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KÜBİK NONLİNEER SCHRÖDINGER DENKLEMİNİN
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Istanbul Technical University

Prof. Dr. Nalan ANTAR ..............................
Istanbul Technical University
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EXACT SOLITON SOLUTIONS OF CUBIC
NONLINEAR SCHRÖDINGER EQUATION

WITH THIRD ORDER DISPERSION

SUMMARY

Positive sciences are related to each other in several ways. It can be seen that the
relation between mathematics and the other scientific areas is mostly about differential
equations. In recent years, there has been considerable interest in nonlinear wave
problems. Nonlinear optical wave equations guide to understand nature in various
disciplines such as quantum mechanics, nonlinear optics and biology; moreover, these
equations are useful for improvement of innovative methods. Solitons are localized
nonlinear waves which are used for understanding of complex nonlinear systems.
The shape of wave is kept stable after collision. Solitons are related to several
scientific fields such as quantum mechanics, nonlinear optics, plasma physics etc.
Since soliton theory is an interdisciplinary topic, there has been noticeable studies
about optical solitons in the last decades. Nonlinear Schrödinger (NLS) equation is
used for modelling nonlinear propagations of optical pulses in one picosecond. In
recent years, there has been considerable interest in the solutions of NLS equation.
The analytical and numerical solutions of the cubic NLS equation were investigated
in literature. Third-order dispersion term has considerable effects on inter-continent
data transmission. Therefore, the investigations of these effects are significant
for improvement of data transmission. External potentials affect stabilities and
shapes of optical pulses. The potentials (lattices) which have parity-time symmetry
(PT -symmetry) are used in quantum mechanics and nonlinear optics problems
frequently. In literature, there are various investigations about stability of NLS
equations with PT -symmetry. In this study, soliton solutions and stabilities of a
NŞS equation which has cubic nonlinearity and third order dispersion is investigated
in external potential with PT -symmetry. The model is given below:

iuz +auxx + iβuxxx +α|u|2u+VPT u = 0. (1)

Here, u refers to a differentiable complex-valued, slowly varying amplitude, uxx refers
to diffraction, z is a scaled propagation distance, β refers to coefficient of third order
dispersion term and VPT refers to external potential. In this study, external potential
with PT -symmetry is identified as:

VPT =V (x)+ iW (x)

= [V0 +V1sech(x)+V2sech2(x)+V3sech3(x)]

+i[W2sech2(x) tanh(x)+W1sech(x) tanh(x)+W0 tanh(x)]

(2)

Here, V (x) corresponds to the real part which is an even function, W (x) corresponds
to the imaginary part which is a odd function.

xvii



In Chapter 1, definition of soliton and its relation to the other disciplines are briefly
discussed. NLS equation is introduced and some developments about NLS equation
are expressed. The importance of higher order dispersion terms in NLS equation
is explained. NLS equation with PT -symmetry and third order dispersion term
is introduced. Purpose of this thesis, literature review and hypothesis are stated
respectively.
In Chapter 2, Spectral Renormalization Method which is the numerical method for
solving NLS equation with third order dispersion and PT -symmetric potential is
explained. Spectral Renormalization Method is essentially a Fourier iteration method.
In this chapter, this method is modified to our problem. Numerical solutions are
obtained for NLS equations with PT -symmetric potential and third order dispersion
term.
In Chapter 3, exact solutions of NLS equation with PT -symmetric potential and third
order dispersion term are investigated. The structure of PT -symmetric potential
is defined. In order to produce analytical solutions, the solution ansatz u(x,z) =
f (x)ei(µz+g(x)) is suggested. f (x) and g(x) show two real-valued functions. The
structure of used PT -symmetric potential is substituted in the equation with this
solution ansatz and then the exact form of this potential is identified. It is verified
that the real part of the potential is an even function and the imaginary part is an odd
function. The exact solution and the numerical solution are plotted in order to compare
the numerically obtained solution to the exact solution. It is seen from the related
figure that SR method is an effective method for obtaining solutions for these type of
equations. Moreover, it is also proved that the exact and the numerical solutions are in
very good agreement.
In Chapter 4, stability analysis of NLS equation with PT -symmetric potential and
third order dispersion term is investigated. Firstly, Split-Step Fourier method has
been modified to our equation to analyse the nonlinear stability properties of obtained
solitons. Also, linear stability analysis is investigated by linear spectrum. Linear
spectrums are compared for various values of β .
In Chapter 5, obtained results are summarized. Furthermore, possible future studies
are briefly discussed.
In this thesis, MATLAB2018b computer programme is used and all of the results are
produced by the use of this programme.
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ÜÇÜNCÜ MERTEBEDEN DİSPERSİYON İÇEREN
KÜBİK NONLİNEER SCHRÖDINGER DENKLEMİNİN

SOLİTON TİPİ ÇÖZÜMLERİ

ÖZET

Pozitif bilimsel çeşitli yönlerle birbirleriyle ilişki içerisindedir. Matematiğin diğer
bilimlerle olan ilişkisi incelendiğinde en çok paydanın diferansiyel denklemlerde
olduğu görülmektedir. Son yıllarda nonlineer (doğrusal olmayan) dalga problemlerine
olan ilgi oldukça artmıştır ve bu konu hakkında çeşitli bilimsel araştırmalar
yürütülmektedir. Lineer olmayan dalga denklemleri kuantum, optik ve biyoloji gibi
konularda doğayı anlamaya ve bu alanlarda inovatif yöntemler geliştirmeye yardımcı
olur. Bu bilim dallarındaki doğrusal olmayan sistemlerin araştırılmasına öncelikli
olarak kısmi türevli diferansiyel denklemin çözümünün elde edilmesiyle başlanır. Bu
denklemlerin çözümlerinin bir kısmı soliton olarak adlandırılan doğrusal olmayan
dalga tipindedir. Solitonlar quantum mekaniği, nonlineer optik, plazma fiziği gibi
pek çok alanda elde edilen alan denklemlerinin çözümlerinde ortaya çıkmaktadır.
Özellikle optik problemlerin çözümünde örneğin fiber optik kablolarda veri iletimi
probleminde NLS denklemi ile bu denklemin bazı varyantları ve bunların soliton
tipi çözümleri ortaya çıkmaktadır. NLS denklemi genellikle bir pikosaniyelik zaman
ölçeğinde optik atımların doğrusal olmayan yayılımlarını modellemekte yaygın olarak
kullanılmaktadır. NLS denklemi Erwin Schrödinger tarafından ortaya konmuştur ve
standart formunda aşağıdaki gibi tanımlanmaktadır:

iuz +uxx +α|u|2u = 0. (3)

