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Prof. Dr. Ekrem Savaş and Prof. Dr. Fatma Özdemir have great deal of my gratitude
for their meritorious directions and support during all my academic career.
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LOCAL COHOMOLOGY AND RADICALLY PERFECT IDEALS

SUMMARY

Local cohomology theory was first introduced by Alexander Grothendieck in 1961 and
since then it has been used as a powerful tool to solve many problems in both algebraic
geometry and commutative algebra.

Basically, local cohomology functors are defined as the right derived functors of a
certain torsion functor: For any module M over a commutative ring R, set

ΓI(M) = {x ∈M : there exists an n ∈ N such that Inx = 0}.

The ith local cohomology of M with respect to the ideal I is the ith cohomology module
of the sequence obtained by applying the left exact functor ΓI(−), which is defined
above, to an injective resolution of M and this module is denoted by H i

I(M).

Local cohomology theory has been applied to the study of several conjectures in
commutative algebra one of which is related to radically perfect ideals.

An ideal I of a commutative (not necessarily Noetherian) ring R is said to be radically
perfect if the minimal number of elements of R which generates I up to radical is finite
and equals to the height of I. Clearly, when R is Noetherian, the terms radically perfect
and set theoretic complete intersection coincide.

One of the classical and long-standing problem in commutative algebra and algebraic
geometry is to determine whether each height two prime ideal of the polynomial ring
K[X ,Y,Z] over the field K is set theoretic complete intersection (radically perfect).
Although it is shown by Cowsik and Nori that this conjecture has an affirmative
answer when K is of characteristic p > 0, it still remains as an open problem
in the characteristic zero case. But, based on the observations from his several
results, Erdoğdu has a foresight that this problem would fail to be true when K
is of characteristic zero. Furthermore he raised another conjecture that "If R is a
commutative domain (not necessarily Noetherian) containing a field of characteristic
zero, then each prime ideal of R[X ] is radically perfect implies R is of Krull dimension
one." which was proved to be so in many cases but the exact answer of this conjecture
is also not known in general.

The main purpose of this thesis is to understand certain structures of local cohomology
modules and determining their relationship with set theoretic complete intersection (
radically perfect ) ideals and our motivation is suggested by the well-known fact that
if I is an ideal of a Noetherian ring R of height n, and if there exists some R-module M
such that H i

I(M) 6= 0 for i > n, then I is not a set theoretic complete intersection.

Moreover, Hellus showed the relation between set theoretic complete intersection
ideals and Matlis duals of local cohomology modules by proving the fact that if
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H i
I(R) = 0 for all i 6= c and x= {x1,x2, ...,xc} is a regular sequence in I, then I =√
x1,x2, ...,xc if and only if xi form a D(Hc

I (R))-regular sequence.

In this thesis, motivated by Hellus’ result, we first deal with the set of associated prime
ideals of Matlis duals of local cohomology modules and show that over a Noetherian
regular local ring of characteristic p > 0, for any non-zero ideal I of R and for i > 0,
zero ideal is in the set of associated prime ideals of Matlis dual of any non-zero local
cohomology module H i

I(R).

We then determine conditions under which a given positive integer t is a lower bound
for the cohomological dimension cd(I,M) := sup {i ∈ N | H i

I(M) 6= 0} of any module
M with respect to an ideal I of a Noetherian ring R, and use this to conclude that
non-catenary Noetherian integral domains contain prime ideals that are not radically
perfect (i.e. set theoretic complete intersection). Bearing in mind that non-catenary
rings are of Krull dimension > 2, this result is in partial support with Erdoğdu’s
conjecture. Furthermore if I is any ideal of R and M is any R- module with cd(I,M) =
c > 0, we show the existence of a descending chain of ideals I = Ic ) Ic−1 ) · · · ) I0
of R such that for each 0≤ i≤ c, cd(Ii,M) = i.

In the last chapter of this thesis, we examine the structures of local cohomology
modules and show that over a Noetherian unique factorization domain of dimension at
most three, top local cohomology module Hcd(I,R)

I (R) is Artinian only in the trivial case
when cd(I,R) = dimR. We then obtain several results on the Artinianness of top local
cohomology modules in more general cases. Finally, our study is concerned around
the modules of finite length and, in this regard, we first present necessary and sufficient
conditions for various modules to be of finite length. We then use our results to give
an alternative proof of the well-known result that if R is a Noetherian local ring with
maximal ideal m and M is a finitely generated R- module of dimension d, then Hd

m(M)
is finitely generated if and only if d = 0.

Throughout, R will always denote a commutative ring with identity, the dimension of
a ring R will always mean its Krull dimension.
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YEREL KOHOMOLOJİ VE RADİKAL OLARAK MÜKEMMEL İDEALLER

ÖZET

Yerel kohomoloji teorisi ilk olarak 1961 yılında Alexander Grothendieck tarafından
tanımlanmış olup tanımlandığı zamandan bu yana cebirsel geometri, cebirsel topoloji
ve değişmeli cebir alanlarında çalışan pek çok araştırmacının ilgisini çekmiş, bu
alanlardaki bir çok problemin çözümünde kullanılmıştır. Ayrıca, bu teori günümüzde
hala tam olarak doğrulanamayan önemli homolojik sanılarla alakalı çalışmalara da
uygulanmıştır.

Yerel kohomoloji modüllerinin Grothendieck tarafından verilen orjinal tanımı cebirsel
geometrideki kavramlar kullanılarak ifade edilmiş olsa da bazı özel varsayımlar altında
bu tanım değişmeli cebir kavramlarıyla aşağıdaki şekilde ifade edilebilir:

R bir halka, I da R’nin bir ideali olsun. R üzerindeki herhangi bir M modülü için

ΓI(M) = {x ∈M : Inx = 0 : n ∈ N},

I-torsiyon fonktörü tanımlanabilir. Bu şekilde tanımlanan ΓI(−) toplamsal, kovaryant,
sol tam fonktördür ve dolayısıyla bu fonktörün sağ türetilmiş fonktörleri mevcuttur.
Bu sağ türetilmiş fonktörlere M nin I idealine göre yerel kohomoloji modülleri denir
ve H i

I(M) = RiΓI(M) ile gösterilir.

Yerel kohomoloji modülleri ile değişmeli cebirdeki birçok önemli kavramın (aritmetik
rank, yükseklik vb.) hesaplanmasında kullanılan bazı yeni değişmezler tanımlanmıştır.
Bu değişmezlerin en önemlilerinden biri de kohomolojik boyuttur. Herhangi bir
M modülünün I idealine göre kohomolojik boyutu, cd(I,M), aşağıdaki şekilde
tanımlanabilir:

cd(I,M) = sup{i ∈ N : H i
I(M) 6= 0}.

Özel olarak M = R olması durumunda I idealinin yüksekliğinin, ht(I), kohomolojik
boyut için bir alt sınır, aritmetik rankının, ara(I), ise bir üst sınır olduğu bilinmektedir.
Bir idealin kümesel tam arakesit ideali olması da ancak cd(I,R) = ht(I) = ara(I)
eşitliğinin sağlanması ile mümkün olduğundan kümesel tam arakesit ideal kavramı
ile kohomolojik boyut dolayısıyla yerel kohomoloji kavramları arasında çok yakın bir
ilişki olduğu söylenebilir.

Bir idealin kümesel tam arakesit ideali olup olmadığının belirlenmesi değişmeli
cebirin ve cebirsel geometrinin temel araştırma konularından biridir. Bu alanda
önemli pek çok sonuç elde edilmiş olmasına rağmen, klasik problemlerden biri
olan "Karakteristiği sıfır olan bir K cismi üzerindeki K[X ,Y,Z] polinom halkasının,
yüksekliği iki olan tüm asal idealleri kümesel tam arakesit midir?" sorusuna halen tam
olarak bir cevap verilebilmiş değildir.
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K cisminin karakteristiğinin pozitif olduğu durumda, bu sorunun cevabının olumlu
olduğu, 1978 yılında Cowsik ve Nori tarafından ispatlanmıştır. Ancak 1994 yılında
Erdoğdu ve McAdam tarafından yapılan ortak çalışmada karakteristiğin pozitif olduğu
durumun, karakteristiğin sıfır olduğu durumdan farklı davrandığı gösterilmiştir. Söz
konusu çalışmada elde edilen sonuçlara paralel olarak Erdoğdu, ele alınan sanının
karakteristiğin sıfır olduğu durumda doğru olmayacağı tezini savunmuş ve sonraki
çalışmalarında bu tezi desteleyen çok sayıda önemli sonuç elde etmiştir. Hatta kümesel
tam arakesit olma tanımını Noether olmayan halkalara da genişleterek "radikal olarak
mükemmel ideal" tanımını literatüre kazandırmış ve böylelikle konuyu daha geniş
bir perspektifle ele alabilmiştir. Yaptığı çalışmalar sırasında elde ettiği gözlemler
neticesinde de " R (Noether olmak zorunda olmayan) karakteristiği sıfır olan bir cisim
içeren bir tamlık bölgesi ve R[X ] de R üzerinde her asal ideali radikal olarak mükemmel
olan bir polinom halkası ise R’nin boyutu bir midir?" sorusunu gündeme getirmiştir.
Birçok durumda bu sorunun cevabının olumlu olduğu gösterilmiş olsa da, henüz tüm
durumları kapsayan genel bir çözüm bulunabilmiş değildir.

Erdoğdu’nun sorusuna öngörüldüğü gibi olumlu cevap verilebildiği taktirde pek
çok araştırmacının yüzyıllardır üzerinde çalıştığı sanının çok daha genel halinin
karakteristiğin sıfır olması durumunda olumsuz cevaba sahip olduğu gösterilecek
olup bu durumda yapılacak çalışma literatüre geçecek boyutta olacaktır. Fakat var
olan metotlar böyle bir sonuca ulaşmada yetersiz kalmaktadır. Bundan dolayıdır ki,
bilindiği üzere, şimdiye kadar bu tip alanlarda çalışan araştırmacılar disiplinler arası
ilişkilerden yararlanarak yeni metotlar geliştirmiş ve bir takım önemli sonuçlara ancak
bu şekilde ulaşabilmişlerdir.

Kümesel tam arakesit idealleri dolayısıyla radikal olarak mükemmel idealler ile
ilişkili teorilerden biri de, yukarıda da değinildiği üzere, yerel kohomoloji teorisidir.
Hellus, bu alanlar arasındaki ilişkiden yararlanarak Noetheryen yerel halkalar üzerinde
bir idealin kümesel tam arakesit ideali olabilmesi için gerekli ve yeterli bir koşul
vermiştir. Aynı zamanda bu koşul, kümesel tam arakesit idealleri ile yerel kohomoloji
modüllerinin Matlis duallerinin ilgili asal idealleri arasında da kuvvetli bir ilişki
olduğunu ortaya koymuştur. Dolayısıyla da bu sonuçtan aldığı motivasyonla Hellus,
yerel kohomoloji modüllerinin Matlis duallerinin ilgili asal idealleri üzerinde de
çalışmalar yapmış ve pek çok önemli sonuç elde edebilmiştir.

Ancak uzun yıllardır birçok araştırmacı yerel kohomoloji modüllerinin yapıları üzerine
çalıştığı halde yine de bu yapılar halen tam olarak çözülebilmiş değildir. Dolayısıyla
bu modüllerin Artin modüller olup olmadığı, ne zaman sıfırlandığı (diğer bir ifadeyle,
kohomolojik boyut için aşikar olmayan alt-üst sınırlar belirlenip belirlenemediği), bu
modüller üzerindeki sonluluk özelliklerinin belirlenmesi (örneğin; ilgili asal idealler
kümesinin veya desteğinin(support) sonlu elemana sahip olup olmadığı; Bass sayıları,
injektif boyut gibi değişmezlerin sonlu sayı olup olmadığı vb. belirlenmesi) yerel
kohomoloji teorisinin günümüzde halen aktif olarak çalışılan konulardandır.

