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Boğaziçi University
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ON BALANCING SOCIAL NETWORKS

SUMMARY

In this thesis, we study the optimization of complete signed graphs. We develop a
graph theoretical algorithm that balances any signed graph with specific attention paid
to complete signed graphs. In 1946, Heider observed that the relationships between
members of some social networks do not change easily, while relationships in other
networks do. He observed that among all networks consisting of three people, the
relationships are stable when all members are friendly towards each other or if two
friends are mutually hostile towards a third member. He characterized these networks
as balanced triads and the remaining networks consisting of three people as unbalanced
triads. He postulated that larger networks will be balanced when every triad of such
a network is balanced. Later research in the field of structural balance has been
concentrated on three main issues: Determining whether or not a given social network
is balanced, developing reasonable metrics that quantify how balanced a given social
network is, and developing algorithms that balance any social network and examining
their correspondence to the transformations of real world social networks.

Cartwright and Harary showed that Heider’s observations can be summarized using
signed graphs. They defined a balanced signed graph as a graph where the product of
edge signs of every cycle of G is positive. However, this condition is computationally
difficult to check in a general signed graph. To overcome this difficulty Cartwright and
Harary proved the Structure Theorem which states that, a signed graph G is balanced
if its vertex set can be partitioned into two disjoint sets (one of which could possibly
be empty) such that edges lying inside each of the sets are positive edges, while edges
with endpoints in different sets are negative. This condition is much easier to verify
than the cycle condition since by the Structure Theorem the set of negative edges has
to form a bipartite graph, which is a computationally simple condition to check. If the
graph of negative edges is bipartite, we can immediately identify the two parts during
this process. What remains is answering whether there are any positive edges between
the two parts, if not the network is balanced.

To measure the amount of imbalance in a signed graph several metrics have been
developed. Harary defined the line index, l(G) of a signed graph G as the minimum
number of edges whose signs need to be negated so that the resultant signed graph is
balanced. The line index l(G) seems like a reasonable metric to consider, however,
Barahona showed that the problem of determining the line index of a signed graph is
an NP-Complete problem, meaning that most probably it is computationally infeasible
even for relatively small networks. In fact even for networks in which all edges are
negative, computing l(G) is still of NP-Complete complexity. This case is not difficult,
since by the Structure Theorem, to preserve the largest number of the original negative
edges, one needs to identify the largest bipartite subgraph of the original network. This
is the well known NP- Complete problem of finding a MAX-CUT of a given graph.

xix



Another metric introduced by Harary to measure the amount of imbalance of a signed
graph is the ratio of the number of positive cycles to the total number of cycles in that
signed graph. Working with this metric, Antal et al. developed two greedy algorithms
for balancing complete signed graphs focusing on triangles. Their algorithm negates
the sign of an edge as long as the negation reduces the total number of negative
triangles. Their algorithms cannot balance all signed graphs. Antal et al. and Strogatz
et al. have shown that both of these algorithms may not balance some networks because
the algorithms may get stuck in ”jammed states”, which are local but not global minima
of the energy functions used to evaluate the amount of imbalance in a network. It
may be said that even for the class of signed graphs, where these algorithms achieve
balance, due to the randomness involved in negating edges, the predictive power of
these algorithms about real world networks could be questionable.

As a consequence of the perceived difficulties of the approaches mentioned above, new
algorithms have been developed which only try to balance signed graphs without much
consideration of their predictive power. Marvel et al. developed a dynamic algorithm
using a continuous model that balances almost all graphs. They demonstrated that if
there are more positive edges than negative edges in the signed graph their algorithm
produces a complete signed network by negating the sign of every negative edge. On
the other hand, if the majority of the edges have negative sign, their algorithm outputs
a balanced signed graph by partitioning the vertex set in to two parts of equal size.
We show this is an unreasonable prediction about the evolution of social networks.
They also do not quantify the number of edges negated by their algorithm in terms of
l(G). The approach in Marvel et al. has been the inspiration of many new research
articles that try to balance social networks using continuous models. Although from
the perspective of being able to balance networks the work of Marvel et al. is a major
achievement, we will show that such an algorithm may fail to correspond with the
transformations of actual social networks.

In this thesis we first define good edges and bad edges for a given bipartition of the
vertex set of a signed graph. The set of good edges is composed of positive edges that
lie inside each part and negative edges that have each endpoint in a different part. The
remaining edges are bad edges. We then develop a new metric, the stability degree
of a vertex, which is the difference between the number of good edges and bad edges
incident to that vertex for a given partition of the vertex set. We define the stability
degree of a partition (S,S) as the sum of the stability degree of each vertex of the
signed graph for the partition (S,S).

We proceed to show that the stability degree of a partition and the line index of a
partition are equivalent as parameters, with stability degree having the advantage that
it is a local parameter to which local maximization algorithms can be applied. We
consider one such algorithm based on the greedy Max- Cut algorithm. Our algorithm
initializes with the partition (V (G), /0) and moves a vertex with the least stability degree
as long as a vertex with negative stability degree exists and terminates after minor
modifications when such a vertex does not exist. We then switch the signs of every bad
edge of the final partition to yield a balanced signed graph.

We prove that the algorithm is a polynomial time algorithm and that, the number of
edges of a complete signed graph whose signs are flipped, is bounded by the line index
of the complete signed graph of all negative edges. We also calculate how the stability
degree of each vertex and the stability degree of each new partition changes in terms

xx



of the stability degree of the vertex which was moved. We show as expected that the
algorithm does not always output a partition which achieves l(G). This conclusion
holds even when the set of signed graphs is restricted to complete signed graphs.
We provide several examples of complete signed graphs, including an infinite family,
where our algorithm fails to output a partition which achieves l(G). It is still an
open question whether computing the line indices of complete signed graphs is of
NP- Complete difficulty.

Using the algorithm we prove that computing the line indices of graphs, where each
vertex is the endpoint of at least as many good edges as bad edges, is still NP-Complete.
We in fact reduce the problem of computing the line index of any signed graph to
computing the line index of a signed graph of the type mentioned above. This point
is crucial when considering the algorithm of Marvel et. al. Because their algorithm
always yields a balanced signed graph with all positive edges when the input signed
graph has a higher density of positive edges, and computing the line index of such
signed graphs is NP-Complete as we have proved, their algorithm clearly does not
optimize the number of edges whose signs have to be flipped. Indeed we provide
examples of signed graphs where the density of positive edges is greater where our
algorithm forces much fewer changes on the edge signs of the underlying signed graph.

Since the original goal of structural balance theory was to predict the evolution of
actual social networks, the success of any algorithm developed to balance signed
graphs will depend on whether or not such an algorithm predicts the evolution of real
social networks. As such we have applied our algorithm to two simple networks. We
considered the network formed by the five major state participants in the current Syrian
War and a social network of members of a 34 person Karate Club. Data on the structure
of these two networks was recorded in two academic papers. Our algorithm predicted
the final state of these networks with great accuracy.

Lacking data on larger social networks, we have not been able to apply our algorithm
to larger networks. There have been a limited number of research articles considering
larger networks which make the conclusion that Heider’s balance theory may be too
simplistic when considering large social networks. Two criticisms made of Heider’s
research have been that the assumptions that relationships are symmetric and that they
lack magnitude are not realistic. The second criticism does not hold for our algorithm
since it can be modified slightly to work on weighted graphs. To answer the first point
we hope to develop our algorithm in future research to work on directed weighted
graphs and apply any such algorithm to real social networks if data is available.
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SOSYAL AĞLARIN DENGELENMESİ

ÖZET

Bu tezde, işaretli (+/-) tam çizgelerin optimizasyonunu incelenmektedir. Herhenagi bir
işaretli çizgeyi, özellikte tam işaretli çizgeleri, dengleyen bir algoritma geliştirilmiştir.
1946’da, Heider bazı sosyal ağlarda bireyler arasındaki ilişkilerin değişmesinin zor
olmasına rağmen diğer ağlarda bireyler arasındaki ilişkilerin kolaylıkla değiştiğini
gözlemledi. Üç kişiden oluşan tüm ağları incelediğinde, bireylerinin hepsinin arasında
arkadaşça ilişkiler olduğu zaman veya iki arkadaş ortak bir üçüncü kişiye düşman
oldukları zaman bu ilişkilerin kalıcı olduğunu fark etti. Bu tür üç kişilik sosyal ağları
dengeli üçlüler olarak tanımlarken, geri kalan üç kişilik ağları dengesiz üçlüler olarak
tanımladı. Daha büyük sosyal ağlar içinse, eğer ağın içindeki bütün üçlüler dengeli ise
ağın dengeli olacağını belirtti. Bu traihten sonra yapısal denge konusu üzerinde yapılan
çalışmalarda üç önemli nokta üzerinde durulmuştur: İncelenen herhangi bir ağın
dengeli olup olmadığının belirlenmesi, dengesiz ağlardaki dengeszilik miktarını ölçen
ölçütlerin geliştirilmesi, ve tüm ağları dengeleyen algoritmaların geliştirilmesi ve bu
algoritmaların gerçek sosyal ağlardaki dönüşümleri ne doğrulukta tahmin ettiklerinin
irdelenmesi.