Literatürde, NLS denkleminin analitik ve sayısal çözümleri araştırılmıştır; ancak
bu araştırmalar genellikle (3) denklemindeki gibi ikinci mertebeden dispersiyon
terimi içermektedir. Daha yüksek mertebeden (üçüncü ve dördüncü mertebe
dispersiyon) terimlerinin probleme katkısını inceleyen çalışmalar daha kısıtlı sayıdadır.
Literatürdeki bazı çalışmalarda üçüncü mertebeden dispersiyon teriminin, kıtalar
arası veri iletimine etkilerinden bahsedilmiştir. Dolayısıyla yüksek mertebeden
dispersiyon terimlerinin etkisini araştırmak, nonlineer optikte veri iletimi problemleri
için oldukça önemlidir. Dış potansiyeller, optik atımların kararlılığına ve biçimlerine
etki eden diğer bir faktördür. Parite-zaman (PT ) simetrisine sahip potansiyeller
(kafes/latis), kuantum mekaniği ve nonlineer optik problemlerinde yaygın olarak
kullanılmaktadır. Literatürde PT -simetrisine sahip dıp potansiyeller içeren çeşitli
tipte NLS denklemlerinin çözümleri ve çözümlerinin kararlılığıyla ilgili çok sayıda
çalışma bulunmaktadır.
Bu çalışmada, kübik nonlineerite ve üçüncü mertebeden dispersiyon içeren doğrusal
olmayan Schrödinger denkleminin bir PT -simetrisine sahip dış potansiyel altında
soliton tipi çözümleri ve çözümlerin kararlılığı incelenmiştir. Bu model aşağıda
verilmiştir:

iuz +auxx + iβuxxx +α|u|2u+VPT u = 0. (4)
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Yukarıdaki denklemde u kompleks değerli elektrik alanın yavaş değişen genliğini, uxx
kırınım terimini, β üçüncü mertebeden dispersiyonu modelleyen terimin katsayısını,
z yayılım mesafesini, VPT ise dış potansiyeli temsil etmektedir. Bu çalışmadaki
PT -simetrisine sahip dış potansiyel aşağıdaki gibi belirlenmiştir:

VPT =V (x)+ iW (x)

= [V0 +V1sech(x)+V2sech2(x)+V3sech3(x)]

+i[W2sech2(x) tanh(x)+W1sech(x) tanh(x)+W0 tanh(x)].

(5)

Yukarıdaki denklemde V (x) çift fonksiyon özelliği gösteren reel kısmı, W (x) ise tek
fonksiyon özelliği gösteren sanal kısmı temsil etmektedir.

Bölüm 1’de, solitonların tanımından ve diğer bilim dalları ile ilişkisinden
bahsedilmiştir. NLS denklemi tanıtılmış ve tarihsel gelişimine değinilmiştir. Yüksek
mertebeden dispersiyon teriminin NLS denklemindeki önemine değinilmiştir. Bu
çalışmada kullanılan PT -simetrisine sahip bir dış potansiyel ve üçüncü mertebeden
dispersiyon terimi içeren NLS denklemi tanıtılmıştır. Bu bölümde sırasıyla tezin
amacı, literatür araştırması ve tezin hipotezine değinilmiştir.
Bölüm 2’de, tezdeki problemi modelleyen denklemin sayısal çözümünde kullanılan
Spektral Renormalizasyon metodu anlatılmıştır. Temelde bir Fourier iterasyon
yöntemi olan ve daha sonra Ablowitz ve Musslimani tarafından geliştirilen Spektral
Renormalizasyon metodu açıklanarak model denkleme uygulanmıştır. Spektral
Renormalizasyon yöntemi ile çözüm elde etmek için aşağıdaki Gaussian başlangıç
koşulu kullanılmıştır :

w0 = e−x2
(6)

Burada 10−12 mertebesinde yakınsama elde edilmiştir. Spektral Renormalizasyon
yöntemi ile PT -simetrisine sahip bir dış potansiyel ve üçüncü mertebeden
dispersiyon terimi içeren NLS denklemi için soliton tipi sayısal çözüm elde edilmiştir.
Bölüm 3’te, PT -simetrisine sahip bir dış potansiyel ve üçüncü mertebeden disper-
siyon terimi içeren NLS denkleminin analitik çözümü araştırılmıştır. PT -simetrik
potansiyelin yapısı bu bölümde ayrıntılı olarak türetilmiştir. Bu potansiyelde dayalı
analitik çözüm üretebilmek için aşağıdaki çözüm önerisi uygulanmıştır:

u(x,z) = f (x)ei(µz+g(x)) (7)

Burada f (x) ve g(x) yapısı henüz belli olmayan reel değerli fonksiyonları ifade
etmektedir. Bu bölümde, yukarıdaki çözüm önerisi kullanılarak alan denkleminin
kesin çözümleri ve PT -simetrik potansiyelin yapısı elde edilmiştir. Kompleks
potansiyelin reel kısmı

V (x) =V0 +V1sech(x)+V2sech2(x)+V3sech3(x) (8)

olarak hesaplanmıştır. Bu fonksiyonun çift fonksiyon özelliği taşıdığı gösterilmiştir.
Kompleks potansiyelin sanal kısmı ise,

W (x) =W0 tanh(x)+W1sech(x) tanh(x)+W2sech2(x) tanh(x). (9)

olarak hesaplanmış olup bu fonksiyonun tek fonksiyon özelliği taşıdığı gösterilmiştir.
Bölüm 2’de elde edilen sayısal çözüm ile bu bölümde elde edilen analitik çözüm üst
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üste çizdirilerek çözümlerin üst üste düştüğü gözlenmiştir. Dolayısıyla hem Bölüm
2’de kullanılan SR yönteminin bu tip denklemlerin çözümüne uygunluğu gösterilmiş,
hem de bulunan kesin çözümün sayısal çözüm ile uyumlu olduğu ispatlanmıştır.
Bölüm 4’te, tezin model denklemi olan PT -simetrik bir potansiyel ve üçüncü
mertebe dispersiyon terimi içeren NSL denkleminin kararlılık (stabilite) analizi
incelenmiştir. Öncelikle elde edilmiş olan solitonların lineer olmayan (nonlineer)
stabilite özelliklerini incelemek için kullanılacak olan Ayrık-Adımlı Fourier metodu
anlatılmıştır. Daha sonra bu yöntem PT -simetrik bir potansiyel ve üçüncü mertebe
dispersiyon içeren model NLS denklemine ana hatları aşağıda gösterildiği biçimde
uyarlanmıştır. Öncelikle uz terimi çözülürse model denklem aşağıdaki formda ifade
edilebilir:

uz = iauxx− (βuxxx)+ iα|u|2u+ iVPT u (10)

Buarada aşağıdaki operatörler tanımlanmıştır:

