure 3.3

1.0

Figure 3.4 : The graph of the conjugate momentum p over t.
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Remark 3: The trajectories are open curves representing unbounded motions in Figure

34.

Now, we can obtain the following contour plot graph for conjugate momentum. Firstly,
we find the argument 7 in terms of x and x. Using this relation we can rewrite canonical
conjugate momentum p in terms of x and x and we obtain this diagram for different

values of .

A contour plot is a graphical technique for representing a 3-dimensional surface by
plotting constant z slices, called contours, on a 2-dimensional format. That is, given
a value for z, lines are drawn for connecting the (x,y) coordinates where that z value
occurs. The contour plot is an alternative to a 3-D surface plot. The independent
variables are usually restricted to a regular grid. An additional variable may be required
to specify the z values for drawing the iso-lines. If the function do not form a regular
grid, you typically need to perform a 2-D interpolation to form a regular grid. The

contour plot is used to answer the question "How does z change as a function of x and

— T — T T — T
T RS // . \/\7
3.0 35 4.0 4.5 5.0

Figure 3.5 : The contour plot for conjugate momentum p.

y?"

0.25F

0.24

0.23

0.22

0.21

0.20

3.2 The A-symmetry and the Nonlocal Transformation Pair of the Equation

We can characterize the second-order ordinary differential equation that can be
linearized by means of nonlocal transformations. This characterization is given in

terms of the coefficients of the equation and determines the second-order ordinary
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differential equations that admit A-symmetries. There is a systematic method to find
A-symmetries. These A-symmetries can be used to reduce order of equation. Second
order ordinary differential equation can be integrated by a unified procedure based on
A-symmetries. The equation of the form (1.43) admit v = d, as A-symmetries for some
function A of the form

At,x,%) = a(t,x)x+ B(t,x). (3.21)

Proposition 3.2 We consider an equation (3.1) and Sy, Sy are the functions defined by
(1.47), (1.48). The condition S = S, = 0 is satisfied if and only if dy is a A-symmetry
of (3.1) for A = Jwtan(3(—wt +90c1)) — .

Proof: To obtain the A-symmetry of the equation, firstly we substitute the function
f(t) (3.7) into (1.62) and the following differential equation is found

2

(1) + 12 (1) + % —0. (3.22)

From the solution of this differential equation we have

h(t) = %a)tan(%(—wt—l—9wcl)). (3.23)

We substitute the function A(¢) in (1.63), the function B is found as
1 1
B(t,x) = ga)tan(g(—a)t+9wc1)). (3.24)
And thus we find the A-symmetry of the form (1.64)
1 1 2x
Proposition 3.3 The equation (3.1) has a transformation pair F and G then the

equation can be linearized. Then the first integral is obtained from this transformation

pair.

Proof: For given equation (3.1), we know S; = 0 and thus S, = 0. In this situation, we
first obtain the transformation pair F and G. For this purpose, we consider an algorithm
to determine nonlocal transformation pair of oscillator equation which is linearizable

under the nonlocal transformation. If ¢(¢) is the solution of equation
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2

(0]
And then f(¢) is computed in (3.7). Solving (4.9) we obtain ¢(z) function like this
1 1
Q= §wtan(§(—a)t+9w)). (3.27)

Let C(z,x) be a solution of the following equations

2
1 1
=2 oz (90— o)), (3.28)
3 3 3
1 1 2C
Cy = —sotan(5 (90 — 0t = 3.29
Solving these equations we can obtain
1
C(t,x) = xa)tan(g(wt —9w)). (3.30)
If F(t,x) is a solution of the equation
F; =CF,, (3.31)

And the following partial differential equation is obtained if we substitute the function
C(t,x) in (4.15)
1
F, — Fxxa)tan(g((ot —9mw)) =0, (3.32)

If we solve this partial differential equation, the function F(¢,x) is found
1
F(t,x) = l//(xsec(g(a)t—9co))3). (3.33)
And if we substitute these functions, G is given

G =} sec%(a)t _ 9a)))4l//'(xsec(%(a)t —9w))%), (3.34)

And thus S-transformation pair " and G are found

F= I//(xsec(%(a)t —90))}), G=x} sec%((ot - 9w))4w'(xsec(%(a)t —90))).
(335)

And one can integrate the equation using this nonlocal transformation.