Yerel kohomoloji modüllerinin yapısının bu denli karmaşık ve anlaşılamaz olmasının
en önemli nedenlerinden biri, bu modüllerin çoğu durumda R üzerinde sonlu
eleman tarafından üretilememesi yani R- modül olarak Noetheryen olmamasıdır. Bu
durum göz önünde bulundurularak, yerel kohomoloji modüllerinin yapısını daha iyi
kavramada geliştirilen stratejilerden biri de bu modüllerin "daha küçük" olduğu yani
sonlu eleman tarafından üretilebildiği yapılar inşa etmektir. Bu bağlamda Lyubeznik,
1993 yılında yaptığı bir çalışmasında D- Modül teorisini yerel kohomolojiye
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uygulayarak hem bu teoriyi değişmeli cebire uygulayan ilk kişi olmuş, hem de
yerel kohomoloji modüllerinin sonluluk özellikleri ile alakalı pek çok önemli sonuç
elde etmiştir. Daha sonra 1997 yılında da F-modül tanımını literatüre kazandırarak
karakteristiğin pozitif olduğu durumda da benzer sonuçları elde edebilmiştir. Yerel
kohomoloji modülleri D ve F-modül yapılarına sahip olduğundan, ve bu yapılar
üzerinde sonlu eleman tarafından üretilebildiğinden, sonuçları elde etmek nispeten
daha kolay olmaktadır.

Bu çalışmanın temel amacı, yerel kohomoloji teorisini kullanarak radikal olarak
mükemmel idealler ile ilgili sonuçlar elde etmektir. Bu bağlamda ilk olarak Hellus’un
çalışmalarından elde ettiği sonuçlardan alınan motivasyonla, Lyubeznik ve Yıldırım
tarafından "Noetheryen regüler yerel halkalar üzerinde sıfırdan farklı herhangi bir ideal
için tüm yerel kohomoloji modüllerinin, H i

I(R) i > 0, Matlis duallerinin ilgili asal
idealler kümesinde sıfır ideali daima bulunmakta mıdır, yani daima 0∈Ass(D(H i

I(R)))
olmak zorunda mıdır?" sorusu ortaya atılmış ve bu sorunun halkanın karakteristiğinin
pozitif olması durumunda olumlu cevaba sahip olduğu ispatlanmıştır. Bu sonucun
ispatında F-modül teorisindeki tekniklerden yararlanılmıştır.

Daha sonra kohomolojik boyut kavramı ele alınmış ve kohomolojik boyut için aşikar
olmayan alt-üst sınırlar belirlenmiştir. Ayrıca elde edilen sonuçlar kullanılarak, eğri
(catenary) olmayan Noether tamlık bölgelerinde kümesel tam arakesit olmayan en
az bir asal idealin varlığı gösterilmiştir. Eğri olmayan Noether tamlık bölgelerinin
Krull boyutunun en az üç olması gerektiği gerçeği R[X ] de her idealin radikal olarak
mükemmel olması için R nin boyutunun en fazla bir olması gerektiğini perçinleyen bir
sonuçtur.

Tüm bunların yanısıra "Verilen bir halka üzerinde radikal olarak mükemmel asal
idealler zinciri bulunabilir mi?" sorusundan hareketle cd(I,M) = c > 0 koşulunu
sağlayan herhangi bir I ideali ve herhangi bir M modülü için cd(Ii,M) = i, 0 ≤ i ≤ c,
olacak şekilde bir I = Ic ) Ic−1 ) · · · ) I0 azalan idealler zincirinin var olduğu
kanıtlanmıştır.

Son bölümde ise bir önceki bölümlerde elde edilen sonuçların da yardımıyla yerel
kohomoloji modüllerinin yapısal özellikleri ile ilgili sonuçlar elde edilmiştir. Bu
bağlamda ilk olarak boyutu en fazla üç olan asal ideallere ayrılış bölgelerinde üst
yerel kohomoloji modüllerinin Hcd(I,R)

I (R) Artinyen olabilmesi için gerek ve yeter
koşul verilmiştir. Ardından daha yüksek boyutlarda bu modüllerin Artinyenliği
incelenmiştir. Son olarak da sonlu uzunluktaki modüller ele alınmış; yerel kohomoloji
modüllerinin ne zaman sonlu uzunlukta olabileceği ile ilgili sonuçlar elde edilmiştir
ve aynı zamanda "Grothendieck’in Sıfırlanmama Teoremi" olarak da bilinen sonuca
alternatif bir ispat verilmiştir.

Bu çalışmada tüm halkalar değişmeli ve birim elemana sahip halkalar olup, boyut ile
de her zaman Krull boyutu kastedilmektedir.
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1. INTRODUCTION

The main objective of this thesis is to understand certain structures of local

cohomology modules and their Matlis duals as well as determining their relationships

with radically perfect ideals.

Radically perfect ideals are just the generalization of the notion of set theoretic

complete intersection of ideals in Noetherian rings to rings need not be Noetherian.

This generalization was raised by Erdoğdu in search of an answer to a long standing

conjecture detailed in the following.

Let R be a Noetherian ring and X be a closed subset of Spec(R) defined by an ideal I.

Then X is defined set theoretically by s elements f1, · · · , fs ∈ R if I can be generated by

f1, · · · , fs up to radical, that is,
√
( f1, f2, · · · , fs) =

√
I. Now a natural question arises

as to how can one determine the least number s. This question leads to the following

main definitions:

Definition 1.0.1 If I is an ideal of R, the arithmetic rank of I, denoted by ara(I), is

defined by

ara(I) = min{n≥ 0| there exists a1,a2, · · · ,an such that
√

I =
√

(a1,a2, · · · ,an) }.

By Krull’s height theorem , if R is Noetherian, then ara(I)≥ ht(I); meanwhile ara(I)≤

dim(R)+ 1 by [1]. Hence the arithmetic rank of an ideal is bounded when dim(R) <

∞. If ara(I) = ht(I), then I is called a set theoretic complete intersection ideal.

Determining set-theoretic complete intersection ideals is a classical and long-standing

problem in commutative algebra and algebraic geometry, for a survey see [2]. Among

an enormous amount of research, many questions related to an ideal being set-theoretic

complete intersection are still open including the following major one:

Conjecture 1 Is every (irreducible) curve in 3-space the set theoretic intersection of

two hypersurfaces, or equivalently is every height two prime ideal of K[X ,Y,Z] set

theoretic complete intersection?
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It was proven by Cowsik and Nori that this question has an affirmative answer in

characteristic p > 0 case. However, it still remains open in the case when K is of

characteristic zero.

One strategy to approach this conjecture is to use the local cohomology modules and

the motivation is suggested by the well-known fact that ht(I) ≤ cd(I,R) = sup{i ∈

N | H i
I(R) 6= 0} ≤ ara(I). However if the relevant local cohomology module vanishes

(i.e. if cd(I,R) � ara(I)), then H i
I(R) does not give any information to determine

ara(I). But, surprisingly, Hellus showed that the Matlis duals of local cohomology

modules, D(H i
I(R)), determine exactly whether or not an ideal is set theoretic complete

intersection by proving the following result:

Theorem 1.0.2 ( [3], Corollary 1.1.4) Let (R,m) be a Noetherian local ring , I a

proper ideal of R, c ∈ N and f1, f2, · · · , fc ∈ I an R-regular sequence. The following

statements are equivalent:

(i)
√
( f1, f2, · · · , fc) =

√
I-up to radical-the set theoretic complete intersection ideal

( f1, f2, · · · , fc); in particular it is a set theoretic complete intersection ideal itself.

(ii) H l
I (R) = 0 for all l > c and the sequence f1, f2, · · · , fc ∈ I is regular on D(Hc

I (R)).

Motivated by this result, Hellus studied the associated primes of Matlis duals of the

top local cohomology modules and conjectured the following equality:

AssR(D(Hc
(x1,x2,··· ,xc)

(R))) = {p ∈ Spec(R) | Hc
(x1,x2,··· ,xc)

(R/p) 6= 0}

It has been shown that this conjecture holds true in many cases; see eg. [4–7].

Furthermore, he proved that the above conjecture is equivalent to the following

condition [ [3], Theorem 1.2.3]:

• If (R,m) is a Noetherian local domain, c ≥ 1 and x1,x2, · · · ,xc ∈ R, then the

implication

Hc
(x1,x2,··· ,xc)

(R) 6= 0 =⇒ 0 ∈ AssR(D(Hc
(x1,x2,··· ,xc)

(R))

holds.

With this in mind, Lyubeznik and Yıldırım, [8], conjectured that if R is regular, then

the above implication holds for all non-zero ideals independently of the number of

generators:
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Conjecture 2 Let (R,m) be a Noetherian regular local ring, I be a non-zero ideal of

R and i≥ 1. If H i
I(R) 6= 0, then 0 ∈ AssR(D(H i

I(R))).

Note that Conjecture 2 is not true for non-regular rings. For a concrete example of

a Noetherian local ring (A,m) of dimension > 1 such that H1
m(A) = A/m, hence 0 /∈

AssR(D(H1
m(A))), see [ [9], Example 2.4].

One of the main result in this thesis lend credence to Conjecture 2 in equicharacteristic

p > 0 case.

On the other hand, Erdoğdu approached Conjecture 1 from an original and a broader

perspective. In his joint work with McAdam, [10], they gave an example which showed

that the radical of ideals in characteristic zero behaves differently than in characteristic

positive case. Afterwards, Erdoğdu’s several results supported this fact and made

him have an inkling that Conjecture 1 is not true in more general case and define

the radically perfect ideals.

Call an ideal I of a commutative ring R radically perfect if among the ideals of R

whose radical is equal to the radical of I the one with the least number of generators

has this number of generators equal to the height of I. Clearly when R is Noetherian,

the terms radically perfect and set theoretic complete intersection are synonymous. In

non-Noetherian cases, examples of radically perfect ideals include all prime ideals of

a finite character UFD R of Krull dimension ≤ 2.( A ring R is of finite character if

each nonzero element of it is contained in only finitely many maximal ideals.) This is

because if p is any prime ideal of R, then either p is of height one in which case p= (u)

for some irreducible u ∈ p and hence grade(p) = ara(p) and so p is radically perfect,

or p is of height two in that case we may choose an irreducible element u in p. Then

u is contained in only finitely many maximal ideals. Let p= p1,p2, · · · ,pn be the only

maximal ideals of R containing u, then clearly there are elements v in p = p1 and w

in p2p3 · · ·pn such that v+w = 1 and that p =
√
(u,v). It is also clear that {u,v} is a

regular sequence in p and therefore grade(p) = ara(p). (For a more general statement,

see Theorem 4.1 of [11]).

Now let S be an integrally closed strong S-domain of Krull dimension one having the

property that each prime ideal of it is the radical of a principal ideal (e.g. S could be

either a semi-local Noetherian, or a PID, or a Dedekind normal domain with torsion
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ideal class group, or more generally a Prüfer domain with torsion Picard group, see

[ [12], Theorem 2.1] and [ [13], Theorem 3.3], respectively) and let R = S[X ], then

each prime ideal p of R has the property that grade(p) = ara(p).

Facts of these types led Erdoğdu to state the following conjecture [ [14], Question 3.3]:

Conjecture 3 For any commutative domain R containing a field of characteristic zero,

each prime ideal of R[X ] is radically perfect implies R is of Krull dimension at most

one.

which was proved to be so by A. Mimouni in [15] in the case when R is a Prüfer domain

but still remains open in the general case. Another major motivation of this study is to

find some related results which support Conjecture 3.

The outline of this thesis is as follows:

In chapter 2, we collect some preliminary materials on local coholomogy, Matlis

duality and spectral sequences.

In chapter 3, we concentrate on the Matlis duals of local cohomology modules when

the underlying ring is of characteristic p > 0. The main result of this chapter is that

over a complete Noetherian regular local ring of characteristic p > 0, for an F-finite F

module M with 0 /∈Ass(M ), 0 ∈Ass(D(M )). As an immediate consequence of this

result, we establish Conjecture 2 in the equicharacteristic p > 0 case.

