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GENERIC SUBMERSIONS

SUMMARY

The theory of Riemannian submersion is an area in differential geometry that gives a
chance to compare the geometries of two manifolds with a smooth map between them.
In this sense, many kinds of Riemannian submersions are defined and studied. In this
thesis, we establish a generalization of the theory of submersion step by step.

In the first chapter, the purpose of the thesis, the literature of the theory of submersion
and the hypothesis of the thesis are given. Some studies in this area are given. The aim
of the study is mentioned.

In the second chapter, the fundamental definitions, equations and theorems on
Riemannian geometry are introduced. A brief information on Riemannian manifolds
is considered. The concept of distribution is discussed. We give some basic definitions
and theorems on distributions. Finally in this chapter, we give some essential
knowledge about almost product structure and classification of the manifolds with
respect to almost product structure, that is, almost product Riemannian manifolds and
locally product Riemannian manifolds.

In the third chapter, the complex manifolds are summarized. After giving the definition
of an almost complex structure, the classification of the almost complex manifolds with
respect to the almost complex structure are mentioned. Some classes of the almost
complex manifolds are introduced. Also, the inclusion relations between complex
manifolds are given.

In the fourth chapter, which is the main part of the thesis, Riemannian submersion
concept, which is defined by O’Neill, is mentioned. The notion of a fiber, which is a
crucial point in the theory of submersion, is introduced. To study and understand the
geometry of the fibers, O’Neill tensors A and T also their some properties are given.
Furthermore, some fundamental definitions, equations and theorems are introduced
about the theory of Riemannian submersion.

After giving the concepts about Riemannian submersion, first we study on
anti-invariant submersion and Lagrangian submersion, which is a particular case of an
anti-invariant submersion, by taking the total manifold as a locally product Riemannian
manifold. In this case, we prove that for a Lagrangian submersion the fibers are always
totally geodesic. Moreover, we define the first variational formula of an anti-invariant
submersion. By means of that form, we give a new approach to investigate whether the
fibers of the submersion are harmonic or not.

Next, we study on semi-invariant submersion by taking the total manifold as a locally
product Riemannian. In the present case, an example is given for semi-invariant
submersion. Also, we prove some decomposition lemmas. The integrability conditions
of the distributions for a semi-invariant submersion are investigated. Moreover, we
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investigate the geometry of the fibers of a semi-invariant submersion and we study the
totally geodesicness of the fibers. After, we consider the fibers totally umbilical and
obtain some results. The canonical structures are considered parallel and we get certain
results about relation between canonical structures and the geometry of the fibers.
Furthermore, we define the first variational formula of a semi-invariant submersion.
By the virtue of that formula, we give a new idea to investigate whether the fibers of
the submersion are harmonic or not.

Later, we define a new type of submersion, which is called pointwise semi-slant
submersion by considering the total manifold as a locally product Riemannian. We
give an example for a pointwise semi-slant submersion. Some decomposition theorems
are obtained. Integrability of the distributions are investigated that mentioned in the
definition of the pointwise semi-slant submersion. The geometry of the fibers are
examined and some results are obtained. The canonical structures and the fibers
of the pointwise semi-slant submersion are considered parallel and totally umbilical,
respectively, and some consequences are found. Moreover, the first variational formula
of a pointwise semi-slant submersion is defined and it is given that a new view to
understanding in which conditions the fibers are harmonic.

Finally, the generic submersion (in the sense of Ronsse) is defined, which is the
generalization of the all kind of submersions. We study generic submersion by taking
the total manifold Kaehler and give some examples for a generic submersion. Also,
we give some decomposition theorems and some equations, which have same meaning
with Gauss and Weingarten equations in the theory of submanifold, to use in the proofs.
The integrability and the totally geodesicness of the distributions, which are mentioned
in the definition of the generic submersion, are investigated. By taking the fibers as
totally umbilical, we give some results and get a corollary for the minimality of the
fibers. We think the canonical structures parallel and obtain some outstanding results.

In future, it is estimated that the curvature relations between total manifold, base
manifold and fibers of a generic submersion can be investigated. Also, for the total
manifold of a generic submersion, the following problem can be studied: “in which
conditions the total manifold can be Einstein space?”. On the other hand, it is known
that all these theory of submersion have a relation with Physics. Especially, the
following question can be answered: “What is the relation of a generic submersion with
Physics?”. Finally, the theory of submersion has a relation with statistical machine
learning processes, which is popular area in the world. Generic submersion and
statistical machine learning process relation can be investigated.
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KAPSAMLI SUBMERSIYONLAR

OZET

Diferansiyel geometride submersiyon teorisi, iki manifoldun geometrisini, aralarinda
tanimlanan diizgiin bir doniisiim yardimiyla, karsilastirma sansi sunan bir alandir.
Bu baglamda literatiirde, cok sayida submersiyon ¢esidi tanimlandi ve caligildi.
Verilen bir submersiyon icin lifler kaynak manifoldun alt manifoldu oldugundan, alt
manifold teorisindeki yaklagimlarin bir cogundan faydalanarak submersiyon teorisinde
ilerlemeler kaydedilmistir. Biz ise, bu ¢alismada, alt manifold teorisinde var olan
yaklagimlar1 da kullanarak, submersiyon teorisi i¢in adim adim bir genelleme insa
ediyoruz.