Cartwright ve Harary, Heider’in gözlemlerinin işaretli çizgeler kullanılarak
özetlenebileceğini gösterdi. Onlar dengeli işaretli bir çizgeyi her bir döngüsünün
kenar işaretlerinin çarpımının pozitiv olduğu bir çizge olarak tanımladılar. Bununla
birlikte, bu koşulun genel işaretli bir çizgede kontrol edilmesi oldukça zordur. Bu
zorluğun üstesinden gelmek için Cartwright ve Harary, işaretli bir çizgenin dengeli
olabilmesi için çizgenin düğüm kümesinin, her pozitiv kenar parçaların içinde ve her
negatif kenar iki parça arasında kalacak şekilde, ikiye bölünmesi gerektiğini gösteren
Yapı Teoremini kanıtladılar. Tabiiki bu kümelerden birisinin boş olma ihtimalini
de belirttiler. Bu koşulu doğrulamak, döngü koşulundan daha kolaydır, çünkü Yapı
Teoremi negatif kenarlar kümesinin iki parçalı (bipartite) bir çizge oluşturduğunu ima
etmektedir ki bunu kontrol etmek kolaydır. Geriye kalan işlem positif kenarların
parçalar içinde kalıp kalmadığını değerlendirmektir ve eğer böyle ise çizge dengelidir.

İşaretli bir çizgedeki dengesizlik miktarını ölçmek için ise birkaç farklı ölçüt
geliştirilmiştir. Harary, l(G) satır endeksini, işaretli bir çizge G’nin dengeli bir
çizgeye dönüşmesi için işaretlerinin değişmesi gereken en küçük kenar sayısı olarak
tanımladı. l(G) satır endeksi, dikkate alınması gereken makul bir ölçüt gibi gözükse
de, Barahona, işaretli bir çizgenin satır endeksini belirleme sorununun NP-Tam
sınıfına dahil problem olduğunu gösterdi. Bu ise nispeten küçük ağlar için bile l(G)
değerinin hesaplanabilmesinin nerdeyse imkansız olduğunu göstermektedir. Aslında,
tüm kenarların negatif olduğu ağlar için bile, l(G)’yi hesaplamak hala NP-Tam
zorluktadır. Bu durum zor değildir, çünkü Yapı Teoremine göre en fazla negatif kenarın
işaretinin korunması için çizge içindeki en büyük kesit tespit edilmelidir ve bu da çok
iyi bilinen NP-Tam sınıfında bir sorudur.
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Harary tarafından işaretli bir çizgenin dengesizlik miktarını ölçmek için geliştirilen
diğer bir ölçüt ise, pozitif döngü sayısının o işaretli çizgedeki toplam döngü sayısına
oranıdır. Bu metrikle çalışan Antal ve diğerleri, çizgelerin içlerindeki üçgenlere
odaklanan ve işaretli çizgeleri dengelemeye çalışan iki açgözlü (greedy) algoritma
geliştirdi. Algoritmaları, toplam negatif üçgenlerin sayısını azalttığı sürece bir kenarın
işaretini değiştirmektedir. Antal ve diğerleri ve Strogatz ve diğerleri bu algoritmaların
her ikisinin de bazı ağları dengeleyemeyebileceğini göstermiştir, çünkü algoritmalar
ağdaki dengesizlik miktarını değerlendirmek için kullanılan enerji fonksiyonlarının
yerel ancak küresel olmayan minimumlarında sıkışıp kalabilir. Bu algoritmaların
dengeyi sağladığı işaretli çizgeler sınıfı için bile, kenar işaretlerinin değişimindeki
rastgelelik yüzünden, algoritmaların gerçek dünya ağları hakkındaki tahmin gücü
sorgulanabilir.

Yukarıda belirtilen yaklaşımlarda karşılaşılan zorlukların bir sonucu olarak, gerçek
sosyal ağlar üzerindeki tahmin gücü göz önüne alınmadan işaretli çizgeleri
dengelemeye çalışan yeni algoritmalar geliştirilmiştir. Marvel ve diğerleri hemen
hemen tüm işaretli çizgeleri dengeleyen sürekli bir model üzerine inşa edilmiş
dinamik bir algoritma geliştirdi. İşaretli bir çizgedeki positif kenar sayısı negatif
kenar sayısından fazla ise, algoritmaları her negatif kenarın işaretini positif yaparak
dengeli bir çizge oluşturmaktadır. Öte yandan, kenarların çoğunluğu negatif işarete
sahipse, algoritmaları iki parçasının büyüklüğü eşit olan dengelenmiş işaretli bir
çizge oluşturmaktadır. Bu tezde bu sonuçların sosyal ağların evrimi ile ilgili makul
olmayan bir tahmin olduğunu gösteriyoruz. Ayrıca algoritmaları tarafından işareti
değiştirilen kenar sayısını l(G) cinsinden nicelememektedirler. Marvel ve diğerlerinin
bu algoritmaları, sosyal ağları sürekli modeller kullanarak dengelemeye çalışan
birçok yeni araştırma makalesinin ilham kaynağı olmuştur. Her ne kadar ağları
dengeleyebilme açısından Marvel ve diğerlerinin araştırmaları büyük bir başarıysa da,
böyle bir algoritmanın gerçek sosyal ağların dönüşümüyle uyuşmadığını göstereceğiz.

Bu tezde, ilk önce düğüm kümesinin herhangi bir ikiye parçalanması (S,S) için
iyi kenar ve kötü kenar kavramları tanımlanmaktadır. İyi kenarlar kümesi, her bir
parçanın içinde bulunan pozitif kenarlardan ve uçları farklı parçalarda bulunan negatif
kenarlardan oluşur. Kalan kenarlar ise kötü kenarlardır. Bir düğümün kararlılık
derecesi bu düğümün uç noktası olduğu iyi ve kötü kenarların sayısı arasındaki farktır.
Bir ikiye parçalanmanın kararlılık derecesi ise, bu parçalanma için bütün düğümlerin
kararlılık derecelerinin toplamıdır.

Daha sonra geliştirilen bu yeni ölçütlerin çizgi endeksi ölçütü ile eşdeğer olduğu
gösterilmiştir. Karalılık derecesi çizgi endeksine eşdeğer olmasına rağmen,
kararlılık derecesi yerel bir ölçüt olması ve bu ölçütü optimize eden algoritmaların
geliştirilmesine olanak sağlaması sebebiyle çizge endeksinden üstündür. Tezimizde
En Büyük Kesit Algoritması genelleştirilerek oluşturulan böyle bir yerel algoritmayı
incelemekteyiz. Algoritmamız başlangıçta (V (G), /0) ikiye parçalanmasından
başlıyarak en negatif kararlılık derecesine sahip olan bir düğümü, negatif kararlık
derecesine sahip bir düğüm bulunduğu sürece, haraket ettirerek bulunduğu parçayı
değiştirir ve basit bazı değişikliklerden sonra sonuç olarak yine farklı bir ikiye
parçalanma verir. Bu sonuç parçalanmasındaki bütün kötü kenarların işaretleri
değiştirilerek dengeli bir ağ ortaya konur.

Algoritmanın polinom zamanda çalışan bir algoritma olduğunu ve tam çizgelerde
algoritmanın işaretini değiştirdiği kenar sayısının, tüm kenarları negatif olan tam
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çizgenin çizgi endeksiyle sınırlı olduğunu ispatlıyoruz. Ayrıca yeni oluşan
her parçalanmanın kararlılık derecesinin ve bu parçalanma için her düğümün
kararlılık derecesinin, taşınan düğümün kararlılık derecesi cinsinden nasıl değiştiğini
hesaplıyoruz. Fakat beklendiği üzere, algoritmanın her zaman l(G) değerine sahip bir
parçalanmayı bulamadığını da gösteriyoruz. Bu sonuç, değerlendirilen işaretli çizgeler
kümesi tam işaretli çizgeler kümesi ile sınırlandığında bile geçerlidir. Algoritmamızın
l(G) değerine sahip bir parçalanmayı her zaman veremediğini, sonsuz bir aile de
dahil olmak üzere, bazı tam işaretli çizgeleri örnek vererek gösteriyoruz. Tam işaretli
çizgelerin çizge endeksinin hesaplanması probleminin NP-Tam zorlukta olup olmadığı
hala açık bir sorudur.

Algoritmayı kullanarak, her bir düğümünün en az kötü kenarlar kadar iyi kenarların
uç noktası olduğu çizgelerin, çizgi endekslerini hesaplamanın hala NP-Tam olduğunu
kanıtlıyoruz. Buna ek olarak, genel bir işaretli çizgenin çizgi endeksini hesaplama
sorusunun, yukarıda belirttiğimiz cinsten bir işaretli çizgenin çizgi endeksini
hasaplama sorusuna indirgenebileceğini de gösteriyoruz. Marvel ve diğerlerinin
algoritması dikkate alındığında bu nokta çok önemlidir. Algoritmaları, verilen
işaretli çizgede pozitif kenar yoğunluğu yarıdan fazla olduğunda her zaman bütün
kenarları positif olan dengeli bir işaretli çizge oluşturduğundan ve bu cins işaretli
çizgelerin çizgi endeksinin hesaplanması kanıtladığımız gibi NP-Tam zorlukta olduğu
için, algoritmaları açıkça işareti değiştirilmesi gereken kenar sayısını optimize
etmemektedir. Buna ek olarak, algoritmamızın onların algoritmasından daha az
kenarın işaretini değiştirdiği ve positif kenarların yoğunluğunun yarıdan fazla olduğu
işaretli çizge örnekleri sunuyoruz.