M = i(a∂xx + iβ∂xxx)

N = i(α|u|2 +VPT )
(11)

Önce uz = Mu kısmı Fourier dönüşümü kullanılarak çözülmüş daha sonra uz = Nu
parçası çözülmüş ve model NLS denkleminin çözümü Ayrık-Adımlı Fourier yöntemi
kullanılarak elde edilmiştir. Kısaca özetlenen bu yöntem kullanılarak elde edilmiş olan
soliton tipi çözümlerin çeşitli potansiyel derinliklerinde kararlılık analizleri araştırılmış
ve üçüncü mertebeden dispersiyon teriminin katsayısı olan β ’nın değişen değerleri
için stabil ve stabil olmayan bölgeler belirlenmiştir. Daha sonra lineer spektrum
kullanılarak elde edilen solitonların lineer stabilite özellikleri de incelenmiş ve β

katsayısının farklı değerleri için lineer spektrumlar karşılaştırılmıştır.
Bölüm 5’te, önceki bölümlerde elde edilen çözümler ve bu çözümlerin stabilite
özellikleri özetlenmiş ve ileride yapılabilecek çalışmalar tartışılmıştır. β katsayısının
farklı değerleri için incelenen nonlineer stabilite analizi yapılmış ve lineer spektrumlar
MATLAB bilgisayar programı ile çizilen grafikler ile yorumlanmıştır.
Bu tezde MATLABR2018b bilgisayar programı kullanılmış ve bütün çözümler bu
program ile elde edilmiştir.
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1. INTRODUCTION

Solitary waves (commonly referred to as solitons) have been the subject of intense

theoretical and experimental studies in many different fields; especially, quantum

mechanics, nonlinear optics and biology [1]. Mathematically, a soliton is a solitary

wave that asymptotically preserves its shape and velocity upon nonlinear interaction

with other solitary waves [2]. In optics, a soliton refers as any optical field

which does not change its shape during propagation due to the balance between

linear and nonlinear effects in the medium [3]. Solitons can be used for speeding

up the complicated experiments since they give the advantages for understanding

sophisticated problems. In the context of nonlinear optics, solitons are classified as

being either temporal or spatial depending on whether the confinement of light occurs

in time or space during wave propagation. Temporal solitons represent optical pulses

that maintain their shape, whereas spatial solitons represent self-guided beams that

remain confined in the transfers directions orthogonal to the direction of propagation.

In both cases, the pulse or the beam propagates through a medium without change

in its shape is said to be self-localized [3]. Nonlinear Schrödinger Equation is an

important nonlinear evolution equations which is used in brought areas in physics

and applied mathematics. Nonlinear Schrödinger equation (NLS) is established by

Erwin Schrödinger; moreover, it basically arises nonlinear systems [4]. Its pulses is 1

picosecond time-scale and it is usually determined as

iuz +uxx +α|u|2u = 0. (1.1)

where u refers to the differentiable complex-valued, gradually altering amplitude of

the electric field; uxx refers to diffraction; z is a scaled propagation distance; the

coefficients α represents the sign of cubic nonlinearity of the medium. This NLS

equation is referred to as being (1+1)-dimensional and constitutes the simplest form of

the NLS equation. The bright and dark spatial solitons correspond to the choice of α

as +1 and −1 respectively. In this thesis, we only consider the bright soliton type of

solution.
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It is known that NLS equation does not give correct prediction for pulse widths

smaller than 1 picosecond. For example, in solid state lasers, where pulses are

short as 10 femtoseconds are generated, the approximation breaks down. Therefore,

one need to consider the third order dispersion for performance enhancement along

trans-continental distances.

In this thesis, we investigate the cubic nonlinear Schrödinger equation with a

PT -symmetric optical potential and third order dispersion which is given below:

iuz +auxx + iβuxxx +α|u|2u+VPT u = 0. (1.2)

Here, β is a third-order diffraction coupling constant taken as either negative or

positive constant value and VPT is a PT -symmetric external potential which the exact

structure is defined in Chapter 3.

We will consider PT -symmetric potential as

VPT =V (x)+ iW (x) (1.3)

The purpose of this thesis is to explore the exact and the numerical solutions of the

equation (1.2) and discover the effect of the third order dispersion term iβuxxx on the

soliton solutions and their stabilities.

In order to solve Eq.(1.2) Spectral Renormalization method is applied. Spectral

Renormalization method is essentially a Fourier iteration method and it was

introduced by Petviashvili in 1975 [5]. It was first use to find localized solutions

in the two-dimensional Korteweg-deVries equation (usually referred to as the

Kadomtsev-Petviashvili equation or in short KP equation) [6]. Then, this method is

strengthened by Ablowitz and his co-worker Musslimani in early 2000’s [7]. The idea

behind the method is to transform the underlying equation governing the soliton such

as a NLS type equation into Fourier space and determine a nonlocal integral equation

coupled to an algebraic equation. The coupling prevents the numerical scheme from

diverging.

1.1 Purpose of Thesis

In this thesis, we investigate the effect of the external potential and third order

dispersion term on the soliton solutions of the cubic nonlinear Schrödinger equation

2



with PT -symmetric potential and third order dispersion term. We aim to find an

exact soliton type solution to this model equation and explore linear and nonlinear

stability properties of the obtained solitons.

1.2 Literature Review

Nonlinear wave problems arise in various mathematical and physical fields such

as nonlinear optics, plasma physics and quantum mechanics [8–10]. Solutions

and stabilities of NLS equations are largely discussed by scientists for many years

[2, 3, 11, 12]. Solitons appear as the solutions of common class of weakly nonlinear

dispersive ordinary differential equations describing physical systems [13]. The recent

study of Kartashov, Vysloukh and Torner is about lattice solitons that they adress

variety type of optical lattices and potential stabilization of these structures [14].

Stability analysis of optical solitons in a periodic PT -symmetric potential is explored

by Musslimani and co-workers [15]. Optical soliton solutions of NLS equations

with PT -symmetric optical lattices are investigated by various scientists [16–19].

The existence and stability of lattice solitons were reported in parity-time symmetric

mixed linear-nonlinear optical lattices. It is also revealed that the parameters of

the linear lattice periodic potential have considerable role in controlling regions

of stability domains [20]. Göksel et al. investigated the existence and stability

properties of solitons of the (1+1)D cubic-quintic NLS equations with PT -symmetric

external potential. They obtained the solutions by means of Spectral Renormalization

method for varying potential depths. Stability and instability regions of solitons

were investigated by linear spectrum analysis [21]. The numerical existence of

fundamental solitons in saturable media on crystal and certain type of quasicrystal

lattices were investigated and the nonlinear stability of the fundamental solitons were

studied by using numerical methods such as finite difference method and fourth-order

Runge-Kutta method. The effects of the potential depth and applied external electrical

field on the gap width were also studied in [22]. The existence and stability of solitons

in PT -symmetric optical lattices with spatially periodic modulation of the local

strength of the nonlinear media were investigated. Additionally, the effects of spatial

modulation of the nonlinearity on stability of solitons in PT –symmetric optical

lattices were revealed [23]. The effects of additional higher order dispersive term in

3



cubic NLS equations were studied by Karlsson [24]. Third order dispersive term was

not included in their study. They only focused on effects of fourth order dispersive term

in the related work. Wazwaz and Kaur investigated exact analytical solutions for NLS

equations with normal dispersive regimes by using variational iteration method [25].

