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EXACT SOLITON SOLUTIONS OF CUBIC
NONLINEAR SCHRODINGER EQUATION
WITH THIRD ORDER DISPERSION

SUMMARY

Positive sciences are related to each other in several ways. It can be seen that the
relation between mathematics and the other scientific areas is mostly about differential
equations. In recent years, there has been considerable interest in nonlinear wave
problems. Nonlinear optical wave equations guide to understand nature in various
disciplines such as quantum mechanics, nonlinear optics and biology; moreover, these
equations are useful for improvement of innovative methods. Solitons are localized
nonlinear waves which are used for understanding of complex nonlinear systems.
The shape of wave is kept stable after collision. Solitons are related to several
scientific fields such as quantum mechanics, nonlinear optics, plasma physics etc.
Since soliton theory is an interdisciplinary topic, there has been noticeable studies
about optical solitons in the last decades. Nonlinear Schrodinger (NLS) equation is
used for modelling nonlinear propagations of optical pulses in one picosecond. In
recent years, there has been considerable interest in the solutions of NLS equation.
The analytical and numerical solutions of the cubic NLS equation were investigated
in literature. Third-order dispersion term has considerable effects on inter-continent
data transmission. Therefore, the investigations of these effects are significant
for improvement of data transmission. External potentials affect stabilities and
shapes of optical pulses. The potentials (lattices) which have parity-time symmetry
(Z.7-symmetry) are used in quantum mechanics and nonlinear optics problems
frequently. In literature, there are various investigations about stability of NLS
equations with &2.7 -symmetry. In this study, soliton solutions and stabilities of a
NSS equation which has cubic nonlinearity and third order dispersion is investigated
in external potential with &7 -symmetry. The model is given below:

iuz+auxx+i[3uxxx+Oc|u|2u+VPTu:O. (1)

Here, u refers to a differentiable complex-valued, slowly varying amplitude, u,, refers
to diffraction, z is a scaled propagation distance, 8 refers to coefficient of third order
dispersion term and Vpr refers to external potential. In this study, external potential
with & .7 -symmetry is identified as:

Vpr = V(x) + iW(x)
= [Vo + Visech(x) + Vasech?(x) + Vssech? (x)] )
+i[Wssech?(x) tanh(x) 4+ Wy sech(x) tanh (x) 4+ Wp tanh(x)]

Here, V (x) corresponds to the real part which is an even function, W (x) corresponds
to the imaginary part which is a odd function.
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In Chapter 1, definition of soliton and its relation to the other disciplines are briefly
discussed. NLS equation is introduced and some developments about NLS equation
are expressed. The importance of higher order dispersion terms in NLS equation
is explained. NLS equation with &.7-symmetry and third order dispersion term
is introduced. Purpose of this thesis, literature review and hypothesis are stated
respectively.

In Chapter 2, Spectral Renormalization Method which is the numerical method for
solving NLS equation with third order dispersion and &.7 -symmetric potential is
explained. Spectral Renormalization Method is essentially a Fourier iteration method.
In this chapter, this method is modified to our problem. Numerical solutions are
obtained for NLS equations with &7.7 -symmetric potential and third order dispersion
term.

In Chapter 3, exact solutions of NLS equation with 7.7 -symmetric potential and third
order dispersion term are investigated. The structure of .7 -symmetric potential
is defined. In order to produce analytical solutions, the solution ansatz u(x,z) =
f(x)e=t8) js suggested. f(x) and g(x) show two real-valued functions. The
structure of used .7 -symmetric potential is substituted in the equation with this
solution ansatz and then the exact form of this potential is identified. It is verified
that the real part of the potential is an even function and the imaginary part is an odd
function. The exact solution and the numerical solution are plotted in order to compare
the numerically obtained solution to the exact solution. It is seen from the related
figure that SR method is an effective method for obtaining solutions for these type of
equations. Moreover, it is also proved that the exact and the numerical solutions are in
very good agreement.

In Chapter 4, stability analysis of NLS equation with &Z.7 -symmetric potential and
third order dispersion term is investigated. Firstly, Split-Step Fourier method has
been modified to our equation to analyse the nonlinear stability properties of obtained
solitons. Also, linear stability analysis is investigated by linear spectrum. Linear
spectrums are compared for various values of f3.

In Chapter 5, obtained results are summarized. Furthermore, possible future studies
are briefly discussed.

In this thesis, MATLAB2018b computer programme is used and all of the results are
produced by the use of this programme.
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UCUNCU MERTEBEDEN DISPERSIYON ICEREN
KUBIK NONLINEER SCHRODINGER DENKLEMININ
SOLITON TiPI COZUMLERI

OZET

Pozitif bilimsel ¢esitli yonlerle birbirleriyle iligki icerisindedir. Matematigin diger
bilimlerle olan iligkisi incelendiginde en cok paydanin diferansiyel denklemlerde
oldugu goriilmektedir. Son yillarda nonlineer (dogrusal olmayan) dalga problemlerine
olan ilgi oldukca artmistir ve bu konu hakkinda cesitli bilimsel arastirmalar
yiiriitiilmektedir. Lineer olmayan dalga denklemleri kuantum, optik ve biyoloji gibi
konularda dogay1 anlamaya ve bu alanlarda inovatif yontemler gelistirmeye yardimci
olur. Bu bilim dallarindaki dogrusal olmayan sistemlerin arastirilmasina oncelikli
olarak kismi tiirevli diferansiyel denklemin ¢6ziimiiniin elde edilmesiyle baglanir. Bu
denklemlerin ¢oziimlerinin bir kismi soliton olarak adlandirilan dogrusal olmayan
dalga tipindedir. Solitonlar quantum mekanigi, nonlineer optik, plazma fizigi gibi
pek cok alanda elde edilen alan denklemlerinin ¢oziimlerinde ortaya c¢ikmaktadir.
Ozellikle optik problemlerin ¢6ziimiinde drnegin fiber optik kablolarda veri iletimi
probleminde NLS denklemi ile bu denklemin bazi varyantlar1 ve bunlarin soliton
tipi ¢oziimleri ortaya ¢ikmaktadir. NLS denklemi genellikle bir pikosaniyelik zaman
Ol¢ceginde optik atimlarin dogrusal olmayan yayilimlarint modellemekte yaygin olarak
kullanilmaktadir. NLS denklemi Erwin Schrodinger tarafindan ortaya konmustur ve
standart formunda asagidaki gibi tanimlanmaktadir:

itz + e+ otul*u = 0. 3)