Yapısal denge teorisinin asıl amacı, gerçek sosyal ağların gelişimini öngörmek
olduğundan, işaretli çizgeleri dengelemek için geliştirilen herhangi bir algoritmanın
başarısı, böyle bir algoritmanın gerçek sosyal ağların gelişimini öngörme becerisine
bağlı olacaktır. Bu yüzden algoritmamızı iki basit ağa uyguluyoruz. Mevcut Suriye
Savaşı’nın parçası olan beş büyük devletten oluşan sosyal ağ ile 34 kişilik bir Karate
Klübünün üyelerinden olan sosyal ağı inceliyoruz. Bu iki ağın yapısına ilişkin veriler
iki akademik makaleden elde edilmiştir. Algoritmamız bu ağların son halini büyük bir
isabet oranıyla tahmin etmiştir.

Daha büyük sosyal ağlar hakkında veri eksikliği nedeniyle algoritmamızı daha
büyük ağlara uygulayamadık. Daha geniş ağları inceleyen sınırlı sayıda akademik
makale mevcuttur ve bu makalelerde büyük sosyal ağlar için Heider’in denge
teorisinin varsayımlarının fazlaca basit olabileceği sonucuna varılmıştır. Heider’in
araştırmalarına sıklıkla yapılan iki eleştiri, ilişkilerin simetrik olduğu varsayımının
ve ilişkilerin herhangi bir ağırlığının olmadığı varsayımının gerçekçi olmadığıdır.
Algoritmamız kolaylıkla ağırlıklı çizgeler üzerinde çalışacak şekilde değiştirilebile-
ceğinden yukarıdaki ikinci eleştiri yaptığımız çalışma için geçerli değildir. İlk noktaya
cevap vermek için, algoritmamızı yönlü ve ağırlıklı çizgeler üzerinde çalışacak şekilde
geliştirmeyi ve eğer veriler bulunabilirse bu tür bir algoritmayı daha büyük sosyal
ağlara uygulamayı umuyoruz.
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1. INTRODUCTION

In this thesis we develop a graph theoretical algorithm which balances any given signed

graph.

This concept of balancing has many practical applications due to the interest

in predicting the evolution of social networks. Social networks like face-book,

twitter, whatsapp and other social platforms have created increasingly interconnected

networks. These networks and others bring together a wide range of people with

different backgrounds and agendas, which leads to tension between some of the

members of such networks. This tension is the force which continuously transforms

the nature of the relationships between members of social networks. Since members

of a social network have favorable or unfavorable relationships with other members, it

is only natural to consider the role of friends and enemies.

Balance theory, pioneered by Heider [2], is concerned with how an individual’s

attitudes or opinions coincide with those of others in any social network. If two friends

have the same attitude towards a third, then there is a balance; and in the contrary if

two friends have different attitudes toward a third, then there is a dissonance. Heider

observed that relationships in a network change because members seek to consistently

categorize others as friends or enemies. Each member implicitly desires friends of

his/her friends to be his/her friends, enemies of his/her friends to be his/her enemies,

enemies of his/her enemies to be his/her friends, and friends of his/her enemies to

be his/her enemies. Heider concluded that for small networks at least, this desire

transformed some relationships until consistency could be achieved and called such

networks balanced networks.

Harary and Cartwright [3], described balance theory using the notion of signed graphs

and determined conditions which describe all balanced social networks. Harary and

Cartwright proved that all balanced network are made up of at most two cliques where

members in a given clique are always friends and members of different cliques are

always enemies [3]. They developed several parameters describing the degree of
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balance in signed graphs. Of interest is l(G), which is the size of the smallest set

of edges whose signs need to be flipped so that the result is a balanced signed graph.

Unfortunately, Barahona [4] has shown that the problem of computing l(G) is

NP-Complete. Consequently, there has been interest in limiting the set of signed

graphs to complete signed graphs. It is still not known whether computing l(G) for

complete signed graphs is feasible. However, a number of recent studies like Antal et

al. [5] and Strogatz et al. [6], have developed polynomial time algorithms that balance

some complete signed graphs without achieving l(G). The algorithm in [5] is limited

because it cannot balance all complete signed graphs. On the other hand, while the

algorithm of [6] balances almost all complete signed graphs, it frequently does so by

flipping the signs of considerably more edges than l(G).

In this thesis we develop an algorithm based on the greedy max- cut algorithm, which

balances all signed graphs and imposes significantly less change on the signs of the

edges than the algorithms described above.

Let G = (V,E,ω) be a weighted graph where ω : E → R. The weight of an edge

represents the intensity of the relationship between its two endpoints. If two people

have no opinion of each other, we say the corresponding edge has weight 0. Now for

the below definitions let us particularly consider the signed graph G = (V,E,σ) where

σ : E→{±1}, however, the definitions could be applied for any weighted graph.

Let (S,S) be a bipartition of V (G) and let P(v) be the set containing v. In other words,

P(v) = S if v ∈ S, and P(v) = S if v ∈ S. We define the stability degree of v for a

partition (S,S) as

∂S(v) = ∑
x∈P(v)

σ(vx)− ∑
y/∈P(v)

σ(vy),

.

where σ(vx) refers to the weight of edge vx in the weighted graph G. Note that ∂S(v)

is defined even if v ∈ S. The stability degree of a partition (S,S) is defined as

D(S) = ∑
v∈V

∂S(v).

If S = V (G), instead of ∂S(v) and D(S) we will simply write ∂ (v) and D(G)

respectively.
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For the partition (S,S), if the edge xv contributes positively/negatively to ∂S(v), x is

called a good/bad neighbor of v and the edge xv is called a good/bad edge. Also, given

a partition (S,S) of V (G), the set of good edges is composed of the positive edges that

lie inside each part and the negative edges that lie between S and S. Likewise, the set of

bad edges is composed of the negative edges that lie inside each part and the positive

edges that lie between S and S. In [7], the number of bad edges of (S,S) is defined as

l(S,S).

We then prove that a signed graph H is a balanced if and only if V (H) can be partitioned

into sets S and S such that ∂S(v) = d(v) for all v ∈ V (H) and D(S) = 2|E(H)|. Next,

we prove that finding the number of bad edges l(S,S) and the stability degree D(S) of

a partition (S,S) of V (G) are equivalent, because

l(S,S) =
2|E(G)|−D(S)

4
.

We next prove two results for an the upper bound for the line index of signed

graphs. They are: l(G) < |E|
2 , for any signed graph G without isolated vertices and

l(S,S) ≤ l(K−n ) = dn2−2n
4 e, for a complete signed graph G on n vertices and partition

(S,S) identified by our algorithm, where K−n is a complete graph of n vertices with all

negative edges.

Let G be a signed graph and S ⊆ V (G). If G′ is the signed graph obtained from G by

negating the signs of the edges between S and S and keeping the signs of the remaining

edges unchanged, we say G′ is obtained from G by switching S. If a signed graph H

can be obtained from a signed graph G by switching some S⊆V (G), G and H are said

to be switching equivalent, written G ∼ H, and H is called the unified representation

of G(S,S). Note that if G∼H, then l(G) = l(H), which was proved in [7]. Also, since

G and H have the same vertex set V , for any vertex v, the stability degree of v in H

is exactly the same with the stability degree of v in G. Moreover, each good edge of

(S,S) has positive sign in H, while each bad edge of (S,S) has negative sign in H.

We also prove that determining the line indices of signed graphs, in which each vertex

is incident to at least as many positive edges as negative edges, is still NP-Complete.

For a subset S of V (G) of a signed graph G, the stability degree of S is defined as the

sum of the weights of the edges which only have one endpoint in S, denoted by ∂ (S).
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In this thesis, we finally prove the following result containing four equivalent

statements for many important reasons.

1. (S,S) is an optimal partition of G if and only if H cannot be split, where H is the

unified representation of the partition (S,S);

2. H cannot be split if and only if for any A⊆V (H), ∂ (A)≥ 0;

3. For any A⊆V (H), ∂ (A)≥ 0 if and only if for any A⊆V (H), D(H[A])≤ ∑
v∈A

∂ (v);

4. For any A ⊆ V (H), and D(H[A]) ≤ ∑
v∈A

∂ (v) if and only if (S,S) is an optimal

partition of G.

Next, we present some basic definitions in graph theory that will be used throughout

the thesis.

1.1 Basic Definitions in Graph Theory

In this section we review the basic definitions that are used in this thesis. We will

closely follow the introductory graph theory text of Douglas B. West [8].

A graph G is a triple (V (G),E(G), f ) where V (G) is the set of vertices of G, E(G) is

the set of edges of G, and f is a relation that assigns for every edge two vertices. Note

that in E(G), every edge is determined by a pair of vertices which are not necessarily

distinct and these vetices are called the endpoints of that edge. Pictorially, we represent

a given graph by drawing a point for each vertex and a curve joining the endpoints to

represent each edge. The degree of a vertex v in a graph G, denoted d(v), is the number

of edges in E(G) which have v as an one endpoint. If the vertex set V (G) and edge set

E(G) of graph G are finite, then we call G a finite graph.

A simple graph is a graph where its edges are uniquely determined by distinct

endpoints. That is, if e represents an edge in E(G), then e is specified by its unique

endpoints, say u and v, written as e = uv = vu. Vertices that are endpoints of an edge

are adjacent vertices and are also called neighbors. An edge is incident to its endpoints.

Unless specifically stated otherwise, we consider simple graphs whose vertex and edge

sets are finite throughout this thesis.
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A set of vertices S in a graph G is said to be an independent set if the vertices in S are

pairwise non-adjacent.