In chapter 4, we examine the relation between radically perfect ideals and local

cohomology modules. In this regard in Section 1, we first prove a theorem which

gives a sufficient condition for an integer t to be a lower bound for the cohomological

dimension cd(I,M), and then use this to prove the main result of this section which

states that non-catenary Noetherian integral domains contain prime ideals that are not

radically perfect. In Section 2, we show the existence of a descending chain of ideals

I = Ic ) Ic−1 ) · · · ) I0 of R with succesive cohomological dimensions cd(Ii,M) = i,

0≤ i≤ c.

Chapter 5 constitutes the results on some structures of local cohomology modules.

In Section 1, we determine the Artinianness of top local cohomology modules

Hcd(I,M)
I (M), and we first prove that over a local unique factorization domain R of
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dimension at most three, the top local cohomology module Hcd(I,R)
I (R) is Artinian if

and only if cd(I,R) = dimR. On the other hand, it is known that if R is of dimension

≥ 4, then there are cases where Hcd(I,R)
I (R) is Artinian when cd(I,R) 6= dimR. With

this in mind, we then investigate conditions on I which guarantees the existence of

a sub-ideal J of I with cd(J,R) = cd(I,R) = c and Hc
J (R) being always non-Artinian

(regardless of Hc
I (R) being Artinian or not). Finally, we use the results of Chapter 4,

among other things, to prove that over a Noetherian local ring (R,m), for a finitely

generated R-module M of dimension n and for an ideal I of R with dim(M/IM) = 1,

Hcd(I,M)
I (M) is Artinian if and only if cd(I,M) = n. In Section 2, our study is concerned

around modules of finite length. We first provide conditions equivalent to M and

all its Koszul cohomology modules Hi(x∞M) to be of length at most two, where

x = {x1,x2, · · · ,xn} is any sequence of elements in R. We then consider the case for

divisible modules and show that over a reduced Noetherian ring, finitely generated

divisible modules are of finite length and that a reduced local ring R with finitely many

prime ideals possesses a nonzero finitely generated divisible module implies that R

is of Krull dimension zero. We use these results to give an alternative proof of the

well-known fact that if R is a Noetherian local ring with maximal ideal m and M a

finitely generated R-module with dimension d, then Hd
m(M) is finitely generated if and

only if d = 0.

Chapter 6 is the final chapter which contains a brief summary of the contributions of

this thesis, along with some suggestions for future study.
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2. PRELIMINARIES

In this thesis, we assume the background knowledge of commutative algebra and

homological algebra for which we suggest the references [16] and [17], respectively.

In this chapter, we give a very brief introduction to local cohomology modules, Matlis

duality and spectral sequences which we will need them in this thesis.

2.1 Local Cohomology Modules

Local cohomology theory was first recognized by Alexander Grothendieck in his

1961 Harvard seminar, the notes of which was later written out by Robin Harthorne

in [18]. Since then, with its widespread applications in commutative algebra, algebraic

geometry and algebraic topology, this theory has become an important and interesting

research area of its own and sparks numerous algebraists’ interest.

Here we collect some basic definitions and theorems on local cohomology modules

and our main reference is [19].

Definition 2.1.1 Let R be a ring and I be an ideal of R. For an R-module M, set

ΓI(M) = {x ∈M : there exists an n ∈ N such that Inx = 0}.

Then ΓI(M) is defined as the I-torsion submodule of M.

It is not difficult to see that ΓI(−) : C (R)−→ C (R) defines an additive, left exact and

covariant functor and this functor is referred as an "I-torsion functor".

Definition 2.1.2 The local cohomology functor, denoted by H i
I(−), is defined as the

ith-right derived functors of ΓI(−).

Hence the ith local cohomology module of any R-module M with support in an ideal I is

the ith cohomology module of the sequence obtained by applying ΓI(−) to an injective

resolution of M. But then since ΓI(−) is left exact, H0
I (M) = ΓI(M).
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Henceforth in this section, let R denote a Noetherian commutative ring with unity, I

and J be ideals of R and M be an R-module.

Now we list some basic properties of local cohomology modules which we need them

in the following parts of this thesis.

Theorem 2.1.3 1. If
√

I =
√

J, then H i
I(−)∼= H i

J(−), for all i. [ [19], Remark 1.2.3]

2. For any multiplicatively closed set S, S−1(H i
I(M))∼= H i

IS−1R(S
−1M)[ [19], Exercise

1.2.7]

3. If M is a J-torsion R-module, then H i
I(M) ∼= H i

I+J(M) for all i. [ [19], Exercise

2.1.9]

4. If I is generated by n-elements, then H i
I(M) = 0 for all i > n. [ [19], Theorem 3.3.1]

5. Grothendieck’s vanishing theorem: H i
I(M) = 0 for all i > dimSupp(M). [ [19],

Theorem 6.1.2]

6. Grothendieck’s non-vanishing theorem: If (R,m) is a local ring and M is a finitely

generated R-module of dimension d, then Hd
m(M) 6= 0. [ [19], Theorem 6.1.4]

7. If (R,m) is a local ring and M is a finitely generated R-module, then H i
m(M) is

Artinian for all i. [ [19], Theorem 7.1.3]

8. If M is a finitely generated R-module of dimension d, then Hd
I (M) is Artinian. [

[19], Theorem 7.1.7]

9. If (R,m) is a Gorenstein local ring of dimension n, then H i
m(R) = 0 for all i 6= n and

Hn
m(R) is isomorphic to the injective hull of R/m. [ [19], Lemma 11.2.3]

Here we give some exact sequences related to local cohomology modules:

Theorem 2.1.4 ( [19], Theorem 3.2.3) (Mayer-Vietoris Sequence) There is a long

exact sequence of R-modules

· · · // H i−1
I∩J (M) // H i

I+J(M) // H i
I(M)

⊕
H i

J(M) // H i
I∩J(M) // H i+1

I+J(M) // · · ·

Theorem 2.1.5 ( [20], Corollary 3.5) Let x ∈ R be any element of R. Then there is a

short exact sequence

0 // H1
Rx(H

i
I(M)) // H i+1

I+Rx(M) // H0
Rx(H

i+1
I (M)) // 0.
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The definition of local cohomology modules given in terms of right derived functor

is sometimes inconvenient. But there are several equivalent definitions for local

cohomology modules which make the calculations easier. In the following, we list

two of them:

Theorem 2.1.6 Let R be a Noetherian ring, I be an ideal of R and M be an R-module.

Then

H i
I(M)∼= lim−→ExtiR

(
R/In,M

)
Our next objective is to give a quite different definition of local cohomology; using

either a direct limit of Koszul cohomology or a certain kind of C̆ech cohomology:

Definition 2.1.7 For any x ∈ R, the C̆ech complex of R with respect to x is the complex

given by C•(x;R) : 0 // R // Rx // 0. graded so that the degree 0 piece of the

complex is R, and the degree 1 is Rx where the differential is the natural localization

map. Let now x = {x1,x2, · · · ,xn} be a sequence of elements in R. Then the C̆ech

complex of R with respect to the sequence x is defined as in the following:

C•(x;R) =C•(x1;R)⊗R C•(x2;R)⊗R · · ·⊗R C•(xn;R).

For any R-module M, the C̆ech complex of M with respect to the sequence x, denoted

by C•(x;M), is the tensor product C•(x;M) = C•(x;R)⊗R M. Then the modules in

C•(x;M) are

0 // M // ⊕iMi // ⊕i< jMxix j
// · · · // Mx1x2···xn

// 0,

where the differentials are the natural maps induced from localization, but with

suitable signs attached.

Definition 2.1.8 Given any x ∈ R, the Koszul complex of R with respect to x is given

by K•(x;R) : 0 // R x // R // 0, where the differential is just multiplication by

x. It is not difficult to see that C•(x;R) = lim−→K•(xi;R) and so for any sequence x =

{x1,x2, · · · ,xn}, we have the isomorphism C•(x;R)∼= lim−→K•(x j
1,x

j
2, · · · ,x

j
n;R).

Theorem 2.1.9 Let M be any R-module and I = (x1,x2, · · · ,xn) be an ideal of R. Then

H i
I(M)∼= H i(C•(x1,x2, · · · ,xn;M))∼= H i(lim−→K•(x j

1,x
j
2, · · · ,x

j
n;M))
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We end this section with the following basic example:

Example 2.1.10 Let R = k[x] be a polynomial ring over the field k and I = (x) an ideal

of R. Then the exact sequence

0 // R // K // K/R // 0,

where K = k(x) is the fraction field of R, is the injective resolution of R. Then the

local cohomology modules, H i
I(R), can be computed by taking the cohomology of the

sequence

0 // ΓI(K) // ΓI(K/R) // 0.

Since K is torsion-free, ΓI(K) = 0 and so H0
I (R) = 0 and H1

I (R) = ΓI(K/R). Hence

H1
I (R) is the set of x-torsion elements in K/R which can be identified as Rx/R =

k[x,x−1]/k[x]. Moreover it is obvious from the above exact sequence that H i
I(R) = 0

for all i > 0.

One could obtain the same result by using C̆ech complex in which there is no need to

determine the injective resolution of R.

2.2 Matlis Duality

In his Ph.D. thesis, Eben Matlis studied the theory of injective modules and a special

kind of duality, which was later referred as "Matlis duality", [21]. In this section, we

recall some basic definitions and theorems about Matlis duality. All results listed here

and more can be found in the Appendix A of [22].

Definition 2.2.1 Let R be a commutative ring, M and N be R-modules, and f : M ↪→N

be an injective R-module homomorphism. If every nonzero R-submodule of N has

nonzero intersection with f (M), then f : M ↪→ N is called as an essential extension.

It is a well-known fact that an R-module is injective if and only if it has no proper

essential extension. Moreover, any R-module M has an essential extension f : M ↪→I

with I is injective.

Definition 2.2.2 The injective hull or injective envelope of M, which is denoted by

ER(M), is an injective module containing M, and has the property that any injective

module containing M contains an isomorphic copy of ER(M).
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Definition 2.2.3 Let (R,m) be a Noetherian local ring, E := ER(R/m) be the injective

hull of the residue field R/m. Then Matlis dual of any R-module M is denoted by D(M)

and defined as D(M) := HomR(M,E).

It is clear by definition that D(−) is a contravariant exact functor.

Theorem 2.2.4 Let (R,m) be a Noetherian complete local ring. Then

• There is one-to-one correspondence between Noetherian and Artinian R-modules

given as follows: If M is Artinian (resp. Noetherian ), then D(M) is Noetherian

(resp. Artinian).

• If M is either Noetherian or Artinian, then D(D(M))∼= M.

• R and E are Matlis duals of each others.

2.3 Spectral Sequences

We use spectral sequences in the proofs of our many results and so we give some

definitions and basic facts on them. Our reference in this section is [17]. Throughout,

let C be an abelian category.

Definition 2.3.1 For all integers p,q and r with r ≥ 1, a cohomological spectral

sequence in C consists of

1. a family of objects {E p,q
r } in C ,

2. dp,q
r : E p,q

r −→ E p+r,q−r+1
r such that d2

r = 0 ( i.e. dp,q
r ◦dp+r,q−r+1

r = 0 ), and

3. isomorphisms α : ker(dp,q
r )/im(dp+r,q−r+1

r )−→ E p,q
r+1

Definition 2.3.2 A spectral sequence {E p,q
r } is bounded if for all r,n ∈ N, the number

of non-zero objects of the form {Ek,n−k
r } is finite.

Example 2.3.3 • If E p,q
r = 0 unless p≥ 0 and q≥ 0, {E p,q

r } is first quadrant spectral

sequences.
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• If E p,q
r = 0 unless p≤ 0 and q≤ 0, {E p,q

r } is third quadrant spectral sequences.

Such spectral sequences are bounded.

It is worth noting that if {E p,q
r } is a bounded spectral sequence, then for each p,q, there

is an r0 such that E p,q
r = E p,q

r+1 for all r≥ r0. We write E p,q
∞ to this stable value of E p,q

r .

