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LOCAL COHOMOLOGY AND RADICALLY PERFECT IDEALS

SUMMARY

Local cohomology theory was first introduced by Alexander Grothendieck in 1961 and
since then it has been used as a powerful tool to solve many problems in both algebraic
geometry and commutative algebra.

Basically, local cohomology functors are defined as the right derived functors of a
certain torsion functor: For any module M over a commutative ring R, set

['[(M) = {x € M : there exists an n € N such that I"x = 0}.

The i"* 1ocal cohomology of M with respect to the ideal I is the ' cohomology module
of the sequence obtained by applying the left exact functor I';(—), which is defined
above, to an injective resolution of M and this module is denoted by H;(M).

Local cohomology theory has been applied to the study of several conjectures in
commutative algebra one of which is related to radically perfect ideals.

An ideal I of a commutative (not necessarily Noetherian) ring R is said to be radically
perfect if the minimal number of elements of R which generates I up to radical is finite
and equals to the height of /. Clearly, when R is Noetherian, the terms radically perfect
and set theoretic complete intersection coincide.

One of the classical and long-standing problem in commutative algebra and algebraic
geometry is to determine whether each height two prime ideal of the polynomial ring
K[X,Y,Z] over the field K is set theoretic complete intersection (radically perfect).
Although it is shown by Cowsik and Nori that this conjecture has an affirmative
answer when K is of characteristic p > 0, it still remains as an open problem
in the characteristic zero case. But, based on the observations from his several
results, Erdogdu has a foresight that this problem would fail to be true when K
is of characteristic zero. Furthermore he raised another conjecture that "If R is a
commutative domain (not necessarily Noetherian) containing a field of characteristic
zero, then each prime ideal of R[X] is radically perfect implies R is of Krull dimension
one." which was proved to be so in many cases but the exact answer of this conjecture
is also not known in general.

The main purpose of this thesis is to understand certain structures of local cohomology
modules and determining their relationship with set theoretic complete intersection (
radically perfect ) ideals and our motivation is suggested by the well-known fact that
if 1 is an ideal of a Noetherian ring R of height n, and if there exists some R-module M
such that H!(M) # 0 for i > n, then L is not a set theoretic complete intersection.

Moreover, Hellus showed the relation between set theoretic complete intersection
ideals and Matlis duals of local cohomology modules by proving the fact that if
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H!(R) = 0 for all i # ¢ and x= {x|,x2,...,x.} is a regular sequence in I, then I =
/X1,%2, ..., Xc if and only if x; form a D(Hf (R))-regular sequence.

In this thesis, motivated by Hellus’ result, we first deal with the set of associated prime
ideals of Matlis duals of local cohomology modules and show that over a Noetherian
regular local ring of characteristic p > 0, for any non-zero ideal I of R and for i > 0,
zero ideal is in the set of associated prime ideals of Matlis dual of any non-zero local
cohomology module H}(R).

We then determine conditions under which a given positive integer ¢ is a lower bound
for the cohomological dimension cd(I,M) := sup {i € N | Hi(M) # 0} of any module
M with respect to an ideal I of a Noetherian ring R, and use this to conclude that
non-catenary Noetherian integral domains contain prime ideals that are not radically
perfect (i.e. set theoretic complete intersection). Bearing in mind that non-catenary
rings are of Krull dimension > 2, this result is in partial support with Erdogdu’s
conjecture. Furthermore if 7 is any ideal of R and M is any R- module with cd(I,M) =
¢ > 0, we show the existence of a descending chain of ideals I =1, 2 1.1 2 --- 2 I
of R such that for each 0 <i < ¢, cd(l;, M) =i.

In the last chapter of this thesis, we examine the structures of local cohomology
modules and show that over a Noetherian unique factorization domain of dimension at

most three, top local cohomology module HICd([’R) (R) is Artinian only in the trivial case
when cd(I,R) = dimR. We then obtain several results on the Artinianness of top local
cohomology modules in more general cases. Finally, our study is concerned around
the modules of finite length and, in this regard, we first present necessary and sufficient
conditions for various modules to be of finite length. We then use our results to give
an alternative proof of the well-known result that if R is a Noetherian local ring with
maximal ideal m and M is a finitely generated R- module of dimension d, then H% (M)
is finitely generated if and only if d = 0.

Throughout, R will always denote a commutative ring with identity, the dimension of
a ring R will always mean its Krull dimension.
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YEREL KOHOMOLOJi VE RADIKAL OLARAK MUKEMMEL IDEALLER

OZET

Yerel kohomoloji teorisi ilk olarak 1961 yilinda Alexander Grothendieck tarafindan
tanimlanmig olup tanimlandig1 zamandan bu yana cebirsel geometri, cebirsel topoloji
ve degismeli cebir alanlarinda calisan pek ¢ok arastirmacinin ilgisini ¢ekmis, bu
alanlardaki bir ¢ok problemin ¢6ziimiinde kullanilmistir. Ayrica, bu teori giiniimiizde
hala tam olarak dogrulanamayan 6nemli homolojik sanilarla alakali ¢alismalara da
uygulanmustir.

Yerel kohomoloji modiillerinin Grothendieck tarafindan verilen orjinal tanimi cebirsel
geometrideki kavramlar kullanilarak ifade edilmis olsa da bazi 6zel varsayimlar altinda
bu tanim degismeli cebir kavramlariyla asagidaki sekilde ifade edilebilir:

R bir halka, I da R’nin bir ideali olsun. R tizerindeki herhangi bir M modiilii icin
ITM)={xeM: I"x=0: ne N},

[-torsiyon fonktorii tanimlanabilir. Bu sekilde tanimlanan I';(—) toplamsal, kovaryant,
sol tam fonktordiir ve dolayisiyla bu fonktoriin sag tiiretilmis fonktorleri mevcuttur.
Bu sag tiiretilmis fonktorlere M nin [ idealine gore yerel kohomoloji modiilleri denir
ve H{(M) = Z'T;(M) ile gosterilir.

Yerel kohomoloji modiilleri ile degismeli cebirdeki bir¢ok dnemli kavramin (aritmetik
rank, ylikseklik vb.) hesaplanmasinda kullanilan baz1 yeni de§ismezler tanimlanmugtir.
Bu degismezlerin en Onemlilerinden biri de kohomolojik boyuttur. Herhangi bir
M modiliiniin 7 idealine gore kohomolojik boyutu, cd(I,M), asagidaki sekilde
tanimlanabilir:

cd(I,M) = sup{i € N: HI(M) #0}.

Ozel olarak M = R olmasi durumunda / idealinin yiiksekliginin, ht(7), kohomolojik
boyut i¢in bir alt sinir, aritmetik rankinin, ara(7), ise bir iist sinir oldugu bilinmektedir.
Bir idealin kiimesel tam arakesit ideali olmasi1 da ancak cd(/,R) = ht(I) = ara(I)
esitliginin saglanmasi ile miimkiin oldugundan kiimesel tam arakesit ideal kavrami
ile kohomolojik boyut dolayisiyla yerel kohomoloji kavramlar1 arasinda ¢ok yakin bir
iligski oldugu sdylenebilir.

Bir idealin kiimesel tam arakesit ideali olup olmadiginin belirlenmesi degismeli
cebirin ve cebirsel geometrinin temel arastirma konularindan biridir. Bu alanda
onemli pek ¢ok sonu¢ elde edilmis olmasina ragmen, klasik problemlerden biri
olan "Karakteristigi sifir olan bir K cismi iizerindeki K[X,Y,Z| polinom halkasinin,
yiiksekligi iki olan tiim asal idealleri kiimesel tam arakesit midir?" sorusuna halen tam
olarak bir cevap verilebilmis degildir.
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K cisminin karakteristiginin pozitif oldugu durumda, bu sorunun cevabinin olumlu
oldugu, 1978 yilinda Cowsik ve Nori tarafindan ispatlanmistir. Ancak 1994 yilinda
Erdogdu ve McAdam tarafindan yapilan ortak calismada karakteristigin pozitif oldugu
durumun, karakteristigin sifir oldugu durumdan farkli davrandig1 gosterilmigtir. S6z
konusu calismada elde edilen sonucglara paralel olarak Erdogdu, ele alinan saninin
karakteristigin sifir oldugu durumda dogru olmayacag: tezini savunmus ve sonraki
calismalarinda bu tezi desteleyen ¢cok sayida dnemli sonug elde etmistir. Hatta kiimesel
tam arakesit olma tanimini Noether olmayan halkalara da genisleterek "radikal olarak
mitkemmel ideal" tamimini literatiire kazandirmis ve boylelikle konuyu daha genis
bir perspektifle ele alabilmistir. Yapti@1 calismalar sirasinda elde ettidi gozlemler
neticesinde de " R (Noether olmak zorunda olmayan) karakteristigi sifir olan bir cisim
iceren bir tamlik bolgesi ve R[X] de R tizerinde her asal ideali radikal olarak miikkemmel
olan bir polinom halkasi ise R’nin boyutu bir midir?" sorusunu giindeme getirmistir.
Bir¢ok durumda bu sorunun cevabinin olumlu oldugu gosterilmis olsa da, heniiz tiim
durumlar1 kapsayan genel bir ¢6ziim bulunabilmis degildir.

Erdogdu’nun sorusuna Ongoriildiigii gibi olumlu cevap verilebildigi taktirde pek
cok arastirmacinin yiizyillardir iizerinde calistigi sanimnin ¢ok daha genel halinin
karakteristigin sifir olmast durumunda olumsuz cevaba sahip oldugu gosterilecek
olup bu durumda yapilacak calisma literatiire gececek boyutta olacaktir. Fakat var
olan metotlar boyle bir sonuca ulagsmada yetersiz kalmaktadir. Bundan dolayidir ki,
bilindigi tizere, simdiye kadar bu tip alanlarda calisan arastirmacilar disiplinler arasi
iligkilerden yararlanarak yeni metotlar gelistirmis ve bir takim 6nemli sonuclara ancak
bu sekilde ulagabilmiglerdir.

Kiimesel tam arakesit idealleri dolayisiyla radikal olarak miikemmel idealler ile
iligkili teorilerden biri de, yukarida da deginildigi iizere, yerel kohomoloji teorisidir.
Hellus, bu alanlar arasindaki iliskiden yararlanarak Noetheryen yerel halkalar iizerinde
bir idealin kiimesel tam arakesit ideali olabilmesi i¢in gerekli ve yeterli bir kosul
vermistir. Ayni zamanda bu kosul, kiimesel tam arakesit idealleri ile yerel kohomoloji
modiillerinin Matlis duallerinin ilgili asal idealleri arasinda da kuvvetli bir iligki
oldugunu ortaya koymustur. Dolayisiyla da bu sonuctan aldig1 motivasyonla Hellus,
yerel kohomoloji modiillerinin Matlis duallerinin ilgili asal idealleri iizerinde de
calismalar yapmis ve pek cok onemli sonug elde edebilmistir.