Ik boliimde, alt manifold teorisi ve submersiyon teorisi arasindaki iliskiden
bahsedilmis olup, literatiirde submersiyon teorisi ile alakali kronolojik olarak elde
edilen gelismelere yer verilmistir. Kaynak manifoldun se¢imine bagl olarak (kontakt
manifold, hemen hemen kompleks manifold v.b.) tanimlanan submersiyon tiplerinden
bahsedilmis olup, caligsmalar refere edilmistir. Ayrica, bu tezin hipotezi ve amaci da
anlatilmistir.

Ikinci bolimde, Riemann geometrisindeki temel tamimlar, denklemler ve teoremler
tanitilmistir. Riemann manifoldlar1 hakkinda kisaca bilgiler verilmistir. Distribiisyon
kavrami hakkinda tezde kullanilacak bilgilere kisaca deginilmistir. Distribiisyonlar
hakkinda bazi temel tanim ve teoremlere yer verilmistir. Bu boliimde son olarak,
hemen hemen carpim yapisi tanitilmis olup, bu yapiya gore bazi (hemen hemen ¢carpim
Riemann manifoldlari, yerel ¢carpim Riemann manifoldlar1 v.b.) manifold siniflarinin
tanimlar1 verilmistir.

Uciincii boliimde, kompleks manifoldlar hakkinda temel bilgilere yer verilmistir.
Hemem hemen kompleks yapinin tanimi ve bu yapimnin Riemann metrigi ile olan
iligkisi verildikten sonra, bu yapiya gore manifoldlarin siniflandirilmasi iizerinde
durulmustur. Bazi kompleks manifold siniflarinin tanimlarindan bahsedilmis olup, bu
siniflar arasindaki kapsama bagintilarindan s6z edilmistir.

Tezin ana parcasini olusturan dordiincii boliimde, Riemann submersiyonu kavrami
tanitilmis olup, kaynak ve hedef manifoldlari arasindaki vektor alanlart iligkilerinden
bahsedilmigtir. Submersiyon teorisinde 6nemli yer tutan lif kavrami tamtilmigtir.
Liflerin boyutlari, tegetleri ve normalleri hakkinda bilgiler verilmistir. Liflerin
geometrisini incelememize yarayan ve temelini olusturan, 7 ve A O’Neill tensorleri ve
bu tensorlerin bazi temel 6zellikleri verilmistir. Ayrica, submersiyon teorisi ile alakali
bazi temel tanim, denklem ve teoremler verilmistir.

Riemann teorisi ile ilgili gereken temel bilgiler verildikten sonra, ilk olarak, kaynak
manifoldunu yerel ¢carpim Riemann manifoldu alarak, ters-de§ismez submersiyonlari
ve ters-degismez submersiyonlarin 6zel bir hali olan Lagrangian submersiyonlari
calistik. Bu durumda, Lagrangian submersiyonlar i¢in, lifleri inceledigimizde, daima

Xix



tamamen jeodezik oldugunu elde ettik. Ayrica, ters-de§ismez submersiyonlar i¢in
birinci varyasyonel formiiliinii tamimladik. Bu formiil yardimiyla, ters-degismez
submersiyonlarin liflerinin harmonik olup olmadiginin arastirilmas: konusunda gerek
yeter kosul verdik. Bu yaklagim ile literatiire farkli bir bakis acis1 sunmus olduk.

Daha sonra, yine kaynak manifoldunu yerel carpim Riemann manifoldu alarak,
yari-deismez submersiyonlar1 c¢alistitk.  Yari-degismez submersiyon i¢in Ornek
verildi. Kanonik yapilari ve hemen hemen ¢arpim yapisini kullanarak bazi ayrigim
yardimc1 Onermeleri kanitladik. Bu tip submersiyonlardaki distribiisyonlar icin
integrallenebilme kosullarini arastirdik ve bazi sonuclar elde ettik. Yari-degismez
submersiyonun liflerinin geometrisi hakkinda bilgi sahibi olmak icin, liflerin tamamen
jeodezik olma durumunu inceledik. Lifleri tamamen umbilik kabul ederek, bazi
sonuglar elde ettik. Kanonik yapilarin paralel olma taniminm verildi. Bu yapilarin
paralel olmalar1 durumunda, kanonik yapilarin birbirleri arasindaki iligkiler hakkinda
ve liflerin geometrisi hakkinda baz1 sonuglar elde ettik. Ayrica, yari-degismez
submersiyonlar i¢in de birinci varyasyonel formiiliinii tanimlayarak ve kullanarak
liflerin hangi kosullar altinda harmonik olduguna dair yeni yaklasim ve kosullar elde
ettik.