Soliton type solutions of cubic NLS equations are produced [26, 27]. The exact

solutions of the nonlinear Schrödinger equation with cubic and quintic space were

explored by using canonical transformations in the presence of time-dependent and

inhomogeneous external potentials. The importance of PT -symmetry was searched

to guarantee the conservation of the average energy of the system [28]. Stability

properties and bad-gap structures of higher order NLS equations with periodic lattice

were investigated in [29]. The recent studies are mostly about soliton dynamics of

higher order multi-dimensional NLS equations [30]. Yan and Chen investigated the

stability of bright solitons in the generalized NLS equations with several types of

PT -symmetric potentials and they showed that their stability is verified by the linear

stability spectrum. They also explored the interactions of two solitons [31].

It is known that Hamiltons which are defined in quantum mechanics must be

Hamiltonian for real spectrum. Recently, Bender and his co-workers showed that

Hermitian property is not an obligation for real spectrum in the PT -symmetry

[32, 33].
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1.3 Hypothesis

Existence and stability properties of the solutions of cubic NLS equation with a

PT -symmetric potential are highly related to an additional third order dispersion

term. The existence of a positive third order dispersion (3OD) term has a positive

effect on the nonlinear stability of the solitons of Eq.(1.2). Additionally, the existence

of 3OD affects the linear stability of the obtained solitons. Eq.(1.2) becomes more

stable with 3OD term; moreover, the existence and stability of the solitons affected by

the potential depths of the PT -symmetric potential defined in the thesis.
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2. NUMERICAL METHODS

Well-known Spectral Renormalization method will be modified to find numerical

solution of Eq.(1.2).

2.1 Spectral Renormalization Method

There are variety of numerical methods in order to obtain soliton type solutions.

Spectral Renormalization method is one of these techniques which is essentially

Fourier iteration proposed by Petviashvili, in order to find localized solutions

in the two-dimensional Korteweg-deVries (KP) equation. Later, Ablowitz and

Musslimani extended this method [2] with usage of nonlinear wave guides to compute

self-localized states. This method can be used to computed self-localized states

of nonlinear wave guides that is flexible and can be applied to many nonlinear

systems involve nonlinearities with different homogeneities such as cubic-quintic or

as saturable nonlinearity.

This method can be applied to the cubis NLS equation with a PT symmetric potential

and 3OD as follows:

iuz +auxx + iβuxxx +α|u|2u+VPT u = 0. (2.1)

Using the ansatz u(x,z) = f (x)eiµz where f (x) is a complex-valued function and µ is

the eigenvalue, we have following set of equations,

uz = iµ f eiµz

ux = fxeiµz

uxx = fxxeiµz

uxxx = fxxxeiµz

|u|2 = | f |2

(2.2)
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Substituting the equations Eq. (2.2) into Eq. (2.1), the following nonlinear equation for

f is obtained

−µ f eiµz +a fxxeiµz + iβ fxxxeiµz +α| f |2 f eiµz +VPT f eiµz = 0. (2.3)

After cancelling the exponential term we have

−µ f +a fxx + iβ fxxx +α| f |2 f +VPT f = 0. (2.4)

After applying Fourier transformation to Eq. (2.4) we get

F{−µ f}+F{a fxx}+F{iβ fxxx}+F{α| f |2 f}+F{VPT f}= F{0}. (2.5)

where F indicates Fourier transformation. Due to the properties of this transformation,

we get Eq. (2.6)

−µ f̂ −a(kx)
2 f̂ −βkx

3 f̂ +αF{| f |2 f}+F{(V + iW ) f}= 0 (2.6)

where F ( f ) = f̂ and kx are Fourier variables. Solving Eq. (2.6) for f̂ yields

f̂ =
αF{| f |2 f}+F{(V + iW ) f}

[µ +akx
2 +βkx

3]
(2.7)

Since the scheme diverges, the equation (2.7) cannot be applied to find f (x) . New

field variable f (x) = λw(x) with λ ∈ R+ where λ is a parameter can be determined.

After the arrangement of the equation (2.7) with the new field variable f (x), we get

λ ŵ =
αF{|w|2|λ |2wλ}+F{(V + iW )λw}

µ +akx
2 +βkx

3 (2.8)

simplifying this equation, we have

ŵ =
αF{|w|2|λ |2w}+F{(V + iW )w}

µ +akx
2 +βkx

3 (2.9)

Eq. (2.9) can be applied in an iterative method to investigate w; morever, the following

iteration approach can be utilized for investigation of ŵ :

ŵn+1 =
α|λ |2F{|wn|2wn}+F{(V + iW )wn}

µ +akx
2 +βkx

3 , n ∈ N (2.10)

with the initial condition taken as a Gaussian type function

w0 = e−x2
(2.11)
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where |wn+1−wn| < 10−12 is the convergence criterion. After the multiplication of

both sides of Eq. (2.9) by (µ +akx
2 +βkx

3) and we get

(µ +akx
2 +βkx

3)ŵ = |λ |2αF{|w|2w}+F{(V + iW )w}. (2.12)

If we take all terms of Eq. (2.12) to the left side, we get the following equation

(µ +akx
2 +βkx

3)ŵ−|λ |2αF{|w|2w}−F{(V + iW )w}= 0. (2.13)

After the multiplication of Eq. (2.13) by the conjugate of ŵ, i.e. by ŵ∗ yields

(µ +akx
2 +βkx

3)|w|2−|λ |2αF{|w|2w}ŵ∗−F{(V + iW )w}ŵ∗ = 0. (2.14)

Integrating Eq. (2.14) leads to

−
∫

∞

−∞

(µ +akx
2 +βkx

3)|w|2dk+ |λ |2
∫

∞

−∞

αF{|w|2w}ŵ∗dk

+
∫

∞

−∞

F{(V + iW )w}ŵ∗dk = 0 (2.15)

or in a more compact form

−
∫

∞

−∞

[
−F{(V + iW )w}ŵ∗+(µ +akx

2 +βkx
3)|w|2

]
dk

+|λ |2
∫

∞

−∞

αF{|w|2w}ŵ∗dk = 0.
(2.16)