Literatiirde, NLS denkleminin analitik ve sayisal ¢Oziimleri arastirilmistir; ancak
bu arastirmalar genellikle (3) denklemindeki gibi ikinci mertebeden dispersiyon
terimi icermektedir.  Daha yiliksek mertebeden (iiclincii ve dordiincii mertebe
dispersiyon) terimlerinin probleme katkisini inceleyen calismalar daha kisith sayidadir.
Literatiirdeki bazi caligmalarda liciincii mertebeden dispersiyon teriminin, kitalar
arast veri iletimine etkilerinden bahsedilmistir. Dolayisiyla yiiksek mertebeden
dispersiyon terimlerinin etkisini arastirmak, nonlineer optikte veri iletimi problemleri
icin olduk¢a 6nemlidir. Dis potansiyeller, optik atimlarin kararlilifina ve bi¢imlerine
etki eden diger bir faktordiir. Parite-zaman (£?.7) simetrisine sahip potansiyeller
(kafes/latis), kuantum mekanigi ve nonlineer optik problemlerinde yaygin olarak
kullanilmaktadir. Literatiirde &7.7 -simetrisine sahip dip potansiyeller iceren gesitli
tipte NLS denklemlerinin ¢oziimleri ve ¢oziimlerinin kararlilifiyla ilgili ¢ok sayida
caligsma bulunmaktadir.
Bu calismada, kiibik nonlineerite ve li¢iincii mertebeden dispersiyon igceren dogrusal
olmayan Schrodinger denkleminin bir 2.7 -simetrisine sahip dis potansiyel altinda
soliton tipi ¢Oziimleri ve ¢oziimlerin kararliligi incelenmistir. Bu model asagida
verilmigtir:

iuz+auxx+il3uxxx+Oc\u|2u—|—VpTu =0. )
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Yukaridaki denklemde u kompleks degerli elektrik alanin yavas degisen genligini, u,,
kirinim terimini, 3 iigiincii mertebeden dispersiyonu modelleyen terimin katsayisini,
z yayillim mesafesini, Vpr ise dis potansiyeli temsil etmektedir. Bu c¢alismadaki
P T -simetrisine sahip dig potansiyel asagidaki gibi belirlenmistir:

Vpr = V(x) +iW (x)
= [Vo + Visech(x) + Vasech? (x) 4 Vssech? (x)] (5)

+i[Wssech?(x) tanh(x) + Wy sech(x) tanh(x) + Wy tanh(x)].

Yukaridaki denklemde V (x) ¢ift fonksiyon 6zelligi gosteren reel kismi, W (x) ise tek
fonksiyon 0zelligi gosteren sanal kismi temsil etmektedir.

Bolim 1’de, solitonlarin tanimindan ve diger bilim dallart ile iliskisinden
bahsedilmistir. NLS denklemi tamitilmig ve tarihsel gelisimine deginilmistir. Yiiksek
mertebeden dispersiyon teriminin NLS denklemindeki 6nemine deginilmigtir. Bu
caligmada kullanilan &7 -simetrisine sahip bir dig potansiyel ve ti¢lincii mertebeden
dispersiyon terimi iceren NLS denklemi tanitilmistir. Bu boliimde sirasiyla tezin
amaci, literatiir arastirmasi ve tezin hipotezine deginilmistir.

Boliim 2’de, tezdeki problemi modelleyen denklemin sayisal ¢oziimiinde kullanilan
Spektral Renormalizasyon metodu anlatilmigtir.  Temelde bir Fourier iterasyon
yontemi olan ve daha sonra Ablowitz ve Musslimani tarafindan gelistirilen Spektral
Renormalizasyon metodu agiklanarak model denkleme uygulanmustir.  Spektral
Renormalizasyon yOntemi ile ¢oziim elde etmek icin asagidaki Gaussian baglangic

kosulu kullanilmugtir :
2

wo=e" (6)
Burada 107! mertebesinde yakinsama elde edilmistir. Spektral Renormalizasyon
yontemi ile &2.7-simetrisine sahip bir dis potansiyel ve iigiincii mertebeden
dispersiyon terimi iceren NLS denklemi icin soliton tipi sayisal ¢6ziim elde edilmistir.
Bolim 3’te, .7 -simetrisine sahip bir dig potansiyel ve ii¢iincii mertebeden disper-
siyon terimi iceren NLS denkleminin analitik ¢oziimii arastirtlmistir. &2 .7 -simetrik
potansiyelin yapist bu boliimde ayrintili olarak tiiretilmistir. Bu potansiyelde dayali
analitik ¢coziim tiretebilmek icin agsagidaki ¢6ziim Onerisi uygulanmistir:

u(x,z) = f(x)e/Hrst) (7

Burada f(x) ve g(x) yapisi heniiz belli olmayan reel degerli fonksiyonlar1 ifade
etmektedir. Bu boliimde, yukaridaki ¢oziim onerisi kullanilarak alan denkleminin
kesin ¢oziimleri ve &7 -simetrik potansiyelin yapisi elde edilmistir. Kompleks
potansiyelin reel kismi

V (x) = Vo + Visech(x) + Vaseeh? (x) + Visech®(x) ®

olarak hesaplanmistir. Bu fonksiyonun ¢ift fonksiyon 6zelligi tasidig1 gosterilmistir.
Kompleks potansiyelin sanal kismu ise,

W (x) = Wy tanh(x) 4+ Wysech(x) tanh(x) 4+ Wasech? (x) tanh(x). )

olarak hesaplanmis olup bu fonksiyonun tek fonksiyon 6zelligi tasidigr gosterilmistir.
Boliim 2’de elde edilen sayisal ¢oziim ile bu boliimde elde edilen analitik ¢oziim {ist