Dordiincii bolimiin devaminda, noktasal yari-e8ik adi ile yeni tip submersiyon
tamimladik. Bu submersiyon tipini kaynak manifoldunu yerel carpim Riemann
manifoldu alarak calistik. Tanimlanan bu submersiyon tipi i¢in 6rnege yer verdik.
Benzer sekilde hemen hemen carpim yapisint ve tanimdaki distribiisyonlar1 goz
Oniine alarak bazi ayrisim yardimci teoremleri elde ettik. Alt manifold teorisinde
kullanilan Gauss ve Weingarten denklemlerinin noktasal yari-egik submersiyonlar
icin karsiliklarimi elde ettik. Noktasal yari-egik submersiyon taniminda bahsedilen
distribiisyonlarin hangi kosullar altinda integrallenebilecegini arastirdik. Liflerin
geometrileri ile ilgilenerek, baz1 sonuglar elde ettik. Kanonik yapilarin paralleligi
tanimlanarak calisildi. Ayrica, liflerin tamamen umbilik olmasi kosulunda da bazi
sonuglar elde edilmistir. Bu sonuglara ilave olarak, noktasal yari-egik submersiyonlar
icin birinci varyasyonel formiilii tanimlandi. Bu tanim yardimiyla, liflerin hangi
kosullar altinda harmonik oldugunu arastirmak adina bir yaklagim sunmusg olduk.

Ve son olarak, ele alinan hemen hemen kompleks yapiya gore tiim submersiyon
tiplerinin bir genellestirmesi olan kapsamli submersiyonu (Ronsse anlaminda)
tanimladik. Bu submersiyon tipi icin kaynak manifoldu Kaehler manifold aldik.
Oncelikle, bu tip submersiyonlar icin ornekler verdik. Alt manifold teorisinde
kullanilan Gauss ve Weingarten denklemlerinin kapsamli submersiyonlar i¢in
kargiliklarini elde ettik. Bu denklemler kanitlarda kullanildi. Kapsamli submersiyon
tanimindaki distriblisyonlar i¢in integrallenebilme kosullarini inceledik.  Ayrica,
liflerin geometrisini anlayabilmek adina, liflerin tiimel jeodezik olma kosullar1 da
incelendi. Liflerin tiimel umbilik olmasi durumunda minimal olmas i¢in bir kosul
kanitlandi. Bu tip submersiyonlar i¢in, vektorlerin ayrisiminda verilen kanonik yapilar
paralel diisiiniildii. Bu durumda, distribiisyonlarin karisik jeodezik olmalar1 ve kanonik
yapilarin paralelligi hakkinda gerek ve yeter sartlar elde edildi.

Bu tezin sonrasinda, gelecek c¢alismalarda, tanimladigimiz kapsamli submersiyon i¢in
kaynak manifold, hedef manifold ve liflerin egrilikleri incelenebilir ve aralarindaki
iligkiler aragtirilabilir. Ayrica, bir kapsamli submersiyonun kaynak manifoldu i¢in su
problem calisilabilir: “Hangi kosullar altinda kaynak manifoldu Einstein uzay1 olur?”.
Diger taraftan, tiim tanimlanan submersiyonlarin Fizik’te kargiliginin var oldugu bili-
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nen bir gergektir. Bilhassa, su probleme cevap aranabilir: “Kapsamli submersiyonun
Fizik’teki karsilig1 nedir?”. Disiplinlerarasi ¢alisma adina etkili bir problem olacagi
ongoriilmektedir. Son olarak, submersiyon teorisinin istatistiksel makine 6grenmesi
siireclerinde karsiligi oldugu bilinmektedir. Tanimladigimiz kapsamli submersiyon ve
istatistiksel makine 6grenmesi arasindaki iligkiler calisilabilir. Dahasi, submersiyon
teorisinin kullanildig1 daha bagka alanlardaki kapsamli submersiyonlarin kargsiliklar
arastirilip calisilabilir.
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1. INTRODUCTION

The theory of submanifold is an important and interesting research area in differential
geometry. As a smooth map between Riemannian manifolds, a submersion is one of
the various ways to get a submanifold. With this method, a chance rises to compare

the geometries of two manifolds.

In this sense, the notion of a Riemannian submersion was first introduced by O’Neill
[1] and Gray [2]], independently from each other. Watson considered Riemannian
submersions between almost Hermitian manifolds with the name of almost Hermitian
submersions [3]. In this case, the Riemannian submersion is also a complex mapping,
and consequently, the vertical and horizontal distributions are invariant with respect
to the almost complex structure of the total manifold of the submersion. Afterwards,
almost Hermitian submersions have been studied for different subclasses of almost
Hermitian manifolds, for example; see [4]]. It is note that the Riemannian submersions
were extended to several subclasses of almost contact manifolds which is called
contact Riemannian submersions. Some of the studies related with almost Hermitian,
contact Riemannian and Riemannian submersions are included in [5], for the further

information we refer to [5]].