Eq. (2.16) is a second order polynomial of λ in the form P(λ ) = aλ 2 + b then λ can

be calculated exactly by the usage of the following formula:

λ1;2 =±

√
−b±

√
b2−4ac

2a
(2.17)

where

a = α

∫
∞

−∞

F{|w|2w}ŵ∗dk (2.18)

b =−
∫

∞

−∞

[−F{(V + iW )w}ŵ∗+(µ +akx
2 +βkx

3)|w|2]dk. (2.19)

For the convergence of the iteration, the appropriate soliton is f (x) = λ (wx) =

λF−1(ŵ).
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3. EXACT SOLUTIONS OF CNLS EQUATION WITH THIRD ORDER
DISPERSION AND A PT -SYMMETRIC POTENTIAL

In this chapter, we will find the exact soliton type solution of the following cubic NLS

equation with a PT -symmetric external potential and 3OD gives as follows :

iuz +auxx + iβuxxx +α|u|2u+VPT u = 0. (3.1)

For u = 0 we find the trivial solution of Eq. (3.1). In order to find non-zero solutions,

consider u 6= 0. Dividing Eq. (3.1) by u and by the use of Eq. (1.3) gives

i
uz

u
+

auxx

u
+ iβ

uxxx

u
+α|u|2 +V + iW = 0. (3.2)

In order to find non-zero stationary solitons, the following ansatz is used:

u(x,z) = f (x)ei(µz+g(x)) (3.3)

where u is a function of x, z and to be determined, f (x) and g(x) are real-valued

functions which are different than zero, and µ is the propagation constant. Derivatives

of Eq. (3.3) with respect to z and x give the following:

uz = f (x)iµei(µz+g(x)) = iµu

ux = f ′(x)ei(µz+g(x))+ ig′ f ei(µz+g(x))

uxx = [ f ′′(x)+2i f ′(x)g′(x)+ i f (x)g′′(x)− f (x)(g′(x))2]ei(µz+g(x))

=
u
f
[ f ′′(x)+2i f ′(x)g′(x)+ i f (x)g′′(x)− f (x)(g′(x))2]

uxxx =
u
f
[ f ′′′(x)+3i f ′′(x)g′(x)+3i f ′(x)g′′(x)

+ i f (x)g′′′(x)−3 f ′(x)(g′(x))2−3 f (x)g′(x)g′′(x)− i f (g′(x))3]

|u|2 = f (x)ei(µz+g(x)) f (x)e−i(µz+g(x)) = ( f (x))2

(3.4)

Substituting Eq. (3.4) into Eq. (3.2) yields

[−µ + a f ′′(x)
f (x) −a(g′(x)2)−3β

f ′′(x)g′(x)
f (x) −3β

f ′(x)g′′(x)
f (x) −βg′′′(x)+β (g′(x))3

+α| f |2 +V (x)]+ i[2a f ′(x)g′(x)
f (x) +ag′′(x)+β

f ′′′(x)
f (x)

−3β
f ′(x)g′(x)2

f (x) −3βg′(x)g′′(x)+W (x)] = 0

(3.5)
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The following ansatzs are used for investigation of soliton solutions:

f (x) = f0sechp(x)
g′(x) = g0sechq(x) (3.6)

where f0 and g0 are non-zero real constants and p ∈ N. For the simplification of

Eq. (3.5), calculating derivatives of f and g is an obligation. By using Eq. (3.6) we get

f ′(x) =− f p tanh(x)

f ′′(x) = f [p2− (p2 + p)sech2(x)]

f ′′′(x) = f ptanh(x)[(p2 +3p+2)sech2(x)− p2)]

g′(x) = g0sechq(x)

g′′(x) =−g0qsechq(x) tanh(x)

g′′′(x) = g0qsechq(x)[q− (q+1)sech2(x)]

(3.7)

Substituting Eq. (3.7) into Eq. (3.5) we get

−µ +ap2−a(p2 + p)sech2(x)−ag0
2 sech2q(x)

−3β [p2− (p2 + p)sech2(x)]g0 sechq(x)

−3β pq tanh(x)g0 sechq(x) tanh(x)−βg0qsechq(x)[q− (q+1)sech2(x)]

+βg0
3 sech3q(x)+α f0

2 sech2p(x)+V (x)

+i[3βg0
2(p+q)sech2q(x) tanh(x)−ag0(2p+q)sechq(x) tanh(x)

+β p(p2 +3p+2)sech2 tanh(x)−β p3 tanh(x)+W (x)] = 0.

(3.8)

In order to get real and imaginary parts of the PT -symmetric potential, we split

Eq. (3.8) as:

Real Part

The real part of the Eq. (3.8) can be expressed as,

−µ +ap2−a(p2 + p)sech2(x)−ag0
2 sech2q(x)

−3βg0 p2 sechq(x)+3βg0(p2 + p)sechq+2(x)−3βg0 pqsechq(x)

+3βg0 pqsechq+2(x)−βg0q2 sechq(x)+βg0q(q+1)sechq+2(x)

+βg0
3 sech3q(x)+α f0

2 sech2p(x)+V (X) = 0.

(3.9)
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The real part of the PT -symmetric potential is found as

V (x) =V0 +V1sech2(x)+V2sechq(x)+V3sech2q(x)

+V4sechq+2(x)+V5sech3q(x)+V6sech2p(x)

(3.10)

where

V0 = µ−ap2

V1 = a(p2 + p)

V2 = βg0[(3p2 +3pq+q2)]

V3 = ag0
2

V4 =−βg0[3(p2 + p)+3pq+q(q+1)]

V5 =−βg0
3

V6 =−α f0
2

(3.11)

we can see in the following form that V (x) is an even function

V (−x) =V0 +V1sech2(−x)+V2sechq(−x)+V3sech2q(−x)

+V4sechq+2(−x)+V5sech3q(−x)+V6sech2p(−x)

=V0 +V1sech2(x)+V2sechq(x)+V3sech2q(x)+V4sechq+2(x)

+V5sech3q(x)+V6sech2p(x)

=V (x).

(3.12)

V (x) can be expressed by the powers of sech(x). For p = q = 1 Eq. (3.10) can be

rewritten as:

V (x) = µ−a+2asech2(x)+7βg0 sech(x)+ag0
2 sech2(x)

−11βg0sech3(x)−βg0
3sech3(x)−α f0

2 sech2(x)
(3.13)

V (x) can be written as

V (x) = µ−a+7βg0 sech(x)(2a+ag0
2−α f0

2)sech2(x)

+(−11βg0−βg0
3)sech3(x)

(3.14)
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where

V0 = µ−a

V1 = 7βg0

V2 = 2a+ag0
2−α f0

2

V3 =−βg0(11+g0
2)

(3.15)

The real part of the PT -symmetric potential is obtained as,

V (x) = µ−a+7βg0sech(x)+(2a+ag0
2−α f0

2)sech2(x)

−βg0(11+g0
2)sech3(x).