XX



iste c¢izdirilerek coziimlerin st iiste diistiigli gdzlenmistir. Dolayisiyla hem Bolim
2’de kullanilan SR yonteminin bu tip denklemlerin ¢éziimiine uygunlugu gosterilmis,
hem de bulunan kesin ¢6ziimiin sayisal ¢6ziim ile uyumlu oldugu ispatlanmistir.
Boliim 4’te, tezin model denklemi olan 2.7 -simetrik bir potansiyel ve igiincii
mertebe dispersiyon terimi igeren NSL denkleminin kararlilik (stabilite) analizi
incelenmistir. Oncelikle elde edilmis olan solitonlarin lineer olmayan (nonlineer)
stabilite Ozelliklerini incelemek i¢in kullanilacak olan Ayrik-Adimli Fourier metodu
anlatilmigtir. Daha sonra bu yontem 2.7 -simetrik bir potansiyel ve iigiincii mertebe
dispersiyon iceren model NLS denklemine ana hatlar1 asagida gosterildigi bicimde
uyarlanmgtir. Oncelikle u, terimi ¢oziiliirse model denklem asagidaki formda ifade
edilebilir:

Uy, = il — (ﬁuxxx)+ioc|u|2u—l—ngzgu (10)

Buarada asagidaki operatorler tanimlanmigtir:

M = i(adyx + i Oyxx) an
N =i(alul’ +Vp7)

Once u, = Mu kismu Fourier doniisiimii kullanilarak ¢oziilmiis daha sonra u, = Nu
parcasi ¢oziilmiis ve model NLS denkleminin ¢6ziimii Ayrik-Adimli Fourier yontemi
kullanilarak elde edilmistir. Kisaca 6zetlenen bu yontem kullanilarak elde edilmis olan
soliton tipi coziimlerin cesitli potansiyel derinliklerinde kararlilik analizleri arastirilmis
ve liglincii mertebeden dispersiyon teriminin katsayist olan B’nin degisen degerleri
icin stabil ve stabil olmayan bolgeler belirlenmistir. Daha sonra lineer spektrum
kullanilarak elde edilen solitonlarin lineer stabilite 6zellikleri de incelenmis ve 3
katsayisinin farkli degerleri i¢in lineer spektrumlar kargilagtirilmigtir.

Boliim 5°te, onceki boliimlerde elde edilen ¢oziimler ve bu ¢oziimlerin stabilite
ozellikleri 6zetlenmis ve ileride yapilabilecek ¢calismalar tartistlmistir. 8 katsayisinin
farkli degerleri icin incelenen nonlineer stabilite analizi yapilmis ve lineer spektrumlar
MATLAB bilgisayar programu ile ¢izilen grafikler ile yorumlanmugtir.

Bu tezde MATLABR?2018b bilgisayar programi kullanilmig ve biitiin ¢oziimler bu
program ile elde edilmisgtir.
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1. INTRODUCTION

Solitary waves (commonly referred to as solitons) have been the subject of intense
theoretical and experimental studies in many different fields; especially, quantum
mechanics, nonlinear optics and biology [1]. Mathematically, a soliton is a solitary
wave that asymptotically preserves its shape and velocity upon nonlinear interaction
with other solitary waves [2]. In optics, a soliton refers as any optical field
which does not change its shape during propagation due to the balance between
linear and nonlinear effects in the medium [3]. Solitons can be used for speeding
up the complicated experiments since they give the advantages for understanding
sophisticated problems. In the context of nonlinear optics, solitons are classified as
being either temporal or spatial depending on whether the confinement of light occurs
in time or space during wave propagation. Temporal solitons represent optical pulses
that maintain their shape, whereas spatial solitons represent self-guided beams that
remain confined in the transfers directions orthogonal to the direction of propagation.
In both cases, the pulse or the beam propagates through a medium without change
in its shape is said to be self-localized [3]. Nonlinear Schrodinger Equation is an
important nonlinear evolution equations which is used in brought areas in physics
and applied mathematics. Nonlinear Schrodinger equation (NLS) is established by
Erwin Schrédinger; moreover, it basically arises nonlinear systems [4]. Its pulses is 1

picosecond time-scale and it is usually determined as
iuz+uxx+a|u|2u:0. (1.1)

where u refers to the differentiable complex-valued, gradually altering amplitude of
the electric field; u,, refers to diffraction; z is a scaled propagation distance; the
coefficients o represents the sign of cubic nonlinearity of the medium. This NLS
equation is referred to as being (1+1)-dimensional and constitutes the simplest form of
the NLS equation. The bright and dark spatial solitons correspond to the choice of
as +1 and —1 respectively. In this thesis, we only consider the bright soliton type of

solution.



It is known that NLS equation does not give correct prediction for pulse widths
smaller than 1 picosecond. For example, in solid state lasers, where pulses are
short as 10 femtoseconds are generated, the approximation breaks down. Therefore,
one need to consider the third order dispersion for performance enhancement along

trans-continental distances.

In this thesis, we investigate the cubic nonlinear Schrodinger equation with a

P T -symmetric optical potential and third order dispersion which is given below:
iuz—l-auxx—l—iﬁuxxx—I—a|u|2u+VpTu:O. (1.2)

Here, B is a third-order diffraction coupling constant taken as either negative or
positive constant value and Vpr is a &7 -symmetric external potential which the exact

structure 1s defined in Chapter 3.

We will consider &.7 -symmetric potential as
Ver =V (x) +iW (x) (1.3)

The purpose of this thesis is to explore the exact and the numerical solutions of the
equation (1.2) and discover the effect of the third order dispersion term ifu,,, on the

soliton solutions and their stabilities.

In order to solve Eq.(1.2) Spectral Renormalization method is applied. Spectral
Renormalization method is essentially a Fourier iteration method and it was
introduced by Petviashvili in 1975 [5]. It was first use to find localized solutions
in the two-dimensional Korteweg-deVries equation (usually referred to as the
Kadomtsev-Petviashvili equation or in short KP equation) [6]. Then, this method is
strengthened by Ablowitz and his co-worker Musslimani in early 2000’s [7]. The idea
behind the method is to transform the underlying equation governing the soliton such
as a NLS type equation into Fourier space and determine a nonlocal integral equation
coupled to an algebraic equation. The coupling prevents the numerical scheme from

diverging.

1.1 Purpose of Thesis

In this thesis, we investigate the effect of the external potential and third order

dispersion term on the soliton solutions of the cubic nonlinear Schrodinger equation

2



with &.7 -symmetric potential and third order dispersion term. We aim to find an
exact soliton type solution to this model equation and explore linear and nonlinear

stability properties of the obtained solitons.