A path P is a simple graph with a finite alternating sequence of vertices and edges

formed by consecutive vertices such that every edge and vertex in the sequence is

distinct. A path which begins at vertex u and ends at vertex v is called a u,v− path.

In a u,v− path we start walking from vertex u along an edge adjacent to it to another

vertex and continuing until we get to the last vertex v. The length of a path P with edge

set E(P) is the size of E(P).

A cycle C is a simple graph with a finite alternating sequence of vertices and edges

formed by consecutive vertices such that every edge is distinct and the degree of every

vertex is two. The length of the cycle C with edge set E(C) is the size of E(C). If the

size of E(C) is odd/even, then we call that C is an odd/even cycle.

A graph G is said to be connected if for every u,v ∈V (G) there exists a u,v− path in

G. Otherwise G is called disconnected.

A graph H is called a subgraph of a given graph G, if V (H)⊂V (G) and E(H)⊂ E(G).

Let S ⊂ V (G), then a subgraph M of G is called an induced subgraph if it is obtained

from G by deleting the complement of the subset S of V (G), denoted by G[S].

Therefore, M = G[S] is made up of |S| number of vertices and all the edges have

endpoints only in S.

A complete graph is a simple graph in which every pair of vertices are adjacent. The

class of unlabeled complete graphs with n vertices is denoted by Kn. A graph G with

vertex set V (G) is bipartite if V (G) can be partitioned into two disjoint independent

sets such that every edge (if there exists) of G connects a vertex in one set to a vertex in

the opposite. These independent sets are called partite sets of G. A complete bipartite

graph is a simple and bipartite graph with the property that two vertices u and v in it

are neighbors if and only if they are in opposite partite sets. The class of unlabeled

complete bipartite graph with partite sets of size m and n is denoted by Km,n.

A signed graph H, written H = (V,E,σ) consists of an underlying graph G = (V,E)

together with a sign function σ which assigns to each edge the values +1 or−1. More

generally, a weighted graph is a graph where to each edge a real number is assigned. A

given a social network can be modeled using a signed graph, where we represent each
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person using a different vertex. If the relationship between two people is positive, the

edge between the two vertices representing them has weight +1, and if the relationship

is negative the edge has weight −1. Furthermore, if two people have no opinion about

each other, then there is no edge between the vertices representing them. Similarly, if

we would also like to consider the intensity of a relationship between two people, we

can instead use a weighted graph as a model.

1.2 Balance in Signed Graphs

In the field of psychology there has been considerable interest in understanding how

and why relationships between members of a social network change. In order to

simplify this problem some reasonable assumptions can be made:

1. The relationship between two people can be quantified as positive or negative or

neither, for example, like or dislike or indifference.

2. The relationship between two people is symmetric, for example, if person A likes

person B with some intensity, then B likes A with the same intensity.

Heider [2] noticed that in some social networks the relationships between its members

do not change easily. He observed that a central characteristic of such networks is that

for each member of the network, a friend of a friend is a friend, an enemy of a friend

is an enemy, a friend of an enemy is an enemy, and finally an enemy of an enemy

is a friend. Such networks are called balanced networks, while networks which are

not balanced are called unbalanced. He also pointed out that an unbalanced social

network has a tendency to transform to a balanced network because the relationships

between some of its members change. In other words, if members of a social network

cannot consistently decide who their friends and enemies are, there is some stress on

the members of the network, which forces at least some of its members to reevaluate

some of their relationships. It is worth noting that most large social networks will

initially be unbalanced.

It is only natural to model the question using signed graphs. Cartwright and Harary [3]

summarized Heider’s observations as follows: A signed graph is balanced if any cycle

has an even number of edges with weight −1. An equivalent condition is that the
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product of the edge weights of any cycle is +1. Such cycles are called positive cycles,

while cycles which are not positive are called negative cycles. We say a social network

is balanced if the corresponding signed graph is balanced. In a signed graph G, c+(G),

c−(G) and c(G) are the number of positive, negative and all cycles in G, respectively.

See Fig. 1.1 for examples of possible social networks consisting of three members.

In the remainder of this thesis the term social network refers to both the actual social

network and the signed graph representing the social network. And also unless it is

specified, solid edges in a given signed graph represent positive relations and broken

edges represent negative relations between vertices.

Figure 1.1 : Possible social networks consisting of three members.

In [3], Cartwright and Harary also determined the structure of all balanced networks.

Theorem 1 (Structure Theorem) A signed graph is balanced if and only if its vertex

set can be partitioned into two disjoint sets (one of which may possibly be empty) such

that, edges inside each of the subsets (parts) are all positive and edges between vertices

in different subsets are all negative.

According to structural theorem all graphs in Fig. 1.2 and Fig. 1.3 are balanced.

In non-mathematical terms the theorem states that in all balanced social networks,

either two groups exist where there are only positive feelings between members

belonging to the same group and there are only negative feelings between members

of different groups, or there is a single group in which there are only positive feelings

between its members. The second case can be considered as a paradise case, but in
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Figure 1.2 : The vertex set partitioned in to two disjoint sets and all the edges
between the partites are negatives and the edges inside each partite are

positive. Therefore, it is balanced.

general one of the implications of Heider’s research is that for most societies given

enough time polarization is unavoidable. Therefore, being able to determine the type

of balanced network to which a given unbalanced network will transform, is of some

importance. One could conjecture that large social networks, especially networks in

which many members do not have an opinion about each other, may not transform

into balanced social networks because individual members do not feel enough stress to

change their relationships. Indeed, Leskovec et al. [9] seem to come this conclusion.

One of the aims of this paper is to explain why even small complete networks, networks

in which everyone has a positive or negative opinion of everyone else, may not reach

balanced states.

Figure 1.3 : For both graphs all the vertices lie in one set and the second set is empty.
All the edges in the partites are positive. Therefore, both graphs are

balanced.

When the balanced signed graph is a paradise case, that is for graphs of Fig. 1.3, we

simply draw them by using the non - empty partite, which is Fig. 1.4.
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Figure 1.4 : The balanced signed graph like in Fig. 1.3, when one of the partite is
empty set, we simply draw only the non - empty partite and omit the

empty partite for simplicity.

1.3 Measure of Balance in Signed Graphs

Previous research in the field of structural balance has been concentrated on three

main issues: Determining whether or not a given social network is balanced,

developing reasonable metrics that quantify how balanced a given social network

is, and developing algorithms that balance any social network and examining their

correspondence to the transformations of real world social networks.

The first issue can easily be solved as has been done by Harary and Kabell in [10].

Theorem 1 implies that the set of negative edges forms a bipartite graph, which can be

checked quickly. If the graph is bipartite, we can immediately identify the two parts

during this process. What remains is answering whether there are any positive edges

between the two parts, if not the network is balanced.

Since the decision problem of whether a signed graph is balanced or not is easy, and

since most signed graphs are unbalanced, many different metrics have been developed

to measure the amount of imbalance of a social network. Of particular concern to us

are degree of balance, β (G) = c+(G)
c(G) (the ratio of balanced cycles to the total number

of cycles) developed by Cartwright and Harary in [3], and the line index, l(G), defined

by Harary in [11]. Note that l(G) is the minimum number of relationships in a social

network which have to change from friendly to hostile or vice versa, so that the network

becomes balanced.

In the signed graph F of Fig. 1.5 there are six cycles, of them three are positive cycles.

Therefore, β (F) = c+(F)
c(F) = 3

6 = 1
2 .

On the third issue of developing algorithms which balance social networks, one must

be careful that a given algorithm is predictive of the transformations of real world
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Figure 1.5 : F is a signed graph containing only the edges drawn.

social networks. After all for a given network, using Theorem 1 one could state a

trivial algorithm that achieves balance by randomly dividing the vertex set into two

disjoint sets, and changing each of the negative edges inside each set to positive, and

each of the positive edges between the two sets to negative. However, it is clear that

such a random algorithm would be incapable of explaining factual data. One of the

reasons is that this trivial algorithm may impose more change on existing relationships

than the network is capable of handling. In addition, algorithms which try to balance

signed graphs by using either of the metrics above run into various problems.

The line index l(G) is a reasonable metric to consider, since it measures the least

number of relationships that need to change so that the network becomes balanced.

It is only natural to expect that a given social network will transform into a balanced

network which is as similar to the original as possible. However, Barahona [4] proved

that calculating l(G) is of NP-Complete complexity, meaning that most probably it

is computationally infeasible even for relatively small networks. In fact even for

networks in which all edges are negative, computing l(G) is still of NP-Complete

complexity, as was shown in [12]. This case is not difficult, since by Theorem 1,

to preserve the largest number of the original negative edges, one needs to identify

the largest bipartite subgraph of the original network. This is the well known NP-

Complete problem of finding a MAX-CUT of a given graph. In fact, Xu [7] showed

that for each signed graph G, there exists a signed graph H with only negative edges

such that l(G) = l(H).

As an example consider the signed graph G in Fig. 1.6 whose optimal cut that require

the smallest number of edge sign change is the cut (A,A) shown in the figure. In that
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Figure 1.6 : A signed graph G containing the edges drawn with its optimal partition
(A,A).

case, l(G) = l(A,A) = 1. Then, in graph G since there are two positive edges, v2v3 and

v5v6, replacing them by two consecutive negative edges we get graph H, as shown in

Fig. 1.7. Then, the cut that gives the minimum edge sign change in balancing H is

(B,B) and l(H) = l(B,B) = 1 = l(G), as required.