(3.16)

Imaginary Part

The complex part of the Eq. (3.8) can be expressed as

3βg0
2(p+q)sech(x)2q tanh(x)−ag0(2p+q)sechq(x) tanh(x)

+β p(p2 +3p+2)sech2(x) tanh(x)−β p3 tanh(x)+W (x) = 0

(3.17)

The imaginary part of the PT -symmetric potential is obtained as

W (x) =W0sech2q(x) tanh(x)+W1sechq(x) tanh(x)

+W2sech2(x) tanh(x)+W3 tanh(x)

(3.18)

where

W0 =−3pg0
2(p+q)

W1 = ag0(2p+q)

W2 =−β p(p2 +3p+2)

W3 = β p3

(3.19)

W(x) is an odd function; as a result of the following form:

W (−x) =W0sech2q(−x) tanh(−x)+W1sechq(−x) tanh(−x)

+W2sech2(−x) tanh(−x)+W3 tanh(−x)

=W0sech2q(x)(− tanh(x))+W1sechq(x)(− tanh(x))

+W2sech2q(x)+W3(− tanh(x)) =−W (x).

(3.20)
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For p = q = 1, then we can transform Eq. (3.18) as following form,

W (x) =−6βg0
2 sech2(x) tanh(x)+3ag0 sech(x) tanh(x)

−6β sech2(x) tanh(x)+β tanh(x)

(3.21)

where

W0 = β

W1 = 3ag0

W2 =−6β (g0
2 +1)

(3.22)

The equations (3.15), (3.22) puts a constrain on the potential depths: V2 < 2+W1
2/9

or α = 1 and a = 1 For the case of p = q = 1 the analytical solution of the problem

can begin with

u(x,z) = f0 sech(x)ei[µz+g0 arctanh(x)sinh(x)]. (3.23)

where f0 =
√

2+W1
2/9−V2 and g0 = W1/3 Hence, Eq. (1.2), with the real and the

imaginary parts can be given as

VPT = [V0 +V1sech(x)+V2sech2(x)+V3sech3(x)]

+i[W2sech2(x) tanh(x)+W1sech(x) tanh(x)+W0 tanh(x)].

(3.24)

Eq. (3.24) can be seen as extension of the Scarf II potential for a Kerr medium [34].

In Fig. 3.1, the soliton numerically obtained by the SR method which is explained in

Chapter 2 is plotted with dashed green solid line while analytically obtained soliton

which is explained above is plotted with red solid line. It is seen from the figure

that, two solitons overlap and obtained numerical solution satisfies Eq. (2.1) with an

absolute error 10−7. Therefore, it shows that SR method is suitable for solving this

equation and analytical solution is proved to be correct.

Figure 3.1 : Analytically and numerically obtained soliton for µ = 1, V2 = 1.4 and
W1 = 0.3 with β =−0.1
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In Fig. 3.2, all the obtained solitons are shown for the cubic NLS equation with

PT -symmetric potential and 3OD for varying potential depths V2−W1. In this figure

the contrait curve V2 = 2+W1
2/9 is depicted by dashed line.

Figure 3.2 : Existence region of cubic NLS equation with PT -symmetric potential
and 3OD for varying potential depths
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4. STABILITY ANALYSIS

4.1 Split-Step Fourier Method

Split-Step Fourier Method is one of various types of evolution methods. In his book,

Yang detailed the Split-Step Fourier Method for solving wave equations in [35]. The

method is based on splitting the evolution equation into several pieces. Although the

idea of this method has come up for a long time ago, the application in NLS type of

equation has been investigated for recent years.

4.2 Nonlinear Stability Analysis

In field of optics, nonlinearly stable means that a soliton conserves its shape, position

and the maximum amplitude during propagation. We used Split-Step Fourier method

to study the nonlinear stability properties of obtained solitons in Chapter 3. For this

purpose we employed the Split-Step Fourier Method that is explained in detail by

Göksel while investigating (2+1)D NLS in [36]. To study the nonlinear stability we

computed obtained solitons over a long distance. For this thesis z = 40 found to be

adequate to decide whether a soliton is nonlinearly stable or not.

Consider Eq. (1.2) which can be rewritten as

uz = iauxx− (βuxxx)+ iα|u|2u+ iVPT u (4.1)

and hence can be split as in Eq.(4.1) with the linear operator M = i(a∂xx + iβ∂xxx) and

the operator N = i(α|u|2 +VPT ).

The linear step uz = Mu is solved by means of Fourier transform. Taking the Fourier

transform of both sides of

uz = ia∂xx−β∂xxx (4.2)

gives

ûz = ia(ikx)
2û−β (ikx)

3û =−i(akx
2−βkx

3)û . (4.3)
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This is nothing but an ordinary differential equation (ODE) of û and its exact solution

is given by

û = Ĉ1e−i(akx
2−iβkx

3)z ⇒ u = F−1
(

Ĉ1e−i(akx
2−iβkx

3)z
)
. (4.4)

The step uz = Nu, i.e.

uz = i(α|u|2 +VPT )u (4.5)

has the exact solution

u =C2ei(α|u|2+VPT )z . (4.6)

Having found solutions to both parts, the Split-Step Fourier method can now be

employed for the Eq.(1.2) equation by using any splitting scheme.

In Fig.(4.1), the nonlinear evolution of solitons are represented for µ = 1, W1 = 0.3

and V2 = 1.4 with a PT -symmetric potential and for β = −0.1,β = 0 and β = 0.1

respectively. It can be seen that β does not have a major effect on the nonlinear stability

of the system of the solitons for the potential depths V2 = 1.4 and W1 = 0.3.

Figure 4.1 : Nonlinear stability of soliton for µ = 1, V2 = 1.4 and W1 = 0.3 with a
PT -symmetric potential and for β =−0.1,β = 0 and β = 0.1

respectively; (a) Numerically produced soliton (blue dashes) on top of
the soliton after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Fig.(4.2), the nonlinear evolution of solitons are shown for µ = 1, W1 = 1.8 and

V2 = 1.8 with a PT -symmetric potential and for β = −0.1, β = 0 and β = 0.1

respectively. The potential depth values V2, W1 are chosen from the instability region.