Now, we can derive the first integral from transformation pair. Firstly we find the
functions A(z,x) and B(t,x) using these equations

F F
At,x) = e B(t,x) = é (3.36)
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And A(t,x) and B(t,x) are obtained like this

3w — 1@ t 1
A(t,x):M, B(t,x):x%wcos(3a)—?w)tan(g(a)t—%o)). (3.37)
X

And the first integral is found using transformation pair,

t 1 30—
I:x%(x)cos(3a)——w)tan(—(cot—9a)))+L23)x. (3.38)
3 3 X3
The solution of equation corresponding to this first integral is found
1 1 1 1
x(t) = E( ‘0’ cos(g(t —9)w)? +3ctc0° cos(g(t —9)w)? sin(g(t -9))+
’ 1 1 2 3. 1 3
+3clczwcos(§(t -9 w) 51n(§(t -9w) +c, 51n(§(t -9 w)”). (3.39)

And the conjugate momentum is corresponding to this solution is given

B cos(3(t —9) ) log(x)
p =

5 . (3.40)
X3
The Lagrangian is obtained
ol 1 ; .
—wsin(3(f —9)w)x+cos(3(t —9)w)(lo —1
L oS- 9o)rteos({i-9o)log) — 1k
X3
Finally the Hamiltonian function corresponding to conjugate momentum p is
osin(z(f—9)w)x+cos(z(f—9)w
O = 9okt eos(i - 9)o)t .

X3
Hence, one can obtain the graphs of these solutions by Figure 3.6 and Figure 3.7.

Remark 4: The solution (3.39) of the oscillator equation constitute limit cycle. The

limit cycle begins as circle and, is changing for different choices of .

3.3 The Extended Prelle-Singer Method and A-symmetry Relation

In this section, we consider other types of the first integrals and the exact solutions
by using the Prelle-Singer method procedure and its relation with A-symmetry. This
method provides not only the first integrals but also integrating factors. Moreover,
one can define the Hamiltonian and Lagrangian forms of the differential equations by
using the extended Prelle-Singer method. In this section, we consider the first integrals
and exact solutions of the Lienard II-type harmonic nonlinear oscillator equation by
the approach related with the Prelle-Singer, A-symmetry and Lie point symmetry as a

different concept from the mathematical point of view.
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x(m)

Figure 3.6 : The graph of the position is given in (3.39) over time ¢ for different
values of @.

states

t(sec)

Figure 3.7 : The graphs of the position x is given (3.39), the velocity x and the
acceleration X over time ¢ for different values of .
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3.3.1 The time-independent first integrals

For the Lienard II-type oscillator equation (3.1) one can write

_ 2i2(r)  0*x(t) (3.43)

¢ 3x(1) 3

If this equation has a first integral I(¢,x,x) = C, with a constant C, then the total

differential for the first integral can be written

dl = Ldt + Ldx + LIidx = 0. (3.44)

Substituting equation (3.44) in the formula ¢df — dx = 0 and adding a null term

S(t,x,%)xdt — S(t,x,%)dx, we obtain the following relation

(¢ + Sx)dt — Sdx — dx = 0. (3.45)

Multiplying (3.44) by the factor R(z,x,x) is called the integrating factor, hence we
obtain

dl = R(¢ + Sx)dt — RSdx — Rdx = 0. (3.46)

It is clear that equations (3.44) and (3.46) yield the following relations

L =R(¢+S%), I.=-RS, I;=-R. (3.47)

Then using the compatibility conditions, namely Iy = Iy, iy = Ly, Ly = Ly, (3.47)
provide us the following system of coupled nonlinear differential equations in terms of

S,Rand ¢

S+ xS+ 0S: = — O + ¢S+ 52, (3.48)
R; + iRy + OR; = —(¢: + S)R, (3.49)
R.—SR;—RS; =0, (3.50)

where the last equation (3.50) is called compatibility equation. In addition one can

determine the first integral / by using R and S functions with the following relations
d :
I=n —rz—/[R—l—E(rl — r)]di, (3.51)
X
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where

= / R(9+ss)dt, r— / (RS + %rl)dx. (3.52)

First of all, we consider the time-independent first integral case, that is I, = 0. One can

easily find S from the first equation in (3.47) like this

— xw? 2%
SZ%Z?‘@ (3.53)

for ¢ (3.43). Substituting this form of S into equation (3.49) we get

2-2 2602 2-2 (1)2
O R ) YRR, =0. (3.54)

R(
3x 3

3xx

The equation (3.54) is a first order linear partial differential equation. To solve this
equation we assume R of the form
R= x (3.55)
~ (A(x) +B(x)x +C(x)x2)’ '

where A(x), B(x) and C(x) are functions of x and r is a constant. If we substitute (3.55)

into the equation (3.54), then we obtain a set of equations in terms of X and its powers.