Recently, Sahin introduced the notion of anti-invariant submersions from almost
Hermitian manifolds onto Riemannian manifolds [[6]]. He studied such submersions
from Kaehler manifolds onto Riemannian manifolds. In these circumstances, the fibers
are anti-invariant with respect to the almost complex structure of the total manifold of
the submersion. In [[7,8], it is mentioned that a Lagrangian submersion is a special
case of an anti-invariant Riemannian submersion on which almost complex structure
of the total manifold reverses the vertical and horizontal distributions. Latterly, it has
been defined various new type of Riemannian submersions from almost Hermitian
manifolds onto Riemannian manifolds such as slant submersion [9]], semi-invariant

submersion [7], pointwise slant submersion [10]], hemi-slant submersion [11]]. Note



that, some of these submersions have been extended to the subclasses of almost contact

manifolds, for instance see [12].

In this thesis, our goal is to define a generalization of all types of submersions that
defined previously. To reach this aim, in the first step, we study on anti-invariant
submersion and the special case of it, Lagrangian submersions, by taking the total
manifold locally product Riemannian [13]]. While we study this problem, we try to
understand the theory of submersion with the help of [1,/6]. Also, we obtain some

remarkable results.

In the second step, we study semi-invariant submersion, which is defined in [7], from a
locally product Riemannian manifolds onto a Riemannian manifold [14]. In this case,

the vertical distribution kerm, is a direct sum of two distributions, that is,
kerm.=D® D", (1.1)

where D is invariant and D' is anti-invariant with respect to the almost product

structure. That means, we have one more distribution to investigate.

In the third step, we consider the pointwise slant distribution and in the view of [10]
define a new type of submersion so-called pointwise semi-slant submersion [[15]. In

this case, since the vertical distribution has a decomposition as
kerm, = D& Dy, (1.2)

where Dy is a pointwise slant distributon with pointwise slant angle 6. We improve

our knowledge about pointwise angle and pointwise slant distribution.

As a final step, we construct a generalization of all kinds of submersions by taking
the total manifold Kaehlerian. Three known generic submersion notions are given
by Yano and Kon [16], Chen [17] and Ronsse [18]. By considering an idea in
the theory of submanifold [18], we define a new type of submersion such that if
the fibers of a submersion are generic submanifold (in the sense of Ronsse) of the
vertical distribution, then the submersion is called a generic submersion (in the sense
of Ronsse) [19]. By the way, in this work [19], Prof. Dr. Mukut Mani Tripathi
contributed us and we studied in a cooperation with him. In the circumstances, the

vertical distribution can be decomposed as

kerm,=D'®D’®D" D2 ... DM, (1.3)
2



where D! is invariant, DO is anti-invariant, D% is pointwise slant distribution with slant

function 6;. In section 4, the generic submersion is studied deeply.






2. RIEMANNIAN MANIFOLDS

In this chapter, we give some fundamental definitions and theorems from [20] that we
use throughout this thesis .

Let M be a differenatiable m-dimensional manifold. It is denoted that the algebra of
differentiable functions on M by .% (M) and the module of differentiable vector fields
by I'(M), respectively. It can be seen that I'(M) is a vector space with respect to scalar

multiplication and natural addition. Let V be a map defined as

V:I(M)xT(M) — T(M), 2.1)
such that
Vuf=Uf, (2.2)
VivievZ = f(VuZ) +8(VyvZ), (2.3)
and
Vu(fZ+gV)=fVuZ+gVyV+(USf)Z+ (Ug)V, (2.4)

for any vector fields U,V,Z and smooth functions f,g on M. V is called a linear
connection, Vy the covariant derivative operator and ViV covariant derivative of V
with respect to U. Let define a (1, 1)-type tensor field VU by (VU)(V) = VyV for any
V. Besides this, Vyg = Ug is the covariant derivative of g along U. For a 1 —form o,

the covariant derivative of it is defined by
(Vyo)(V) =U(o(V)) - o(VyV). (2.5)

The covariant derivative of a tensor T of type (r,s) along a vector field U is a tensor
field VyT, of type (r,s), defined by, for any vector field U, r covariant vectors

o', w?,...,0" and s contravariant vectors Vi, V5, ..., V;
12 12
(VUT)(CO 7(0 a"'awrvvh‘/z""a‘/s): U(T(CO 7(0 ""7a)r7v17v2’"'7‘/s))

— ZT(wl,...,VUwi,...,a)’,Vl,Vz,...,Vs)
i=1

N
— T(0', .., 0" Vi,..VyV;, .., Vy).
j=1

(2.6)