It can be seen this figure that for this specific potential depth values the maximum

amplitude of the soliton decreases during the evolution; moreover, the soliton for

β = 0.1 is deteriorated around = 40.
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Figure 4.2 : Nonlinear instability of soliton for µ = 1, V2 = 1.8 and W1 = 1.8 with a
PT -symmetric potential and for β =−0.1, β = 0 and β = 0.1

respectively; (a) Numerically produced soliton (blue dashes) on top of
the soliton after the evolution (red solid), (b) Nonlinear evolution of the

soliton, (c) The view from top and (d) Maximum amplitude as a function
of the propagation distance z.

In Fig. (4.3) the nonlinear evolution of solitons are represented for µ = 1, W1 = 0.2

and V2 = 0.5 with a PT -symmetric potential and for β = −0.1, β = 0 and β = 0.1

respectively. As is seen from the figure that for these specific values of the potential

depths while negative 3OD causes nonlinear instability of the soliton, both removing

the negative 3OD and adding a positive 3OD to the system stabilizes the soliton by

preventing the maximum amplitude from getting smaller during the evolution.

Figure 4.3 : Nonlinear instability/stability of soliton for µ = 1, V2 = 0.5 and
W1 = 0.2 with a PT -symmetric potential and for β =−0.1, β = 0 and
β = 0.1 respectively; (a) Numerically produced soliton (blue dashes) on
top of the soliton after the evolution (red solid), (b) Nonlinear evolution
of the soliton, (c) The view from top and (d) Maximum amplitude as a

function of the propagation distance z.

Fig. (4.4) (a) shows the numerical/analytical existence points of the Eq.(1.2) for

β = −0.1, β = 0 and β = 0.1. It is found that 3OD does not have an effect on
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the soliton existence region for the interval −0.1 ≤ β ≤ 0.1 We observed that the

nonlinear stability increases with existence of β . It can be easily concluded that as

β increases from −0.1 to 0.1 the nonlinear stability region is enlarged. As a result,

one can conclude that adding a positive 3OD term to the system helps to improve the

nonlinear stability of the soliton.

Figure 4.4 : (a) Existence points, stability and instability points for (b) β =−0.1 (c)
β = 0 (d) β = 0.1

4.3 Linear Stability

Linear stability will be investigated by acquiring and analyzing the linear spectrum of

the obtained solitons.

4.3.1 Linear Spectrum

Linear stability spectrum or short, linear spectrum are the eigenvalues of the linear

stability operator of a soliton. These eigenvalues give information about the linear

stability of a soliton. Consider the following equation having general type of

nonlinearities where F(·) ∈ R and F(0) = 0 :

iuz(x,z)+auxx(x,z)+ iβuxxx(x,z)+αF(|u(x,z)|2)u(x,z)

+VPT (x)u(x,z) = 0
(4.7)

Eq. (4.7) admits soliton solutions of the form u(x,z) = f (x) eiµz. Substituting

uz = iµ f eiµz

uxx = fxx eiµz

uxxx = fxxx eiµz

|u|2 = uu∗ = f eiµz f ∗e−iµz = f f ∗ = | f |2

(4.8)
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in Eq. (4.7) and multiplying by e−iµz gives

−µ f +a fxx + iβ fxxx +αF(| f |2) f +VPT f = 0. (4.9)

To analyze the linear stability, the soliton solution is perturbed as follows

u(x,z) =
[

f (x)+g(x)eσz +h∗(x)eσ∗z
]

eiµz (4.10)

where g and h are perturbation eigenfunctions and σ is the eigenvalue.

uz =
(

σgeσz +σ
∗h∗eσ∗z + iµ f + iµgeσz + iµh∗eσ∗z

)
eiµz

uxx =
(

fxx +gxxeσz +h∗xxeσ∗z
)

eiµz

uxxx =
(

fxxx +gxxxeσz +h∗xxxeσ∗z
)

eiµz

(4.11)

|u|2 = uu∗ =
(

f +geσz +h∗eσ∗z
)

eiµz
(

f ∗+g∗eσ∗z +heσz
)

e−iµz

= f f ∗+ f g∗eσ∗z + f heσz + f ∗geσz +gg∗e(σ+σ∗)z

+ghe2σz + f ∗h∗eσ∗z +g∗h∗e2σ∗z +hh∗e(σ+σ∗)z

' | f |2 +
(

g∗eσ∗z +heσz
)

f +
(

geσz +h∗eσ∗z
)

f ∗

(4.12)

Using linear Taylor expansion F(x+h) = F(x)+hF ′(x)+O(h2),

F(|u|2) = F
(
| f |2 +

[(
g∗eσ∗z +heσz

)
f +
(

geσz +h∗eσ∗z
)

f ∗
])

' F(| f |2)+
[(

g∗eσ∗z +heσz
)

f +
(

geσz +h∗eσ∗z
)

f ∗
]

F ′(| f |2) .
(4.13)

Hence,

F(|u|2)ue−iµz

= F(| f |2) f +
[(

g∗eσ∗z +heσz
)

f 2 +
(

geσz +h∗eσ∗z
)
| f |2
]

F ′(| f |2)

+F(| f |2)geσz +F(| f |2)h∗eσ∗z

+
[(

gg∗e(σ+σ∗)z +ghe2σz
)

f +
(

g2e2σz +gh∗e(σ+σ∗)z
)

f ∗
]

F ′(| f |2)

+
[(

g∗h∗e2σ∗z + |h|2e(σ+σ∗)z
)

f +
(

gh∗e(σ+σ∗)z +(h∗)2e2σ∗z
)

f ∗
]

F ′(| f |2)

' F(| f |2)
[

f +geσz +h∗eσ∗z
]

+F ′(| f |2)
[(

f 2h+ | f |2g
)

eσz +
(

f 2g∗+ | f |2h∗
)

eσ∗z
]

(4.14)
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Substituting Eq. (4.10), (4.11) and (4.14) into Eq. (4.7) gives

i
(

σgeσz +σ
∗h∗eσ∗z + iµ f + iµgeσz + iµh∗eσ∗z

)
eiµz

+a
(

fxx +gxxeσz +h∗xxeσ∗z
)

eiµz

+ iβ
(

fxxx +gxxxeσz +h∗xxxeσ∗z
)

eiµz

+α

F(| f |2)
[

f +geσz +h∗eσ∗z
]

+F ′(| f |2)
[(

f 2h+ | f |2g
)

eσz +
(

f 2g∗+ | f |2h∗
)

eσ∗z
]
eiµz

+VPT

(
f +geσz +h∗eσ∗z

)
eiµz = 0 .