From the solutions of these equations we have

A(x) = c1x3 T3 0% + 3, (3.56)
2(r=2)

B(x) =cpx™ " | (3.57)
4(r—1)

Clx)=cix 3 , (3.58)

where c1, ¢y and c3 are arbitrary constants. If we substitute these functions into the

equation (3.55) then we find

4 4= 2,4 -
R:x<C3x3r—i—01x 3r x2+clx3+3ra)2> ) (3.59)

and if we substitute the functions R (3.59) and § (3.53) into the equations (3.48)-(3.50),
it is possible to check that these equations are satisfied. Thus, one can determine the

first integral of the Lienard II-type equation from the relation (3.51)

- r 17
x4( 5 (x%(—1+%)(63x% + (8 +x2w2>)> r

2¢i1(r—1) ’
43
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and for example » = —2, invariant solution of the Lienard II-type equation is
x(t) _ e—i(z+C4\/a)a) (e%i(t—mx\/a)w _ C3C1w2>3‘ (3.61)

Furthermore, one can determine the corresponding conjugate momentum related with

the first integral (3.60),

10 4. 2 8. 2
I 4 201058 (e3 + e x3 02) + x3%(c3 + e x5 ©2)?

== Iz

SIS

(3.62)

Then the corresponding Lagrangian is,

2.5 4 2 8 2
x<%+%Clx§x3(C3+c1xéa)2)+x§x(C3+clx§w2)2> (33 + 1 (2 + 2 a?))?

L=—
x4 6c1x*

(3.63)
And the corresponding Hamiltonian form related with the first integral (3.60),

(C3X% + (22 +x2w2))3

H=—
6c1x*

(3.64)

Thus, we can examine the relation between Hamiltonian function and the position x

with the following contour plot graph.

3.0

I
]
|

|

1.0

o
o

Ol v v v v v v v b e b ey

I I I 1 1 I I I I I I I
—0.5 0.0 0.5 1

I
I
o

Figure 3.8 : The contour plot of Hamiltonian function in terms of x and x.
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3.3.2 The solution of the nonlinear oscillator harmonic equation using the

A-symmetries based on linearization method

In this section, we examine an another method to investigate symmetries of the
nonlinear equations. We construct the first integral directly from A-symmetry. The

procedure essentially involves the following four steps.

1. Find a first integral w(z,x,x) of oAW1 that is particular solution of the equation
wy +Aw; =0. (3.65)

where subscripts denote partial derivative with respect to that variable and DIGIOIET
the first order A-prolongation of the vector field v.
2. Evaluate A(w) and express A(w) in terms of (¢,w) as A(w) = F (¢,w) and the operator

A is defined the following form
A =0, +x0,+ ¢ (t,x,%)0;. (3.66)

3. Find a first integral G of 0, + F(¢t,w)d,,.
4. Evaluate I(z,x,x) = G(t,w(t,x,x)). Then I(¢,x,%) is a first integral and p(z,x,x) = I;

is an integrating factor of the given second order equation.

Now we introduce a first integral and an exact solution of the nonlinear oscillator
harmonic equation by using A-symmetry (4.8) which is found by linearization method.
We first consider the A-symmetry (4.8) of the nonlinear oscillator harmonic equation

(3.1). The null S function can be written

1 1 2%
S=-2 —gwtan(g(—wt—l—ga)C]))—;x. (367)

From (3.65) we have

x—xotan(3w — )
2

w= (3.68)
X3
Hence one can evaluate A(®) as the application of the operator A (3.66) to w (3.68)
2
. oXx .2 w-x
A(W) :A:8,+xax+(1+6x2x — 1+Gx2)(9x, (369)
and derive A(®) in terms of (1,®) as A(®w) = F(t,®), that is,
1 1 2t
Flt,w) = — zwwsee(5 (t —9)o)sin(60 - T“’). (3.70)
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In the last step one can find a first integral G of d; + F(t,®)d, from the first order

partial differential equation of the form

1 1 2t
G, + (—gwa)sec(g(t—%a)) sin(6a)—Tw)) G, =0. (3.71)
which the solution is
1
G(t,w) =c (wcos(g(t - 9)(0)) , (3.72)

where ¢ is an arbitrary constant. Finally, one can express G(z,w) in terms of (¢,x,x)

using (3.68) to find the first integral

1 ove o
I:cos(3(t 9)x xza)tan(3a) 3)) (3.73)

X3

The integrating factor can be deduced from the first integral by differentiating it with
respect to X. Thus we find the integrating factor of the form

(cos(%(t—9)a)))'

X

(3.74)

‘LL:

And the function R can be written like this

(cos(%(t—9)a))).