One can say that the covariant derivative VT of tensor T is of type (r,s+ 1). If a vector
field U on M has constant covariant derivative along for any vector field V on M, then
U is called parallel with respect to a linear connection V that is VyU = 0. Similarly,
a tensor field 7 is said to be parallel on M with respect to a linear connection V if its
covariant derivative is constant for along any vector field U on M thatis VyT = 0. Let
a : I C R be a smooth curve with (x!,x?,...,x") coordinates. Then, the vector field X
which is tangent to the curve « is given by

dx’
x=%"0, @.7)

where d; = g and (x',x2,...,x") is a local coordinate system.
J

Let Z,V € I'(M). The Lie bracket [Z,V] on M is defined by
Z,VIB=2Z(VB) -V (ZB). (2.8)

For a function B € .% (M) and a vector field U on M, BU is a vector field on M which
is given by (BU), = B(p)U,, for some p € M. It can be seen that Lie bracket [,] is a

skew-symmetric operator. Additionally, Lie bracket has the following properties:

[BZ,yV] = B[Z,V]+B(Zy)V —v(VB)Z, (2.9)
(U, V],Z]+[[V,Z],U] +[[Z,U],V] =0 (Jacobi’s Identity) (2.10)

forU,V,Ze€T' (M) and B,y € (F)(M).
A tensor field g of type (0,2) is called a Riemannian metric if it satisfies the following

conditions:

o g, T,M x T,M — R is positive definite bilinear form that is g(U,,U,) > 0,

e gis symmetric thatis g(U,V) = g(V,U) forany U,V € T'(M),

In this case, (M, g) is called a Riemannian manifold.

Example 1. Let consider the Euclidean space R" with inner product
n
gU,V) =Y uwi, @.11)
i=1

where U = (uy,ua,...,up) € R" and V = (v,va,...,v,) € R"™. Then, the inner product
g is bilinear, symmetric and positive defined. Therefore, g is a Riemannian metric and

the space (R",g) is a Riemannian manifold.
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Let M be a real differentiable manifold with a linear connection V. A tensor field of
M, denoted by R, of type (1,3) is called Riemannian curvature tensor which is given
by

RU,V)Z=VyVvZ—-VyVy -V yZ, (2.12)

where U,V,Z € T'(M).

A tensor T of type (1,2) is called torsion tensor which is given by
T(U,V)=VyV—VyU—[U,V]. (2.13)

V is called forsion-free or symmetric connection on M, if T vanishes. A linear
connection V on (M, g) is called a compatible connection if g is parallel with respect

toVie. forU,V,.ZeT'(M)
(Vug)(Z,V)=U(g(2,V)) —g(VuZ,V) —g(Z,VyV) =0. (2.14)
If we consider local coordinates, we obtain
8ijk = Ok8ij — ginl i — &l = 0, (2.15)

where
1
I}, = Eghk{ajgki +dig; — dkgij}, T =T (2.16)
The coefficients F?i are called Christoffel symbols. The following theorem is the

essential conclusion of Riemannian geometry.

Theorem 1. Let M be a Riemannian manifold. Then, there exists a unique linear

connection V on M such that the following conditions are hold:

e V is symmetric

e V is compatible with the Riemannian metric.

The connection which is mentioned in the Theorem [1| above is called Levi-Civita
(metric or Riemannian) connection on M. A metric connection V has the following

identity, which is called Koszul formula

28(VyV,Z) = U(g(V,2))+V(s(U,Z)) = Z(g(U,V))
+8([U,V],2) +¢(1Z,U],V) - ¢([V, 2], U), (2.17)

7



where U,V,Z € T'(M). Also, the following equations are called Bianchi’s identities

RU,V)Z + R(V,Z)U+R(Z,U)V =0, (2.18)

The Riemannian curvature tensor of type (0,4) is given by
R(UV.Z,W)=g(R(U,V)Z,W), (2.20)

where U,V,Z,W € I'(M). Furthermore, Riemannian curvature tensor has the following

properties
RWU,V,Z,W) = —R(V,U,Z,W) (2.21)
RWU,V,Z,W) = —R(U,V.W,Z), (2.22)
R(U,V,Z,W) = R(V,UW,Z). (2.23)

A tangent plane to M is, for any p € M, a 2-dimensional subspace of tangent space
T,M. For every tangent plane p in the tangent space, for any p € M, T,M, it is defined

that
y A R(U,V,V,U)
Kp) =Ko UY) = T RIVIE = UV S

where U and V are any tangent vectors for p. The smooth function K appoints the each

tangent plane p to a real number K(p) is called a sectional curvature of M, which does
not depend on choose of tangent vectors U and V. For all plane p in 7,M and for all
points p € M, if K(p) is constant, then M is called a space of constant curvature. A
Riemannian manifold of constant curvature is called space form. In this case, if M has

constant curvature c, then curvature tensor field R is given by [21]
R(U,V)Z=c{g(V,2)U —g(U,Z)V}. (2.25)

Definition 1. Ler (M, g) be an m—dimensional Riemannian manifold and
f:(M,g) — C*(M,R) be a function. The gradient of f on M, which is a vector field,

defines as
g(Vf.U)=df(U)=U(f), (2:26)

where U € T(TM) and V f = gradf .



2.1 Distributions

In this section, the concept of distribution and properties of distribution are given.