1.2 Literature Review

Nonlinear wave problems arise in various mathematical and physical fields such
as nonlinear optics, plasma physics and quantum mechanics [8-10]. Solutions
and stabilities of NLS equations are largely discussed by scientists for many years
[2,3,11,12]. Solitons appear as the solutions of common class of weakly nonlinear
dispersive ordinary differential equations describing physical systems [13]. The recent
study of Kartashov, Vysloukh and Torner is about lattice solitons that they adress
variety type of optical lattices and potential stabilization of these structures [14].
Stability analysis of optical solitons in a periodic &.7 -symmetric potential is explored
by Musslimani and co-workers [15]. Optical soliton solutions of NLS equations
with &7 -symmetric optical lattices are investigated by various scientists [16—19].
The existence and stability of lattice solitons were reported in parity-time symmetric
mixed linear-nonlinear optical lattices. It is also revealed that the parameters of
the linear lattice periodic potential have considerable role in controlling regions
of stability domains [20]. Goksel et al. investigated the existence and stability
properties of solitons of the (1+1)D cubic-quintic NLS equations with &2.7 -symmetric
external potential. They obtained the solutions by means of Spectral Renormalization
method for varying potential depths. Stability and instability regions of solitons
were investigated by linear spectrum analysis [21]. The numerical existence of
fundamental solitons in saturable media on crystal and certain type of quasicrystal
lattices were investigated and the nonlinear stability of the fundamental solitons were
studied by using numerical methods such as finite difference method and fourth-order
Runge-Kutta method. The effects of the potential depth and applied external electrical
field on the gap width were also studied in [22]. The existence and stability of solitons
in &.7-symmetric optical lattices with spatially periodic modulation of the local
strength of the nonlinear media were investigated. Additionally, the effects of spatial
modulation of the nonlinearity on stability of solitons in &?.7—symmetric optical

lattices were revealed [23]. The effects of additional higher order dispersive term in



cubic NLS equations were studied by Karlsson [24]. Third order dispersive term was
not included in their study. They only focused on effects of fourth order dispersive term
in the related work. Wazwaz and Kaur investigated exact analytical solutions for NLS
equations with normal dispersive regimes by using variational iteration method [25].
Soliton type solutions of cubic NLS equations are produced [26, 27]. The exact
solutions of the nonlinear Schrédinger equation with cubic and quintic space were
explored by using canonical transformations in the presence of time-dependent and
inhomogeneous external potentials. The importance of &7.7 -symmetry was searched
to guarantee the conservation of the average energy of the system [28]. Stability
properties and bad-gap structures of higher order NLS equations with periodic lattice
were investigated in [29]. The recent studies are mostly about soliton dynamics of
higher order multi-dimensional NLS equations [30]. Yan and Chen investigated the
stability of bright solitons in the generalized NLS equations with several types of
& 7 -symmetric potentials and they showed that their stability is verified by the linear
stability spectrum. They also explored the interactions of two solitons [31].

It is known that Hamiltons which are defined in quantum mechanics must be
Hamiltonian for real spectrum. Recently, Bender and his co-workers showed that
Hermitian property is not an obligation for real spectrum in the &2.7-symmetry

[32,33].



1.3 Hypothesis

Existence and stability properties of the solutions of cubic NLS equation with a
P T -symmetric potential are highly related to an additional third order dispersion
term. The existence of a positive third order dispersion (30D) term has a positive
effect on the nonlinear stability of the solitons of Eq.(1.2). Additionally, the existence
of 30D affects the linear stability of the obtained solitons. Eq.(1.2) becomes more
stable with 30D term; moreover, the existence and stability of the solitons affected by

the potential depths of the &7.7 -symmetric potential defined in the thesis.






2. NUMERICAL METHODS

Well-known Spectral Renormalization method will be modified to find numerical

solution of Eq.(1.2).

2.1 Spectral Renormalization Method

There are variety of numerical methods in order to obtain soliton type solutions.
Spectral Renormalization method is one of these techniques which is essentially
Fourier iteration proposed by Petviashvili, in order to find localized solutions
in the two-dimensional Korteweg-deVries (KP) equation. Later, Ablowitz and
Musslimani extended this method [2] with usage of nonlinear wave guides to compute
self-localized states. This method can be used to computed self-localized states
of nonlinear wave guides that is flexible and can be applied to many nonlinear
systems involve nonlinearities with different homogeneities such as cubic-quintic or

as saturable nonlinearity.

This method can be applied to the cubis NLS equation with a &2.7 symmetric potential
and 30D as follows:

iuz+auxx+il3uxxx+Oc\u|2u—|—VpTu:0. 2.1

Using the ansatz u(x,z) = f(x)e’** where f(x) is a complex-valued function and g is

the eigenvalue, we have following set of equations,

u, = if fe'ts
Uy = fxei'uz
Uxy = fxxei/JZ (2.2)

_ iuz
Upxx = fraxe€ H

ul? = 1£°



Substituting the equations Eq. (2.2) into Eq. (2.1), the following nonlinear equation for

f is obtained
—Uf M 4 afie™ 4 iB froe™ + | f|* et + Vpr felt = 0. (2.3)

After cancelling the exponential term we have

—Wf 4 af+iB fro + 0| fI2f +Vorf = 0. (2.4)

After applying Fourier transformation to Eq. (2.4) we get

F{—uf}+ Fl{afat + F{iBfoat + F{alfPf}+ F{Vorf} = F{0}.  (25)

where .# indicates Fourier transformation. Due to the properties of this transformation,

we get Eq. (2.6)
—uf —a(k)*f = Bk f+ aZ{|fI*f} + F{(V+iW)f} =0 (2.6)

where .% (f) = f and k, are Fourier variables. Solving Eq. (2.6) for f yields

aZ{|f2f} + F{(V+iW)f}

2.7
[‘LL =+ akx2 =+ ka3] @D

f=

Since the scheme diverges, the equation (2.7) cannot be applied to find f(x) . New
field variable f(x) = Aw(x) with A € R™ where A is a parameter can be determined.