Definition 2.3.4 A bounded spectral sequence {E p,q
r } convergences to H? if there

exists a finite filtration

0 = Φ
t Hn ⊆Φ

t−1 Hn ⊆ ·· · ⊆Φ
1 Hn ⊆Φ

0 Hn = Hn

of Hn such that E p,q
∞ = Φp Hn/Φp+1 Hn for all p+q = n.

Recall that for any additive functor F : A −→B between abelian categories, an object

A∈A is F acyclic if all right derived functors RiF(A)= 0 for all i> 0. As an example,

take any ideal I of a Noetherian ring R, then any injective R-module can be viewed as

a ΓI(−) : C (R)−→ C (R) acyclic, where ΓI(−) is an I-torsion functor defined in 2.1.

In this thesis, we will need the following special type of spectral sequence; which is

known as the Grothendieck composite-functor spectral sequence:

Theorem 2.3.5 ( [17], Theorem 5.8.3) Let A , B and C be Abelian categories, and

suppose A and B have enough injective objects. Let F : A −→B and G : B −→ C

be left-exact additive functors. Suppose that for every injective object I of A , the

object F(I) of B is acyclic for G. Then for every object A of A , there is a spectral

sequence such that

E p,q
2 = R pFRqG(A) =⇒R p+q(FG)(A)
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3. MATLIS DUALS OF LOCAL COHOMOLOGY MODULES IN
CHARACTERISTIC p > 0

This chapter consists of results from the joint work with Gennady Lyubeznik, [8].

Our main purpose here is to prove the following result which establish Conjecture 2 in

equicharacteristic p > 0:

Theorem 3.0.1 Let (R,m) be a complete Noetherian regular local ring containing

a field of characteristic p > 0 and I a non-zero ideal of R. If H i
I(R) 6= 0, then 0 ∈

AssR(D(H i
I(R))).

We need F-module theory for the proof of Theorem 3.0.1 and so we first collect some

basic definitions and results about this theory and our main reference is [23].

3.1 Preliminaries on Lyubeznik’s F-Modules

Throughout, R is a commutative Noetherian regular ring of characteristic p > 0.

Definition 3.1.1 Let R
′

be the additive group of R regarded as an R- bi-module with

the usual left action and with the right R- action defined by r
′
r = rpr

′
for all r ∈ R and

r
′ ∈ R

′
. The Frobenius functor

F : R−mod −→ R−mod

of Peskine-Szpiro [24] is defined by

F(M) = R
′⊗R M

F(M N) = (R
′⊗R M R

′⊗R N)h id⊗Rh

for all R-modules M and all R-module homomorphisms h, where F(M) acquires its

R-module structure via the left R-module structure on R
′
.

The iteration of a Frobenius functor on R leads one to the iterated Frobenius functors

F i(−) which are defined for all i ≥ 1 recursively by F1(−) = F(−) and F i+1 = F ◦
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F i(−) for all i≥ 1.

Note that the Frobenius functor F(−) is exact [ [25], Theorem 2.1]; F(R)∼= R and for

any ideal I of R, F(R/I) = R/I[p], where I[p] is the ideal of R generated by p-th powers

of all elements of I [ [24], I.1.3d].

Note also that if R is a complete local ring, then for any Artinian R-module N,

F(D(N)) = D(F(N)) [ [23], Lemma 4.1] and so R = F(R) = F(D(E)) = D(F(E))

implies F(E) = E. Then it follows from Remark 1.0.(f) of [23] that for any finitely

generated R-module M, F(D(M)) = D(F(M)).

Now, for an R-module M, define a Frobenius map ψM : M −→ F(M) on M by

ψM(m) := 1⊗m∈ F(M) for all m∈M. It is worth pointing out that if ann(m) = I ⊆ R,

then ann(ψM(m)) = I[p].

An F-module M is an R- module equipped with R-module isomorphism θ : M −→

F(M ) which we call the structure morphism.

A generating morphism of an F module M is an R-module homomorphism β : M −→

F(M), where M is some R-module, such that M is the limit of the inductive system in

the top row of the commutative diagram

M F(M) F2(M) · · ·

F(M) F2(M) F3(M) · · ·

β

β F(β )

F(β )

F2(β )

F2(β )

F(β ) F2(β ) F3(β )

and θ : M −→ F(M ), the structure isomorphism of M , is induced by the vertical

arrows in this diagram.

If β is an injective map, then the exactness of F implies that all maps in the direct limit

system are injective, so that M injects into M . In this case, we shall refer to β as a

root morphism of M , and M as a root of M . If M is an F-module possessing a root

morphism β : M −→M with M finitely generated, then we say that M is F-finite. In

particular, R, with any F-module structure, is an F-finite module.

3.2 Main Results

In this section, we first prove the following result as a consequence of which we lend

credence to Conjecture 2 in equicharacteristic p > 0:
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Theorem 3.2.1 Let (R,m) be a complete Noetherian regular local ring of

characteristic p > 0 and M be an F-finite F module such that 0 /∈ Ass(M ). Then

0 ∈ Ass(D(M )).

We would like to point out that 0 /∈Ass(M ) is a necessary condition of Theorem 3.2.1.

Indeed, R itself is an F-finite F module and 0∈Ass(R) but 0 /∈Ass(D(R)) =Ass(E) =

{m}.

We need a series of lemmas to give the proof of Theorem 3.2.1.

Lemma 3.2.2 Let (R,m) be a complete Noetherian regular local ring containing a

field of characteristic p > 0 and M be an F-finite F-module such that 0 /∈ Ass(M ).

Then the Matlis dual of M , D(M ), can be expressed as

D(M ) = lim←−(N F(N) F2(N) · · ·),α F(α) F2(α)

where N is an Artinian R-module and α : F(N) −→ N is a surjective map such that

Ker(α : F(N)→ N) 6= 0.

Proof. Since M is an F-finite F-module, there exists a root morphism β : M→ F(M)

with a finitely generated R-module M such that

M = lim−→(M F(M) F2(M) · · ·).β F(β ) F2(β )

Then applying Matlis dual functor D(−) = HomR(−,ER(R/m)) to M , we obtain

D(M ) = lim←−(D(M) D(F(M)) D(F2(M)) · · ·).D(β ) D(F(β )) D(F2(β ))

But then since Frobenius functor commutes with D(−), we can write D(M ) as

D(M ) = lim←−(N F(N) F2(N) · · ·),α F(α) F2(α)

where N = D(M) and α = D(β ). Then since β is injective and M is a finitely

generated, α = D(β ) is surjective and N = D(M) is Artinian.

On the other hand, since 0 /∈Ass(M ), I = Ann(M) = Ann(N) is a nonzero ideal of R.

Then it follows that Ann(F(N)) = I[p] and so Ker(α : F(N)→ N) 6= 0, as desired. �
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Lemma 3.2.3 Let the notations be as in Lemma 3.2.2. Then, for each k ≥ 1, there

exists bk ∈ Ker(Fk−1(α)) such that ann(bk) =m[pk−1].

Proof. Since Ker(α : F(N)→ N) 6= 0 is a non-zero Artinian R-module, there exists

an element b1 ∈ Soc(Ker(α)) ⊆ F(N), where Soc(Ker(α)) := AnnKer(α)(m) denotes

the socle of Ker(α) and define bk, for all k ≥ 2, inductively as the image of bk−1

under the Frobenius map (defined in the preceding section) on Fk−1(N), that is

bk := ψFk−1(N)(bk−1) = 1⊗ bk−1 ∈ Fk(N). Then by induction on k (considering that

ann(b1) = m and ann(x) = I implies ann(ψ(x)) = I[p]), we have ann(bk) = m[pk−1].

On the other hand, since b1 ∈ Ker(α) := Ker(F0(α)), an easy induction argument

shows that bk ∈ Ker(Fk−1(α)) for all k ≥ 0. For if bk−1 ∈ Ker(Fk−2(α)), then

Fk−1(α)(bk) = Fk−1(α)(1⊗bk−1) = 1⊗Fk−2(α)(bk−1) = 0. �

Lemma 3.2.4 Let the notations be as in Lemma 3.2.2 and let bk be defined as in

Lemma 3.2.3 and y ∈ m \mk. Then ann(ybk) ⊆ mpk−1−k. In particular, if k ≥ 4,

ann(ybk)⊆mk.

Proof. To prove the fact that ann(ybk) ⊆ mpk−1−k, suppose on the contrary that there

exists an element z ∈ ann(ybk) such that z /∈mpk−1−k. Then clearly, yz ∈ annbk. On the

other hand as R ∼= κ[[X1, ...,Xn]], κ ∼= R/m a field of characteristic p > 0, and y /∈ mk

and z /∈mpk−1−k, we may write

y = f + f
′

z = g+g
′

where f (resp. g) is a nonzero polynomial in κ[[X1,X2, ...,Xn]] of degree at most

k− 1(resp. pk−1− k− 1) and f
′
(resp. g

′
) is either zero or a formal power series in

κ[[X1,X2, ...,Xn]] in which each summand has degree at least k (resp. pk−1− k). Then

yz = f g+ f g′+ g f ′+ g′ f ′. Note that since κ[[X1, ...,Xn]] is an integral domain and f

and g are non-zero elements in κ[[X1, ...,Xn]], so is f g. Note also that since f g′, g f ′ and

g′ f ′ are either zero or contain terms of degrees strictly bigger than the smallest degree

of f g, they cannot cancel any terms of smallest degree. But then since the degree of

the smallest term of f g is less than or equal to 0 6= deg( f g) ≤ pk−1− k−1+ k−1 =

pk−1− 2, yz /∈ mpk−1
which contradicts the fact that yz ∈ ann(bk) = m[pk−1]. Hence
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ann(ybk)⊆mpk−1−k, as desired.

If, in particular k ≥ 4, then pk−1− k ≥ k and so ann(ybk)⊆mpk−1−k ⊆mk. �

Now we are ready to give the proof of Theorem 3.2.1:

Proof of Theorem 3.2.1. Since M is an F-finite F- module such that 0 /∈Ass(M ), it

follows from Lemma 3.2.2 that

D(M ) = lim←−(N F(N) F2(N) · · ·),α F(α) F2(α)

for some Artinian R-module N and surjective map α : F(N)−→ N. It is worth noting

that, the exactness of the functor Fk(−) implies that Fk(α) is surjective for all k ≥ 0.

Now we claim that there exists a nonzero element n
′
= (n

′
0,n

′
1, · · · ,n

′
k, · · ·) ∈ D(M )

such that ann(n′k)⊆mk for all k ≥ 4, where n
′
k is the image of n

′
in Fk(N).

To construct such an element, let n′0 be an element of N and, for every 1 ≤ k ≤ 3,

choose n′k ∈Fk(N) such that n′k−1 =Fk−1(α)(n′k). For k≥ 4, let bk ∈Ker(Fk−1(α)) be

as defined in Lemma 3.2.3 and define nk in such a way that Fk−1(α)(nk) = n
′
k−1. Then,

either ann(nk) ⊆ mk or ann(nk + bk) ⊆ mk. Indeed, if ann(nk + bk) * mk, there exists

an element y ∈m\mk such that y(nk +bk) = 0 and so ann(nk)⊆ ann(ynk) = ann(ybk).

But then it follows from Lemma 3.2.4 that ann(nk)⊆ ann(ybk)⊆mk.

Now, for k ≥ 4, define

n
′
k =

{
nk, if ann(nk)⊆mk,
nk +bk, otherwise.

Clearly, n
′
= (n

′
0,n

′
1, · · · ,n

′
k, · · ·) ∈ D(M ) and ann(n′k)⊆mk for all k ≥ 4. This proves

the claim.

Finally, ann(n
′
) = 0 for if z ∈ ann(n

′
), then z ∈ ann(n

′
k)⊆mk for all k ≥ 4 which then

implies that z ∈
⋂

n∈Nm
n = {0}. This completes the proof. �

We conclude this chapter with the proof of Theorem 3.0.1.