X

R=—pu=— (3.75)

wIN

It is easy to check again that the functions S and R satisfy equations (3.48)-(3.50).
Thus, the different exact solution of the Lienard II- type nonlinear harmonic oscillator

equation is
1 in(1 3
<) (crwcos(3(t —9)w) 3 csin(3(t —9)w)) | (3.76)

where c is an arbitrary constant. Now, we see the the graph of the corresponding to the
equation (3.76) by Figure 3.9. Then, Figure 3.10 shows the rate of x(m) is given by

equation (3.76), x(m/sec) and ¥(m/sec?) depend on time .

Furthermore, it is possible to show that one can find other forms of the first integrals
and the integrating factors rather then the forms given by (3.73) and (3.74) for the same
null S function. With this aim, we consider again (3.65) and substitute this form of §

into the equation (3.49) to find

1
(Rt—l—)éRx)3x+R(2x+2a)tan(§(—a)t+9a)cl)))+Rx(2x2—x2 H=0. (377
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t(sec)

Figure 3.9 : The graph of the position is given in (3.76) versus time ¢.

states

t(sec)

Figure 3.10 : The graphs of the position is given by equation (3.76), the velocity and

the acceleration versus time ¢.
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The equation (3.77) is a first order linear partial differential equation in terms of R =
R(t,x,x) and it is known that any particular solution is sufficient to construct an integral
motion. For this purpose, to seek a particular solution for R one can make a suitable

ansatz instead of looking for the general solution by assuming R to be of the form

3x
R= A1 Be G-78)

where A and B are functions of their arguments and r is a constant, which are all to be
determined. The denominator of the function S should be numerator of the function
R. Since the denominator of § is 3x, we fix a numerator of R as 3x. Then substituting

(3.78) into (3.77) yields
. 1o ) ) . 1o
—3(A(t,x)(—5x+xa)tan(3a)—?))+B(t,x)((—5+2r)x —rx‘o —|—xxa)tan(3a)—?))+

3rx(Ay (,x) + (B, (t,) + Ay (t,x) + 3By (t,%)))) = 0. (3.79)

From the solutions of A(x,#) and B(x,?) the integrating factor R using (3.51), for

example, r=-1, is written

1 1
R=—u= 3cos(§(t - 9)0))(c1x% +cpécos(§(t -9 ) — crxwsin(3mw — t?w)),
(3.80)
and the corresponding time-dependent first integral is
2 t
= —%(czxz + e 0* + (3% — x*) cos(Z (1 — 9) o) — 4c1x% wsin(3m — —w) +
4x3 3 3
1 t

4cos(§(t—9)a))(clx%X—CQXXa)sin(3a)— ?‘")), (3.81)

where ¢ and ¢, are arbitrary constants. But it is clear that it is not easy to find
an explicit solution for (3.81). Then, one can obtain the Hamiltonian function

corresponding to the first integral (3.81), the conjugate momentum is given

~3cos(3(t —9) ) (x¥ log(#)) (c1 — e sin(30 — 1) + cacos( (t — 9)w)x

p= 2
X3
(3.82)
The corresponding Lagrangian is
1 1 10
L=—: <302x2a)2 sin(5 (= 9)0)” - 6crxi osin(30 — )+ 3x3 (log(x) — 1)
2x3
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1 2t 1
(—2¢; cos(g(t -9o)+ czx% wsin(6® — Tw)x -3¢ cos(g(t — 9)a))2x2> , (3.83)

and the Hamiltonian is

3 1 t
H=——5 (62x2w2 sin(z (1 — 9)®)2 — 2cxi wsin(3o — )
2x3 3 3

1 2 1
(201 cos(5 (1~ 9)@) — cax0sin(60 - %) +cac0s(5 ~9)0))). (3.84)
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4. LINEARIZATION PROPERTIES, FIRST INTEGRALS, NONLOCAL
TRANSFORMATION FOR HEAT TRANSFER EQUATION !