Figure 1.7 : A signed graph H obtained from graph G of Fig. 1.6 by replacing the
positive edges by two consecutive negative edges with its optimal

partition (B,B).

1.4 Balance on Complete Signed Graphs

Antal et al. [5] have proposed two algorithms that for complete social networks negate

some edges on triangles to decrease the number of negative triangles and thereby

improve β (G). For example, in their constrained triad dynamics algorithm, a random

edge is negated if after the new sign assignment, the number of negative triangles

decrease. It was shown in [5, 13] that both of the algorithms may not balance some

networks because the algorithms may get stuck in ”jammed states”, which are local but

not global minima of the energy functions used to evaluate the amount of imbalance

in a network. It may be said that even for the class of signed graphs, where these
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algorithms achieve balance, due to the randomness involved in negating edges, the

predictive power of these algorithms about real world networks could be questionable.

As a consequence of the perceived difficulties of the approaches mentioned above, new

algorithms have been developed which only try to balance signed graphs without much

consideration of their predictive power. In [6], Marvel et al. developed an algorithm

based on a continuous model, that balances most complete signed graphs. However,

their algorithm yields only two kinds of balanced states depending on the density of

positive edges in the signed network. If the initial signed graph has more positive

edges than negative ones, the algorithm yields a signed graph in which all edges are

positive; if not, then the algorithm yields a balanced signed graph in which the two

parts have equal size. The approach in [6] has been the inspiration of many new

research articles that try to balance social networks using continuous models. Although

from the perspective of being able to balance networks the work of Marvel et al. is a

major achievement, we show in the last chapter that such an algorithm may fail to

correspond with the transformations of actual social networks. We also show that a

social network might not reach a balanced state where the partition of its members

achieve l(G).

In this thesis we will consider complete signed graphs from the perspective of their

line indices. We will exhibit a discrete time greedy algorithm which balances any

complete signed graph with n vertices by changing the signs of at most dn2

4 −
n
2e edges.

This is best possible since l(K−n ) = dn2

4 −
n
2e. We then demonstrate that the problem

of determining the line indexes of signed graphs where each vertex is incident to at

least as many positive edges as negative edges, is still NP-complete. Furthermore, we

will demonstrate an infinite family of complete signed graphs in which the ratio of

positive edges to negative edges approaches 3, and for which once their line indices

are calculated and are balanced accordingly, the resultant balanced networks have two

parts with equal size. This example demonstrates that the solution in [6] may not have

much predictive power.
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2. BASIC RESULTS AND EXAMPLES

In this chapter we prove some results of the thesis which are important to prove some

bigger results of the thesis in the next two chapters and we exemplify them with

examples. We also generalize structure theorem stated in Theorem 1. For a a signed

graph G= (V,E,σ) and (S,S) be a partition of V , we denote GS for the balanced signed

graph with vertex set V , edge set E, and parts S and S, where the weights of the edges

of GS are obtained from the weights of the edges of G by negating the weight of each

bad edge and leaving the remaining weights unchanged.

2.1 A Computational Example

In this section we demonstrate computations used in this thesis on a signed graph and

the implications of these computations for actual social networks.

Figure 2.1 : G is a signed graph whose optimal partition is (S2,S2) and H is the
unified representation of the partition (S2,S2). The balanced form of G

then is GS2 .

Consider the signed graph G in Fig. 2.1. We see this signed graph as the representation

of a network with five members where, solid edges represents positive relationships

and dashed edges represent negative relationships. Missing edges between vertices

represent indifference. As a result solid edges have weight +1, negative edges have
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weight −1 and missing edges have weight 0. Observe that G contains the negative

cycle v3v4v5 and hence is not balanced. From the perspective of v5, the current state of

the social network is problematic, since v3 is a friend of v4 who is a friend of v5, but v3

and v5 are enemies. According to Heider’s observations we expect some relationships

between members of the network to change until each member can consistently decide

who their friends and enemies are. We would like to predict the final state of the

network.

Originally, we partition the vertex set of G into (S0,S0) where, S0 =V (G) and S0 = /0.

We compute the stability degree of each vertex of G as follows:

∂ (v1) = ∑
vi∈S0=V (G)

σ(v1vi)− ∑
v j∈S0= /0

σ(v1v j) = σ(v1v2)+σ(v1v5) =−1+1 = 0.

The term ∑vi∈S0=V (G)σ(v1vi) is the difference between the number of friends and

enemies v1 has in its group, while the term ∑v j∈S0= /0 σ(v1v j) is the difference between

the number of friends and enemies v1 has in the opposite group (in this case the

opposite group is /0). Consequently, a positive ∂ (v1) value indicates that v1 is happy to

be a member of his group, while a negative ∂ (v1) value indicates that v1 would rather

be a member of the opposite group.

Similarly, we find that ∂ (v2) = 1, ∂ (v3) = 1, ∂ (v4) = 3, ∂ (v5) = 1.

Thus, the stability degree of G is:

D(G) = ∑
vi∈V

∂ (vi) = 6.

Note that initially min
vi∈V

∂ (vi) = ∂ (v1) = 0, and consequently, it seems all members of

the network are satisfied with the current partition. In this case, the bad edges of the

partition are v1v2 and v3v5, and one would expect both of these negative relationships

to transform to positive relationships to yield a balanced network. Notice that,

2 = l(S0,S0) =
2|E(G)|−D(S0,S0)

4
=

14−6
4

.

However, if we change the partition slightly by moving v1, we see that it is not

necessary to change both relationships v1v2 and v3v5. In other words, l(S0,S0) = 2 >

l(G).
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Consider the partition (S1,S1) where S1 = {v2,v3,v4,s5} and S1 = {v1}. The stability

degrees for this partition are:

∂S1(v1) = ∑
vi∈S1

σ(v1vi)− ∑
v j∈S1

σ(v1v j) =−σ(v1v2)+−σ(v1v5) = 1+−1 = 0.

∂S1(v2)= ∑
vi∈S1

σ(v2vi)− ∑
v j∈S1

σ(v2v j)=σ(v2v3)+σ(v2v4)−σ(v2v1)= 1+1−(−1)= 3.

∂S1(v3)= ∑
vi∈S1

σ(v3vi)− ∑
v j∈S1

σ(v3v j)=σ(v3v2)+σ(v3v4)+σ(v3v5)= 1+1+(−1)= 1.

∂S1(v4) = ∑
vi∈S1

σ(v4vi)− ∑
v j∈S1

σ(v4v j) = σ(v4v2)+σ(v4v3)+σ(v4v5) = 1+1+1 = 3.

∂S1(v5)= ∑
vi∈S1

σ(v5vi)− ∑
v j∈S1

σ(v5v j)=σ(v5v3)+σ(v5v4)−σ(v5v1)= 1+(−1)−1=−1.

The bad edges of this partition are v1v5 and v3v5 which still implies l(S1,S1) = 2, but

we now observe that min
vi∈V

∂S1(vi) = ∂S1(v5) =−1. We deduce that v5 is not happy with

the current state of the network, and that the partitioning could be improved by moving

v5.

Let (S2,S2) be the new partition where S2 = {v2,v3,v4} and S2 = {v1,v5}. The stability

degrees for this partition are:

∂S2(v1) = 2, ∂S2(v2) = 3, ∂S2(v3) = 3, ∂S2(v4) = 1, ∂S2(v1) = 1, and D(S2) = 10.

The only bad edge of this partition is v4v5 and, indeed, 1= l(S2,S2) = l(G). As a result

we predict that the unbalanced social network represented by G will transform to the

balanced network represented by GS2 by flipping the sign of the edge v4v5 as can be

seen in Fig. 2.1. In terms of the actual real life network, we expect the relationship

between persons represented by v4 and v5 to change from friendly to hostile.

The signed graph H given in Fig. 2.1 is the unified representation the partition (S2,S2).

We notice that for every vi ∈V (H), ∂H(vi) = ∂S2(vi) and l(H) = lG(S2,S2) = l(G) = 1.

As G and H are switching equivalent, the advantage of working with H instead of G

is that we do not have to keep track of the partite sets S2 and S2; the second partite in

H is the /0.
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2.2 Basic Concepts

In this section, we restate the structure theorem, Theorem 1, using stability degrees.

All the results are primarily stated for signed graphs, however, they can be generalized

to weighted graphs after small modifications.

Claim 1 H is a balanced signed graph if and only if V (H) can be partitioned into sets

S and S such that ∂S(v) = d(v) for all v ∈V (H) and D(S) = 2|E(H)|.

Proof. If H is a balanced signed graph, then by Theorem 1, V (H) can be partitioned

into sets S and S such that every edge inside each part is positive and every edge

between the two parts is negative. Therefore, for the partition (S,S) every edge is a

good edge. Hence, for any vertex v, ∂S(v) = d(v). On the other hand if H is not

a balanced signed graph, then any partition (S,S) of V (H) will contain a bad edge,

and as a result, ∂S(v) < d(v) for some v ∈ V (H). In this partition since every edge is

counted twice and D(S) = ∑vi∈V ∂S(vi) = ∑vi∈V d(vi) = 2|E(H)|. 2

We now describe how to balance a signed graph G = (V,E,σ) given a partition (S,S)

of V (G). Let G = (V,E,σ) be a signed graph and (S,S) be a partition of V . GS is

the balanced signed graph with vertex set V , edge set E, and parts S and S, where

the weights of the edges of GS are obtained from the weights of the edges of G by

negating the weight of each bad edge and leaving the remaining weights unchanged.