Let M be an m—dimensional manifold. Define a map on T,M as

D:M — |JT,M

p — D,CT,M,dim(D,) =k (2.27)

The map D is called a k—dimensional distribution. For any U € I'(M), if U, € D),
then U is said to belong to distribution D. If, for every single p, the subset D, of T,M
has k linearly independent differentiable vectors, then D is said to be differentiable.

In [22], the following examples are given.
Example 2. [22] A vector field is a 1 —dimensional distribution on a manifold M.

Example 3. [22|] Every vector subbundle of a vector bundle, which is defined on a

manifold M, defines a distribution.

Definition 2. Let M be a C”-manifold and D be a k—dimensional distribution on M.
If, for any U,V € T'(D), [V,U] € I'(D), then D is called involutive.

Definition 3. Let M be a C”-manifold, D be a k—dimensional distribution on M and
M C M be a submanifold. If, for every point p € M, the tangent space of M and D,
are same, then M is called the integral manifold of the distribution D. Moreover, if M

is the unique integral manifold of the distribution D, then M is called maximal integral

manifold of the distribution D.

We quote the following example from [22].

Example 4. [22] Integral curve of a vector field is integral manifold of vector field

which is 1 —dimensional distribution.

Definition 4. Let M be a C™-manifold and M C M be a submanifold. If. for any
p € M, the distribution D has a maximal integral manifold which contains p, then the

distribution D is said to be integrable.



Theorem 2. (Frobenius Theorem) [23]
Let D be distribution on M. D is integrable if and only if it is involutive. Furthermore,
through every point p € M there passes a unique maximal integral manifold of D and

every other integral manifold containing p is open submanifold of the maximal one.

One can see that, by the Frobenius theorem and the definition of Lie bracket, all the
I —dimensional distributions are integrable. But, for the higher dimensions it is not

valid.

Definition 5. Let M be a manifold and V be the connection on M. The distribution D
is said to be parallel if, for any U,V € I'(M), VyV € T'(D).

2.2 Locally Product Riemannian Manifolds

An m-dimensional C*-differentiable manifold M is called almost product manifold

with almost product structure F which is a tensor field of type (1,1) satisfying
F? = identity, (F # *identity), (2.28)

denoted by (M, F). If we put

P:%(I+F), Q:%(I—F), (2.29)
thus we obtain
P+Q=I P’=P, 0°=Q, PO=QP=0 (2.30)
and
F=P-0Q. (2.31)

Hence P and Q define globally complementary distributions. It is seen that F has the
eigenvalues which are +1 or —1. An eigenvector, which corresponds to +1, lies in
the P and an eigenvector, which corresponds to —1, lies in the Q. Hence, if F is of
eigenvalue +1 with multiplicity a and eigenvalue —1 with multiplicity b, then P is of
dimension a and Q is of dimension b.

Conversely, if M has two globally complemantary distributions P and Q with
dimensions a and b, respectively, where a +b = m and a,b > 1. Then, an almost

product structure F' can be defined on M as F = P — Q.
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For any vector fields E,G € I'(TM), if (M, F) has a relation with Riemannian metric

g such that
8(FE,FG) =g(E,G), (2.32)

then M is said to be an almost product Riemannian manifold [21]).
Let V be the Riemannian connection with respect to the metric g on M. Then M is
called a locally product Riemannian manifold (briefly, Lp.R.) if for any E € I'(TM)
the following

VEF =0 (2.33)

holds [21]].
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3. COMPLEX MANIFOLDS

In this section, we give some fundamental definitions and basic concepts about
complex manifolds [21]].

Let M be a smooth manifold. A tensor field J is of type (1,1) and which satisfies
J? = —identity (3.1

on M is called an almost complex structure and M is called an almost complex manifold.
In this case, the manifold M is orientable and has even dimension. A manifold (M,J)
is called an almost Hermitian manifold if (M,J) has a relation with Riemannian metric

g such that for any U,V € I'(M)
g(V,U)=g(JV,JU). (3.2)
The Nijenhuis tensor of J, denoted by N, is defined by
N(U,V)=[JU,JvV]-JJU,V|-J[U,JV]—[U,V], (3.3)

a well-known theorem of Newlander-Nirenberg states that J is the almost complex
structure associated to a complex manifold structure on M if and only if the Nijenhuis
tensor of J vanishes, i.e., J is integrable.

The Kaehler form of an almost Hermitian manifold (M, J, g) is the smooth differential

2—form defined by, for any U,V € I'(TM)
QU,V) =g(U,JV). (3.4)

Let V be the Levi-Civita connection on M with respect to g. It can be extended to the

tensor algebra on M. Then, we have the following formulas [3]].