After the arrangement of the equation (2.7) with the new field variable f(x), we get

o T { Wl APWAY + Z{(V +iW)Aw}

AW = (2.8)
u + ak,? + Bk
simplifying this equation, we have
F{| WA Pw} + Z{(V +iW
o aF (AP + F{V W)} 00

U+ ak® + Bk
Eq. (2.9) can be applied in an iterative method to investigate w; morever, the following

iteration approach can be utilized for investigation of W :

_ AAPF {walPwa} + TV +iW)wa}

Vil = , neN (2.10)
" u+ ak? + Bk’
with the initial condition taken as a Gaussian type function
2
wop=¢e "~ (2.11)
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where |w,41 —w,| < 10712 is the convergence criterion. After the multiplication of

both sides of Eq. (2.9) by (u + ak® + ka3) and we get
(1 +ak® + Bl = |A P o Z {|w|*w} + F{(V +iW)w}. (2.12)
If we take all terms of Eq. (2.12) to the left side, we get the following equation
(1 + ak,” + B — AP o Z {|w*w} — Z{(V +iW)w} = 0. (2.13)
After the multiplication of Eq. (2.13) by the conjugate of W, i.e. by w* yields
(14 ak + B w)> — AP oZ {w]Pwh* — Z{(V +iW)whd* =0.  (2.14)
Integrating Eq. (2.14) leads to

h / (1t + ak2 + B3) wlPdk + A2 / o F {|w/ww*dk

+/°° F{V +iW)whwtdk =0 (2.15)

or in a more compact form

[ [ E i+ (u ak? + Bl dk

- - (2.16)
HA2 / 0 T {|w|Pwhi*dk = 0.

Eq. (2.16) is a second order polynomial of A in the form P(A) = aA? 4 b then A can

be calculated exactly by the usage of the following formula:

—b+ Vb? —4ac
Mp ==+

> (2.17)
where

a= a/ F{|w)*whw*dk (2.18)

b= — / T TV W)W+ (i a2+ PR Wk (2.19)

For the convergence of the iteration, the appropriate soliton is f(x) = A(wx) =

AZ (W),






3. EXACT SOLUTIONS OF CNLS EQUATION WITH THIRD ORDER
DISPERSION AND A .7 -SYMMETRIC POTENTIAL

In this chapter, we will find the exact soliton type solution of the following cubic NLS

equation with a &7 -symmetric external potential and 30D gives as follows :
iuz+auxx+il3uxxx+Oc\u|2u—|—VpTu:O. 3.1

For u = 0 we find the trivial solution of Eq. (3.1). In order to find non-zero solutions,
consider u # 0. Dividing Eq. (3.1) by u and by the use of Eq. (1.3) gives

U, AUy

i—+ +ip “"+a|u| +V4+iW =0. (3.2)
u

In order to find non-zero stationary solitons, the following ansatz is used:
u(x,2) = f(x)eHerst) (3.3)

where u is a function of x, z and to be determined, f(x) and g(x) are real-valued
functions which are different than zero, and p is the propagation constant. Derivatives
of Eq. (3.3) with respect to z and x give the following:

uy = f(x)ipe 80 = i

y = f(x)e M8 4ol feilkzte(x))

e = [ () +2if (x)g' (x) +if (0)g" (x) — F(x) (& (x))*] e HeFE)

u . .
=7 [ () +2if" (x)g'(x) +if (x)g" (x) = F(x) (&' (x))?] (3.4)
u .

U = ]—c[f”'(X) +3if" (x)g'(x) +3if' (x)g" (x)

+if(x)g" (x) =31 (x)(¢'(x))* =3/ (x)g'(x)g" (x) —if (¢' (x))*]

Jul? = f(x)e! D) f () W) = (f(x))?
Substituting Eq. (3.4) into Eq. (3.2) yields

[—u+ 400 —a(g(x)?) —3p LW —3p LWL ger() 1 B(g/(x))

(3.5)

Fal P4V (@) +iRa G +ag (v )+l3']}<)(3)

—3BLIELT 3B (x)g" (x) + W (x)] =0
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The following ansatzs are used for investigation of soliton solutions:

f(x) = fosech?(x)
g (x) = gosech?(x) 3.6)

where fp and go are non-zero real constants and p € N. For the simplification of

Eq. (3.5), calculating derivatives of f and g is an obligation. By using Eq. (3.6) we get
f'(x) = —fptanh(x)
f"(x) = flp* = (p* + p)sech® (x)]

f"(x) = fptanh(x)[(p® +3p +2)sech’ (x) — p*)]

3.7)
g (x) = gosech?(x)
g’ (x) = —gogsec h?(x) tanh(x)
g"'(x) = gogsech?(x) g — (g + )sech’ (x)]
Substituting Eq. (3.7) into Eq. (3.5) we get

—u+ap* —a(p?+ p) sech*(x) — ago® sech*4(x)

=3Blp* — (p* + p)sech?(x)]gosech?(x)

—3B pgtanh(x)gosechd(x)tanh(x) — Bgogsech?(x)[g — (g + 1) sech?(x)] (3.8)

+Bgo’ sec B3 (x) + afy? sec h?P (x) + V (x)
+i[3Bg0*(p + q) sech*?(x) tanh(x) — ago(2p + q) sec h?(x) tanh(x)
+Bp(p?+3p+2)sech?tanh(x) — B p* tanh(x) + W (x)] = 0.
In order to get real and imaginary parts of the .7 -symmetric potential, we split
Eq. (3.8) as:

Real Part
The real part of the Eq. (3.8) can be expressed as,

—u +ap* —a(p? + p) sech*(x) — ago* sec h*4(x)
—3Bgop*sechi(x)+3Bgo(p* + p)sech??(x) —3Bgopgsech?(x) (3.9)
+3Bgopgsech?*2(x) — Bgog? sechd(x) + Bgog(q+ 1) sec h4+2(x)

+Bgo®sech®(x) + a fy* sech®’(x) +V(X) = 0.

12



The real part of the &7.7 -symmetric potential is found as

V(x) = Vo + Visech?(x) + Vasech? (x) + Vzsech?? (x)

(3.10)
+Vysech?t2(x) 4 Vssech®?(x) 4 Vgsech?” (x)
where
Vo= —ap®
Vi =a(p®+p)
Va = Bgol(3p* +3pg +4°)]
Vs = agoy’ (3.11)
Vi = —Bgol3(p*+p) +3pg+q(g+1)]
Vs = —Bgo’
Vs = —afy’
we can see in the following form that V (x) is an even function
V(—x) = Vo + Vysech?(—x) + Vasech?(—x) + Vzsech??(—x)
+Vysech?t2(—x) + Vssech? (—x) + Vgsech?” (—x)
= Vo + Visech?(x) + Vasechg(x) 4 Vasech?? (x) 4 Vysech?t2(x) (3.12)

+Vssech3?(x) + Vgsech?” (x)
=V(x).