The following lemma describes the relationship between D(S) and l(S,S).

Lemma 1 Let G be a signed graph and (S,S) be a partition of V (G). Then,

l(S,S) =
2|E(G)|−D(S)

4
.

Proof. For each vertex v ∈ V (G), ∂S(v) is the difference between the number of good

edges and bad edges incident to v. Consequently, d(v)− ∂S(v) counts each bad edge

incident to v twice. Summing over all v ∈ V (G) we get 2|E(G)| −D(S) = 4 · l(S,S)

because each bad edge gets counted twice more, once for each endpoint. 2
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Lemma 1 shows that as parameters D(S) and l(S,S) are equivalent. If we know one we

can easily calculate the other. Also as stated in [7], it is clear that l(G) = min
(S,S)

l(S,S),

which immediately yields that l(G) is attained only by a partition which maximizes

D(S). For a given signed graph G, we define a partition (S,S) of V (G) to be an optimal

partition if l(S,S) = l(G).

The advantage of considering ∂S(v) is that unlike l(G), which is a global parameter,

∂S(v) is a local parameter which measures the happiness of each individual with a

given partition of the social network. If we see social networks as environments where

individuals choose their alliances so as to maximize their own happiness, then the

natural conclusion is that each person v makes choices only based on ∂S(v) because

he/she is primarily concerned with his/her relationships with others and not with the

relationships between other individuals. We can then calculate D(S) from ∂S(v). As

D(S) and l(S,S) are equivalent as parameters, D(S) becomes a stepping stone to tackle

the global parameters l(S,S) and l(G). This insight forms the bases of our algorithm,

where given a partition (S,S) of V (G), a person v decides to “move” to the opposite

part if ∂S(v)< 0. A signed graph G can be split if there exists a proper subset S of the

vertex set such that D(G) < D(S). In the next chapter we discuss this algorithm and

show that even if each individual tries to maximize his/her happiness, then the network

may not reach a balanced state.
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3. THE DISCRETE TIME GREEDY ALGORITHM

In this chapter we develop our algorithm and apply to some basic examples.

3.1 The Algorithm

We now describe the discrete time greedy algorithm that can be used to balance any

signed graph. The algorithm is inspired from the greedy Max-Cut algorithm. We move

a vertex v from one partite set to the other, if ∂S(v)< 0; in other words, the number of

good edges incident to v is less than the number of bad edges incident to v. Once no

such vertex is left, we output a balanced signed graph after minor modifications.

Algorithm.

Input: A signed graph G.

Output: A balanced signed graph GSk , where (Sk,Sk) is a partition of V (G) by

negating the signs of every bad edge of (Sk,Sk) in such a way ∂Sk(v) ≥ 0 for all

v ∈V (G).

Initialization: Set S0 = V (G) and S0 = /0. (The algorithm could also take any

bipartition of the vertex set as the initial condition.)

Iteration: At step i identify vertex v such that ∂Si−1(v)= min
w∈V (G)

∂Si−1(w) and ∂Si−1(v)≤

0. If no such vertex exists, construct GSi−1 and terminate. If such a vertex v exists and

∂Si−1(v) < 0, then construct Si and Si by removing v from the part containing it and

adding v to the other part, and iterate. If min
w∈V (G)

∂Si−1(w) = 0, then let A = {x : 0 ≤

∂Si−1(x) ≤ 1}. If there are vertices u and v such that ∂Si−1(u) = 0 and v ∈ A and uv

is a good edge, remove u from the partite containing it and add it to the other partite

to construct Si and Si, and iterate. If there are no such vertices, construct GSi−1 and

terminate.

3.2 Examples

Example 3.1: Consider the signed graph G with vertex set V (G) = S0 in Fig. 3.1.

The stability degree of the vertices in V (G) are:
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Figure 3.1 : G is a signed graph where all its edges are as drawn. And GS1 is the
balanced graph obtained after a single flip.

∂ (v1) = 0, ∂ (v2) = 1, ∂ (v3) =−4, ∂ (v4) = 2, ∂ (v5) =−1, ∂ (v6) = 0.

Considering the stability degrees of the vertices, we have min
w∈V (G)

∂ (w) = −4 = ∂ (v3).

Thus, by the algorithm, we construct a new partition (S1,S1) by removing v3 from S0.

In the partition (S1,S1) the stability degree of the respective vertices are:

∂S1(v1) = 2, ∂S1(v2) = 3, ∂S1(v3) = 4, ∂S1(v4) = 2, ∂S1(v5) = 1, ∂S1(v6) = 2.

In this partition every vertex has a positive stability degree, that is, there is no vertex

with ∂S1(vi) ≤ 0. Hence, by our algorithm we terminate at the partition (S1,S1). We

also notice that, the stability degree of each vertex is equal to its corresponding degree.

Therefore by Claim 1, we realize that G was already balanced. Our algorithm was still

useful however, since using it we could easily identify the two mutually exclusive sets

of alliances.

Figure 3.2 : G is a complete signed graph whose optimal partition is (S1,S1) obtained
after one flip.

Example 3.2: Let G = (V,E,σ) be the complete signed graph in Fig. 3.2.
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We first calculate the stability degree of each vertex: ∂ (v1)= 1, ∂ (v2)= 1, ∂ (v3)=−3,

∂ (v4) = 3, ∂ (v5) = 1, ∂ (v6) = 3. Clearly, the min
w∈V (G)

∂ (w) = −3 = ∂ (v3). Thus, we

construct the partition (S1,S1) by removing v3 from V (G) as shown in Fig. 3.2.

The stability degrees for the partition (S1,S1) are:

∂S1(v1) = 3, ∂S1(v2) = 3, ∂S1(v3) = 3, ∂S1(v4) = 1, ∂S1(v5) = 3, ∂S1(v6) = 5.

In this partition, the stability degree of every vertex is positive. Therefore, the process

of balancing G terminates at the partition (S1,S1). However, the stability degrees of

all the vertices except v6 are not equal to their corresponding degrees. This indicates

that there are bad edges between the partite sets and inside S1, which are clearly v1v5,

v2v4 and v3v4. In other words, l(S1,S1) = 3. We can verify this result by using Lemma

1 and replacing 2|E(G)| by n(n− 1). Note that the partition (S1,S1) is optimal since

l(G) = 3.

By negating the signs of these edges we get the balanced graph GS1 in Fig. 3.2.

Figure 3.3 : G is a complete signed graph on 5 vertices where the missing edges are
all positive edges. It shows the graphs before and after balancing.

Example 3.3: Let G be the complete signed graph in Fig. 3.3, where all the missing

edges in the figure are positive.

Initially, ∂ (v) = 0 for all v ∈ V . We notice that the edge v1v3 is a good edge between

two vertices of stability degree 0. Therefore according to the algorithm, we move v1 to

create the partition (S1,S1), where:

∂S1(v1) = 0, ∂S1(v2) = ∂S1(v5) = 2, ∂S1(v3) = ∂S1(v4) = −2 and, therefore, the

min
w∈V (G)

∂S1(w) = −2 for v3 and v4. Thus, we move v3 and create the partition (S2,S2).

In this partition ∂S2(v1) = ∂S2(v3) = 2, ∂S2(v2) = 4, ∂S2(v4) = ∂S2(v5) = 0

Since min
w∈V (G)

∂S2(w) = 0 for the vertices v4 and v5 and because the edge v4v5 is a bad

edge, the algorithm terminates by switching the signs of the bad edge, v1v4, v3v5 and
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v4v5. This yields the balanced graph GS2 as shown in Fig. 3.3. Again, the partition

(S2,S2) is optimal.

Unfortunately as we will see in Chapter 4, the algorithm does not always yield an

optimal partition.
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4. PROPERTIES OF THE ALGORITHM AND OPTIMIZATION

In this chapter, we examine some properties of the algorithm and use the algorithm to

prove a generalization of the Structure Theorem.

4.1 Results

Lemma 2 If v is the vertex that moves at the ith iteration of the algorithm, then

∂Si(v) =−∂Si−1(v) and D(Si) = D(Si−1)−4∂Si−1(v).

Proof. Since we remove v from the part containing it and add it to the opposite part,

each of its good edges become bad edges, and vice versa. As a result, ∂Si(v) =

−∂Si−1(v). In addition, for each neighbor x of v, the contribution made by vx to

∂Si−1(x), is negated when we calculate ∂Si(x). Consequently, ∂Si(x) = ∂Si−1(x) + 2

for each bad neighbor x of v in the partition (Si−1,Si−1), and ∂Si(y) = ∂Si−1(y)− 2

for each good neighbor y of v in the partition (Si−1,Si−1). In summary, for each

good edge incident to v, there is a contribution of -2, and for each bad edge there

is a contribution of +2 to D(Si). Since the difference between the number of good

and bad neighbors of v is ∂Si−1(v), the contribution of every vertex other than v to

D(Si) is −2∂Si−1(v). The contribution of v to D(Si) is also −2∂Si−1(v). Consequently,

D(Si) = D(Si−1)−4∂Si−1(v). 2

Note that, D(Si) increases at each iteration except when min
w∈V (G)

∂Si−1(w) = 0. In that

case, either the algorithm terminates, or D(Si) increases again in the next iteration. By

Claim 1, D(Si) ≤ 2|E(G)|, and therefore, the algorithm will terminate after a finite

number of steps. Once the algorithm terminates, ∂Sk(v) ≥ 0 for all v ∈ V (G), which

implies that D(Sk)≥ 0. As a result, using Lemma 1 we get:

l(G)≤ 2|E(G)|−D(Sk)

4
≤ 2|E(G)|−0

4
=
|E(G)|

2
.
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Therefore to construct the balanced graph GSk , the algorithm would negate at most half

the edges of E(G). Presently we will slightly improve this bound in Theorem 2.