In this section, we examine fin equation belongs to this class of the equation

X4 as(t,x)i% +ay (t,x)x +ap(t,x) = 0. 4.1)

Fin is used in a large number of applications to increase the heat transfer from surfaces.
Interest has been instilled by frequent encounters of fin problems in many engineering
applications to enhance heat transfer. Typically, the fin material has a high thermal
conductivity. The fin is exposed to a flowing fluid, which cools or heats it, with the high
thermal conductivity allowing increased heat being conducted from the wall through
the fin. The design of temperature reduction fin is encountered in many situations and

we thus examine heat transfer in a fin as a way of defining some criteria for design.

To obtain first integral, integrating factor and invariant solution, it is possible to
consider some feasible algorithm and one can apply this algorithm to nonlinear fin
equation that is the form (4.1). The another method for application to nonlinear
differential equation is transformation method. Considering this transformation
procedure, a nonlinear equation can be converted to a linear second order ordinary
differential equation whose solutions are known. It is well-known that Lie [10] proves
the general algorithm that all second order nonlinear differential equation can be
converted to linear differential equations by the method of change of variables, which
is called Lie linearization test. In fact, the mathematical procedure of linearizing
transformation is quite diffucult work and this can be applied to only second order
ordinary differential equations that have a eight-dimensional Lie algebra. Therefore,
it i1s necessary to consider other type of transformation techniques of nonlinear

differential equations for linearization of larger classes of equations. In recent years,

IThis chapter is based on the paper Orhan O. and Ozer T., Linerization properties, first integrals,
nonlocal transformation for heat transfer equation. International Journal of Modern Physics B, 2016,
30, 1640024, doi:10.1142/50217979216400245
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some studies on the linearization through transformation involving nonlocal terms has

been carried out [30,31]. Then we apply Sundman transformation to fin equation.

4.1 The First Integral of the Form A(z,x)x + B(t,x) and Integrating Factor of Fin

Equation

We now consider the nonlinear fin equation,

iKW HED 4.2)

where K(x) and H(x) are thermal conductivity and heat transfer coefficient,
respectively, which are considered as functions of temperature, and x = x(¢) is the
temperature function and ¢ is dimensional spatial variable. The Noether symmetries
of Eq. (4.2) is investigated and obtained first integrals corresponding to Noether

symmetries in [2].

Proposition 4.1 If S| = S, = 0, then there is the following relation between K (x) and
H(x)

K(x)=-—2=, (4.3)

where O is a constant.

Proof: From the Eq. (4.2), we have

H (x)
K(x)

a(t,x) = ——, ai(t,x)=0, ap(t,x)=— 4.4)

Using these coefficients, we obtain S| = 0, which is given by (1.47). Thus, we know
from Theorem 1 that S; must be zero if S§ = 0. Now we obtain the relation the
functions K (x) and H (x) using this knowledge. The function S; is

- (- ()

4.5)

By simplifying (4.5) one can have

on ().

Since S> must be zero for §; = 0, then we write
—H' (X)>
Sy = ( =0. 4.7
K(x) ),
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The integration of (4.7) gives

—H'(x)
= = 4.8
thus we have the following relation
H/
K(x) = —%, 4.9)

where o 1S a constant.

4.1.1 The first integrals of the form A(z,x)x + B(z,x) and the invariant solutions

The fin equation has the first integrals of the form A(z,x)x + B(t,x), we can calculate
the functions A and B using a following procedure for the equation. Then, the equation
can be integrated by these first integrals and solutions of the equation can be obtained

using these first integrals.

Proposition 4.2 The Eq. (4.2) has the first integral of the following form

(c2cos(v/ot) —cysin(v/01))H(x) + c3/0  (c1cos(/ot) +casin(v/ot)H' (x)x

I =
Vo c ’
(4.10)
where c1,c2,c3, G are arbitrary constants.
Proof: Let P = P(¢,x) be a function such that
K'(x)
P=0. P = . 4.11
t Y X K(x) ( )
Using (4.11), we obtain function P = P(t,x) like this
P(x) = logK(x). (4.12)
We know K (x) = %l(x) from (4.9) and substituting this relation into (4.5), we obtain
function P = P(t,x)
—_H
P(x) = log ( (x)) . (4.13)
c
Using the formula (1.49), we obtain
H'(x)
t)=———= 4.14
0=~ (4.14)

and by using a relation K (x) = “H) 4 (4.14) we have

ft)=o, (4.15)
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where o is a constant. If we substitute (4.15) in Eq. (1.51), we obtain the following
equation

g"(t)+og(t) =0. (4.16)

The solution of the equation (4.16) is

g(t) = c1cos(v/ot) +cysin(vot). (4.17)