Ancak uzun yillardir bir¢ok arastirmaci yerel kohomoloji modiillerinin yapilari iizerine
calistig1 halde yine de bu yapilar halen tam olarak ¢oziilebilmis degildir. Dolayisiyla
bu modiillerin Artin modiiller olup olmadigi, ne zaman sifirlandig1 (diger bir ifadeyle,
kohomolojik boyut i¢in asikar olmayan alt-iist sinirlar belirlenip belirlenemedigi), bu
modiiller iizerindeki sonluluk 6zelliklerinin belirlenmesi (6rnegin; ilgili asal idealler
kiimesinin veya desteginin(support) sonlu elemana sahip olup olmadigi; Bass sayilari,
injektif boyut gibi degismezlerin sonlu say1 olup olmadig1 vb. belirlenmesi) yerel
kohomoloji teorisinin giiniimiizde halen aktif olarak calisilan konulardandir.

Yerel kohomoloji modiillerinin yapisinin bu denli karmagik ve anlagilamaz olmasinin
en onemli nedenlerinden biri, bu modiillerin ¢ogu durumda R iizerinde sonlu
eleman tarafindan iiretilememesi yani R- modiil olarak Noetheryen olmamasidir. Bu
durum go6z Oniinde bulundurularak, yerel kohomoloji modiillerinin yapisini daha iyi
kavramada gelistirilen stratejilerden biri de bu modiillerin "daha kii¢iik" oldugu yani
sonlu eleman tarafindan iiretilebildigi yapilar inga etmektir. Bu baglamda Lyubeznik,
1993 yilinda yaptigi bir calismasinda - Modiil teorisini yerel kohomolojiye
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uygulayarak hem bu teoriyi degismeli cebire uygulayan ilk kisi olmus, hem de
yerel kohomoloji modiillerinin sonluluk 6zellikleri ile alakali pek ¢ok 6nemli sonug
elde etmistir. Daha sonra 1997 yilinda da F-modiil tanimini literatiire kazandirarak
karakteristigin pozitif oldugu durumda da benzer sonuglar1 elde edebilmistir. Yerel
kohomoloji modiilleri ¥ ve F-modiil yapilarina sahip oldugundan, ve bu yapilar
tizerinde sonlu eleman tarafindan iiretilebildiginden, sonuclar1 elde etmek nispeten
daha kolay olmaktadir.

Bu calismanin temel amaci, yerel kohomoloji teorisini kullanarak radikal olarak
miikemmel idealler ile ilgili sonuclar elde etmektir. Bu baglamda ilk olarak Hellus un
calismalarindan elde ettigi sonug¢lardan alinan motivasyonla, Lyubeznik ve Yildirim
tarafindan "Noetheryen regiiler yerel halkalar tizerinde sifirdan farkli herhangi bir ideal
icin tiim yerel kohomoloji modiillerinin, H}(R) i > 0, Matlis duallerinin ilgili asal
idealler kiimesinde sifir ideali daima bulunmakta mudir, yani daima 0 € Ass(D(H}(R)))
olmak zorunda midir?" sorusu ortaya atilmig ve bu sorunun halkanin karakteristiginin
pozitif olmasi durumunda olumlu cevaba sahip oldugu ispatlanmistir. Bu sonucun
ispatinda F-modiil teorisindeki tekniklerden yararlanilmistir.

Daha sonra kohomolojik boyut kavrami ele alinmis ve kohomolojik boyut icin asikar
olmayan alt-iist sinirlar belirlenmistir. Ayrica elde edilen sonuglar kullanilarak, egri
(catenary) olmayan Noether tamlik bolgelerinde kiimesel tam arakesit olmayan en
az bir asal idealin varlig1 gosterilmistir. Egri olmayan Noether tamlik bolgelerinin
Krull boyutunun en az ii¢ olmas1 gerektigi ger¢egi R[X| de her idealin radikal olarak
miikemmel olmas1 i¢in R nin boyutunun en fazla bir olmasi gerektigini per¢inleyen bir
sonugtur.

Tiim bunlarin yanisira "Verilen bir halka iizerinde radikal olarak miikemmel asal
idealler zinciri bulunabilir mi?" sorusundan hareketle cd(I,M) = ¢ > 0 kosulunu
saglayan herhangi bir I ideali ve herhangi bir M modiilii igin cd(;, M) =i, 0 <i <,
olacak sekilde bir I = 1. 2 I._y 2 --- D Iy azalan idealler zincirinin var oldugu
kanitlanmustir.

Son boliimde ise bir onceki boliimlerde elde edilen sonuglarin da yardimiyla yerel
kohomoloji modiillerinin yapisal dzellikleri ile ilgili sonuclar elde edilmistir. Bu
baglamda ilk olarak boyutu en fazla ii¢ olan asal ideallere ayrilig bolgelerinde iist

yerel kohomoloji modiillerinin HICd(I’R) (R) Artinyen olabilmesi i¢in gerek ve yeter
kosul verilmistir. Ardindan daha yiiksek boyutlarda bu modiillerin Artinyenligi
incelenmisgtir. Son olarak da sonlu uzunluktaki modiiller ele alinmis; yerel kohomoloji
modiillerinin ne zaman sonlu uzunlukta olabilecegi ile ilgili sonuglar elde edilmistir
ve ayn1 zamanda "Grothendieck’in Sifirlanmama Teoremi" olarak da bilinen sonuca
alternatif bir ispat verilmistir.

Bu calismada tiim halkalar degismeli ve birim elemana sahip halkalar olup, boyut ile
de her zaman Krull boyutu kastedilmektedir.
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1. INTRODUCTION

The main objective of this thesis is to understand certain structures of local
cohomology modules and their Matlis duals as well as determining their relationships

with radically perfect ideals.

Radically perfect ideals are just the generalization of the notion of set theoretic
complete intersection of ideals in Noetherian rings to rings need not be Noetherian.
This generalization was raised by Erdogdu in search of an answer to a long standing

conjecture detailed in the following.

Let R be a Noetherian ring and X be a closed subset of Spec(R) defined by an ideal 1.
Then X is defined set theoretically by s elements fi,---, f; € R if I can be generated by
fi,+++, fs up to radical, that is, \/(f1, f2, -+, fs) = v/I. Now a natural question arises
as to how can one determine the least number s. This question leads to the following

main definitions:

Definition 1.0.1 [f I is an ideal of R, the arithmetic rank of I, denoted by ara(I), is
defined by

ara(l) = min{n > 0| there exists ay,ay,-- ,a, such that N1 = \/(aj,az,--- ,a,) }.

By Krull’s height theorem , if R is Noetherian, then ara(/) > ht(7); meanwhile ara(l) <
dim(R) + 1 by [1]. Hence the arithmetic rank of an ideal is bounded when dim(R) <
co. If ara(l) = ht(I), then [ is called a set theoretic complete intersection ideal.
Determining set-theoretic complete intersection ideals is a classical and long-standing
problem in commutative algebra and algebraic geometry, for a survey see [2]. Among
an enormous amount of research, many questions related to an ideal being set-theoretic

complete intersection are still open including the following major one:

Conjecture 1 Is every (irreducible) curve in 3-space the set theoretic intersection of
two hypersurfaces, or equivalently is every height two prime ideal of K[X,Y,Z| set

theoretic complete intersection?



It was proven by Cowsik and Nori that this question has an affirmative answer in
characteristic p > 0 case. However, it still remains open in the case when K is of

characteristic zero.

One strategy to approach this conjecture is to use the local cohomology modules and
the motivation is suggested by the well-known fact that ht(I) < cd(I,R) = sup{i €
N | H}(R) # 0} < ara(I). However if the relevant local cohomology module vanishes
(i.e. if cd(I,R) < ara(I)), then H!(R) does not give any information to determine
ara(I). But, surprisingly, Hellus showed that the Matlis duals of local cohomology
modules, D(H}(R)), determine exactly whether or not an ideal is set theoretic complete

intersection by proving the following result:

Theorem 1.0.2 ( [3], Corollary 1.1.4) Let (R,m) be a Noetherian local ring , I a
proper ideal of R, c € N and f, f>, -+, f. € I an R-regular sequence. The following

statements are equivalent:

(i) /(f1, /2, -, fe) = VI-up to radical-the set theoretic complete intersection ideal

(fi, /2, , fe); in particular it is a set theoretic complete intersection ideal itself.

(ii) H!(R) =0 for all | > c and the sequence f1, f>,--- , f. € I is regular on D(Hf(R)).

Motivated by this result, Hellus studied the associated primes of Matlis duals of the

top local cohomology modules and conjectured the following equality:

Asse(D(H, . .. . (R))) = {p € Spec(R) | H., .. . . (R/p) # 0}

It has been shown that this conjecture holds true in many cases; see eg. [4—7].
Furthermore, he proved that the above conjecture is equivalent to the following

condition [ [3], Theorem 1.2.3]:

e If (R,m) is a Noetherian local domain, ¢ > 1 and x,x3,---,x. € R, then the
implication
H(Cx17x2>"'7x6) (R) # O I 0 E ASSR(D(H(CXI>X27”'7XC) (R))
holds.

With this in mind, Lyubeznik and Yildirim, [8], conjectured that if R is regular, then
the above implication holds for all non-zero ideals independently of the number of

generators:



Conjecture 2 Let (R,m) be a Noetherian regular local ring, I be a non-zero ideal of

Randi> 1. IfH\(R) #0, then 0 € Assg(D(H}(R))).

Note that Conjecture 2 is not true for non-regular rings. For a concrete example of
a Noetherian local ring (A, m) of dimension > 1 such that H} (A) = A/m, hence 0 ¢
Assg(D(HL (A))), see [ [9], Example 2.4].

One of the main result in this thesis lend credence to Conjecture 2 in equicharacteristic

p > 0 case.

On the other hand, Erdogdu approached Conjecture 1 from an original and a broader
perspective. In his joint work with McAdam, [10], they gave an example which showed
that the radical of ideals in characteristic zero behaves differently than in characteristic
positive case. Afterwards, Erdogdu’s several results supported this fact and made
him have an inkling that Conjecture 1 is not true in more general case and define

the radically perfect ideals.

Call an ideal I of a commutative ring R radically perfect if among the ideals of R
whose radical is equal to the radical of / the one with the least number of generators
has this number of generators equal to the height of /. Clearly when R is Noetherian,
the terms radically perfect and set theoretic complete intersection are synonymous. In
non-Noetherian cases, examples of radically perfect ideals include all prime ideals of
a finite character UFD R of Krull dimension < 2.( A ring R is of finite character if
each nonzero element of it is contained in only finitely many maximal ideals.) This is
because if p is any prime ideal of R, then either p is of height one in which case p = (u)
for some irreducible u € p and hence grade(p) = ara(p) and so p is radically perfect,
or p is of height two in that case we may choose an irreducible element « in p. Then
u is contained in only finitely many maximal ideals. Let p = py,p2,---,p, be the only
maximal ideals of R containing u, then clearly there are elements v in p = p; and w
in pap3 -+ -p, such that v+w = 1 and that p = /(u,v). It is also clear that {u,v} is a
regular sequence in p and therefore grade(p) = ara(p). (For a more general statement,

see Theorem 4.1 of [11]).