Proof of Theorem 3.0.1. Without loss of generality, we may, and do, assume that R

is complete [ [3], Remark 4.1.1]. Since R is an F-finite F- module, so are its all local

cohomology modules and since 0 /∈ AssR(H i
I(R)) for any nonzero ideal I of R, the

result follows from Theorem 3.2.1. �
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4. RADICALLY PERFECT IDEALS AND LOCAL COHOMOLOGY
MODULES

This chapter consists of some results from our joint work with Vahap Erdoğdu, [26].

4.1 The Relation Between Radically Perfect Ideals and Local Cohomology

The aim of this section is to prove the following result:

Theorem 4.1.1 Over a non-catenary Noetherian domain, there exists a prime ideal

that is not a set-theoretic complete intersection.

Although Theorem 4.1.1 is stated for Noetherian rings, the motivation behind it comes

from a more general setting as indicated in Chapter 1 and bearing in mind that

non-catenary rings are of Krull dimension > 2, this theorem is in partial support of

Conjecture 3.

We need the following theorem for the proof of Theorem 4.1.1.

Theorem 4.1.2 Let R be a Noetherian ring, M a finitely generated R-module and I

an ideal of R with dimSuppR(M/IM) = d. Let t ≥ 0 be an integer. If there exists an

ideal J of R such that Hd+t
I+J (M) 6= 0, then t is a lower bound for cd(I,M). Moreover, if

cd(I,M) = t, then

Hd
J (H

t
I (M))∼= Hd+t

I+J (M)

and dimSuppR(Ht
I (M)) = d.

Proof. Consider the Grothendieck’s spectral sequence

E p,q
2 = H p

J (H
q
I (M)) =⇒ H p+q

I+J (M)

and look at the stage p+ q = d + t. Since Supp(Hq
I (M)) ⊆ V (I)∩Supp(M) ⊆ V (I +

AnnM), dimSupp(Hq
I (M)) ≤ d for all q. Therefore it follows from Grothendieck’s

vanishing theorem that for all p > d, E p,d+t−p
2 = 0. But then since the limit term
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Ed+t
∞ = Hd+t

I+J (M) does not vanish, there is at least one p≤ d such that

E p,d+t−p
2 = H p

J (H
d+t−p
I (M)) 6= 0.

Hence Hd+t−p
I (M) 6= 0 and so cd(I,M)≥ d + t− p≥ t.

If, in particular, cd(I,M) = t, then the above spectral sequence degenerates to an

isomorphism Hd
J (H

t
I (M))∼= Hd+t

I+J (M).

Since Hd
J (H

t
I (M)) 6= 0, it follows from Grothendieck’s vanishing theorem that

dimSuppR(H
t
I (M)) ≥ d. On the other hand, since dimSuppR(H

t
I(M)) ≤

dim(R/I +AnnM) = d, we conclude that dimSuppR(H
t
I (M)) = d. �

So far, for a finitely generated R- module M, the best known lower bound for cd(I,M) is

htM(I) = ht I(R/AnnM). As an immediate consequence of Theorem 4.1.2, we sharpen

this bound to dim(M)−dim(M/IM)≥ htM(I).

Corollary 4.1.3 Let (R,m) be a Noetherian local ring, M a finitely generated

R-module of dimension n and I an ideal of R such that dim(M/IM) = d. Then n−d is

a lower bound for cd(I,M). Moreover, if cd(I,M) = n−d, then

Hd
m(H

n−d
I (M))∼= Hn

m(M)

and dimSupp(Hn−d
I (M)) = d.

Proof. This follows from Theorem 4.1.2 and the fact that Hn
m(M) 6= 0. �

Corollary 4.1.4 Let (R,m) be a Noetherian local ring of dimension n and I an ideal of

R with d = dim(R/I) such that cd(I,R) = ht(I) = h. Then dim(R) = ht(I)+dim(R/I)

and

Hn−h
m (Hh

I (R))∼= Hn
m(R).

Proof. It follows from Corollary 4.1.3 that dim(R)− dim(R/I) ≤ cd(I,R) = ht(I),

while the other side of the inequality always holds. Therefore dim(R) = ht(I) +

dim(R/I). Now the required isomorphim follows from Corollary 4.1.3. �

With the help of the above results, we now prove Theorem 4.1.1:
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Proof of Theorem 4.1.1. Let R be a non-catenary Noetherian domain. Then as being

catenary is a local property, Rq is a non-catenary local domain for some prime ideal q of

R. Hence there exists a prime ideal pq of Rq such that ht(pq)� dim(Rq)−dim(Rq/pq).

But then it follows from Corollary 4.1.4 that ht(p) = ht(pq) � cd(pq,Rq) ≤ cd(p,R)

and therefore p can not be a radically perfect(set theoretic complete intersection) ideal.

�

On the other hand, being catenary is not sufficient to conclude that each prime ideal

of a ring R is radically perfect. As an example take (R,m) to be a valuation ring of

Krull dimension ≥ 2, then R is catenary and yet ara(m) = 1 < 2 ≤ ht(m). Hence the

maximal ideal m of R is not radically perfect.

4.2 Descending Chain With Successive Cohomological Dimensions

Let R = S[X ] be any Noetherian polynomial ring of dimension n over a ring S. Then

it follows from Theorem 1 of [27] that every maximal ideal m of maximal height in R

is radically perfect. The question we are interested in is whether there is a descending

chain m= pn ) pn−1 ) · · ·) p0 = 0 of (prime) ideals of R such that each pi is radically

perfect for all i, 0≤ i≤ n.

The quest to an answer to this question led us to the following result:

Theorem 4.2.1 Let R be a Noetherian ring, I an ideal of R and M any nonzero

R-module with cohomological dimension cd(I,M) = c > 0. Then there is a descending

chain of ideals

I = Ic ) Ic−1 ) · · ·) I0

such that cd(Ii,M) = i for all i, 0≤ i≤ c.

Proof. Consider the set

S= { J ( I | cd(J,M)< c }.

Clearly, the zero ideal belongs to S and so S is a non-empty subset of ideals of R.

Since R is Noetherian, S has a maximal element, say Ic−1. We claim that cd(Ic−1,M) =

c−1. To prove this, let x ∈ I \ Ic−1 and so Ic−1 +Rx ⊆ I. But then it follows from the
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maximality of Ic−1 in S and Remark 8.1.3 of [19] that

c≤ cd(Ic−1 +Rx,M)≤ cd(Ic−1,M)+1 < c+1.

Hence cd(Ic−1 +Rx,M) = cd(Ic−1,M)+1 = c and so the claim follows.

Iterating this argument, one can obtain a descending chain of ideals, as desired. �

Recall that a subspace Z of a topological space X is said to be locally closed, if it is

the intersection of an open and a closed set. Let X be a topological space, Z ⊆ X be

a locally closed subset of X and let F be an abelian sheaf on X . Then the ith local

cohomology group of F with support in Z is denoted by H i
Z(X ,F). For its definition

and details, see [18] and [28].

If, in particular, X = Spec(R) is an affine scheme, where R is a commutative Noetherian

ring, and F = M∼ is the quasi coherent sheaf on X associated to an R-module M, we

write H i
Z(M) instead of H i

Z(X ,M∼).

The following corollary may be considered as an easy application of our result above.

Corollary 4.2.2 Let R be a Noetherian ring, M an R-module and I an ideal of R such

that cd(I,M) = c > 1. Then there is a descending chain of locally closed sets

Tc−1 ) Tc−2 ) · · ·) T1

in Spec(R) such that cd(Ti,M) = i for all 1≤ i≤ c−1.

Proof. Let I be an ideal of R with cd(I,M) = c > 1. Then it follows from Theorem

4.2.1 that there is a descending chain of ideals

I = Ic ) Ic−1 ) · · ·) I1 ) I0

such that cd(Ii,M) = i for all 0 ≤ i ≤ c. Let now Ui = V (Ii) and define the locally

closed sets Ti :=U1 \Ui+1. Then it is easy to see that

Tc−1 ) Tc−2 ) · · ·) T1.

On the other hand, it follows from Proposition 1.2 of [28] that there is a long exact

sequence,

· · · // H j
U1
(M) // H j

Ti
(M) // H j+1

Ui+1
(M) // H j+1

U1
(M) // · · ·

As H j
Ui
(M) ∼= H j

Ii
(M) for all 1 ≤ i ≤ c−1 and for all j ≥ 0, it follows from the above

long exact sequence that cd(Ti,M) = i. �
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5. SOME APPLICATIONS ON THE STRUCTURES OF LOCAL
COHOMOLOGY MODULES

One of the important problems in the theory of local cohomology modules is to

determine whether a given local cohomology module is Artinian, or not [Third

Problem, [29]], which was studied by several authors, see eg. [30–32]. In the first

section of this chapter, we obtain some related results to this problem, particularly

for the top local cohomology modules, Hcd(I,M)
I (M), where cd(I,M) = sup{i ∈ N :

H i
I(M) 6= 0}.

In the second section, we first present necessary and sufficient conditions for various

modules to be of finite length. We then use our results to give an alternative proof of

the well-known result that if R is a Noetherian local ring with maximal ideal m and M

is a finitely generated R- module of dimension d, then Hd
m(M) is finitely generated if

and only if d = 0.

5.1 Artinianness of Top Local Cohomology Modules

This section consists of some results from our joint work with Vahap Erdoğdu, [26].

One of the main results of this section is the following theorem which resolves

the Artinianness of top local cohomology modules, Hcd(I,R)
I (R) over local unique

factorization domains of dimension at most three:

Theorem 5.1.1 Let R be a Noetherian local unique factorization domain of dimension

at most three and I an ideal of R. Then Hcd(I,R)
I (R) is Artinian if and only if cd(I,R) =

dimR.

To prove this, we need the following lemma:

Lemma 5.1.2 Let (R,m) be a Noetherian local ring, I an ideal of R and M an

R-module (not necessarily finitely generated) with cd(I,M) = c. If there exists an

element x ∈m\ I such that cd(I +Rx,M) 6= c, then Hc
I (M) is not Artinian.

23



Proof. Let x ∈m\ I such that cd(I +Rx,M) 6= c. Then it follows from the fact cd(I +

Rx,M)≤ cd(I,M)+1 that either cd(I+Rx,M) = c+1 or cd(I+Rx,M)< c. If cd(I+

Rx,M) = c+ 1, then the result follows from Corollary 4.1 of [31]. Now suppose that

cd(I +Rx,M)< c. Then it follows from the following exact sequence

· · · // Hc
I+Rx(M)︸ ︷︷ ︸

=0

// Hc
I (M) // Hc

I (M)x
// Hc+1

I+Rx(M)︸ ︷︷ ︸
=0

· · ·

that Hc
I (M)x

∼= Hc
I (M) 6= 0 and so dimSupp(Hc

I (M)) 6⊂ {m}. Therefore Hc
I (M) is not

Artinian. �

It is worth noting that (as used in the above proof) there exist ideals such that cd(I +

Rx,R) � cd(I,R). As an example, let R = k[[x1,x2,x3]] and I = (x1)∩ (x2,x3). Then

it follows from Mayer Vietoris sequence that cd(I,R) = 2 but I +Rx1 = Rx1 and so

cd(I +Rx1,R) = 1 < cd(I,R) = 2.

Remark 5.1.3 Let R be a Noetherian local ring of dimension n > 0, I be an ideal

of R with h = ht(I) � n and let p be a minimal prime ideal of I such that ht(p) = h.

Then consider the local cohomology module Hh
I (R) and localize it at p to obtain the

isomorphism (Hh
I (R))p ∼= Hh

pp(Rp). Now since Rp is a local ring with maximal ideal

pp of dimension ht(p) = h, it follows from Grothendieck’s non-vanishing theorem that

Hh
pp(Rp) 6= 0 and so p ∈ SuppR(H

h
I (R)). Hence Hh

I (R) is non-Artinian ( as p is not

maximal).

We use this remark together with Lemma 5.1.2 to give the proof of Theorem 5.1.1:

Proof of Theorem 5.1.1 . We give the proof only when dim(R) = 3. For smaller

dimensions, the argument would be the same.