V(x) can be expressed by the powers of sech(x). For p =g =1 Eq. (3.10) can be

rewritten as:

V(x) = —a+2asech?(x) +7Bgosech(x) +agy’ sec h*(x)

(3.13)
—11Bgosech®(x) — Bgo’sech? (x) — o fo? sec h?(x)
V(x) can be written as
V(x) = u—a+7Bgosech(x)(2a+ ago® — afy?) sech’(x) (3.14)

+(—11Bgo — Bgo’)sech’(x)
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where

Vo=U—a

Vi =7Bgo
(3.15)
Vo, =2a —l—ag02 — (Xf()2

V3= —Bgo(11+go?)

The real part of the &7 -symmetric potential is obtained as,
V(x) = u —a+7Bgosech(x) 4 (2a + ago® — a fo?)sech? (x) (3.16)
—Bgo(11+ go?)sech’ (x).
Imaginary Part
The complex part of the Eq. (3.8) can be expressed as
3Bg0° (p + g)sech(x)* tanh(x) — ago(2p +¢)sech? (x) tanh(x) (3.17)
+Bp(p*+3p +2)sech?(x) tanh(x) — B p> tanh(x) + W (x) = 0
The imaginary part of the 7.7 -symmetric potential is obtained as
W (x) = Wosech??(x) tanh(x) + Wysech? (x) tanh(x) (3.18)
+Wssec h?(x) tanh(x) -+ W5 tanh(x)
where
Wo = —3pgo*(p+4q)
W2 = —Bp(p*+3p+2)

W; = B p?
W(x) is an odd function; as a result of the following form:
W (—x) = Wosech?q(—x) tanh(—x) + Wisech?(—x) tanh(—x)

+Wssech? (—x) tanh(—x) + W5 tanh(—x) (3.20)

— Wosech?q(x)(—tanh(x)) + Wysech? (x)(— tanh(x))

+Wasech? (x) 4+ W3(— tanh(x)) = —W (x).
14



For p = g = 1, then we can transform Eq. (3.18) as following form,

W (x) = —6Bgo? sec h*(x) tanh(x) + 3agg sec h(x) tanh(x)

(3.21)
—6f sech?(x) tanh(x) 4 B tanh(x)
where
Wo=p
Wy = 3ag (3.22)

Wa = —6B(g0> +1)
The equations (3.15), (3.22) puts a constrain on the potential depths: V, < 2 +W;%/9
or @ =1 and a = 1 For the case of p = ¢ = 1 the analytical solution of the problem
can begin with

u(x,z) = f Sech(x)ei[uz—i-go arctanh(x) sinh(x)]. (3.23)

where fy = \/ 2+W;%2/9 —V, and gy = W; /3 Hence, Eq. (1.2), with the real and the
imaginary parts can be given as
Vpr = [Vo + Visech(x) + Vasech? (x) + Vasech? (x)] (3.24)
+i[Wssech?(x) tanh(x) 4+ Wi sech(x) tanh (x) 4+ Wp tanh(x)].
Eq. (3.24) can be seen as extension of the Scarf II potential for a Kerr medium [34].
In Fig. 3.1, the soliton numerically obtained by the SR method which is explained in
Chapter 2 is plotted with dashed green solid line while analytically obtained soliton
which is explained above is plotted with red solid line. It is seen from the figure
that, two solitons overlap and obtained numerical solution satisfies Eq. (2.1) with an
absolute error 10~7. Therefore, it shows that SR method is suitable for solving this

equation and analytical solution is proved to be correct.
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0 L L i

-20 -15

15 20

Figure 3.1 : Analytically and nur-neric-ally obtained soliton for 4 =1, V, = 1.4 and
Wi = 0.3 with B = —0.1
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In Fig. 3.2, all the obtained solitons are shown for the cubic NLS equation with
P T -symmetric potential and 30D for varying potential depths V, — Wj. In this figure
the contrait curve V> = 2 + W;? /9 is depicted by dashed line.

25

0

0o 05 1 15 2 25

Figure 3.2 : Existence region of cubic NLé equation with &2.7 -symmetric potential
and 30D for varying potential depths
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4. STABILITY ANALYSIS

4.1 Split-Step Fourier Method

Split-Step Fourier Method is one of various types of evolution methods. In his book,
Yang detailed the Split-Step Fourier Method for solving wave equations in [35]. The
method is based on splitting the evolution equation into several pieces. Although the
idea of this method has come up for a long time ago, the application in NLS type of

equation has been investigated for recent years.

4.2 Nonlinear Stability Analysis

In field of optics, nonlinearly stable means that a soliton conserves its shape, position
and the maximum amplitude during propagation. We used Split-Step Fourier method
to study the nonlinear stability properties of obtained solitons in Chapter 3. For this
purpose we employed the Split-Step Fourier Method that is explained in detail by
Goksel while investigating (2+1)D NLS in [36]. To study the nonlinear stability we
computed obtained solitons over a long distance. For this thesis z = 40 found to be
adequate to decide whether a soliton is nonlinearly stable or not.

Consider Eq. (1.2) which can be rewritten as

u, = iauxx—(ﬁuxxx)+ia|u]2u+ngpyu 4.1
and hence can be split as in Eq.(4.1) with the linear operator M = i(ady, + i3 dy.x) and
the operator N = i(ct|u|* + V7).

The linear step u, = Mu is solved by means of Fourier transform. Taking the Fourier
transform of both sides of

U; = iadxy — B oxxx 4.2)

gives

i, = ia(ike) i — B(ike)* i = —i(ake® — Bk . (4.3)
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This is nothing but an ordinary differential equation (ODE) of # and its exact solution

is given by
O L Bt (T ) IR CR)

The step u, = Nu, i.e.
u, = i(etul* + Vo 7 )u (4.5)

has the exact solution

U= Cyel @l +Va )z (4.6)

Having found solutions to both parts, the Split-Step Fourier method can now be
employed for the Eq.(1.2) equation by using any splitting scheme.