Now let S be an integrally closed strong S-domain of Krull dimension one having the
property that each prime ideal of it is the radical of a principal ideal (e.g. S could be

either a semi-local Noetherian, or a PID, or a Dedekind normal domain with torsion
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ideal class group, or more generally a Priifer domain with torsion Picard group, see
[ [12], Theorem 2.1] and [ [13], Theorem 3.3], respectively) and let R = S[X], then

each prime ideal p of R has the property that grade(p) = ara(p).

Facts of these types led Erdogdu to state the following conjecture [ [14], Question 3.3]:

Conjecture 3 For any commutative domain R containing a field of characteristic zero,
each prime ideal of R[X] is radically perfect implies R is of Krull dimension at most

one.

which was proved to be so by A. Mimouni in [ | 5] in the case when R is a Priifer domain
but still remains open in the general case. Another major motivation of this study is to

find some related results which support Conjecture 3.
The outline of this thesis is as follows:

In chapter 2, we collect some preliminary materials on local coholomogy, Matlis

duality and spectral sequences.

In chapter 3, we concentrate on the Matlis duals of local cohomology modules when
the underlying ring is of characteristic p > 0. The main result of this chapter is that
over a complete Noetherian regular local ring of characteristic p > 0, for an F'-finite F
module .Z with O ¢ Ass(.#), 0 € Ass(D(.#)). As an immediate consequence of this

result, we establish Conjecture 2 in the equicharacteristic p > 0 case.

In chapter 4, we examine the relation between radically perfect ideals and local
cohomology modules. In this regard in Section 1, we first prove a theorem which
gives a sufficient condition for an integer ¢ to be a lower bound for the cohomological
dimension cd(/,M), and then use this to prove the main result of this section which
states that non-catenary Noetherian integral domains contain prime ideals that are not
radically perfect. In Section 2, we show the existence of a descending chain of ideals
I=1.21._1 2 2 Iy of R with succesive cohomological dimensions cd(/;, M) = i,

0<i<e.

Chapter 5 constitutes the results on some structures of local cohomology modules.

In Section 1, we determine the Artinianness of top local cohomology modules

cd

H, (M) (M), and we first prove that over a local unique factorization domain R of
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dimension at most three, the top local cohomology module H,Cd

(R)(R) is Artinian if
and only if cd(1,R) = dimR. On the other hand, it is known that if R is of dimension
> 4, then there are cases where H; A(R) (R) is Artinian when cd(I,R) # dimR. With
this in mind, we then investigate conditions on / which guarantees the existence of
a sub-ideal J of I with cd(J,R) = cd(I,R) = c and Hj(R) being always non-Artinian
(regardless of Hf (R) being Artinian or not). Finally, we use the results of Chapter 4,
among other things, to prove that over a Noetherian local ring (R,m), for a finitely
generated R-module M of dimension n and for an ideal I of R with dim(M/IM) = 1,

cd
HI

(M) (M) is Artinian if and only if cd(1,M) = n. In Section 2, our study is concerned
around modules of finite length. We first provide conditions equivalent to M and
all its Koszul cohomology modules Hi(x°°M) to be of length at most two, where
X = {x1,X2,** ,X, } is any sequence of elements in R. We then consider the case for
divisible modules and show that over a reduced Noetherian ring, finitely generated
divisible modules are of finite length and that a reduced local ring R with finitely many
prime ideals possesses a nonzero finitely generated divisible module implies that R
is of Krull dimension zero. We use these results to give an alternative proof of the
well-known fact that if R is a Noetherian local ring with maximal ideal m and M a

finitely generated R-module with dimension d, then Hﬁ1 (M) is finitely generated if and
only if d = 0.

Chapter 6 is the final chapter which contains a brief summary of the contributions of

this thesis, along with some suggestions for future study.






2. PRELIMINARIES

In this thesis, we assume the background knowledge of commutative algebra and

homological algebra for which we suggest the references [16] and [17], respectively.

In this chapter, we give a very brief introduction to local cohomology modules, Matlis

duality and spectral sequences which we will need them in this thesis.

2.1 Local Cohomology Modules

Local cohomology theory was first recognized by Alexander Grothendieck in his
1961 Harvard seminar, the notes of which was later written out by Robin Harthorne
in [18]. Since then, with its widespread applications in commutative algebra, algebraic
geometry and algebraic topology, this theory has become an important and interesting

research area of its own and sparks numerous algebraists’ interest.

Here we collect some basic definitions and theorems on local cohomology modules

and our main reference is [19].
Definition 2.1.1 Let R be a ring and I be an ideal of R. For an R-module M, set
['/(M) ={x € M : there exists an n € N such that I"x = 0}.

Then I'1(M) is defined as the I-torsion submodule of M.
It is not difficult to see that T'1(—) : € (R) — € (R) defines an additive, left exact and

covariant functor and this functor is referred as an "l-torsion functor".

Definition 2.1.2 The local cohomology functor, denoted by H I’ (=), is defined as the
i""-right derived functors of Ty(—).

Hence the i'" local cohomology module of any R-module M with support in an ideal I is
the i'" cohomology module of the sequence obtained by applying [';(—) to an injective
resolution of M. But then since Ty(—) is left exact, H)(M) = T'1(M).



Henceforth in this section, let R denote a Noetherian commutative ring with unity, /

and J be ideals of R and M be an R-module.

Now we list some basic properties of local cohomology modules which we need them

in the following parts of this thesis.

Theorem 2.1.3 1. If /I =1/J, then Hi(—) 2 Hi(—), for all i. [ [19], Remark 1.2.3]

2. For any multiplicatively closed set S, S~ (H ]’ (M))=H!

IS,IR(S*IM)[[ ], Exercise
1.2.7]

3. If M is a J-torsion R-module, then HI’(M) &~ H}+J(M) forall i. [ [19], Exercise
2.1.9]

4. IfI is generated by n-elements, then HI’(M) =0foralli>n.[[]9], Theorem 3.3.1]

5. Grothendieck’s vanishing theorem: H}(M) = 0 for all i > dimSupp(M). [ [19],
Theorem 6.1.2]

6. Grothendieck’s non-vanishing theorem: If (R,m) is a local ring and M is a finitely

generated R-module of dimension d, then Hﬁi (M) #0. [ [19], Theorem 6.1.4]

7. If (R,m) is a local ring and M is a finitely generated R-module, then H: (M) is
Artinian for alli. [ [19], Theorem 7.1.3]

8. If M is a finitely generated R-module of dimension d, then Hld (M) is Artinian. [
[19], Theorem 7.1.7]

9. If (R,m) is a Gorenstein local ring of dimension n, then H.. (R) = 0 for all i # n and
H' (R) is isomorphic to the injective hull of R/m. [ [19], Lemma 11.2.3]

Here we give some exact sequences related to local cohomology modules:
Theorem 2.1.4 ([19], Theorem 3.2.3) (Mayer-Vietoris Sequence) There is a long
exact sequence of R-modules
- —— Hjey (M) —— Hj, (M) — H{(M) @ H}(M) — Hjr,,(M) — H[ ] ;(M) — ---
Theorem 2.1.5 ( [20], Corollary 3.5) Let x € R be any element of R. Then there is a
short exact sequence

0 —— Hy, (H{(M)) — Hy{ p (M) — Hp (H[ "' (M)) —— 0.
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The definition of local cohomology modules given in terms of right derived functor
is sometimes inconvenient. But there are several equivalent definitions for local
cohomology modules which make the calculations easier. In the following, we list

two of them:

Theorem 2.1.6 Let R be a Noetherian ring, I be an ideal of R and M be an R-module.
Then

H}(M) = limExtl (R /I”,M>

Our next objective is to give a quite different definition of local cohomology; using

either a direct limit of Koszul cohomology or a certain kind of Cech cohomology:

Definition 2.1.7 For any x € R, the Cech complex of R with respect to x is the complex

given by C*(x;R): 0 R R, 0. graded so that the degree 0 piece of the
complex is R, and the degree 1 is R, where the differential is the natural localization
map. Let now x = {x1,x2,-- ,x,} be a sequence of elements in R. Then the Cech

complex of R with respect to the sequence x is defined as in the following:
C'(x;R) = C.(Xl;R) QR C.(XZ;R) QR QR C'(x,,;R).

For any R-module M, the Cech complex of M with respect to the sequence x, denoted
by C*(x;M), is the tensor product C*(x;M) = C*(x;R) @g M. Then the modules in
C*(x;M) are

0 M @iMi @i<jMx,-xj — —>Mx1x2'-~xn — 07

where the differentials are the natural maps induced from localization, but with

suitable signs attached.

Definition 2.1.8 Given any x € R, the Koszul complex of R with respect to x is given

by K*(x;R): 0 R——R 0, where the differential is just multiplication by
x. It is not difficult to see that C*(x;R) = limK* (x';R) and so for any sequence x =

{x1,x2, - ,x,}, we have the isomorphism C*®(x;R) = ling'(x{,xé7 s R).

Theorem 2.1.9 Let M be any R-module and I = (xy,x2,- -+ ,x,) be an ideal of R. Then

Hi(M) = H'(C*(x1,%2, -+ %3 M)) = H' (lim K* (], ], -+ )

M))
9



We end this section with the following basic example:

Example 2.1.10 Let R = k[x| be a polynomial ring over the field k and I = (x) an ideal

of R. Then the exact sequence

0——R K——K/R 0,

where K = k(x) is the fraction field of R, is the injective resolution of R. Then the
local cohomology modules, H } (R), can be computed by taking the cohomology of the

sequence

0——TI(K)—— T (K/R)——0.

Since K is torsion-free, T;(K) = 0 and so H(R) = 0 and H}'(R) =T;(K/R). Hence
H} (R) is the set of x-torsion elements in K /R which can be identified as Ry/R =
k[x,x~1]/k[x]. Moreover it is obvious from the above exact sequence that Hi(R) = 0
foralli> 0.

One could obtain the same result by using Cech complex in which there is no need to

determine the injective resolution of R.

2.2 Matlis Duality

In his Ph.D. thesis, Eben Matlis studied the theory of injective modules and a special
kind of duality, which was later referred as "Matlis duality", [21]. In this section, we
recall some basic definitions and theorems about Matlis duality. All results listed here

and more can be found in the Appendix A of [22].

Definition 2.2.1 Let R be a commutative ring, M and N be R-modules, and f : M — N
be an injective R-module homomorphism. If every nonzero R-submodule of N has

nonzero intersection with f(M), then f : M — N is called as an essential extension.

It is a well-known fact that an R-module is injective if and only if it has no proper
essential extension. Moreover, any R-module M has an essential extension f : M — ¥

with .# is injective.

Definition 2.2.2 The injective hull or injective envelope of M, which is denoted by
Egr(M), is an injective module containing M, and has the property that any injective

module containing M contains an isomorphic copy of Er(M).
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Definition 2.2.3 Let (R,m) be a Noetherian local ring, E := Eg(R/m) be the injective
hull of the residue field R/m. Then Matlis dual of any R-module M is denoted by D(M)
and defined as D(M) :== Homg (M, E).