Let now R be a local UFD of dimension three, I an ideal of R and c := cd(I,R) and

h := ht(I). Then keeping in mind that c ∈ {0,1,2,3} and h≤ c, we have the following

cases:

If c = 0, then I is necessarily a zero ideal (as R is domain) and so Hc
I (R) = R is

non-Artinian. On the other hand, if c = 1, then h = c = 1 and therefore it follows

from Remark 5.1.3 that Hc
I (R) is again non-Artinian.
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The case c = 2 implies either h = 1 or h = 2. In particular, if h = c = 2, then again

by Remark 5.1.3 we obtain Hc
I (R) is non-Artinian. Suppose now h = 1� 2 = c. Then

since all height one prime ideals over UFDs have cohomological dimension one, we

have that I is not prime. But clearly it is contained in some height one prime ideal

p = (x) properly and so I +Rx = Rx. Therefore cd(I +Rx,R) = 1 < 2 = cd(I,R) and

so it follows from Lemma 5.1.2 that Hc
I (R) is non-Artinian.

In the final case when c = 3, Hc
I (R) is Artinian by Exercise 7.1.7 of [19].

Hence one conclude from the above arguments that the only case for the top local

cohomology module Hc
I (R) to be Artinian is when c = 3 = dim(R). �

Remark 5.1.4 Note that Theorem 5.1.1 is not valid for UFDs of dimension greater

than three. For a concrete example, let R = k[[x1,x2,x3,x4]] be a formal power series

and I = (x1,x2)∩(x3,x4). Then it follows from Mayer-Vietoris sequence that cd(I,R) =

3 and H3
I (R) = ER(k), where ER(k) is the injective hull of k.

In the following, we examine the Artinianness and non-Artinianness of top local

cohomology modules in more general cases.

Our following result shows the existence of a chain of ideals with Artinian top local

cohomology modules over any Noetherian local ring of dimension ≥ 4:

Proposition 5.1.5 Let (R,m) be a Noetherian local ring of dimension n ≥ 4. Then

there exists a descending chain of ideals

Jn ) Jn−1 ) · · ·) J3

of R such that cd(Ji,R) = i for each 3 ≤ i ≤ n. Moreover each top local cohomology

module, H i
Ji
(R), is Artinian.

Proof. Let x1,x2, · · · ,xn be a system of parameters for R that is m=
√

(x1,x2, · · · ,xn)

and let Jn = (x1,x2, · · · ,xn). Clearly, cd(Jn,R) = n and Hn
Jn
(R) is Artinian. Then it

follows from Corollary 5.2 of [33] that there exists an (n−1)-generated ideal, say Jn−1,

such that Hn−1
Jn−1

(R) ∼= Hn
Jn
(R). We may proceed in this way and apply Corollary 5.2

of [33] till we reach up to three generated ideal I3. Then clearly Jn) Jn−1) · · ·) J3 is a

descending chain of ideals with successive cohomological dimensions, and isomorphic

25



top local cohomology modules H3
J3
(R)∼= · · · ∼= Hn−1

Jn−1
(R)∼= Hn

Jn
(R) which are Artinian,

as desired. �

On the other hand, under some mild conditions on an ideal I of a Noetherian local

ring R, there exists a sub-ideal K of I such that cd(K,R) = cd(I,R) = c and Hc
K(R)

is non-Artinian (regardless whether Hc
I (R) is Artinian or not) as the following result

shows:

Theorem 5.1.6 Let (R,m) be a Noetherian local ring of dimension n and I a non-zero

ideal of R with depth(I,R) > 0 and c = cd(I,R) ≤ n− 2. Then there exists an ideal

K ( I of R such that cd(K,R) = cd(I,R) = c and Hc
K(R) is non-Artinian.

To prove Theorem 5.1.6, we need the following two lemmas:

Lemma 5.1.7 Let (R,m) be a Noetherian local ring of dimension n and I a non-zero

ideal of R such that depth(I,R)> 0 and c = cd(I,R)≤ n−1. Then there exists an ideal

J ⊆ I of R with cd(J,R) = n− 1. Furthermore, if depth(I,R) > 1 and c = cd(I,R) ≤

n−1, then Hn−1
J (R) is Artinian.

Proof. Let I be a non-zero ideal of R such that t = depth(I,R) > 0 and x1,x2, · · · ,xt

be an R-regular sequence contained in I. Then there exists xt+1,xt+2, · · · ,xn such that

x1,x2, · · · ,xn forms a system of parameters for R. Let now K := (xt+1,xt+2, · · · ,xn).

Clearly,
√

I +K =m and cd(K,R)≤ n− t ≤ n−1. Then it follows from the following

Mayer-Vietoris sequence

· · · // Hn−1
I (R)

⊕
Hn−1

K (R) // Hn−1
I∩K (R) // Hn

m(R)︸ ︷︷ ︸
6=0

// Hn
I (R)︸ ︷︷ ︸
=0

⊕
Hn

K(R)︸ ︷︷ ︸
=0

// Hn
I∩K(R) // Hn+1

m (R) = 0

that cd(I∩K,R) = n−1 and in particular, if depth(I,R)> 1 and c = cd(I,R)< n−1,

then the above exact sequence yields an isomorphism Hn−1
I∩K (R)∼= Hn

m(R). Hence J :=

I∩K is the desired ideal. �
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Lemma 5.1.8 Let R be a Noetherian ring, I an ideal of R, M an R-module with

cd(I,M) = c > 0 and

I = Ic ) Ic−1 ) · · ·) I0

be the filtration of I as described in Theorem 4.2.1. Then for each 0 ≤ i ≤ c− 1, the

local cohomology module H i
Ii
(M) is not Artinian .

Proof. Let 0 ≤ i ≤ c− 1 and x ∈ Ii+1 \ Ii and consider the ideal Ii + Rx. Then as

constructed in the proof of Theorem 4.2.1, cd(Ii +Rx,M) = i+1. Now from Corollary

3.5 of [20], we have the following short exact sequence

0 // H1
Rx(H

i
Ii
(M)) // H i+1

Ii+Rx(M) // H0
Rx(H

i+1
Ii

(M))︸ ︷︷ ︸
=0

// 0.

Hence H1
Rx(H

i
Ii
(M)) ∼= H i+1

Ii+Rx(M) 6= 0. But then it follows from Grothendieck’s

vanishing theorem that dimSuppR(H
i
Ii
(M))≥ 1, and so H i

Ii
(M) is not Artinian. �

We now give the proof of Theorem 5.1.6:

Proof of Theorem 5.1.6 . Let I be a non-zero ideal of R with depth(I,R)> 0 and c =

cd(I,R)≤ n−2. Then it follows from Lemma 5.1.7 that there exists an ideal Jn−1 ⊆ I

of R such that cd(Jn−1,R) = n− 1. But then by Lemma 5.1.8 we have a descending

chain of sub-ideals Jn−1 ) Jn−2 ) · · ·) J0 of Jn−1 such that cd(Ji,R) = i and H i
Ii
(R) is

non-Artinian for each 0≤ i≤ n−2. Hence K := Jc ( I is the desired ideal. �

In the remaining part of this section, we use the notion of Serre subcategory and

Corollary 4.1.3 of Section 2 to obtain some further results on the Artinianness of top

local cohomology modules.

Recall that a class S of R-modules is a Serre subcategory of the category of

R-modules, C (R), when it is closed under taking submodules, quotients and

extensions. To obtain a necessary condition for the non-Artinianness of top local

cohomology modules, we need the following lemma:

Lemma 5.1.9 Let R be a Noetherian ring, M an R-module (not necessarily finitely

generated) and let S be a Serre subcategory of C (R). Let I and J be two ideals of

R such that Ht+i
J (Hc−i

I (M)) ∈S for all 0 < i ≤ c = cd(I,M) and Ht+c
I+J(M) /∈S for

some positive integer t. Then Ht
J(H

c
I (M)) /∈S .
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Proof. Consider the Grothendieck’s spectral sequence

E p,q
2 = H p

J (H
q
I (M)) =⇒ H p+q

I+J (M)

and look at the stage p+ q = c+ t. Let now 0 < i ≤ c = cd(I,M). Since Et+i,c−i
∞ =

Et+i,c−i
r for sufficiently large r and Et+i,c−i

r is a subquotient of Et+i,c−i
2 ∈S , Et+i,c−i

∞ ∈

S for all 0 < i≤ c = cd(I,M).

On the other hand, since Et,c
2 = Ht

J(H
c
I (M)) =⇒Ht+c

I+J(M), there exists a finite filtration

0 = Φ
t+c+1 Ht+c ⊆Φ

t+c Ht+c ⊆ ·· · ⊆Φ
1 Ht+c ⊆Φ

0 Ht+c = Ht+c

of Ht+c = Ht+c
I+J(M) such that E p,q

∞ = Φp Ht+c/Φp+1 Ht+c for all p+ q = t + c. Since

for all p < t, E p,q
∞ = 0, we have that Φt Ht+c = · · · = Φ1 Ht+c = Φ0 Ht+c = Ht+c. But

then since Et+i,c−i
∞ = Φt+i Ht+c/Φt+i+1 Ht+c ∈S for all 0 < i≤ c, Φt+1 Ht+c ∈S and

so it follows from the short exact sequence

0 // Φ
t+1 Ht+c︸ ︷︷ ︸
∈S

// Ht+c
I+J(M)︸ ︷︷ ︸
/∈S

// Et,c
∞

// 0

that Et,c
∞ /∈S . Since Et,c

∞ is a subquotient of Et,c
2 and Et,c

∞ /∈S , it follows that Et,c
2 =

Ht
J(H

c
I (M)) /∈S . �

Corollary 5.1.10 Let (R,m) be a Noetherian local ring, M a finitely generated

R-module of dimension n with dim(M/IM) = d. If Hcd(I,M)
I (M) is Artinian, then either

cd(I,M) = n or Hn−i
m (H i

I(M)) 6= 0 for some i with n−d ≤ i < cd(I,M).

Proof. We prove the contrapositive of the statement. Let S be the category of zero

module and suppose that c = cd(I,M)< n and Hn−i
m (H i

I(M)) = 0 ∈S for all n−d ≤

i< c. But then since Hn
m(M) /∈S , it follows from Lemma 5.1.9 that Hn−c

m (Hc
I (M)) 6= 0.

Hence dimSupp(Hc
I (M))> 0 and so Hc

I (M) is not Artinian. �

We conclude this section with the following results that determine the Artinianness and

non-Artinianness of the top local cohomology module, Hcd(I,M)
I (M), for the ideals of

small dimension, the first of which is a consequence of Corollary 4.1.3:

Theorem 5.1.11 Let (R,m) be a Noetherian local ring, M a finitely generated

R-module of dimension n and let I be an ideal of R such that dim(M/IM) = 1. Then

Hcd(I,M)
I (M) is Artinian if and only if cd(I,M) = n.
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Proof. Since dim(M/IM) = 1, it follows from Corollary 4.1.3 that either cd(I,M) =

n− 1 or cd(I,M) = n. If cd(I,M) = n, then clearly Hn
I (M) is Artinian. If, on

the other hand, cd(I,M) = n− 1, then it again follows from Corollary 4.1.3 that

dimSupp(Hn−1
I (M)) = 1 and so Hn−1

I (M) is non-Artinian. �

Theorem 5.1.12 Let (R,m) be a Noetherian local ring, M a finitely generated

R-module of dimension n and let I be an ideal of R with dim(M/IM) = 2.

If Hcd(I,M)
I (M) is Artinian, then either cd(I,M) = n, or cd(I,M) = n − 1 and

H2
m(H

n−2
I (M)) 6= 0.