(Vud)V = VydV —JVyV, (3.5)
(VuQ)(V,Z) = g(V,(VxJ)2), (3.6)
dQU,V,Z) = (VyQ)(V,Z)+ (VyQ)(Z,U)+ (VzQ)(U,V), (3.7)
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Let {e1,eq,...,em,Je1,Jea, ..., Je, } be a J-frame of M. Then, co-differential of Q is
given by
m
(8Q)(U) = =) {(VeQ)(ex,U) + (Ve Q) (Jex, U) }. (3.8)
k=1

Now, we give the definitions of some classes of almost Hermitian manifolds [24] and
[25]]. Furthermore, A. Gray and L. M. Harvella [26] give a classification of almost
Hermitian manifolds in 16 classes. Let denote the class of almost Hermitian manifolds
by AH. Then, for any (M,J,g) in AH, some of the classes of AH are defined as in the

following:

o If VyyJ =0, then (M, J,g) is a Kaehler(K),
o if dQ =0, then (M,J,g) is an almost Kaehler(AK),
o if (VyJ)U =0, then (M, J,g) is an almost Tachibana(AT),

o if QN =dQ(12) =0, ie., (VyJ)V + (VuJ)JV = 0, then (M,J,g) is a quasi
Kaehler(QK),

e if 0Q =0, then (M,J,g) is an almost semi-Kaehler(ASK),
e if N=0, then (M,J,g) is a Hermitian(H),

e if 6Q=0and N =0, then (M,J,g) is a semi-Kaehler(SK).

Here, one can see that K = AKNNK = QK N H. Between the classes of AH there is

an inclusion relation as in the following:

AK

KCNK

C QK CASK C AH. 3.9
Additionally, if it is assumed that N = 0, then

KCSKCH. (3.10)
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4. RIEMANNIAN SUBMERSIONS

One of the most rising areas of the differential geometry is the theory of submanifold.
Since, a submersion is a way to obtain a submanifold, many geometers have been
concerning about the theory of submersion. The notion of Riemannian submersion
was first defined by O’Neill [1]] and Gray [2]]. Later, Watson [3] studied Riemannian

submersions between almost Hermitian manifolds.

Let (M,g) and (N, gy) be Riemannian manifolds, where dim(M) > dim(N).

A surjective mapping 7 : (M, g) — (N, gy) is called a Riemannian submersion [1] if
(S1) 7 has maximal rank, and
(S2) 7., restricted to kerm.-, is a linear isometry.

In this case, for each g € N, n! (q) is a k-dimensional submanifold of M and called
a fiber, where k = dim(M) — dim(N). A vector field on M is called vertical (resp.
horizontal) if it is always tangent (resp. orthogonal) to fibers. A vector field X on M is
called basic if X is horizontal and 7-related to a vector field X, on N, i.e., T, X, = Xin(p)
for all p € M. We will denote by ¥ and .7 the projections on the vertical distribution
kerm,, and the horizontal distribution kerm.-, respectively. As usual, the manifold
(M, g) is called total manifold and the manifold (N, gy) is called base manifold of the
submersion 7 : (M,g) — (N, gn).

Lemma 1. [/ Let (M,g) and (N, gn) be Riemannian manifolds with a Riemannian
submersion T between them. For any basic vector fields o., 3 € T'(TM), we obtain the
following

1. g(a,B) = gn(a,B:)om,

2. m (Ao, B]) = o, Bl

3. m(HAVaP) = Vg, (B),

where V* is the Riemannian connection on N, T, (&) = @, and w.() = P..
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To characterize the geometry of the fibers, O’Neill tensors 7 and A are defined as
follows:

TV =YV gV + IV g V'V, 4.1

AgV =YV g IV + AV V'V (4.2)

for any vector fields U and V on M, where V is the Levi-Civita connection of g. T; and

Ay are skew-symmetric operators on the tangent bundle of M reversing the vertical and

the horizontal distributions [1]. We now summarize the properties of the tensor fields

T and A. Let V,W be vertical and X,Y be horizontal vector fields on M, then we have
TyW =TV, (4.3)

1
AxY = —AyX = EV[X,Y]. (4.4)

Moreover, from (@.1)) and (4.2)), we obtain

VyW =Ty W + Vy W, (4.5)
VyX = TyX + H#VyX, (4.6)
VxV =AxV + ¥ VxV, (4.7)
VxY = #VxY +AxY, (4.8)

where VyW = ¥V, W. If X is basic
HVyX = AxV.

Remark 1. In this thesis, all the horizontal vector fields are considered as basic vector

fields.

We observe that 7 acts on the fibers as the second fundamental form while A acts on
the horizontal distribution and measures of the obstruction to the integrability of this

distribution.

Lemma 2. [/|] Let (M,g) and (N, gyn) be two Riemannian manifolds and w: (M, g) —
(N,gn) be a Riemannian submersion. Then, for any U,V vertical and X,Y horizontal

vector fields on M, the followings are obtained:

(VvA)y = —Apv, 4.9)
(VuT)x = —Tpx, (4.10)
(VxA)y = —Aawu, (4.11)
(VxT)y = —Tay. (4.12)
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Note that, if 7' (respectively A) vanishes, then it is said to be T (respectively A) is
parallel.