It is clear by definition that D(—) is a contravariant exact functor.

Theorem 2.2.4 Let (R,m) be a Noetherian complete local ring. Then

o There is one-to-one correspondence between Noetherian and Artinian R-modules
given as follows: If M is Artinian (resp. Noetherian ), then D(M) is Noetherian

(resp. Artinian).
e [f M is either Noetherian or Artinian, then D(D(M)) = M.

e R and E are Matlis duals of each others.

2.3 Spectral Sequences

We use spectral sequences in the proofs of our many results and so we give some
definitions and basic facts on them. Our reference in this section is [ 17]. Throughout,

let 4" be an abelian category.

Definition 2.3.1 For all integers p,q and r with r > 1, a cohomological spectral

sequence in € consists of

1. a family of objects {EF*} in €,
2. dP: EPY 5 EPTY such that d? = 0 (ice. dPod? ™ =0 ), and
p+rg—r+l

3. isomorphisms o : ker(dl*?) /im(df ) — Effl

Definition 2.3.2 A spectral sequence {EF*?} is bounded if for all r,n € N, the number

of non-zero objects of the form {Ef ’nik} is finite.

Example 2.3.3 o [fE/" =0 unless p > 0and g >0, {EF""} is first quadrant spectral

sequences.
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o IfEP? =0 unless p<0and q <0, {E"} is third quadrant spectral sequences.

Such spectral sequences are bounded.

It is worth noting that if { £/*?} is a bounded spectral sequence, then for each p, g, there

is an rg such that E"? = EZ}% for all r > ro. We write EZ to this stable value of Ef*.

Definition 2.3.4 A bounded spectral sequence {EI*"} convergences to H* if there

exists a finite filtration
qu)tH}’l gq)l‘—lHn g gq)lHl’l gq)OH}’l:Hn
of H" such that EZ? = ®PH" /®PT H" for all p+q = n.

Recall that for any additive functor F : o/ — 4 between abelian categories, an object
A € & is F acyclic if all right derived functors 2'F (A) = 0 for all i > 0. As an example,
take any ideal I of a Noetherian ring R, then any injective R-module can be viewed as

alj(—): € (R) — % (R) acyclic, where I';(—) is an I-torsion functor defined in 2.1.

In this thesis, we will need the following special type of spectral sequence; which is

known as the Grothendieck composite-functor spectral sequence:

Theorem 2.3.5 ([17], Theorem 5.8.3) Let o/, % and € be Abelian categories, and
suppose </ and 9% have enough injective objects. Let F : &/ — B and G: B — €
be left-exact additive functors. Suppose that for every injective object I of <f, the
object F(I) of A is acyclic for G. Then for every object A of <7 , there is a spectral

sequence such that

EV? = #PFRIG(A) = %P 1(FG)(A)
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3. MATLIS DUALS OF LOCAL COHOMOLOGY MODULES IN
CHARACTERISTIC p >0

This chapter consists of results from the joint work with Gennady Lyubeznik, [].

Our main purpose here is to prove the following result which establish Conjecture 2 in

equicharacteristic p > 0:

Theorem 3.0.1 Let (R,m) be a complete Noetherian regular local ring containing
a field of characteristic p > 0 and I a non-zero ideal of R. If H,’(R) #0, then 0 €
Assg(D(HE(R))).

We need F-module theory for the proof of Theorem 3.0.1 and so we first collect some

basic definitions and results about this theory and our main reference is [23].

3.1 Preliminaries on Lyubeznik’s F-Modules

Throughout, R is a commutative Noetherian regular ring of characteristic p > 0.

Definition 3.1.1 Let R be the additive group of R regarded as an R- bi-module with
the usual left action and with the right R- action defined by rr=rPr forall r € R and

¥ € R The Frobenius functor
F :R—mod — R—mod

of Peskine-Szpiro [24] is defined by
F(M)=R @xM

FM —" N)= (R orM L% R @xN)

for all R-modules M and all R-module homomorphisms h, where F (M) acquires its

. /
R-module structure via the left R-module structure on R .

The iteration of a Frobenius functor on R leads one to the iterated Frobenius functors
Fi(—) which are defined for all i > 1 recursively by Fl(_) = F(—) and Fitl — Fo
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Fi(—) foralli> 1.

Note that the Frobenius functor F(—) is exact [ [25], Theorem 2.1]; F(R) = R and for
any ideal  of R, F(R/I) =R/I [P where 117} is the ideal of R generated by p-th powers
of all elements of I [ [24], 1.1.3d].

Note also that if R is a complete local ring, then for any Artinian R-module N,
F(D(N)) =D(F(N)) [ [23], Lemma 4.1] and so R = F(R) = F(D(E)) = D(F(E))
implies F(E) = E. Then it follows from Remark 1.0.(f) of [23] that for any finitely
generated R-module M, F(D(M)) = D(F (M)).

Now, for an R-module M, define a Frobenius map yy : M — F(M) on M by
Yy (m) :=1®@m e F(M) for all m € M. Tt is worth pointing out that if ann(m) =1 C R,
then ann(yy,(m)) = I17).

An F-module .# is an R- module equipped with R-module isomorphism 6 : .Z —

F(.#') which we call the structure morphism.

A generating morphism of an F module .# is an R-module homomorphism 3 : M —
F(M), where M is some R-module, such that ./ is the limit of the inductive system in

the top row of the commutative diagram

v —F s rony 22 P20y P

B lF le
F(M) —% F2(M) —55 F3(M) —=5
and 0 : /4 — F(.#), the structure isomorphism of .#, is induced by the vertical

arrows in this diagram.

If B is an injective map, then the exactness of F implies that all maps in the direct limit
system are injective, so that M injects into .#. In this case, we shall refer to f as a
root morphism of .#, and M as a root of .Z. If .# is an F-module possessing a root
morphism 3 : M — .4 with M finitely generated, then we say that ./ is F-finite. In

particular, R, with any F-module structure, is an F'-finite module.

3.2 Main Results

In this section, we first prove the following result as a consequence of which we lend

credence to Conjecture 2 in equicharacteristic p > 0:
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Theorem 3.2.1 Let (R,m) be a complete Noetherian regular local ring of
characteristic p > 0 and # be an F-finite F module such that 0 ¢ Ass(.#). Then
0€ Ass(D(A)).

We would like to point out that 0 ¢ Ass(.#) is a necessary condition of Theorem 3.2.1.
Indeed, R itself is an F-finite F module and 0 € Ass(R) but 0 ¢ Ass(D(R)) = Ass(E) =

{m}.

We need a series of lemmas to give the proof of Theorem 3.2.1.

Lemma 3.2.2 Let (R,m) be a complete Noetherian regular local ring containing a
field of characteristic p > 0 and .# be an F-finite F-module such that 0 ¢ Ass(.#).
Then the Matlis dual of M, D(. ), can be expressed as

F2(a)

& FZ(N) - )’

D() = lim(N <~ F(N)
where N is an Artinian R-module and o : F(N) — N is a surjective map such that

Ker(ot: F(N) — N) # 0.

Proof. Since ./ is an F-finite F-module, there exists a root morphism 8 : M — F (M)

with a finitely generated R-module M such that

B

A =timm s Py LB

2

Then applying Matlis dual functor D(—) = Homg(—, Er(R/m)) to .# , we obtain

D(B) D(F(B)) D(F*(B))

D(.4) = lim(D(M) D(F(M) D(F*(M

But then since Frobenius functor commutes with D(—), we can write D(.#) as

F(a) F2(a)

D(A)=lm(N +*— F(N) ¢—— F*(N) ¢ ),

where N = D(M) and oo = D(f). Then since f is injective and M is a finitely

generated, a = D(f) is surjective and N = D(M) is Artinian.

On the other hand, since 0 ¢ Ass(.#), I = Ann(M) = Ann(N) is a nonzero ideal of R.
Then it follows that Ann(F(N)) = 1P} and so Ker(at : F(N) — N) # 0, as desired. [
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Lemma 3.2.3 Let the notations be as in Lemma 3.2.2. Then, for each k > 1, there

exists by, € Ker(FK=!(a)) such that ann(by) = mlP" 7,

Proof. Since Ker(o : F(N) — N) # 0 is a non-zero Artinian R-module, there exists
an element by € Soc(Ker(a)) C F(N), where Soc(Ker(a)) := Annge(q)(m) denotes
the socle of Ker(o) and define by, for all k > 2, inductively as the image of b;_;
under the Frobenius map (defined in the preceding section) on FK~!(N), that is
bi == Ypi1(y) (b_1) = 1 ®by_; € FX(N). Then by induction on k (considering that
ann(bh;) = m and ann(x) = I implies ann(y(x)) = IP), we have ann(by) = mlP .
On the other hand, since b; € Ker(a) := Ker(F°(«)), an easy induction argument
shows that by, € Ker(F*~!(a)) for all k > 0. For if b_; € Ker(F¥"%(at)), then

FYa)(br) = F< o) (1 @b 1) = 1@ F* () (bg—1) = 0. O

Lemma 3.2.4 Let the notations be as in Lemma 3.2.2 and let by be defined as in
Lemma 3.2.3 and y € m\ mX. Then ann(yby) C mP 'k I particular, if k > 4,

ann(yby) C mk,

Proof. To prove the fact that ann(yb;) C mP* ok , suppose on the contrary that there
exists an element z € ann(yby ) such that z ¢ m? "'~k Then clearly, yz € annby. On the
other hand as R = k[[X, ..., X,]], K = R/m a field of characteristic p > 0, and y ¢ mF

k—1_ .
andz¢ m” % we may write

y=f+f
z=g+§

where f (resp. g) is a nonzero polynomial in k[[X,X>,...,X,]] of degree at most

=1 _k—1) and f/(resp. g/) is either zero or a formal power series in

k — 1(resp. p
[[X1,X, ..., X,]] in which each summand has degree at least k (resp. p*~! —k). Then
vz=fg+f¢ +gf +4'f. Note that since k[[X1,...,X,]] is an integral domain and f
and g are non-zero elements in k[[X1, ..., X,]], so is fg. Note also that since fg’, gf’ and
g'f' are either zero or contain terms of degrees strictly bigger than the smallest degree
of fg, they cannot cancel any terms of smallest degree. But then since the degree of

the smallest term of fg is less than or equal to 0 # deg(fg) < p* ' —k—1+k—1=

P 1 =2, yz¢ mP" which contradicts the fact that yz € ann(by) = m/""'l. Hence
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ann(yby) Cm? ¥, as desired.

If, in particular k > 4, then P! —k >k and so ann(yby) C mP 'k C mk, O

Now we are ready to give the proof of Theorem 3.2.1:

Proof of Theorem 3.2.1. Since .# is an F-finite F- module such that 0 ¢ Ass(.#), it

follows from Lemma 3.2.2 that

F(a) F2(a)

D(A)=lm(N +*— F(N) ¢—— F*(N) ¢ ),

for some Artinian R-module N and surjective map « : F(N) — N. It is worth noting
that, the exactness of the functor F¥(—) implies that F¥(a) is surjective for all k > 0.
Now we claim that there exists a nonzero element n' = (1,1, - ,n}c, ) eD(A)
such that ann(n},) C m* for all k > 4, where n;{ is the image of n' in F¥(N).