In Fig.(4.1), the nonlinear evolution of solitons are represented for u = 1, W; = 0.3
and V, = 1.4 with a 2.7 -symmetric potential and for § = —0.1, =0 and 8 = 0.1
respectively. It can be seen that 8 does not have a major effect on the nonlinear stability
of the system of the solitons for the potential depths V, = 1.4 and W; = 0.3.

(@

20 a0

20 40

Figure 4.1 : Nonlinear xstability of soliton for u =1, Vo = 1.4 and W) =0.3 witha
P T -symmetric potential and for = —0.1, =0and B =0.1
respectively; (a) Numerically produced soliton (blue dashes) on top of
the soliton after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Fig.(4.2), the nonlinear evolution of solitons are shown for u =1, W; = 1.8 and
Vo, = 1.8 with a &7 -symmetric potential and for § = —0.1, B =0 and S = 0.1
respectively. The potential depth values V,, W; are chosen from the instability region.
It can be seen this figure that for this specific potential depth values the maximum
amplitude of the soliton decreases during the evolution; moreover, the soliton for
B = 0.1 is deteriorated around = 40.
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Figure 4.2 : Nonlinear irxlstability of soliton for ux: 1,V = 1.8 and W) =1.8 witha
P T -symmetric potential and for B = —0.1, 3 =0and f = 0.1

respectively; (a) Numerically produced soliton (blue dashes) on top of

the soliton after the evolution (red solid), (b) Nonlinear evolution of the
soliton, (c) The view from top and (d) Maximum amplitude as a function

of the propagation distance z.

In Fig. (4.3) the nonlinear evolution of solitons are represented for u =1, W; = 0.2
and V, = 0.5 with a &7 -symmetric potential and for § = —0.1, B =0 and f =0.1
respectively. As is seen from the figure that for these specific values of the potential
depths while negative 30D causes nonlinear instability of the soliton, both removing

the negative 30D and adding a positive 30D to the system stabilizes the soliton by

preventing the maximum amplitude from getting smaller during the evolution.

(@) (b) (c) @

0
20 0 20 g a0 20 0 20 0 20 40

Figure 4.3 : Nonlinear instability/stability of soliton for 4 = 1, V, = 0.5 and
Wi = 0.2 with a &.7 -symmetric potential and for § = —0.1, § =0 and
B = 0.1 respectively; (a) Numerically produced soliton (blue dashes) on
top of the soliton after the evolution (red solid), (b) Nonlinear evolution
of the soliton, (c) The view from top and (d) Maximum amplitude as a
function of the propagation distance z.

Fig. (4.4) (a) shows the numerical/analytical existence points of the Eq.(1.2) for
B =-0.1, B =0and B =0.1. It is found that 30D does not have an effect on
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the soliton existence region for the interval —0.1 < B < 0.1 We observed that the
nonlinear stability increases with existence of 8. It can be easily concluded that as
B increases from —0.1 to 0.1 the nonlinear stability region is enlarged. As a result,
one can conclude that adding a positive 30D term to the system helps to improve the

nonlinear stability of the soliton.

(a) o b) 25 (e) 25 (d)

bl T stable
X unsiable % unsiable X unsiable

— b e

Figure 4.4 : (a) Existence [;zoints, stal;ility and iﬁstability f)zoints for (b) B = —0.1 (¢)
B=0()pB=0.1

4.3 Linear Stability

Linear stability will be investigated by acquiring and analyzing the linear spectrum of

the obtained solitons.

4.3.1 Linear Spectrum

Linear stability spectrum or short, linear spectrum are the eigenvalues of the linear
stability operator of a soliton. These eigenvalues give information about the linear
stability of a soliton. Consider the following equation having general type of

nonlinearities where F(-) € Rand F(0) =0 :

it (¥, 2) + it (¥, 2) + iButree (%, 2) + F (|u(x,2) *u(x,2)

“.7)
+Va 7 (Hulx,z) =0
Eq. (4.7) admits soliton solutions of the form u(x,z) = f(x) e'*<. Substituting
u; = ifLf et
Usx = frx e'M
(4.8)

_ iuz
Upex = frxx € H

uf? = = feHifre = fft = |2
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in Eq. (4.7) and multiplying by e ~** gives

—Uf +afe+ i fox+ OF(|f|*)f+Vapaf=0.

To analyze the linear stability, the soliton solution is perturbed as follows

u(x,2) = [ £() + g(x)e% + " (x)e” | &
where g and & are perturbation eigenfunctions and o is the eigenvalue.
- (o—ge"Z O O i f + iuge® + iuh*eG*Z) elH=
Uxx = <fxx + gxxeaz + ]’l;xeo-*z) eilJZ

_ oz * 0%z\ Jiuz
Uxxx = (fxxx + &xxx€ +hxxxe ) et

uP = = (f + g% ") M (7 4+ g6 4 %) 7
= ff*+ g € + fhe + fge + ggel TN
+ ghe®%" + f*h*e® T 4 g*h*e* 4+ hi*elOTO )
~|f* + (g*ec*z +he"z> f+ <ge"Z +h*e"*z) f*
Using linear Taylor expansion F(x+h) = F (x) +hF’(x) + O(h?),
F(lu)=F (lf]2 + [(g*ea*Z —l—hec’z) f+ <ge(’Z —|—h*e"*z) ])
= F(f1)+ | (877 +he™) £+ (ge%+h*e”<) £ | F(If7).
Hence,
F(l e~
= F(fP)f+ [ (877 +he) £+ (ge% +1e™?) || F(I1P)
+F(f ) ge + F(f1*)h"e”
Kgg o(0+6%) +gh€26z)f—|— ( 297 4 gl e(0+07): > } (|f| )
all
F(P) [/ + e 0]
+F(FP) [ (Pn+11Pe) e+ (£ +1rPh) e

21

g*h*ezc Z+|h[ (o+0%) >f+ (gh* (6+0%)z S (R )2 20* z) } (|f‘ )

4.9)

(4.10)

4.11)

(4.12)

(4.13)

(4.14)



Substituting Eq. (4.10), (4.11) and (4.14) into Eq. (4.7) gives
i (Gge"Z + 0 e 4 inf +inge® + i,uh*ec*z> et
+a (fxx + 8xxe” + h;"xe"*z> et
+iB <fxxx + g€’ + h;xxec*z) eH
F(SP) |f+ge% + e
+F(FP) [(FPn+1fPe) e+ (£ +1rPh) e

+Vopo (f—hg’e‘yz —I—h*ec*z) et =0.