If we substitute P(x) and g(¢) functions into (1.58), then one can write the system of

equations
Q, = H(x)(c| cos(v/ot) + c3sin(+/ot)), (4.18)
0= (—v/Ocycos(y/ot) +;/5c1 sin(\/Et))H’(x)7 4.19)
which gives the solution
0(1.x) = (cacos(y/ot) —cysin(y/ot))H (x) + c30 . 4.20)
\/E
As a result the functions A(z,x) and B(z,x)
Alr.x) = (e cos(\/Et)—Fcstin(\/Et))H’(x), 421)
B(t.x) (cacos(y/ot) —cysin(y/ot))H (x) + c30 ‘ 422)

(o)

are found.

Proposition 4.3 [ = AX+ B is a first integral of (4.2). In this case, the function A is an

integrating factor, thus an integrating factor of (4.2) is obtained

= _(clcos(\/Et)+c;sin(\/a‘))H/(x). (4.23)

Now, using the equations (4.10) and (4.23) one can classify first integrals and
integrating factor of the nonlinear fin equation (4.2) based on different forms of heat

transfer coefficient H (x).

Case 1: Firstly we take H(x) = x, we find the first integral of (4.2) for the function
H(x),

. (4.24)

(c2cos(/ot) —cysin(v/01))x+c31/0  (c1c0s(y/01) +casin(y/01))x
\/E o
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Some group invariant solutions of a nonlinear fin equation can be constructed from the
first integrals. Now, we consider the first integral of special cases H(x) = x to present

the invariant solutions of (4.2).

For the case H(x) = x, the first conservation law is found (4.24) then the expression
D,I = 0 gives the following invariant solution of fin equation (4.2),

V6 (—c5+c3sin(y/o1))

C1

x(t) = + c4(cy cos(v/ot) + cpsin(y/ot)), (4.25)

where ¢y, ¢3, ¢3, ¢4, 5 and © are constants.

If we take H(x) = x, we find the integrating factor of (4.2)

__cicos(/ot) +easin(y/ot) .
o

(4.26)

Case 2: We now take H(x) = ¢* and we find the first integral of (4.2) for H(x)
functions,

_ (e cos(v/ot) —cysin(v/01)) +c31/0  e*(cicos(vo1) + 2 sin(\/gt))x'

1
Vo o

(4.27)

Then the invariant solution of fin equation corresponding to first integral (4.27) is

c3cscos(y/Ot) + (VO (—cs+c3) +cicacy) sin(y/0t)

x(t) = Log( ) (4.28)
c
and the integrating factor of (4.2) for H(x) = ¢* is,
= _(crcos(vot) + e sin(\/Et))ex' 4.29)
o
Case 3: H(x) = m ; m,n are constants. For this case, the first integral is
I (cacos(y/ot) —cysin(y/ot)) + c31/0 (n + mx) N m(cy cos(y/ot) + casin(y/ot)x
- Vo (n+mx) o (n+mx)?
(4.30)

and the invariant solution that corresponding to (4.30) is

_ c3cqc0s(v/01) + (v (—cs5+c3) + c1eacq) sin(y/61) + cos(y/0t) — ¢y sin(y/01))

x(1)

Cl
(4.31)
where ¢y, ¢2, ¢3, ¢4, c5 and O are constants and the integrating factor is
= _m(clcos(\/Et)—l—czsin(\/Et)). 432)

o(mx+n)?
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Case 4: H(x) = h, B and y are arbitrary constants.

ho .
(Bx+7)*

I h(cycos(v/0t) — cysin(y/01)) + 31/ (xB + 7)? N 2hB(cicos(v/ot) +casin(y/ot)x
Vo (xp+7)? o(xB +7v)°

(4.33)

and the invariant solution is

x(t):_0055Y—65YC3 B 1
ocsP>—oB%cs ¢ cos(y/G1) + casin(/Gt)ca — h:cizg%;ﬁzns(if\%ﬂ
(4.34)
and the integrating factor is
_ _ 2hB(cicos(/ot) +casin(y/o1)) 439)

G(Bx+7v)?
Case 5: H(x) is a general power law. In this case, we have H(x) = hxP , B # —1. The
choice of H(x) = hxP yields

I hxP (cy cos(y/Ot) — 1 sin(\/O1)) + ¢31/C B hxB=1B(ci cos(\/Ot) + ¢y sin(y/0t)x
- 75 =

(4.36)

and the integrating factor of (4.2) corresponding to this choose is given by

. _thﬁﬁ(clcos(\;Et) +c Sin(\/Et». (4.37)