Proof. Since dim(M/IM) = 2 and Hn
m(M) 6= 0, it follows from Corollary 4.1.3 that

n−2 is a lower bound for cd(I,M). If cd(I,M) = n−2, then again by Corollary 4.1.3,

dimSupp(Hn−2
I (M)) = 2 and so Hcd(I,M)

I (M) is non-Artinian. If, on the other hand,

cd(I,M) = n, then from Lemma 5.1.9, Hcd(I,M)
I (M) is Artinian. Finally, if cd(I,M) =

n−1 and Hn−1
I (M) is Artinian, then the result follows from Corollary 5.1.10. �

5.2 Modules of Finite Length

This section is motivated by the question of "what are the most elementary properties

that are required for an R-module M to be of finite length?" and consists of the results

from our joint work with Sevgi Harman, [34].

Throughout Z(M) will denote the set of zero divisors of M.

5.2.1 Modules of length at most two

In this subsection we make some simple but somehow interesting observations first of

which provide conditions equivalent to M and all its Koszul cohomology modules to

be of finite length.

Proposition 5.2.1 For an R-module M the following statements are equivalent.

(i) For any two distinct proper submodules K, L of M, Ann(K)+Ann(L) = R.

(ii) For any two distinct proper submodules K, L of M, HomR(K,L) = 0.

(iii) M is a direct sum of at most two non-isomorphic simple submodules.
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(iv) M has length at most two with non-isomorphic simple quotient modules.

(v) For all i and for all sequences x = {x1,x2, · · · ,xn} of elements in R , Hi(x∞;M) is

of length at most two with non-isomorphic simple quotient modules. (In particular

if R is Noetherian, then for all i and for all ideals I of R, Hi
I(R) is of length at most

two with non-isomorphic simple quotient modules.)

Proof. (i)⇒(iii). Let K be any non-zero proper submodule of M and x a non-zero

element of K. We claim that K = Rx. Suppose not, then Rx is a proper submodule of

K and hence by the assumption Ann(Rx)+Ann(K) = R. But this is the same thing as

saying that Ann(Rx)=R, a contradiction to the fact that x is non-zero in K. Therefore it

follows that every proper submodule of M is simple. If K is different than M, then there

is a proper submodule L of M different than K, and for the same reason as above L =

Ry, for some y in M. Thus K ∼= R/Ann(x) and L∼= R/Ann(y) , and Ann(x), Ann(y) are

two distinct maximal ideals of R. Next we show that K∩L = 0. But this follows from

the fact that if K ∩L has a non-zero element z, then Ann(z)+Ann(K) = Ann(z) = R,

which is not possible. Therefore M = K⊕L. Since otherwise K⊕L would be a proper

submodule of M which would then contradict the fact that K is a non-zero and yet

Ann(K) = Ann(K)+Ann(K⊕L) = R.

(iii)⇒(i). Is clear.

(iii)⇒ (ii). Is clear.

(ii)⇒(iii). Let K be again a proper submodule of M and x a non-zero element of K. If

Rx is different than K, then HomR(Rx,K) 6= 0, a contradiction. Therefore each proper

submodule of M is simple. If L is another proper submodule of M different from K,

then M = K⊕L. Because otherwise K⊕L would be a proper submodule of M, and

that would give HomR(K,K⊕L) 6= 0, contradicting the assumption.

(iii)⇒ (iv). Follows from the fact that length(M1⊕M2) = length(M1)+ length(M2).

(iv)⇒(iii). Is clear.

(iii)⇒ (v). Let K be one of the simple submodules of M and x = {x1,x2, · · ·

,xn} be a sequence of elements in R. Let I = (x1,x2, · · · ,xn). Then by Lemma 7.7

of [35], Hi(x∞;K) = 0 for all i > 0. Therefore we only consider the remaining case

H0(x∞;K) = {x ∈ K : Itx = 0 f or some positive integer t}. Since K is simple, K ∼=

R/M for some maximal ideal M of R. If now I *M then I +M = I +AnnK = R

and since I +AnnK annihilates H0(x∞;K), H0(x∞;K) = 0. If however I ⊆M, then it
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follows from the definition that H0(x∞;K) = K. Since Koszul cohomology commutes

with direct sum, it follows that for any sequence x = {x1,x2, · · · ,xn} of elements of R

and any i, Hi(x∞;M) is either zero or one of the factors of M or is M itself. Therefore

for all i and for all sequences x = {x1,x2, · · · ,xn} of elements in R, Hi(x∞;M) has

length at most two with non-isomorphic simple quotient submodules.

(v)⇒(i). Let K and L be any two distinct proper submodules of M and J = Ann(K+L)

which is both contained in Ann(K) and Ann(L). Let now y = {y} where y ∈ J. Then

it follows from the definition of Koszul cohomology that K = H0(y∞;K)⊆ H0(y∞;M)

and L = H0(y∞;L)⊆H0(y∞;M) and so K and L are also distinct proper submodules of

H0(y∞;M). Hence by assumption Ann(K)+Ann(L) = R.

�

We note that if M and N are any two R-modules, then it is not hard to see that

Ann(HomR(M,N)) and Ann(M⊗R N) contains both Ann(M) and Ann(N) and so, if

Ann(M)+Ann(N) = R, then we necessarily have HomR(M,N) = 0 and M⊗R N =

0. Of course in general neither M ⊗R N = 0 nor HomR(M,N) = 0 implies that

Ann(M)+Ann(N) = R.

Proposition 5.2.2 Let {Mi}i∈I be a family of R-modules such that for all pairs i 6= j

in I, Ann(Mi)+Ann(M j) = R. Then

(i) ∑i∈IMi =
⊕

i∈IMi.

(ii) HomR(
⊕

i∈I1
Mi,

⊕
j∈I2

M j) = 0, for any two finite disjoint subsets I1 and I2 of I.

(iii) (
⊕

i∈I1
Mi)⊗R (

⊕
j∈I2

M j) = 0, for any two disjoint subsets I1 and I2 of I.

(iv) ExtkR(
⊕

i∈I1
Mi,

⊕
j∈I2

M j) = 0, for any two finite disjoint subsets I1 and I2 of I

and all k ≥ 1.

(v) If moreover for each i ∈ I, Mi is simple, then TorR
1 (
⊕

j∈I1
Mi,

⊕
j∈I2

M j) = 0, for

any two disjoint subsets I1 and I2 of I.

Proof. (i) Since every element of ∑i∈IMi is contained in a submodule generated

by a finite number of the Mi and since for any finite subset J of I not containing i,

Ann(Mi)+
⋂

j∈JAnn(M j) = R, it follows that Mi ∩∑ j∈JM j = 0, and so ∑i∈IMi is a
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direct sum.

For the proofs of (ii) and (iii) use the fact that Hom is distributive over finite

direct sum and the fact that HomR(Mi,M j) = 0, and Tensor product is distributive over

arbitrary direct sum and the fact that Mi⊗R M j = 0.

(iv) Since for each pair i 6= j in I, Ann(Mi) + Ann(M j) ⊆ Ann(ExtkR(Mi,M j)),

it follows that ExtkR(Mi,M j) = 0 for all k ≥ 1. Hence ExtkR(
⊕

i∈I1
Mi,

⊕
j∈I2

M j) = 0

follows from the fact that Ext is distributive over finite direct sum.

(v)If for each i ∈ I, Mi is simple, then Mi ∼= R/Ann(Mi). But then from

Ann(Mi) + Ann(M j) = R we have Ann(Mi)Ann(M j) = Ann(Mi) ∩ Ann(M j).

Therefore TorR
1 (Mi,M j) ∼= Ann(Mi)∩Ann(M j)/Ann(Mi)Ann(M j) = 0. Now,

TorR
1 (
⊕

j∈I1
Mi,

⊕
j∈I2

M j) = 0 is a consequence of the fact that Tor is distributive

over arbitrary direct sum. �

It may be worth mentioning that if R is a Noetherian ring and M and N are

two finitely generated R-modules with Ann(M) + Ann(N) = R, then the ith local

cohomology of M with respect to the ideal AnnN is zero. That is, Hi
AnnN(M) =

lim
→

ExtiR(R/(AnnN)n,M) = 0, which easily follows from the proof of part (iv) of

Proposition 5.2.2 above.

Proposition 5.2.3 Let R be a ring and M and N be R-modules. Suppose that

Ann(M) 6= 0 and that Ann(M) is not contained in Z(N), the set of zero divisors of

N. Then HomR(M,N) = 0.

Proof. Suppose that HomR(M,N) 6= 0, and let f be a non-zero element of

HomR(M,N). Then there is a non-zero element m in M such that f (m) 6= 0 in N. Let

now r be any non-zero element of Ann(M) which is not contained in Z(N). Then

r f (m) = f (rm) = 0. But this is a contradiction to the fact that r is not in Z(N).

Therefore HomR(M,N) = 0. �

We note that if R is an integral domain and K is the field of fractions of R, then for

any non-zero ideal I of R, HomR(R/I,K) = 0. Now applying Hom(−,K) to the short
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exact sequence 0→ I → R→ R/I → 0 we obtain HomR(R,K) ∼= HomR(I,K), as K

is an injective R-module. On the other hand applying Hom(R/I,−) to the same short

exact sequence we obtain HomR(R/I,R/I) ∼= HR
1 (R/I,R/I), the first homology of the

Hom functor applied to the given sequence. Also the conditions that Ann(M) 6= 0 and

Ann(M) * Z(N) in the statement of the above proposition has to be retained for its

conclusion. For let M = R and N = K, then clearly HomR(M,N) 6= 0.

5.2.2 Divisible modules of finite length

Recall that an R−module M is divisible if for any nonzero divisor r in R, M = rM. In

this section we examine conditions under which a divisible module is of finite length.

Proposition 5.2.4 Let M be an R-module with Z(M) ⊆ Z(R) and E be an injective

R-module. Then HomR(M,E) is a divisible R-module.

Proof. Let E be an injective R-module and M be any R-module with Z(M) ⊆ Z(R),

and let f be a non-zero element of HomR(M,E) and r be a non-zero divisor in R. We

want to show that there exists a g ∈ HomR(M,E) such that f = rg. For this, we define

h : M→M by h(m) = rm. Then it is clear that h is well-defined and one-to-one. Now

using the injectivity of E, one obtains the following commutative diagram:

0 // M

f
��

h // M

g
~~

E

Thus for any m ∈M, we have

f (m) = gh(m) = g(rm) = rg(m)

that is f = rg. Therefore HomR(M,E) is divisible. �

Corollary 5.2.5 Let E be a torsion free injective module over an integral domain R.

Then for any torsion free R-module M, HomR(M,E) is an injective R-module and in

particular, EndR(E) is injective as an R-module.
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Proof. It is easy to see that HomR(M,E) is torsion free. Hence by Proposition 5.2.1,

it is also divisible. Since over an integral domain a torsion free divisible module is

injective, HomR(M,E) is an injective R-module. �

Corollary 5.2.6 Let M be an R-module and E be an injective R-module. Then

HomR(HomR(M,R),E) is a divisible R-module.

Proof. Let r ∈ Z(HomR(M,R)). Then there exists a nonzero element f ∈HomR(M,R)

such that r f = 0. Since f is nonzero, 0 6= f (m)∈ R for some m∈M. But then r f (m) =

0 and so r ∈ Z(R). Therefore Z(HomR(M,R)) ⊆ Z(R) and the result follows from

Proposition 5.2.4. �

The following statement may be considered as the dual of Proposition 5.2.4 :

Proposition 5.2.7 Let M be a divisible R-module. Then for any projective R-module

P, HomR(P,M) is a divisible R-module.

Proof. Let M be a divisible and P be a projective R-module, and let f be a non-zero

element of HomR(P,M) and r be a non-zero divisor in R. We want to show that there

exists a g ∈ HomR(P,M) such that f = rg. For this, we define h : M→M by h(m) =

rm. Then from the divisibility of M, h is onto. Now using the projectivity of P, one

obtains the following commutative diagram:

P
g

~~

f
��

M
h
// M // 0

Thus for any p ∈ P, we have

f (p) = h(g(p)) = rg(p)

that is f = rg. Therefore HomR(P,M) is divisible. �

Proposition 5.2.8 Let M be an Artinian R-module with Z(M) ⊆ Z(R). Then M is

divisible.