(4.15)

+o P

Grouping the terms and multiplying by e ~** yields

[—itf+ frt 1B feee+ @ (fP)f +Vir 7 f]
+ |iog— Hg+agu+iBgun+aF (I )g+ o (Fh+1f1"8) F(IfP) +Virrg] e
+ [io*h* — uh* +ah’, + iR+ aF (] f\z)h*] o'
+|(Pg+alfPrt) FUFP) 4+ Vi bt | €2 = 0
(4.16)
Here, the first bracket is identically zero as f is a solution (see Eq. (4.9)). For Eq.(4.16)
to hold true, the factors of the exponentials must be zero simultaneously. Hence, one

has on one hand

08— g+ agu+iBgunt aF (|f7)g+ 0 (fh+fPg) F(IfP) +Vir7g

(4.17)
=0
which can be rewritten as
agxx + i g + O‘F(‘ﬂz) + O‘F/(|f‘2)‘f’2 —H —l—Vyy] g8+ OCF'(!fIZ)fzh 4.18)
= —iog
and on the other hand
iG*h* — Wh* + ah’y + iBh, + oF (| f|*)h*
(4.19)
o (128" + PR ) FUFP) +Virrh' =0
which can be rewritten as
ahit Bt [aF (97)+ @b (SP)IF = Vo |0 4 aF (PP
= —io"h"
Taking the conjugate of Eq. (4.20) gives
ot iBhos + [aF (1F) + o (PSP -t Vs [0

+aF'(|f)(f*) g = ich.
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Multiplying Eq. (4.21) by —1 gives

~ he = Bl — [P (1) + aF () /P = 4 Vip 7]

(4.22)
2 * .
—aF'(|fI*)(f*) ¢ = —ich
Writing Eq. (4.18) and (4.22) in matrix form yields
ALy L, g | _ 8
[ i) e
where
Ly = adu+iBdyy, + aF (If*) + aF (|fP)f "~ 1+ Vs )
Ly=oF'([f)f*.
For the cubic nonlinearity,
F(x) = Ax+ Bx?
(4.25)
F'(x) =A+2Bx.
Using Eq. (4.25) in Eq. (4.24) yields
Ly =ady + iﬁaxxx + 2A|f|2 —U+Vapg
(4.26)
L, =Af%.
by taking B = 0. If the soliton is real, Eq. (4.26) becomes
Ly = aaxx + iﬁaxxx + 2Af2 —u +Voz
(4.27)

Ly =Af?.
Linear spectrum of numerically obtained solitons are found for the various values of 3
in order to examine the impact of the third order dispersion term to linear stability of
solitons of Eq.(1.2).
It can be seen from the figures Fig. (4.5) - Fig. (4.7) that, the existence of  has a
positive effect on linear stability of the solitons for the given potential depths since the
first eigenvalue with a nonzero real part appears to be larger or even zero for nonzero

30D cases(both negative and positive 30D).
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Figure 4.5 : Linear spectrum of CNLS equation for u =1, V, =2.0 and W; = 0.4
with B = —0.1,  =0and 8 =0.1
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Figure 4.6 : Linear spectrum of CNLS equation fory =1,V, =1.2and W; = 1.4
with f =—0.1,=0and 8 =0.1
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Figure 4.7 : Linear spectrum of CNLS equation foru =1, V, = 1.8 and W = 1.8
with f =—0.1,=0and B =0.1
On the other hand, for the specific potential depths V, = 0.5 and W = 0.2 the soliton is

not linearly stable for either B = —0.1 or = 0.1 but soliton is linearly stable without
30D.
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Figure 4.8 : Linear spectrum of CNLS equation for u =1, V, = 0.5 and W = 0.2
with B = —0.1,=0and 8 =0.1
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S. CONCLUSION

In this thesis, we have explored NLS equation with an external .7 -symmetric
potential and third order dispersion term. First, we have employed the well-know
Spectral Renormalization method to the model equation and obtained numerical
solutions. We have also found exact solutions of this equation by introducing an
ansatz and specifying the structure of the &2.7-symmetric potential. In this thesis,
the &7 -symmetric potential is considered as an extension of Scarf II potential.

In order to prove that the analytical and the numerical solutions overlap we have
depicted a figure comparing both aforementioned solitons. By the use of the Spectral
Renormalization method, the numerical existence region for this model equation is
plotted for varying potential depths V2, W1 and for various values of 30D. It is
observed that additional 30D term either for negative or positive coefficient f does
not have an effect on the existence region.

We have also investigated the linear and nonlinear stability properties of the obtained
solitons and by using the Split-Step Fourier method. It is found that the positive 30D
coefficient enlarges the nonlinear stability region. For varying potential depths the
nonlinear stability and/or instability of some specific solitons are shown and discussed
with some figures.

In the last part of this thesis, the linear stability properties of the obtained solitons are
also discussed. We studied the linear stability by analysing the linear spectrum. The
results are illustrated by some figures. It is concluded that for certain region of potential
depths adding a 30D term to the system improves the linear stability of the obtained
solitons. For future studies, considering the forth order dispersion (40OD) in addition to
the third order dispersion (30D) would be a more realistic model for data transmission
in nonlinear optical models. One can also take Ramman effect into account for a more

extended variant of NLS equation with this rich complex potentials.
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APPENDIX A.1
Fourier Transform

For a continuous, smooth and absolutely integrable function f(x), the integral
transform

F(ke) = \/% /_ O; Fx)e*¥ gy (A.1)

is called the Fourier transform of f (x) and conversely, the transform

1 0 .
Fllk) = - /_mﬂx)e—l(kx”dx (A2)

is called the inverse Fourier transform of F(ky).

The Fourier transform of f is denoted by .% (f) = £ , the inverse Fourier transform of
f is denoted by .# ~!(f) and clearly .7 ! (f) = .7~ (Z (f)).

Integral transform methods are very useful for solving partial differential equations

because of their properties such as linearity, shifting, scaling, etc.
Suppose that f(x) tends to zero as x tends to infinity. Then,

T (f'(x)) = ikeF (f(x)) (A.3)

This result can be extended to obtain the differentiation property of the Fourier
transform:

Z(f"(x)) = (ike)"(f(x)) = (ike)"f,  neN (A.4)
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