To construct such an element, let n6 be an element of N and, for every 1 < k < 3,
choose n}, € FX(N) such thatn}_, = F*~!(a)(n}). For k > 4, let b; € Ker(F*~!(a)) be
as defined in Lemma 3.2.3 and define #; in such a way that F*~1(a)(n) = n;(_l. Then,
either ann(n;) C mf or ann(ny + by) C m¥. Indeed, if ann(ny + by) € m¥, there exists
an element y € m\ m* such that y(n; +b;) = 0 and so ann(ny) C ann(yn;) = ann(yby).
But then it follows from Lemma 3.2.4 that ann(n) C ann(yby) C m¥.

Now, for k > 4, define

N S if ann(n;) C m¥,
K7 g+ by, otherwise.

Clearly, n = (nz),nll, S ,n;c, --+) € D(.#) and ann(n,) C m* for all k > 4. This proves

the claim.

Finally, ann(r') = 0 for if z € ann(r), then z € ann(n;c) C mF for all k > 4 which then

implies that z € (),,cym” = {0}. This completes the proof. O

We conclude this chapter with the proof of Theorem 3.0.1.

Proof of Theorem 3.0.1. Without loss of generality, we may, and do, assume that R
is complete [ [3], Remark 4.1.1]. Since R is an F-finite F- module, so are its all local
cohomology modules and since 0 ¢ Assg(H!(R)) for any nonzero ideal I of R, the

result follows from Theorem 3.2.1. [l
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4. RADICALLY PERFECT IDEALS AND LOCAL COHOMOLOGY
MODULES

This chapter consists of some results from our joint work with Vahap Erdogdu, [26].

4.1 The Relation Between Radically Perfect Ideals and Local Cohomology

The aim of this section is to prove the following result:

Theorem 4.1.1 Over a non-catenary Noetherian domain, there exists a prime ideal

that is not a set-theoretic complete intersection.

Although Theorem 4.1.1 is stated for Noetherian rings, the motivation behind it comes
from a more general setting as indicated in Chapter 1 and bearing in mind that
non-catenary rings are of Krull dimension > 2, this theorem is in partial support of

Conjecture 3.

We need the following theorem for the proof of Theorem 4.1.1.

Theorem 4.1.2 Let R be a Noetherian ring, M a finitely generated R-module and I
an ideal of R with dimSuppgr(M/IM) = d. Let t > 0 be an integer. If there exists an
ideal J of R such that Hldjf (M) # 0, then t is a lower bound for cd(I,M). Moreover; if
cd(I,M) =t, then

H (Hj(M)) = H{ ' (M)

and dimSuppR(H!(M)) = d.

Proof. Consider the Grothendieck’s spectral sequence
; +
E} = HJ(H] (M)) = H} [ (M)

and look at the stage p +¢q = d +1. Since Supp(H} (M)) C V(I)NSupp(M) C V(I +
AnnM), dimSupp(H{ (M)) < d for all q. Therefore it follows from Grothendieck’s

vanishing theorem that for all p > d, Ef A4H=P — (0. But then since the limit term
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EdH = Hldjj (M) does not vanish, there is at least one p < d such that
Jd+t— d+t—
Ey“T P =Hj(H; (M) #0.

Hence H,‘Ht_p(M) #0andsocd(I,M)>d+t—p>t.
If, in particular, cd(I,M) = ¢, then the above spectral sequence degenerates to an
isomorphism H¢(H!(M)) = Hldjf (M).

Since HY(H!(M)) # 0, it follows from Grothendieck’s vanishing theorem that
dim Suppp(H}(M)) > d. On the other hand, since dimSuppg(Hj(M)) <
dim(R/I+ AnnM) = d, we conclude that dim Suppg(H}(M)) =d. O

So far, for a finitely generated R- module M, the best known lower bound for cd(Z, M) is
hty/(I) = htI(R/AnnM). As an immediate consequence of Theorem 4.1.2, we sharpen
this bound to dim(M) — dim(M /IM) > hty ().

Corollary 4.1.3 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension n and I an ideal of R such that dim(M /IM) = d. Then n—d is
a lower bound for cd(I,M). Moreover, if cd(I,M) = n—d, then

Hp (H] (M) = Hy, (M)

and dim Supp(H}~%(M)) = d.
Proof. This follows from Theorem 4.1.2 and the fact that H} (M) # 0. d

Corollary 4.1.4 Let (R, m) be a Noetherian local ring of dimension n and I an ideal of
R with d = dim(R/I) such that cd(I,R) = ht(I) = h. Then dim(R) = ht() + dim(R/I)
and

Hy "(H] (R)) = Hyy(R).

Proof. It follows from Corollary 4.1.3 that dim(R) — dim(R/I) < c¢d(I,R) = ht(]),
while the other side of the inequality always holds. Therefore dim(R) = ht(/) +
dim(R/I). Now the required isomorphim follows from Corollary 4.1.3. O

With the help of the above results, we now prove Theorem 4.1.1:
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Proof of Theorem 4.1.1. Let R be a non-catenary Noetherian domain. Then as being
catenary is a local property, R is a non-catenary local domain for some prime ideal q of
R. Hence there exists a prime ideal pq of R such that ht(pq) < dim(Ry) — dim(Rg/pg).
But then it follows from Corollary 4.1.4 that ht(p) = ht(pg) < cd(pg,Rq) < cd(p,R)
and therefore p can not be a radically perfect(set theoretic complete intersection) ideal.

O

On the other hand, being catenary is not sufficient to conclude that each prime ideal
of a ring R is radically perfect. As an example take (R,m) to be a valuation ring of
Krull dimension > 2, then R is catenary and yet ara(m) = 1 < 2 < ht(m). Hence the

maximal ideal m of R is not radically perfect.

4.2 Descending Chain With Successive Cohomological Dimensions

Let R = S[X] be any Noetherian polynomial ring of dimension n over a ring S. Then
it follows from Theorem 1 of [27] that every maximal ideal m of maximal height in R
is radically perfect. The question we are interested in is whether there is a descending
chainm=yp, D p,—1 2 - 2 po =0 of (prime) ideals of R such that each p; is radically

perfect for all i, 0 <i < n.

The quest to an answer to this question led us to the following result:

Theorem 4.2.1 Let R be a Noetherian ring, I an ideal of R and M any nonzero
R-module with cohomological dimension cd(I,M) = ¢ > 0. Then there is a descending
chain of ideals

I=12112 21
such that cd(I;, M) =i foralli, 0 <i<c.
Proof. Consider the set
S={JCI|cd(J,M)<c}.

Clearly, the zero ideal belongs to S and so S is a non-empty subset of ideals of R.
Since R is Noetherian, S has a maximal element, say I._;. We claim that cd(I,_1,M) =

¢ — 1. To prove this, let x € I\ I._ and so I._; + Rx C I. But then it follows from the
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maximality of /._; in S and Remark 8.1.3 of [19] that
c<cd(l,—1+Rx,M) <cd(l._1,M)+1<c+1.

Hence cd(I,—1 +Rx,M) = cd(l,—;,M) + 1 = c and so the claim follows.

Iterating this argument, one can obtain a descending chain of ideals, as desired. U

Recall that a subspace Z of a topological space X is said to be locally closed, if it is
the intersection of an open and a closed set. Let X be a topological space, Z C X be
a locally closed subset of X and let F be an abelian sheaf on X. Then the i’ local
cohomology group of F with support in Z is denoted by HS(X,F). For its definition
and details, see [18] and [28].

If, in particular, X = Spec(R) is an affine scheme, where R is a commutative Noetherian
ring, and F = M~ is the quasi coherent sheaf on X associated to an R-module M, we
write H, (M) instead of HL(X,M™).

The following corollary may be considered as an easy application of our result above.

Corollary 4.2.2 Let R be a Noetherian ring, M an R-module and I an ideal of R such
that cd(I,M) = ¢ > 1. Then there is a descending chain of locally closed sets
T 1 2Tc22--2T
in Spec(R) such that cd(T;,M) =iforall 1 <i<c—1.
Proof. Let I be an ideal of R with cd(I,M) = ¢ > 1. Then it follows from Theorem
4.2.1 that there is a descending chain of ideals
I=1.2112 2421

such that cd(I;,M) =i for all 0 <i < c¢. Let now U; = V(I;) and define the locally

closed sets T; := U} \ U;+;. Then it is easy to see that
Te1 2T 2 2Th.

On the other hand, it follows from Proposition 1.2 of [28] that there is a long exact

sequence,
' ' +1 i+1
wo—— Hy (M) —— Hy,(M) —— H}, (M) —— H{) (M) — -+
As H[jj'i (M) = HI{(M) forall 1 <i<c—1 and for all j > 0, it follows from the above

long exact sequence that cd(T;,M) = i. O
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5. SOME APPLICATIONS ON THE STRUCTURES OF LOCAL
COHOMOLOGY MODULES

One of the important problems in the theory of local cohomology modules is to
determine whether a given local cohomology module is Artinian, or not [Third
Problem, [29]], which was studied by several authors, see eg. [30-32]. In the first
section of this chapter, we obtain some related results to this problem, particularly
for the top local cohomology modules, H,Cd(I’M) (M), where cd(I,M) = sup{i € N :

Hi(M) #0}.

In the second section, we first present necessary and sufficient conditions for various
modules to be of finite length. We then use our results to give an alternative proof of
the well-known result that if R is a Noetherian local ring with maximal ideal m and M
is a finitely generated R- module of dimension d, then H% (M) is finitely generated if

and only if d = 0.

5.1 Artinianness of Top Local Cohomology Modules
This section consists of some results from our joint work with Vahap Erdogdu, [26].

One of the main results of this section is the following theorem which resolves
the Artinianness of top local cohomology modules, HICd(I’R) (R) over local unique

factorization domains of dimension at most three:

Theorem 5.1.1 Let R be a Noetherian local unique factorization domain of dimension
at most three and I an ideal of R. Then chd(l,R) (R) is Artinian if and only if cd(I,R) =
dimR.

To prove this, we need the following lemma:

Lemma 5.1.2 Let (R,m) be a Noetherian local ring, I an ideal of R and M an
R-module (not necessarily finitely generated) with cd(I,M) = c. If there exists an

element x € m\ I such that cd(I + Rx,M) # c, then Hj (M) is not Artinian.
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Proof. Letx € m\ [ such that cd(I + Rx,M) # c. Then it follows from the fact cd(/ +
Rx,M) < cd(I,M)+ 1 that either cd(/+Rx,M) =c+ 1 or cd(I+ Rx,M) < c. If cd(I +
Rx,M) = ¢+ 1, then the result follows from Corollary 4.1 of [31]. Now suppose that

cd(I 4+ Rx,M) < c. Then it follows from the following exact sequence

o Hf gy (M) —— Hf (M) —— Hf (M), — Hf 3 (M) -
=0 =0
that Hf (M) . = Hf (M) # 0 and so dim Supp(Hf (M)) ¢ {m}. Therefore Hf (M) is not

Artinian. O

It is worth noting that (as used in the above proof) there exist ideals such that cd(I +
Rx,R) < cd(I,R). As an example, let R = k[[x1,x2,x3]] and I = (x;) N (x2,x3). Then
it follows from Mayer Vietoris sequence that c¢d(I,R) = 2 but I + Rx; = Rx; and so
cd(I+Rx;,R)=1<cd(l,R) =2.