Proof. Let r ∈ R−Z(R)⊆ R−Z(M). Then because M is Artinian, the chain
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rM ⊇ r2M ⊇ ·· ·

must stabilize i.e. rnM = rn+1M for some positive integer n. Let now x ∈ M then

rnx = rn+1y for some y ∈M. Hence rn(x−ry) = 0 and since rn ∈ R−Z(M), x−ry = 0

implies x = ry. Therefore M = rM for all r ∈ R−Z(R) and so M is divisible. �

Proposition 5.2.9 Over an integral domain R which is not a field the only finitely

generated divisible module is the zero module.

Proof. Let M be a finitely generated divisible module over the integral domain R. Then

for any nonzero prime ideal P of R and any nonzero element r in P we have rM = M

and hence r
1MP = MP as RP-modules. But then by Nakayama’s Lemma MP = 0. Thus

MP = 0 for all prime ideals P of R and therefore M = 0. �

When R is not an integral domain there are cases where R possesses a nonzero finitely

generated divisible module and we now establish these facts.

Proposition 5.2.10 Let M be a nonzero finitely generated divisible R-module. Then

any maximal ideal in the support of M consists of zero divisors.

Proof. Let m be a maximal ideal of R such that Mm 6= 0 and r be a nonzero divisor in

m. Then as M is divisible, rM = M and hence r
1Mm = Mm as Rm-modules. But then

again by Nakayama’s Lemma, Mm = 0. This contradiction shows that m consists of

zero divisors. �

Corollary 5.2.11 Let R be a ring and M a finitely generated non-zero R-module.

Suppose that the Jacobson radical, J(R), of R is non-zero and that M is divisible.

Then J(R) consists of only zero divisors.

Corollary 5.2.12 Let R be a local ring with maximal ideal m and M be a finitely

generated non-zero R-module. Then M is divisible implies that m consists of zero

divisors.

Proposition 5.2.13 A reduced local ring with finitely many minimal prime ideals

which possesses a non-zero finitely generated divisible module is of Krull dimension

zero.
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Proof. Let R be a reduced local ring with finitely many minimal prime ideals which

possesses a nonzero finitely generated divisible module and m be a maximal ideal of

R. Then it follows from the above corollary that m consists of zero divisors. But then

since R is reduced, we have

m= Z(R) = ∪n
i=1{Pi | Pi is a minimal prime ideal o f R }

which implies that m= Pi for some i and so the height of m is zero. Therefore R is of

Krull dimension zero. �

It follows from Corollary 5.2.12 and Proposition 5.2.13 that if A is a Noetherian local

ring which is not a field and possesses a nonzero finitely generated divisible module,

then the maximal ideal of A consists of zero divisors and contains at least one nonzero

nilpotent element. Therefore the reduced Noetherian local ring A = k[[x,y]]/(xy) does

not have a nonzero finitely generated divisible module.

On the other hand, let R = k[[x,y]]/(x2,xy). Then since every element of R is

either a unit or a zero divisor, every R-module is divisible. Note also that R is of

Krull dimension one and therefore non-Artinian. Thus there are Noetherian divisible

modules that are not Artinian. One also knows that the Z-module Z(p∞) = Z[1/p]/Z

is an Artinian divisible module which is not Noetherian.

With this in mind, we have the following result:

Theorem 5.2.14 Over a reduced Noetherian ring R, a finitely generated divisible

module M is Artinian and Z(M)⊆ Z(R).

Proof. Let m be a maximal ideal of R containing AnnM. Then by Proposition 5.2.10

and the fact that R is reduced, we have

m⊆ Z(R) = ∪n
i=1{Pi | Pi is a minimal prime ideal o f R }

which implies that m=Pi for some i and so height of M is zero. Therefore R/AnnM is

of Krull dimension zero and hence is Artinian. Since a finitely generated module over

an Artinian ring is Artinian, M is Artinian as an R/AnnM- module. But then since M

as an R-module and as an R/AnnM- module is one and the same it follows that M is
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an Artinian R-module. Let now r ∈ R be a nonzero divisor in R and define f : M→M

by f (m) = rm. It is clear from the divisibility of M that f is onto and also since M

is Noetherian, f must be an isomorphism. Therefore Ker f = 0 and so rm = 0 implies

m = 0 which implies that r ∈ R is a nonzero divisor of M. Thus R−Z(R)⊆ R−Z(M)

and hence we have Z(M)⊆ Z(R). �

Proposition 5.2.15 Over a Noetherian integral domain R of Krull dimension 1, a

finitely generated module M with AnnM 6= 0 is Artinian and so is of finite length.

Proof. Since R is of Krull dimension 1, rad(AnnM), the radical of AnnM, is a finite

product of maximal ideals of R, and so R/AnnM is Artinian. Hence M is Artinian

both as an R-module and an R/AnnM-module. �

We also would like to mention that if R is any ring with J(R) 6= 0 and M is an Artinian

R-module with Z(M) ⊆ Z(R), then J(R) is contained in the set of zero divisors of R.

This easily follows from the proof of the following proposition.

Proposition 5.2.16 Let R be a ring with nonzero Jacobson radical J(R) and M be an

Artinian R-module. Then J(R)⊆ Z(M).

Proof. Suppose J(R)* Z(M) and let r ∈ J(R)−Z(M). Then for any nonzero x ∈M,

the Nakayama’s Lemma would give a non-stationary descending chain of submodules

of M

Rx% rRx% r2Rx% · · ·

But then this yields a contradiction. Therefore J(R)⊆ Z(M). �

5.2.3 Local cohomology modules of finite length

Let (R,m) be a Noetherian local ring and I be an ideal of R. Then for any finitely

generated R-module M with dimension d, one knows that for all i, Hi
m(M) and Hd

I (M)

are Artinian modules. Here in this section, we use the information of Section 5.2.2 to

give necessary and sufficient conditions for Hd
I (M) to be of finite length. The following

is yet another proof (that uses Proposition 5.2.9) of the so called Grothendieck’s

non-vanishing theorem, see for example Section 6.1.4 of [19] and [36].
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Theorem 5.2.17 Let R be a Noetherian local ring with maximal ideal m and M be a

finitely generated R- module of dimension d. Then Hd
m(M) is finitely generated if and

only if d = 0.

Proof. By the Independence of Base[ [37], Proposition 2.14], we may place R by

R/AnnM. Therefore we may assume that AnnM = 0 and so d = dimR M = dimR R.

On the other hand, as is well-known that Hi
m̂(M̂) ∼= Hi

m(M) , we may also assume

that R is complete, here M̂ denotes the m-adic completion of M. Then by Cohen’s

structure theorem, R is the homomorphic image of a complete regular Noetherian

local ring T with dimension n ≥ d and thus there is a surjective homomorphism

φ : T → R and clearly I = Kerφ is an ideal of T with height n− d. Since every

regular local ring is Cohen-Macaulay, I contains a regular sequence (x1,x2, · · · ,xn−d)

and so T/(x1,x2, · · · ,xn−d) is a regular local ring. Let S = T/(x1,x2, · · · ,xn−d). Then

clearly dimS = d. Let now mS be the maximal ideal of S and ES(S/mS) be the

injective hull of the residue field S/mS of S and so again by the Independence of Base,

Hd
m(M) ∼= Hd

mS
(M). But then by the local duality theorem [ [37], Theorem 4.4], we

have

Hd
m(M)∼= Hd

mS
(M)∼= HomS(HomS(M,S),ES(S/mS))

Since every regular local ring is an integral domain, 0 ∈ Ass(HomS(M,S)) which

implies that HomS(M,S) is nonzero and then again by local duality Hd
m(M) is nonzero.

On the other hand, by Corollary 5.2.6

HomS(HomS(M,S),ES(S/mS))

is a divisible S-module. Then by Proposition 5.2.9, Hd
m(M) is finitely generated only if

S is Artinian and so d = dimS = 0.

Conversely, suppose dimM = 0. Then the result follows from the fact that H0
m(M)⊆M.

�

Theorem 5.2.18 Let R be a reduced Noetherian local ring and M be a finitely

generated R-module of dimension d with the property that Z(M) ⊆ Z(R). Then for

any ideal I of R, Hd
I (M) is a nonzero finitely generated R-module if only if R is a field.
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Proof. Suppose Hd
I (M) is a nonzero finitely generated R-module and x ∈ R−Z(R)⊆

R−Z(M). Then the short exact sequence

0 −−−→ M .x−−−→ M −−−→ M/xM −−−→ 0

yields the following long exact sequence

0 −−−→ H0
I (M)

.x−−−→ H0
I (M) −−−→ H0

I (M/xM) −−−→ ·· ·

−−−→ Hd−1
I (M/xM) −−−→ Hd

I (M)
.x−−−→ Hd

I (M) −−−→ Hd
I (M/xM)

−−−→ ·· ·

Since dimM/xM < d, Hd
I (M/xM) is zero and so the map Hd

I (M)
.x−−−→ Hd

I (M) is

surjective. Therefore for any nonzero divisor x of R, we have Hd
I (M) = xHd

I (M) which

implies that Hd
I (M) is divisible. Then by Proposition 5.2.13, R is Artinian. The result

now follows from the fact that a reduced Artinian ring is nothing but a field.

The converse is obvious.

�
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6. CONCLUSION

In this thesis, we dealt with local cohomology modules and their relations with

radically perfect ideals. However, since local cohomology modules are not finitely

generated in many instances, it is not very easy to obtain considerable results on these

modules by using classical tools. To overcome this problem, one needs to establish

a relation between a local cohomology module and a finitely generated module. In

this regard, Lyubeznik applied the theory of D-modules in the rings of characteristic

zero and also he developed the theory of F-modules for the case when the underlying

ring is of characteristic p > 0; [38], [23]. Since all local cohomology modules H i
I(R)

have natural F- finite F- module (resp. holonomic D−module) structures, the class

of F- finite F- modules (resp. holonomic D−modules) has significant applications

to local cohomology modules in characteristic p > 0 (resp. characteristic zero). By

using these applications, we obtained the result which established Conjecture 2 in

equicharacteristic p > 0. In our future work, we would like to apply the D− module

theory to local cohomology modules to establish Conjecture 2 in equicharacteristic

zero case.

Furthermore, in this thesis, we mentioned about several definitions of local

cohomology modules all of which are equivalent when the underlying ring is

Noetherian. However, to obtain more specific results on radically perfect ideals, we

need an alternative definition which is both compatible with all these definitions and

valid over the rings that need not to be Noetherian. Fortunately, J.P. Greenlees and

J.P.C. May give such a definition of local cohomology modules in their very popular

paper by using the notions from algebraic topology, [39]. In the future, we also would

like to examine this definition and try to relate it with radically perfect ideals.

41



42



REFERENCES

[1] Forster, O. (1964). Uber die Ahzahl der Erzeugenden eines Ideals in einem
Noetherschen Ring, Math. Z., 84, 80–87.

[2] Lyubeznik, G. (1992). The number of defining equations of affine algebraic sets,
Amer. J. Math., 114, 413–463.

[3] Hellus, M., (2007). Local Cohomology and Matlis Duality, habilitation
dissertation, University of Leipzig, Germany.

[4] Hellus, M. (2005). On the associated primes of Matlis Duals of top local
cohomology modules, Comm. Alg., 33, 3997–4009.

[5] Hellus, M. (2007). Matlis Duals of top local cohomology modules and the
arithmetic rank of an ideal, Comm. Alg., 35, 1421–1432.

[6] Hellus, M. and Schenzel, P. (2014). Notes on local cohomology and duality, J.
Algebra, 401, 48–61.

[7] Hellus, M. and Stückrad, J. (2008). Matlis Duals of top local cohomology
modules, Proc. Amer. Math. Soc., 136, 489–498.

[8] Lyubeznik, G. and Yıldırım, T. (2018). On the Matlis dual of local cohomology
modules, Proc. Amer. Math. Soc., 146(9), 3715–3720.

[9] Goto, S. and Ogawa, T. (1983). A note on rings with finite local cohomology,
Tokyo J. Math., 6, 403–411.
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