Figure 4.1 : G is a signed graph of 5 vertices. The partition (S2,S2) is the optimal
partition for G.

For the partition (S1,S1) of Fig. 4.1, we have ∂S1(v1) = 4, ∂S1(v2) = 2, ∂S1(v3) = 2,

∂S1(v4) = 2, ∂S1(v5) = −2, and D(S1) = 8. After we move v5 to create the partition

(S2,S2), we obtain ∂S2(v1) = 2, ∂S2(v2) = 4, ∂S2(v3) = 4, ∂S2(v4) = 4, ∂S2(v5) = 2, and

D(S2) = 16.

If we compare the stability degree of v5 before and after the move, we notice that

∂S2(v5) = 2 = −∂S1(v5). After the move, the stability degree of v1 which was the

only good neighbor of v5 in (S1,S1) decreased by 2, and the stability degrees of the

vertices which were bad neighbors of v5 in (S1,S1) increased by 2. Note specifically

that although the edge v4v5 is positive, v4 is a bad neighbor of v5 in (S1,S1). In addition,

D(S2) = 16 = D(S1)−4∂ (v5) = 8−4(−2).

We next examine the case of complete signed graphs. We will show that the maximum

value of l(G) is attained for a complete signed graphs K−n of n vertices, whose

underlying graph is Kn, and whose edges all have negative signs.

Lemma 3 l(K−n ) = dn2−2n
4 e. Furthermore, if (S,S) is an optimal partition of K−n , then

D(S) = n if n is even and D(S) = n−1 if n is odd.

Proof. A partition (S,S) of K−n will be optimal if it contains the maximum number of

edges between the two parts. As a result |S| = dn/2e and |S| = bn/2c, or vice versa.

Since only the edges inside each part have to be negated we have, l(K−n ) = 2
(n/2

2

)
if n

is even and l(K−n ) =
(dn/2e

2

)
+
(bn/2c

2

)
if n is odd, as desired.

To proof the second statement we use Lemma 1,
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If n is even, l(K−n ) = dn2−2n
4 e= n2−2n

4 . Therefore, for the optimal partition (S,S), since

l(S,S) = l(K−n ) =
2|E(K−n )|−D(S)

4 . Equivalently we have, D(S) = 2|E(K−n )|−4.l(S,S),

where |E(K−n )|= n(n−1)
2 . Hence,

D(S) = 2|E(K−n )|−4.l(S,S) = 2.
n(n−1)

2
−4.

n2−2n
4

= n2−n−n2 +2n = n.

If n is odd, l(K−n ) = dn2−2n
4 e = n2−2n

4 + 1
4 . Therefore, for the optimal partition (S,S),

D(S) = 2|E(K−n )|−4.l(S,S), where |E(K−n )|= n(n−1)
2 . Hence,

D(S) = 2|E(K−n )|− 4.l(S,S) = 2.n(n−1)
2 − 4.n2−2n+1

4 = n2− n− n2 + 2n− 1 = n− 1.

2

One might suspect that among all signed graphs min D(G) is achieved by K−n . This is

true for complete signed graphs as we prove in Theorem 2, but false in general as can

be seen in Fig. 4.2.

Figure 4.2 : G is a signed graph with n = 2k+3 vertices where
D(G) = 6 < 2k+2 = n−1, for k ≥ 3.

Theorem 2 For any signed graph G without isolated vertices l(G)< |E|2 . Additionally,

if G is a complete signed graph on n vertices and (S,S) is the partition of V (G)

identified by our algorithm, then l(G)≤ l(S,S)≤ l(K−n ).

Proof. We can assume G is connected because the line index of a graph is the sum

of the line indices of its components. Let (S,S) be the partition of V (G) identified by

our algorithm. If G does not have a vertex v with ∂S(v) = 0, then D(S) ≥ n and

by Lemma 1, l(G) ≤ |E|2 −
n
4 . So assume there is a vertex v such that ∂S(v) = 0.

Note that ∂S(v) = 0 if and only if v has an equal number of good and bad neighbors.
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Since G is connected and not an isolated vertex, d(v)≥ 2 and each of its d(v)/2 good

neighbors must have stability degree at least 2, otherwise the algorithm would not have

terminated. Consequently, D(S)≥ d(v) and l(G)≤ |E|2 −
d(v)

4 .

If G is a complete signed graph and n is even, then d(v) is odd for all vertices in V (G).

Therefore, ∂S(v) ≥ 1 for all v ∈ V (G) and D(S) ≥ n, which yields l(S,S) ≤ l(K−n ).

On the other hand if n is odd and there exist a vertex v with ∂S(v) = 0, then each

of its n−1
2 good neighbors must have stability degree at least 2 so, D(S) ≥ n− 1 and

l(S,S)≤ l(K−n ). 2

A bipartition (S,S) of a signed graph G is called semi-optimal if ∂S(v) ≥ 0 for each

vertex v, and if there is no good edge xy such that ∂S(x) = 0 and ∂S(y)≤ 1.

Our algorithm finds a semi-optimal partition of any signed graph. In terms of the

actual social network represented by the signed graph, the semi-optimal partition

corresponds to the two antagonistic coalitions that will be formed if each individual

tries to maximize his/her happiness or comfort. Note that as seen in Fig. 4.3, the

algorithm does not necessarily find the optimal partition of a signed graph even if it

is complete. To find an optimal partition, or in other words, the coalitions that will

impose the least amount of changes to the relationships between members of a social

network, one needs to consider the happiness of larger groups not just individuals.

Figure 4.3 : G is a complete signed graph on 6 vertices. Originally every vertex has
positive stability degree but the partition (V, /0) is not optimal but is

semi-optimal. The optimal partition is attained by (S,S), where
S = {v1,v2,v3}.

26



However, by using the algorithm we can show that the problem of determining the line

index of signed graphs, in which each vertex is incident to at least as many positive

edges as negative edges, is still NP-Complete. We make use of the notion of switching

for signed graphs developed by Zaslavsky [14].

Theorem 3 Determining the line index of signed graphs, in which each vertex is

incident to at least as many positive edges as negative edges, is NP-Complete.

Proof. Let G be a signed graph and (S,S) be the partition of V (G) identified by our

algorithm. Since ∂S(v)≥ 0 for all v ∈V (G), each vertex is incident to at least as many

good edges as bad edges. Therefore, in the unified semi-optimal representation H of

(S,S) each vertex is incident to at least as many positive edges as negative edges. If

l(H) could be computed in polynomial time, so could l(G) since l(G) = l(H). 2

We can also investigate the optimality of a bipartition of a signed graph G by

considering its unified representation. Given a signed graph G and a subset S of V (G),

the stability degree of S, ∂ (S), is the sum of the weights of the edges which have one

endpoint in S and one endpoint in S. Clearly, ∂ (S) = ∂ (S). Recall that given a graph

G and a subset S of its vertex set, the induced graph on S is G[S]. This leads us to our

next results:

Lemma 4 Let G = (V,E,σ) be a signed graph and S⊆V . Then,

D(G) = D(G[S])+2∂ (S)+D(G[S]).

Proof.

D(G) = ∑
v∈V

∂ (v) = ∑
v∈S

∂ (v)+ ∑

w∈S
∂ (w)

= D(G[S])+∂ (S)+D(G[S])+∂ (S)

= D(G[S])+2∂ (S)+D(G[S]). 2
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Figure 4.4 : G is a signed graph of 5 vertices and 8 edges.

For the signed graph G in Fig. 4.4, D(G) = 0. Let S = {v1,v2}. Then, D(G[S]) = 2

and ∂ (S) =−3 and D(G[S]) = 4. Therefore by Lemma 4,

0 = D(G) = D(G[S])+2∂ (S)+D(G[S]) = 2+2(−3)+4.

Lemma 5 If G = (V,E,σ) is a signed graph and (S,S) is a partition of its vertex set,

then D(S) = D(G)−4∂ (S).

Proof. Since the good/bad edges between S and S in G (i.e in the partition (V (G), /0))

are bad/good edges in the partition (S,S), the contribution of the edges between S and

S is negated when we compute D(S). The contribution of the edges in G[S] and G[S] is

the same in both D(G) and D(S). As a result, D(S) = D(G[S])−2∂ (S)+D(G[S]) =

D(G)−4∂ (S). 2

Note that Lemma 5 yields a generalization of Lemma 2. For the example in Fig. 4.4,

we had D(G)= 0 and ∂ (S)=−3. It can be easily verified that D(S)= 0−4(−3)= 12.

Theorem 4 Let G = (V,E,σ) be a signed graph and (S,S) be a partition of its

vertex set and H be the unified representation of (S,S). The following conditions are

equivalent:

1. (S,S) is an optimal partition of G.

2. H cannot be split.

3. For any A⊆V (H), ∂ (A)≥ 0.

4. For any A⊆V (H), D(H[A])≤ ∑
v∈A

∂ (v).
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Proof. (1⇔ 2) H splits if and only if (V, /0) is not an optimal partition of V . As a result,

l(G) = l(H)< lH(V, /0) = lG(S,S) if and only if (S,S) is not an optimal partition of G.