Remark 5.1.3 Let R be a Noetherian local ring of dimension n > 0, I be an ideal
of R with h = ht(I) < n and let p be a minimal prime ideal of I such that ht(p) = h.
Then consider the local cohomology module H Ih (R) and localize it at p to obtain the
isomorphism (H!(R)), H;’p (Rp). Now since Ry, is a local ring with maximal ideal
pp of dimension ht(p) = h, it follows from Grothendieck’s non-vanishing theorem that
ng (Rp) # 0 and so p € Suppg(HI'(R)). Hence HJ'(R) is non-Artinian ( as p is not

maximal).

We use this remark together with Lemma 5.1.2 to give the proof of Theorem 5.1.1:

Proof of Theorem 5.1.1. We give the proof only when dim(R) = 3. For smaller

dimensions, the argument would be the same.

Let now R be a local UFD of dimension three, I an ideal of R and ¢ := cd(/,R) and
h:=ht(I). Then keeping in mind that ¢ € {0,1,2,3} and & < ¢, we have the following

cases:

If ¢ =0, then [ is necessarily a zero ideal (as R is domain) and so Hf(R) = R is
non-Artinian. On the other hand, if ¢ = 1, then A = ¢ = 1 and therefore it follows

from Remark 5.1.3 that Hf (R) is again non-Artinian.
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The case ¢ = 2 implies either 4 = 1 or A = 2. In particular, if 7 = ¢ = 2, then again
by Remark 5.1.3 we obtain Hf (R) is non-Artinian. Suppose now 2 =1 <2 = c¢. Then
since all height one prime ideals over UFDs have cohomological dimension one, we
have that / is not prime. But clearly it is contained in some height one prime ideal
p = (x) properly and so I + Rx = Rx. Therefore cd(/ + Rx,R) =1 <2 =cd(l,R) and

so it follows from Lemma 5.1.2 that Hf (R) is non-Artinian.
In the final case when ¢ = 3, Hf (R) is Artinian by Exercise 7.1.7 of [19].

Hence one conclude from the above arguments that the only case for the top local

cohomology module H (R) to be Artinian is when ¢ = 3 = dim(R). O

Remark 5.1.4 Note that Theorem 5.1.1 is not valid for UFDs of dimension greater
than three. For a concrete example, let R = k[[x1,x2,x3,x4]] be a formal power series
and I = (x1,x2) N (x3,%x4). Then it follows from Mayer-Vietoris sequence that cd(I,R) =
3 and H; (R) = Eg(k), where Eg(k) is the injective hull of k.

In the following, we examine the Artinianness and non-Artinianness of top local

cohomology modules in more general cases.

Our following result shows the existence of a chain of ideals with Artinian top local

cohomology modules over any Noetherian local ring of dimension > 4:

Proposition 5.1.5 Let (R,m) be a Noetherian local ring of dimension n > 4. Then

there exists a descending chain of ideals
In 212203

of R such that cd(J;,R) = i for each 3 <i < n. Moreover each top local cohomology

module, H ;,' (R), is Artinian.

Proof. Let xj,xp,---,x, be a system of parameters for R that is m = /(x1,x2, - ,X,)
and let J, = (x1,x2,-++,%,). Clearly, cd(J,R) =n and HJ (R) is Artinian. Then it
follows from Corollary 5.2 of [33] that there exists an (n— 1)-generated ideal, say J,,_1,
such that H }’}:(R) = Hj (R). We may proceed in this way and apply Corollary 5.2
of [33] till we reach up to three generated ideal /3. Then clearly J, 2 J,—1 2 --- 2 J3isa

descending chain of ideals with successive cohomological dimensions, and isomorphic
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top local cohomology modules H ;’3 (R)=... = H}f;ll (R) = Hj (R) which are Artinian,

as desired. O

On the other hand, under some mild conditions on an ideal / of a Noetherian local
ring R, there exists a sub-ideal K of I such that cd(K,R) = cd(I,R) = ¢ and Hg(R)
is non-Artinian (regardless whether Hj (R) is Artinian or not) as the following result

shows:

Theorem 5.1.6 Let (R,m) be a Noetherian local ring of dimension n and I a non-zero
ideal of R with depth(I,R) > 0 and ¢ = cd(I,R) < n—2. Then there exists an ideal
K C I of R such that cd(K,R) = cd(I,R) = c and Hg(R) is non-Artinian.

To prove Theorem 5.1.6, we need the following two lemmas:

Lemma 5.1.7 Let (R,m) be a Noetherian local ring of dimension n and I a non-zero
ideal of R such that depth(I,R) > 0 and ¢ = cd(I,R) < n— 1. Then there exists an ideal
J C I of R with cd(J,R) = n— 1. Furthermore, if depth(I,R) > 1 and ¢ = cd(I,R) <

n— 1, then H}~'(R) is Artinian.

Proof. Let I be a non-zero ideal of R such that = depth(I,R) > 0 and x;,x2,- - ,X;
be an R-regular sequence contained in /. Then there exists x;11,X;42,- - ,X, such that
X1,X2,- -+ ,x, forms a system of parameters for R. Let now K := (X;11,X42,** ,Xy)-
Clearly, v/T+ K =m and cd(K,R) <n—t < n— 1. Then it follows from the following
Mayer-Vietoris sequence

- —— H " (R)HE ' (R) — Hj\ g (R) ——— Hy(R)

——
#0

——— H}'(R)DHE(R) —— H x(R) —— HXTH(R) =0
S—— =
=0 =0
that cd(/NK,R) = n— 1 and in particular, if depth(Z,R) > 1 and ¢ = cd(I,R) <n—1,
then the above exact sequence yields an isomorphism HJ/ (R) = H™(R). Hence J :=

INK is the desired ideal. O
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Lemma 5.1.8 Let R be a Noetherian ring, I an ideal of R, M an R-module with
cd(I,M) =c>0and
I:Icglcfl 2 210

be the filtration of I as described in Theorem 4.2.1. Then for each 0 <i < c—1, the

local cohomology module H }i (M) is not Artinian .

Proof. Let 0 <i<c¢—1 and x € [;;; \ I; and consider the ideal I; + Rx. Then as
constructed in the proof of Theorem 4.2.1, cd(Z; + Rx,M) = i+ 1. Now from Corollary
3.5 of [20], we have the following short exact sequence
0 —— Hp, (H] (M)) — H; ' g (M) — Hig,(H; ™ (M)) — 0.
—
Hence Hllex(Hli,- (M)) = HI’;TRX(M ) # 0. But then it follows from Grothendieck’s
vanishing theorem that dim Suppg (H }i (M)) > 1,and so H ,’l (M) is not Artinian. O

We now give the proof of Theorem 5.1.6:

Proof of Theorem 5.1.6 . Let I be a non-zero ideal of R with depth(Z,R) > 0 and ¢ =
cd(I,R) < n—2. Then it follows from Lemma 5.1.7 that there exists an ideal J,,_; C [
of R such that cd(J,—1,R) = n— 1. But then by Lemma 5.1.8 we have a descending
chain of sub-ideals J,_1 2 J,,_» 2 -+ 2 Jy of J,,_1 such that cd(J;,R) =i and H}i (R) is

non-Artinian for each 0 <i <n—2. Hence K :=J. C [ is the desired ideal. O

In the remaining part of this section, we use the notion of Serre subcategory and
Corollary 4.1.3 of Section 2 to obtain some further results on the Artinianness of top

local cohomology modules.

Recall that a class . of R-modules is a Serre subcategory of the category of
R-modules, %(R), when it is closed under taking submodules, quotients and
extensions. To obtain a necessary condition for the non-Artinianness of top local

cohomology modules, we need the following lemma:

Lemma 5.1.9 Let R be a Noetherian ring, M an R-module (not necessarily finitely
generated) and let . be a Serre subcategory of € (R). Let I and J be two ideals of
R such that HyV'(Hf /(M) € 7 for all 0 < i < ¢ = c¢d(I,M) and H/[5(M) ¢ . for
some positive integert. Then H}(Hf (M)) ¢ 7.
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Proof. Consider the Grothendieck’s spectral sequence
, +
E} = Hj (H}(M)) = H[ /] (M)

and look at the stage p+¢q =c+t. Let now 0 < i < ¢ = cd(I,M). Since ELFhei =

t+i,c—i t+i,c—i
E, ’

for sufficiently large r and E) is a subquotient of E;ﬂ.’c”' €., ElFic—ic
S forall 0 <i<c=cd(l,M).

On the other hand, since E5“ = HY,(H{ (M)) = H;{5(M), there exists a finite filtration
0= q)l+c+l HI+C C (DI+CHI+C cC...C (I)l Hl‘+C C (I)OHIJFC _ Hl+c

of H'*¢ = H[T5(M) such that EZY = ®PH'*¢ /@PTIH'** for all p+¢ =1+c. Since
for all p < t, E29 =0, we have that ® H'"¢ = ... = @' H'** = ®OH'*¢ = H'*¢. But
then since E/FH¢—1 = @I HH!TC /@I HITC ¢ Z forall 0 < i < ¢, P H T €. and

so it follows from the short exact sequence

0—— @ H —— HIT(M) ELf 0
e gy“

that E.¢ ¢ .. Since EL¢ is a subquotient of Eé’c and E'¢ ¢ .7, it follows that EJ =
HY(HE (M) ¢ 7. 0

Corollary 5.1.10 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension n with dim(M /IM ) = d. IfHICd(I’M) (M) is Artinian, then either

cd(I,M) = n or HL'(H}(M)) # 0 for some i withn —d <i < cd(I,M).

Proof. We prove the contrapositive of the statement. Let .% be the category of zero
module and suppose that ¢ = cd(I,M) < n and H (H}(M)) =0 € . foralln—d <
i < c.Butthen since H}} (M) ¢ ., it follows from Lemma 5.1.9 that H},~“(H} (M)) # 0.
Hence dim Supp(Hj (M)) > 0 and so Hf (M) is not Artinian. O

We conclude this section with the following results that determine the Artinianness and
non-Artinianness of the top local cohomology module, H; d(z.M) (M), for the ideals of

small dimension, the first of which is a consequence of Corollary 4.1.3:

Theorem 5.1.11 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension n and let I be an ideal of R such that dim(M /IM) = 1. Then
H,Cd(I’M) (M) is Artinian if and only if cd(I,M) = n.
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Proof. Since dim(M/IM) = 1, it follows from Corollary 4.1.3 that either cd(/,M) =
n—1 or cd(I,M) = n. If cd(I,M) = n, then clearly H}'(M) is Artinian. If, on
the other hand, cd(/,M) = n — 1, then it again follows from Corollary 4.1.3 that
dim Supp(H;"~' (M)) = 1 and so H;'~' (M) is non-Artinian. O

Theorem 5.1.12 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension n and let 1 be an ideal of R with dim(M/IM) = 2.
If Hfd(I’M) (M) is Artinian, then either cd(I,M) = n, or cd(I,M) = n—1 and

Hg, (H} (M) # 0.