Case 6: H(x) is a general power law. In this case, we have H(x) = hxP , B = —1. We
obtain the first integral

_ hx =B (cycos(y/0t) — ¢ sin(y/0t)) +c3/C N hx~'=BB(c| cos(y/O1) + ¢z sin(y/o1 )ik
o

' /o

(4.38)

and by integration of (4.38) we find the group invariant solution in the following form

hedeacos(v/61) + (VO (—cs+ ¢3) + hereacy) sin(y/61) ) 7

x(1) = ( e (4.39)
The integrating factor is
~1-B .
= hx B(c Cos(\/cgt)—i—cz sm(\/gt))- (4.40)

where ¢y, c>,c3,c4, O are arbitrary constants.

Now, one can see the graph of the solution using phase plane method in Figure 4.1 and

Figure 4.2.
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The phase plane method refers to graphically determining the existence of limit cycles
in the solutions of the equations. The solutions to the nonlinear differential equation
are a family of functions. Graphically, this can be plotted in the phase plane like a
two-dimensional vector field. Vectors representing the derivatives of the points with
respect to a parameter time ¢ at representative points are drawn. With enough of
these arrows in place the system behavior over the regions of plane in analysis can
be visualized and limit cycles can be identified. A phase portrait graph of a system
depicts the system’s trajectories and stable steady states and unstable steady states in a
state space. The axes are of state variables. In this case we deal with the rate of heat

transfer X and the rate of change of heat transfer denoted X as states of the equation.

Figure 4.1 : The graph of the equation (4.25) for case 1 by different values of .

Remark 1: Red curve is found for o=1, blue curve is found for o=1.1, green curve
is sketched for 0=1.2 and purple curve is denoted for 6=1.3. In the Figure 4.1 can be
seen that the solution of the equation constitutes limit cycle in the phase plane. The

limit cycle begins as circle and, with varying ¢, becomes increasingly sharp.

Remark 2: The blue line shows the solution x over time, the red line shows the rate of
heat transfer that is X and the purple line shows the rate of change of heat transfer over

time in Figure 4.2. These are the three states of the system, simulated over time.
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Figure 4.2 : The graph of the equation (4.25) of for values x, X and X of case 1.

4.2 Nonlocal Transformation Pair of Fin Equation

The second order nonlinear differential equation can be linearized by the nonlocal

transformation.

Proposition 4.4 The fin equation has the following transformation pair F and G and

then this transformation pair can linearize the fin equation.

Proof: For given equation (4.2), it is known that S| = 0 and thus S, = 0. In this
situation, we use the following procedure to obtain the transformation pair F' and G.
If one substitutes f(¢) = o is into (1.70), then the following differential equation is
obtained,

o+ 0> +0=0, (4.41)

And from solution of (4.41), we find

o(t) = v/ocot(t\/o). (4.42)
And the function C(¢,x) must satisfy the following systems
H
C,(t,x) = —/G cot(tv/T)C (1, x) + ‘; /((X)), (4.43)
X
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t,x)H" (x)

Cult.x) = —v/Goot(ty/5) — &

H) (4.44)
From (4.43) we have
C(t,x) = cse(t/0) — ﬁcogﬁgw(’c). (4.45)

Since the Eq. (4.45) should satisfy the Eq. (4.44), the function H(x) must be the
following form

H(x) = cj +cox. (4.46)

By (1.73), F(t,x) is found

Flt,x) = <p($<—cz cot(1/3) + c1v/ T ese(tv/T)) +czx\/gcsc(t\/6)>. (4.47)

And G(t,x) would be determined by

_ cot(t/0) y (c1+cox) CSC(I\/E)>_ (4.48)

\/E (69)

The pair F and G linearizes Eq. (4.2) by means of the Sundman transformation.

Gt x) = Clzcsc(t\/a)2<p’(

Now we obtain the first integrals of the form Ax + B of Eq. (4.2) by using this

transformation pair.

The functions A and B are obtained by

A = c35in(t\/0), (4.49)

and
B =c; — (c1 +cax)\/o cos(tv/0), (4.50)
and the first integral can be obtained in the following form

I = c38in(t\/0)x+c2 — (c1 +cpx)v/ o cos(ty/o). 4.51)

The corresponding invariant solution is

x(t) = c3sin(ty/o) + é <%\/IE\/E) —c Csc(t\/5)> sin(t\/0), (4.52)

where ¢y, ¢, ¢3, O are constants.
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Now, one can see the graph of the solution.