(2 ⇔ 3) Given A ⊆ V (H), by Lemma 5, we know that D(A) = D(H)− 4∂ (A).

Therefore, H cannot be split if and only if ∂ (A)≥ 0.

(3⇔ 4) By Lemma 4, for any A⊆V (H), ∑
v∈A

∂ (v) = D(H[A])+∂ (A). Consequently,

∂ (A)≥ 0 if and only if D(H[A])≤ ∑
v∈A

∂ (v). 2

In the complete signed graph G in Fig. 4.3, since the stability degree of each vertex in

the partition (V (G), /0) is initially positive, our algorithm will immediately terminate.

However as mentioned before, the partition (V, /0) is not optimal. If we consider S =

{v1,v2,v3}, we see that ∂ (S) = −3. Therefore by Theorem 4, the partition (S,S) is

better, and indeed it is actually optimal.

In terms of actual social networks, Theorem 4 predicts that if members of a group

are more loyal to their group than to the society as a whole, then polarization of the

society may be unavoidable. Notice that although our algorithm may not be able to

find an optimal partition of the vertex set of a given signed graph, Theorem 4 can be

used to show that a partition is not optimal. If a subset A failing conditions 3 or 4 is

identified, then (A,A) is a better semi-optimal partition.
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5. APPLICATION OF THE ALGORITHM TO REAL SOCIAL NETWORKS

In this chapter we consider two real life social networks and compare the predictions

of our algorithm with the final state of those social networks. The first social network

is the network formed by the major state participants of the Syrian conflict. Güner

and Koç in [15] describe in detail the evolution of the social network which can be

summarized in Fig. 5.1 below. The second social network consists of members of a

karate club as discussed in [1] by Zachary.

5.1 The Syrian Conflict

Figure 5.1 : These four graphs are complete signed graphs showing the evolution of
the relationships between the five countries Turkey, USA, Russia, Iran
and Syria, represented by T, U, R, I and S respectively, from 2014 to

May 2018.

Figure 5.2 : The original graph G0 of Fig. 5.1, and the partition (S,S) identified by
the algorithm, and the balanced graph GS predicted by the algorithm.

31



As seen in Fig. 5.2, starting from the original network G0, the algorithm of this thesis

would yield the partitions (S,S). Hence, the prediction of the algorithm would be

that the relationship between US and Turkey would change from friendly to hostile,

while the relationship between Turkey and Syria would change from hostile to friendly.

These predictions correspond exactly to the final state G3 of the network in Fig. 5.1.

One could make the observation that the algorithm fails to predict the evolution of the

network from state G0 to G1. However, since ∂S(T ) = 0 in Fig. 5.2, the easiest way

for any party wishing to externally influence the evolution of the network would be to

try to change the relationships between Turkey and the other countries. Indeed, Turkey

officially blames members of the Fethullah Gulen movement for the shooting down of

the Russian warplane. This incident caused the network to change to state G1. It is

worthwhile to note that, since in the original graph G0 the number of positive edges

is more than the number of negative edges, the algorithm in Marvel et al. [6] would

predict the final state of the network to only have positive edges. Clearly, this is not

the case in the Syrian Conflict.

5.2 The Karate Club

In [1], Zachary analyses the social network formed by members of a university-based

Karate club. To protect the anonymity of the members of the club, neither the club nor

the members are identified by name in [1]. Zachary collected data about the network

from 1970 to 1972. During this period the Karate Club split into two clubs. The

split originated from a disagreement between the club president and the instructor

over the cost of the karate lessons. Zachary recorded which members consistently

socialized outside of the classes and the club meetings before the split. The graph in

Fig. 5.3 summarizes his data. Zachary used the Ford-Fulkerson algorithm to predict

the members of each of the two karate clubs after the split, and compared them with the

actual members of the two clubs. The Ford-Fulkerson algorithm predicted the correct

memberships with 97% accuracy.

In this section we compare the prediction of our algorithm about the memberships of

the clubs with the actual memberships after the split. This case study also demonstrates

one of the strengths of our algorithm compared to the algorithms of Antal et al. [5]

and Marvel et al. [6], which is the fact that our algorithm still works with any real
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Figure 5.3 : This signed graph shows the relationships between the 34 members in
the Zachary Karate Club given in [1] where the edges drawn represents

the positive relation existing between them. Vertex 1 represents the
instructor, while vertex 34 represents the president.

number weights assigned to the edges of an underlying signed graph signifying the

intensity of the relationships. We modify the graph in Fig. 5.3 slightly in order to run

our algorithm. The modification is necessitated by the fact that Zachary only recorded

positive relationships, but not negative ones. We make two assumptions about the data:

1. The relationship between the president and the instructor is very negative.

2. The relationships between the president and his friends are very positive. Similarly,

the relationships between the instructor and his friends are also very positive.

Assumption 1. is reasonable since Zachary goes into sufficient detail to describe the

conflict between the instructor and the president. As they are the two polarizing figures,

it is also natural to assume that the relationships involving the president or the instructor

and other members are more intense than the relationships not involving the two, which

justifies assumption 2. Fig. 5.4 contains the adjacency matrix of the modified graph.
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Figure 5.4 : The adjacency matrix of the modified signed graph whose original graph
is given in Fig. 5.3.

After running our algorithm we get the partition (S,S) where,

S = {v1,v2,v3,v4,v5,v6,v7,v8,v11,v12,v13,v14,v17,v18,v20,v22}, and vi corresponds to

person i. Our prediction corresponds with the actual memberships with also 97%

accuracy. In fact Zachary’s and our predictions are exactly the same. The only

misplaced member in both predictions is person 9. Zachary explained that person

9 switched alliances because unless he was a member of the club formed by the

instructor, he risked loosing his black belt.

It is worthwhile noting that for both social networks in this chapter our algorithm

mis-predicted the actual outcome when there was an extraordinary event/hidden

information not captured by the initial data.
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6. CONCLUSIONS AND RECOMMENDATIONS

The simple greedy algorithm discussed in this thesis has several advantages compared

to other recent algorithms that balance signed graphs. Although much like Antal et

al. [5] and other graph theoretic algorithms, the algorithm cannot find an optimal

partition of the signed network, it nevertheless does balance any signed graph.

Compared to the algorithm of Marvel et al. [6], our algorithm also forces much fewer

relationship changes on the social network because a signed graph with mostly positive

edges might still contain vertices that are incident to many negative edges. Therefore,

the negation of all negative edges for such graphs might not be reasonable. In fact, the

ratio of the number of positive to negative edges can be arbitrarily large and the the

signed graph could still split to form coalitions predicted by our algorithm. See graph

G from Fig. 6.1 for an example.

Figure 6.1 : G is a complete signed graph on k+1 vertices. The missing edges have
positive sign. Note that G has

(k
2

)
= k2−k

2 positive edges and k negative
edges, but the graph can be split by moving vk+1. The signed graph H

has optimal partition as shown; where the two partite sets do not have the
same size.

In the initial state G of the network in Fig. 6.1, most of the relationships are friendly.

Consequently, the algorithm of Marvel et al. [6] would predict a final network state

where all parties are friendly to each other. It is clear that this prediction is not

reflective of the evolution of an actual social network. One could easily provide an

infinite family of signed graphs in which the density of positive edges is higher than

the density of negative edges, but whose optimal partitions are clearly not (V, /0) as

would be predicted by [6]. The same statement is also true of graphs where the density
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of negative edges is higher than the density of positive edges. Such a graph might have

an optimal partition where the two partite sets do not have the same size, as would be

predicted by [6].

We also wonder whether the assumption that all networks evolve towards a balanced

state that achieves l(G) is correct. As seen in Fig. 6.2, there is an infinite family of

signed graphs, where each signed graph can be split. For each signed graph belonging

to the family, every vertex is incident to 3k positive edges and k+ 1 negative edges.

Therefore, the ratio of the number of positive edges to negative edges approaches 3 as k

increases. Note also that initially ∂ (v) = 2k−1 for each vertex. As a result, members

of such a network are relatively happy with its current state and have no individual

reasons to split the network and form opposing coalitions.

Figure 6.2 : G is a complete signed graph on 4k+2 vertices. Solid edges have
positive sign, while the missing edges have negative sign. Note that in G,

∂ (v) = 2k−1 for all v ∈V . However, the optimal partition is (S,S),
where ∂S(v) = 2k+1 for all v ∈V .

In fact research on large social networks support the idea that Heider’s balance theory

does not hold for such networks [16], [9]. Long unbalanced cycles do not seem to

be as strong a factor as short unbalanced cycles on large networks. As a result, new

approaches have been considered by weighing cycles according to their lengths. This

and similar issues plague all algorithms that have a global approach to balance. It

36



is not surprising that large social networks do not achieve balance in Heider’s sense

because, as computing l(G) is very hard in general, it would be unreasonable to

expect individual members to make choices that would be equivalent to calculating

l(G), especially when it is known that in real life networks individuals do not have

information about the structure of the whole network. Since the algorithm in this thesis

is a local one, it is largely unaffected by such problems.

Also for large networks, the assumption that all relationships are symmetric and that

all vertices behave the same way does not hold. Powerful members of a network have

a much greater effect on the evolution of a social network as was the case with the

Karate Club network in the previous chapter. These concerns necessitate the need to

consider directed signed graphs and differentiate between members when dealing with

large networks. Unfortunately, lacking data on large social networks, we have not

developed an algorithm suitable for predictions about large networks. This is an area

which we hope to develop in future research.
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