Proof. Since dim(M/IM) =2 and H]}(M) # 0, it follows from Corollary 4.1.3 that

n— 2 is a lower bound for cd(Z,M). If cd(I,M) = n— 2, then again by Corollary 4.1.3,

dim Supp(H;(M)) = 2 and so H; M) (M) is non-Artinian. If, on the other hand,

cd(I,M) = n, then from Lemma 5.1.9, HICd(I’M) (M) is Artinian. Finally, if cd(/,M) =

n—1and H;‘_l (M) is Artinian, then the result follows from Corollary 5.1.10. U

5.2 Modules of Finite Length

This section is motivated by the question of "what are the most elementary properties
that are required for an R-module M to be of finite length?" and consists of the results

from our joint work with Sevgi Harman, [34].

Throughout Z(M) will denote the set of zero divisors of M.

5.2.1 Modules of length at most two

In this subsection we make some simple but somehow interesting observations first of
which provide conditions equivalent to M and all its Koszul cohomology modules to

be of finite length.
Proposition 5.2.1 For an R-module M the following statements are equivalent.

(i) For any two distinct proper submodules K, L of M, Ann(K) + Ann(L) = R.
(ii) For any two distinct proper submodules K, L of M, Homg(K,L) = 0.

(iii) M is a direct sum of at most two non-isomorphic simple submodules.
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(iv) M has length at most two with non-isomorphic simple quotient modules.

(v) For all i and for all sequences X = {x1,x2,--- ,x,} of elements in R , H (x*; M) is
of length at most two with non-isomorphic simple quotient modules. (In particular
if R is Noetherian, then for all i and for all ideals I of R, H’I(R) is of length at most

two with non-isomorphic simple quotient modules.)

Proof. (i)=-(iii). Let K be any non-zero proper submodule of M and x a non-zero
element of K. We claim that K = Rx. Suppose not, then Rx is a proper submodule of
K and hence by the assumption Ann(Rx) + Ann(K) = R. But this is the same thing as
saying that Ann(Rx) = R, a contradiction to the fact that x is non-zero in K. Therefore it
follows that every proper submodule of M is simple. If K is different than M, then there
is a proper submodule L of M different than K, and for the same reason as above L =
Ry, for some y in M. Thus K = R/ Ann(x) and L = R/ Ann(y) , and Ann(x), Ann(y) are
two distinct maximal ideals of R. Next we show that K N L = 0. But this follows from
the fact that if KN L has a non-zero element z, then Ann(z) + Ann(K) = Ann(z) =R,
which is not possible. Therefore M = K & L. Since otherwise K &5 L would be a proper
submodule of M which would then contradict the fact that K is a non-zero and yet
Ann(K) = Ann(K) +Ann(K & L) =R.

(ii1)=-(1). Is clear.

(iii) = (i1). Is clear.

(i1)=-(ii1). Let K be again a proper submodule of M and x a non-zero element of K. If
Rx is different than K, then Homg(Rx,K) # 0, a contradiction. Therefore each proper
submodule of M is simple. If L is another proper submodule of M different from K,
then M = K & L. Because otherwise K & L would be a proper submodule of M, and
that would give Homg (K, K & L) # 0, contradicting the assumption.

(iii) = (iv). Follows from the fact that length(M| © M) = length(M,) + length(M).

(iv)=-(iii). Is clear.

(iii) = (v). Let K be one of the simple submodules of M and x = {x1,x3,- -

,Xn} be a sequence of elements in R. Let I = (xj,x,--+,x,). Then by Lemma 7.7
of [35], H (x*;K) =0 for all i > 0. Therefore we only consider the remaining case
H(x*;K) = {x € K : I'x = 0 for some positive integer t}. Since K is simple, K =
R/ for some maximal ideal 9t of R. If now I € 901 then [+ =1+ AnnK =R
and since I + Ann K annihilates HO(X“;K )s HO (x*;K) = 0. If however I C 9, then it
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follows from the definition that H’(x*;K) = K. Since Koszul cohomology commutes
with direct sum, it follows that for any sequence x = {xj,x2,---,x,} of elements of R
and any i, H! (x*; M) is either zero or one of the factors of M or is M itself. Therefore
for all i and for all sequences X = {x1,x,---,x,} of elements in R, H (x**; M) has
length at most two with non-isomorphic simple quotient submodules.

(v)=(i). Let K and L be any two distinct proper submodules of M and J = Ann(K + L)
which is both contained in Ann(K) and Ann(L). Let now y = {y} where y € J. Then
it follows from the definition of Koszul cohomology that K = HO(y*; K) C HO(y*; M)
and L = HO(y*;L) C H(y*; M) and so K and L are also distinct proper submodules of
H'(y*; M). Hence by assumption Ann(K) 4+ Ann(L) = R.

O

We note that if M and N are any two R-modules, then it is not hard to see that
Ann(Homg(M,N)) and Ann(M ®@g N) contains both Ann(M) and Ann(N) and so, if
Ann(M) + Ann(N) = R, then we necessarily have Homg(M,N) =0 and M Qg N =
0. Of course in general neither M ®g N = 0 nor Homg(M,N) = 0 implies that
Ann(M)+ Ann(N) =R.

Proposition 5.2.2 Let {M;};c5 be a family of R-modules such that for all pairs i # j
inJ, Ann(M;) + Ann(M;) = R. Then
(i) YiesMi=Dic3 Mi.
(ii) Homg(Djey, Mi, D je3, M) = 0, for any two finite disjoint subsets 3y and J; of J.
(iii) (Dicy, Mi) ®r (D jez,M;) = 0, for any two disjoint subsets 31 and T of J.

(iv) EXt§(®ieﬁl M;, D je3,M;) = 0, for any two finite disjoint subsets 31 and T of J
and all k > 1.

(v) If moreover for each i € J, M; is simple, then Tor’f(@jej1 M;,®Djecy, M;) =0, for

any two disjoint subsets J1 and J, of J.

Proof. (i) Since every element of Y ;.5 M; is contained in a submodule generated
by a finite number of the M; and since for any finite subset J of J not containing i,
Ann(M;) + (N jey Ann(M;) = R, it follows that M; N Y jc3M; = 0, and so Y,y M; is a
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direct sum.

For the proofs of (ii) and (iii) use the fact that Hom is distributive over finite
direct sum and the fact that Homg(M;,M;) = 0, and Tensor product is distributive over

arbitrary direct sum and the fact that M; g M; = 0.

(iv) Since for each pair i # j in J, Ann(M;) + Ann(M;) C Ann(Extk(M;,M))),
it follows that Extk(M;, M;) = 0 for all k > 1. Hence Ext’;e(@iejl M;,Djc5,M;) =0

follows from the fact that Ext is distributive over finite direct sum.

(WIf for each i € J, M; is simple, then M; = R/Ann(M;). But then from
Ann(M;) + Ann(M;) = R we have Ann(M;)Ann(M;) = Ann(M;) N Ann(M;).
Therefore Torf(M;,M;) = Ann(M;) N Ann(M,)/Ann(M;) Ann(M;) = 0.  Now,
Tor® (P jes, Mi, @ je3, M;) = 0 is a consequence of the fact that Tor is distributive

over arbitrary direct sum. U

It may be worth mentioning that if R is a Noetherian ring and M and N are
two finitely generated R-modules with Ann(M) + Ann(N) = R, then the i’ local
cohomology of M with respect to the ideal AnnN is zero. That is, ngnn NM) =
liLnExtﬁe(R/ (AnnN)* M) = 0, which easily follows from the proof of part (iv) of

Proposition 5.2.2 above.

Proposition 5.2.3 Let R be a ring and M and N be R-modules. Suppose that
Ann(M) # 0 and that Ann(M) is not contained in Z(N), the set of zero divisors of
N. Then Homg(M,N) = 0.

Proof. Suppose that Homg(M,N) # 0, and let f be a non-zero element of
Homg(M,N). Then there is a non-zero element m in M such that f(m) # 0 in N. Let
now r be any non-zero element of Ann(M) which is not contained in Z(N). Then
rf(m) = f(rm) = 0. But this is a contradiction to the fact that r is not in Z(N).
Therefore Homg(M,N) = 0. O

We note that if R is an integral domain and K is the field of fractions of R, then for

any non-zero ideal / of R, Homg(R/I,K) = 0. Now applying Hom(—, K) to the short
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exact sequence 0 — I — R — R/I — 0 we obtain Homg(R,K) = Homg(I,K), as K
is an injective R-module. On the other hand applying Hom(R/I,—) to the same short
exact sequence we obtain Homg(R/I,R/I) = HX(R/I,R/I), the first homology of the
Hom functor applied to the given sequence. Also the conditions that Ann(M) # 0 and
Ann(M) ¢ Z(N) in the statement of the above proposition has to be retained for its
conclusion. For let M = R and N = K, then clearly Homg(M,N) # 0.

5.2.2 Divisible modules of finite length

Recall that an R—module M is divisible if for any nonzero divisor r in R, M = rM. In

this section we examine conditions under which a divisible module is of finite length.

Proposition 5.2.4 Let M be an R-module with Z(M) C Z(R) and E be an injective
R-module. Then Homg(M,E) is a divisible R-module.

Proof. Let E be an injective R-module and M be any R-module with Z(M) C Z(R),
and let f be a non-zero element of Homg(M, E) and r be a non-zero divisor in R. We
want to show that there exists a g € Homg(M, E) such that f = rg. For this, we define
h:M — M by h(m) = rm. Then it is clear that & is well-defined and one-to-one. Now

using the injectivity of E, one obtains the following commutative diagram:

Thus for any m € M, we have
f(m) = gh(m) = g(rm) = rg(m)

that is f = rg. Therefore Homg(M, E) is divisible. O

Corollary 5.2.5 Let E be a torsion free injective module over an integral domain R.
Then for any torsion free R-module M, Homg(M,E) is an injective R-module and in

particular, Endg(E) is injective as an R-module.
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Proof. It is easy to see that Homg(M, E) is torsion free. Hence by Proposition 5.2.1,
it is also divisible. Since over an integral domain a torsion free divisible module is

injective, Homg (M, E) is an injective R-module. O

Corollary 5.2.6 Let M be an R-module and E be an injective R-module. Then
Homg(Homg (M, R),E) is a divisible R-module.