(4.15)

Grouping the terms and multiplying by e−iµz yields[
−µ f + fxx + iβ fxxx +αF(| f |2) f +VPT f

]
+
[
iσg−µg+agxx + iβgxxx +αF(| f |2)g+α

(
f 2h+ | f |2g

)
F ′(| f |2)+VPT g

]
eσz

+
[
iσ∗h∗−µh∗+ah∗xx + iβh∗xxx +αF(| f |2)h∗

]
eσ∗z

+
[(

f 2g∗+α| f |2h∗
)

F ′(| f |2)+VPT h∗
]
eσ∗z = 0

(4.16)

Here, the first bracket is identically zero as f is a solution (see Eq. (4.9)). For Eq.(4.16)

to hold true, the factors of the exponentials must be zero simultaneously. Hence, one

has on one hand

iσg−µg+agxx + iβgxxx +αF(| f |2)g+α

(
f 2h+ | f |2g

)
F ′(| f |2)+VPT g

= 0
(4.17)

which can be rewritten as

agxx + iβgxxx +
[
αF(| f |2)+αF ′(| f |2)| f |2−µ +VPT

]
g+αF ′(| f |2) f 2h

=−iσg
(4.18)

and on the other hand

iσ∗h∗−µh∗+ah∗xx + iβh∗xxx +αF(| f |2)h∗

+α

(
f 2g∗+ | f |2h∗

)
F ′(| f |2)+VPT h∗ = 0

(4.19)

which can be rewritten as

ah∗xx + iβh∗xxx +
[
αF(| f |2)+αF ′(| f |2)| f |2−µ +VPT

]
h∗+αF ′(| f |2) f 2g∗

=−iσ∗h∗
(4.20)

Taking the conjugate of Eq. (4.20) gives

ahxx + iβhxxx +
[
αF(| f |2)+αF ′(| f |2)| f |2−µ +V ∗PT

]
h

+αF ′(| f |2)
(

f 2)∗g = iσh.
(4.21)
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Multiplying Eq. (4.21) by −1 gives

−ahxx− iβhxxx−
[
αF(| f |2)+αF ′(| f |2)| f |2−µ +V ∗PT

]
h

−αF ′(| f |2)
(

f 2)∗g =−iσh
(4.22)

Writing Eq. (4.18) and (4.22) in matrix form yields

i
[

L1 L2
−L2

∗ −L1
∗

][
g
h

]
= σ

[
g
h

]
(4.23)

where

L1 = a∂xx + iβ∂yy +αF(| f |2)+αF ′(| f |2)| f |2−µ +VPT

L2 = αF ′(| f |2) f 2 .
(4.24)

For the cubic nonlinearity,

F(x) = Ax+Bx2

F ′(x) = A+2Bx .
(4.25)

Using Eq. (4.25) in Eq. (4.24) yields

L1 = a∂xx + iβ∂xxx +2A| f |2−µ +VPT

L2 = A f 2 .
(4.26)

by taking B = 0. If the soliton is real, Eq. (4.26) becomes

L1 = a∂xx + iβ∂xxx +2A f 2−µ +VPT

L2 = A f 2 .
(4.27)

Linear spectrum of numerically obtained solitons are found for the various values of β

in order to examine the impact of the third order dispersion term to linear stability of

solitons of Eq.(1.2).

It can be seen from the figures Fig. (4.5) - Fig. (4.7) that, the existence of β has a

positive effect on linear stability of the solitons for the given potential depths since the

first eigenvalue with a nonzero real part appears to be larger or even zero for nonzero

3OD cases(both negative and positive 3OD).
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Figure 4.5 : Linear spectrum of CNLS equation for µ = 1, V2 = 2.0 and W1 = 0.4
with β =−0.1, β = 0 and β = 0.1

Figure 4.6 : Linear spectrum of CNLS equation for µ = 1, V2 = 1.2 and W1 = 1.4
with β =−0.1, β = 0 and β = 0.1

Figure 4.7 : Linear spectrum of CNLS equation for µ = 1, V2 = 1.8 and W1 = 1.8
with β =−0.1, β = 0 and β = 0.1

On the other hand, for the specific potential depths V2 = 0.5 and W1 = 0.2 the soliton is

not linearly stable for either β =−0.1 or β = 0.1 but soliton is linearly stable without

3OD.

Figure 4.8 : Linear spectrum of CNLS equation for µ = 1, V2 = 0.5 and W1 = 0.2
with β =−0.1, β = 0 and β = 0.1
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5. CONCLUSION

In this thesis, we have explored NLS equation with an external PT -symmetric

potential and third order dispersion term. First, we have employed the well-know

Spectral Renormalization method to the model equation and obtained numerical

solutions. We have also found exact solutions of this equation by introducing an

ansatz and specifying the structure of the PT -symmetric potential. In this thesis,

the PT -symmetric potential is considered as an extension of Scarf II potential.

In order to prove that the analytical and the numerical solutions overlap we have

depicted a figure comparing both aforementioned solitons. By the use of the Spectral

Renormalization method, the numerical existence region for this model equation is

plotted for varying potential depths V2, W1 and for various values of 3OD. It is

observed that additional 3OD term either for negative or positive coefficient β does

not have an effect on the existence region.

We have also investigated the linear and nonlinear stability properties of the obtained

solitons and by using the Split-Step Fourier method. It is found that the positive 3OD

coefficient enlarges the nonlinear stability region. For varying potential depths the

nonlinear stability and/or instability of some specific solitons are shown and discussed

with some figures.

In the last part of this thesis, the linear stability properties of the obtained solitons are

also discussed. We studied the linear stability by analysing the linear spectrum. The

results are illustrated by some figures. It is concluded that for certain region of potential

depths adding a 3OD term to the system improves the linear stability of the obtained

solitons. For future studies, considering the forth order dispersion (4OD) in addition to

the third order dispersion (3OD) would be a more realistic model for data transmission

in nonlinear optical models. One can also take Ramman effect into account for a more

extended variant of NLS equation with this rich complex potentials.
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APPENDIX A.1

Fourier Transform

For a continuous, smooth and absolutely integrable function f (x), the integral
transform

F(kx) =
1√
2π

∫
∞

−∞

f (x)ei(kx)xdx (A.1)

is called the Fourier transform of f (x) and conversely, the transform

F(kx) =
1√
2π

∫
∞

−∞

f (x)e−i(kx)xdx (A.2)

is called the inverse Fourier transform of F(kx).

The Fourier transform of f is denoted by F ( f ) = f̂ , the inverse Fourier transform of
f̂ is denoted by F−1( f̂ ) and clearly F−1( f̂ ) = F−1(F ( f̂ )).
Integral transform methods are very useful for solving partial differential equations
because of their properties such as linearity, shifting, scaling, etc.
Suppose that f (x) tends to zero as x tends to infinity. Then,

F
(

f ′(x)
)
= ikxF ( f (x)) (A.3)

This result can be extended to obtain the differentiation property of the Fourier
transform:

F ( f n(x)) = (ikx)
n( f (x)) = (ikx)

n f̂ , n ∈ N (A.4)
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