X

5,

T
W

Figure 4.3 : The position-time graph of (4.52) for different values of ©.

[
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S. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the first problem is to analyze Noether symmetry group classification
of nonlinear fin equation, which is second order nonlinear ordinary differential
equation. Here, we consider thermal conductivity and heat transfer coefficient as
variable functions of temperature, and the nonlinear fin equation is considered in
a one-dimensional model describing heat transfer in rectangular fins. From the
mathematical point of view, it can be said that this problem is highly nonlinear. Here,
we consider to apply partial Lagrangian approach for the classification in this problem.
For different heat transfer coefficient and thermal conductivity functions we obtain
Noether point symmetry algebras. Finally, we find the corresponding new first integrals
for each case, the results are presented in a table and for each case some invariant
solutions are obtained from the first integrals (conserved forms). This study can be
considered as one of the first studies on Noether symmetry classification of differential
equations in the literature. In addition, it is important to mention that A-symmetry

method is another new approach to find first integrals for differential equations.

In this first problem, one dimensional heat transfer of nonlinear fin with temperature
dependent both thermal conductivity and heat transfer coefficient investigated with
some methods. In this study we analyze first integrals, integrating factor and
nonlocal transformation pair of fin equation, which is second order nonlinear ordinary
differential equation. Here, we consider thermal conductivity and heat transfer
coefficient as variable functions of temperature and the nonlinear fin equation is
considered in a one-dimensional model describing heat transfer in rectangular fins.
For different heat transfer coefficient and thermal conductivity functions we obtain
first integrals, integrating factor and nonlocal transformation pair. Finally, we find the

corresponding first integrals for each case.

The second problem is that the Lienard II-type nonlinear harmonic oscillator equation
has a natural generalization in three dimensions and these systems can be also

quantized exhibiting many interesting features and can be interpreted as an oscillator
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constrained to move on a three-sphere. As such the considered problem is highly
nonlinear. In this problem, we analyze the first integral of the form A(z,x)x + B(z,x),
the A-symmetries and the integrating factors of the Lienard II-type nonlinear harmonic

oscillator equation, which is second order nonlinear ordinary differential equation.

We have characterized the second order nonlinear ordinary differential equations and
this characterization is given by the coefficients of the equation and also determines
the first integral, the A-symmetry and the integrating factor. Thus, the Lienard II-type
nonlinear harmonic oscillator equation is classified by using functions S; and S, and
the first integral of the form A(¢,x)x + B(t,x) is obtained by an algorithm. Moreover,
it is presented some properties and characterization of the equation that admits a
vector field as A-symmetry. Linearization, the symmetries and the transformation
of equations play a crucial role. Furthermore, the nonlinear second order ordinary
differential equations can be linearized by Sundman transformation. Finally, we apply

Sundman transformation to Lienard II-type nonlinear harmonic oscillator equation.

Then, we have identified the time independent first integrals for the Lienard
II-type nonlinear harmonic oscillator equation using the modified Prelle-Singer
approach. Moreover, we have constructed the appropriate functions Lagrangian
and Hamiltonian from the time independent first integrals and transformed the
corresponding Hamiltonian forms to standart Hamiltonian forms. The important point
of the Prelle-Singer procedure lies in finding the explicit solutions satisfying all three
determining equations (3.48)-(3.50). In our study, we have taken specific ansatz forms
to determine the null forms S, and the integrating factor R. Finally, from our detailed
analysis we have shown these results with the phase portraits depending on the choice
of parameters and using these phase portraits we interpret geometric meanings of
the solutions. And using the Hamiltonian and the conjugate momentum function we
demonstrate relation between solution and Hamiltonian and conjugate momentum by

contour plot portrait.

The third problem is linearization methods for fin equation which is one dimensional
heat transfer of nonlinear fin with temperature dependent both thermal conductivity
and heat transfer coefficients. In this problem, we analyze first integrals, integrating
factor and nonlocal transformation pair of fin equation, which is second order nonlinear

ordinary differential equation. Here, we consider thermal conductivity and heat

62



transfer coefficients as variable functions of temperature and the nonlinear fin equation
is considered in a one-dimensional model describing heat transfer in rectangular fins.
From the mathematical point of view, it can be said that this problem highly nonlinear.
For different heat transfer coefficient and thermal conductivity functions we obtain
first integrals, integrating factor and nonlocal transformation pair using linearization

metods. Finally, we find the corresponding first integrals for each case for this problem.
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