Proof. Let r € Z(Homg(M,R)). Then there exists a nonzero element f € Homg(M, R)
such that rf = 0. Since f is nonzero, 0 # f(m) € R for some m € M. But then rf(m) =
0 and so r € Z(R). Therefore Z(Homg(M,R)) C Z(R) and the result follows from
Proposition 5.2.4. O

The following statement may be considered as the dual of Proposition 5.2.4 :

Proposition 5.2.7 Let M be a divisible R-module. Then for any projective R-module
P, Homg(P,M) is a divisible R-module.

Proof. Let M be a divisible and P be a projective R-module, and let f be a non-zero
element of Homg (P, M) and r be a non-zero divisor in R. We want to show that there
exists a g € Homg (P, M) such that f = rg. For this, we define h: M — M by h(m) =
rm. Then from the divisibility of M, h is onto. Now using the projectivity of P, one

obtains the following commutative diagram:

Thus for any p € P, we have

that is f = rg. Therefore Homg (P, M) is divisible. d

Proposition 5.2.8 Let M be an Artinian R-module with Z(M) C Z(R). Then M is
divisible.

Proof. Let r € R—Z(R) C R—Z(M). Then because M is Artinian, the chain
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rMDrPMD -

must stabilize i.e. "M = r"T!M for some positive integer n. Let now x € M then
'x = "1y for some y € M. Hence r*(x—ry) = 0 and since * € R—Z(M), x —ry =0
implies x = ry. Therefore M = rM for all r € R—Z(R) and so M is divisible. O

Proposition 5.2.9 Over an integral domain R which is not a field the only finitely

generated divisible module is the zero module.

Proof. Let M be a finitely generated divisible module over the integral domain R. Then
for any nonzero prime ideal P of R and any nonzero element r in P we have rM = M
and hence {Mp = Mp as Rp-modules. But then by Nakayama’s Lemma Mp = 0. Thus
Mp = 0 for all prime ideals P of R and therefore M = 0. U

When R is not an integral domain there are cases where R possesses a nonzero finitely

generated divisible module and we now establish these facts.

Proposition 5.2.10 Let M be a nonzero finitely generated divisible R-module. Then

any maximal ideal in the support of M consists of zero divisors.

Proof. Let m be a maximal ideal of R such that My, # 0 and r be a nonzero divisor in
m. Then as M is divisible, YM = M and hence {Mm = M, as Ry-modules. But then
again by Nakayama’s Lemma, My, = 0. This contradiction shows that m consists of

zero divisors. O

Corollary 5.2.11 Let R be a ring and M a finitely generated non-zero R-module.
Suppose that the Jacobson radical, J(R), of R is non-zero and that M is divisible.

Then J(R) consists of only zero divisors.

Corollary 5.2.12 Let R be a local ring with maximal ideal m and M be a finitely
generated non-zero R-module. Then M is divisible implies that m consists of zero

divisors.

Proposition 5.2.13 A reduced local ring with finitely many minimal prime ideals
which possesses a non-zero finitely generated divisible module is of Krull dimension

Zero.
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Proof. Let R be a reduced local ring with finitely many minimal prime ideals which
possesses a nonzero finitely generated divisible module and m be a maximal ideal of
R. Then it follows from the above corollary that m consists of zero divisors. But then

since R is reduced, we have
m = Z(R) =U!_{P, | P, is a minimal prime ideal of R }

which implies that m = P; for some i and so the height of m is zero. Therefore R is of

Krull dimension zero. U

It follows from Corollary 5.2.12 and Proposition 5.2.13 that if A is a Noetherian local
ring which is not a field and possesses a nonzero finitely generated divisible module,
then the maximal ideal of A consists of zero divisors and contains at least one nonzero
nilpotent element. Therefore the reduced Noetherian local ring A = k[[x,y]]/(xy) does

not have a nonzero finitely generated divisible module.

On the other hand, let R = k[[x,y]]/(x?,xy). Then since every element of R is
either a unit or a zero divisor, every R-module is divisible. Note also that R is of
Krull dimension one and therefore non-Artinian. Thus there are Noetherian divisible
modules that are not Artinian. One also knows that the Z-module Z(p>) = Z[1/p]/Z
is an Artinian divisible module which is not Noetherian.

With this in mind, we have the following result:

Theorem 5.2.14 Over a reduced Noetherian ring R, a finitely generated divisible
module M is Artinian and Z(M) C Z(R).

Proof. Let m be a maximal ideal of R containing AnnM. Then by Proposition 5.2.10

and the fact that R is reduced, we have
m C Z(R) = U!_{P, | P, is a minimal prime ideal of R }

which implies that m = P, for some i and so height of 90t is zero. Therefore R/ AnnM is
of Krull dimension zero and hence is Artinian. Since a finitely generated module over
an Artinian ring is Artinian, M is Artinian as an R/ Ann M- module. But then since M

as an R-module and as an R/ AnnM- module is one and the same it follows that M is
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an Artinian R-module. Let now r € R be a nonzero divisor in R and define f : M — M
by f(m) = rm. It is clear from the divisibility of M that f is onto and also since M
is Noetherian, f must be an isomorphism. Therefore Ker f = 0 and so rm = 0 implies
m = 0 which implies that € R is a nonzero divisor of M. Thus R—Z(R) CR—Z(M)
and hence we have Z(M) C Z(R). O

Proposition 5.2.15 Over a Noetherian integral domain R of Krull dimension 1, a

finitely generated module M with AnnM = 0 is Artinian and so is of finite length.

Proof. Since R is of Krull dimension 1, rad(AnnM), the radical of AnnM, is a finite
product of maximal ideals of R, and so R/ AnnM is Artinian. Hence M is Artinian

both as an R-module and an R/ Ann M-module. O

We also would like to mention that if R is any ring with J(R) # 0 and M is an Artinian
R-module with Z(M) C Z(R), then J(R) is contained in the set of zero divisors of R.

This easily follows from the proof of the following proposition.

Proposition 5.2.16 Let R be a ring with nonzero Jacobson radical J(R) and M be an
Artinian R-module. Then J(R) C Z(M).

Proof. Suppose J(R) ¢ Z(M) and let r € J(R) — Z(M). Then for any nonzero x € M,
the Nakayama’s Lemma would give a non-stationary descending chain of submodules

of M

Rx

HU

rRx

HU

2py D ...
rRx¢

But then this yields a contradiction. Therefore J(R) C Z(M). O

5.2.3 Local cohomology modules of finite length

Let (R,m) be a Noetherian local ring and I be an ideal of R. Then for any finitely
generated R-module M with dimension d, one knows that for all i, H, (M) and H{ (M)
are Artinian modules. Here in this section, we use the information of Section 5.2.2 to
give necessary and sufficient conditions for Hjl (M) to be of finite length. The following
is yet another proof (that uses Proposition 5.2.9) of the so called Grothendieck’s

non-vanishing theorem, see for example Section 6.1.4 of [19] and [36].

37



Theorem 5.2.17 Let R be a Noetherian local ring with maximal ideal m and M be a
finitely generated R- module of dimension d. Then H%(M ) is finitely generated if and
only ifd = 0.

Proof. By the Independence of Base[ [37], Proposition 2.14], we may place R by
R/AnnM. Therefore we may assume that AnnM = 0 and so d = dimg M = dimgR.
On the other hand, as is well-known that H (M) = Hi (M) , we may also assume
that R is complete, here M denotes the m-adic completion of M. Then by Cohen’s
structure theorem, R is the homomorphic image of a complete regular Noetherian
local ring 7 with dimension n > d and thus there is a surjective homomorphism
¢ : T — R and clearly I = Ker¢ is an ideal of T with height n —d. Since every
regular local ring is Cohen-Macaulay, / contains a regular sequence (x1,x2, - ,X,_gq)
and so T /(xy,x2,** ,X,_g) is a regular local ring. Let S =T /(x1,x2, -+ ,x,_4). Then
clearly dimS = d. Let now mg be the maximal ideal of S and Eg(S/mg) be the
injective hull of the residue field S/mg of S and so again by the Independence of Base,
HY (M) = Hﬁls (M). But then by the local duality theorem [ [37], Theorem 4.4], we

have
HY (M) = HE, (M) =2 Homg(Homg(M, S), Es(S/ms))

Since every regular local ring is an integral domain, 0 € Ass(Homg(M,S)) which
implies that Homg(M, S) is nonzero and then again by local duality H% (M) is nonzero.

On the other hand, by Corollary 5.2.6
Homg(Homg(M, S), Es(S/myg))

is a divisible S-module. Then by Proposition 5.2.9, H% (M) is finitely generated only if
S is Artinian and so d = dim S = 0.

Conversely, suppose dimM = 0. Then the result follows from the fact that H& (M) C M.
OJ

Theorem 5.2.18 Let R be a reduced Noetherian local ring and M be a finitely
generated R-module of dimension d with the property that Z(M) C Z(R). Then for
any ideal I of R, H;I (M) is a nonzero finitely generated R-module if only if R is a field.
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Proof. Suppose HY(M) is a nonzero finitely generated R-module and x € R — Z(R) C

R —Z(M). Then the short exact sequence

X

0 s M

y M M/xM — 0

yields the following long exact sequence

0 — HmW™ = HM) — H(M/xM) —
—— Y (M/aM) —— H{ (M) ——  H{(M) —— H{(M/xM)
-
Since dimM /xM < d, HY(M/xM) is zero and so the map HY(M) —*— H¢(M) is
surjective. Therefore for any nonzero divisor x of R, we have HY (M) = xH¢ (M) which
implies that HY(M) is divisible. Then by Proposition 5.2.13, R is Artinian. The result

now follows from the fact that a reduced Artinian ring is nothing but a field.

The converse is obvious.
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6. CONCLUSION

In this thesis, we dealt with local cohomology modules and their relations with
radically perfect ideals. However, since local cohomology modules are not finitely
generated in many instances, it is not very easy to obtain considerable results on these
modules by using classical tools. To overcome this problem, one needs to establish
a relation between a local cohomology module and a finitely generated module. In
this regard, Lyubeznik applied the theory of Z-modules in the rings of characteristic
zero and also he developed the theory of F-modules for the case when the underlying
ring is of characteristic p > 0; [38], [23]. Since all local cohomology modules H,i (R)
have natural F- finite F- module (resp. holonomic ¥ —module) structures, the class
of F- finite F- modules (resp. holonomic ¥ —modules) has significant applications
to local cohomology modules in characteristic p > 0 (resp. characteristic zero). By
using these applications, we obtained the result which established Conjecture 2 in
equicharacteristic p > 0. In our future work, we would like to apply the Z— module
theory to local cohomology modules to establish Conjecture 2 in equicharacteristic

ZEro case.

Furthermore, in this thesis, we mentioned about several definitions of local
cohomology modules all of which are equivalent when the underlying ring is
Noetherian. However, to obtain more specific results on radically perfect ideals, we
need an alternative definition which is both compatible with all these definitions and
valid over the rings that need not to be Noetherian. Fortunately, J.P. Greenlees and
J.P.C. May give such a definition of local cohomology modules in their very popular
paper by using the notions from algebraic topology, [39]. In the future, we also would

like to examine this definition and try to relate it with radically perfect ideals.
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