For a submersion, the curvature relations are given as in the following:

Theorem 3. [/ Let (M,g) and (N,gn) be two Riemannian manifolds and w :
(M,g) — (N,gn) be a Riemannian submersion. Then, for any U,V,W,Z vertical and
X,Y, &, n horizontal vector fields

R(U,V,\W,Z) = R(U,V\W,Z)—g(TyW,TvZ) +g(TyW,TyZ), ~ (4.13)

R(X,Y.E.n) = R*(X,Y,f,n)+2g(A§n,AxY)

+8(Ayn,AxS) — 8(Axn,Ar§), (4.15)
RX,Y,6.U) = —g((VeA)(X,Y),U) —g(TyS,AxY)
—g(AxE, TyY) + g(AyE, Ty X), (4.16)
RX,Y,U,V) = —g((VuA)(X,Y),V)+g((VvA)(X,Y),U)
—8(AxU,AyV) +g(AxV,AyU)
+g(TyX, yY) — g(Ty X, TyY ), (4.17)
RX,U,Y,V) = —g((VxT)(U,V),Y)—g((VuA)(X,Y),V)
g(TuX, TvY) — g(AxU,AyV), (4.18)

where R*, R and R are Riemannian curvature tensor for base manifold, fibers and total

manifold, respectively.

For a Riemannian submersion, the sectional curvature formulas are obtained by the
above theorem, as in the following [/1]]: If it is assumed that K*, K and K are sectional
curvatures for base manifold, fibers and total manifold, respectively, then for any

horizontal vector field X and vertical vector U field

K(U,V) = RU,V)+g(TyV,TyV) —g(TyU,TyV), (4.19)

K(X.,Y) = K*(X,Y)—3g(AxY,AxY), (4.20)

KX, U) = g((VxT)(U,U),X)+g(TyX,TyX) —g(AxU,AxU). (4.21)

The fibers of a Riemannian submersion 7 : (M,g) — (N, gn) is called totally umbilical
if

TyU =g(V,U)H, (4.22)
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for any U,V € I'(kerm,), where H is the mean curvature vector field of the fiber.
Moreover if H = 0, the fibers are called minimal.

The distribution Dy is called parallel along the distribution D, if and only if for
V eT(Dy),U €T'(Dy), VyV € Dy.

Let © be a Riemannian submersion from a Riemannian manifold (M,g) onto a
Riemannian manifold (N, gy) . Then, we say that the fibers of 7 are mixed geodesic, if

TxW =0, forall X € [(¥), W € T(#), [].

4.1 Anti-Invariant Submersions

The notion of the anti-invariant submersion from almost Hermitian manifolds onto
Riemannian manifolds was defined first by Sahin [6]. We study anti-invariant and
Lagrangian submersions from locally product Riemannian manifolds onto Riemannian
manifolds. We first give a characterization theorem for Riemannian submersions. It is
proved that the fibers of a Lagrangian submersion are always totally geodesic. We also
consider the first variational formula of the anti-invariant Riemannian submersions and
give a new condition for the harmonicity of such submersions.

In general, g(FV,V) # 0 for any unit vector V € I'(T,M) in a Lp.R. manifold M,
contrary to almost Hermitian (g(JV,V) = 0) and almost contact (g(@V,V) = 0)
manifolds. However, we can establish that the almost product structure F in a L.p.R.
manifold M such that g(FV,V) =0, for all V € I'(T,M). In fact, if M is an even
dimensional 1.p.R. manifold with an orthonormal basis {ey,...,e,,en1,...,€2,}, then

we can define F by

F(e)) =enti, Flenti) =ei, i€{1,2,--- n}. (4.23)
Hence, we observe that the almost product structure F satisfies

g(Fejej)=0, j={1,2,---,n,---,2n}. (4.24)

Let Mi(c1) (resp. M>(cz)) be a real space form with sectional curvature c¢; (resp.

¢ ). Then, Riemannian curvature tensor R of locally product Riemannian manifold

18



M = M, (c1) X M>(c) has the form

=
\.QI
<
S
N
[\
N4

_|_
Bl= =

where U,V,W € I'(TM) [21]. In case of ¢; = ¢; = c, the Riemannian curvature tensor

R of locally product Riemannian manifold M(c) = M;(c) x M>(c) becomes

RUOVW = %{g(V,W)U—g(U,W)V+g(FV,W)FU—g(FU,W)FV}, (4.26)
where U, V, W € I'(TM(c)).

Proposition 1. Let w: (M(c),g,F) — (N, gy) be a Riemannian submersion from a l.p.R
manifold with ¢ # 0 onto a Riemannian manifold. If the almost product structure F of
M(c) satisfies , then the fibers of T are invariant or anti-invariant with respect to
F if and only if

g((VuT)(V,W),X) = g((WwT)(U,W),X), (4.27)

where U,V,W € ['(kerm,) and X € I'(kerm").
Proof. From (4.26), we have
R(U,V)W = g{g(V,W)U—g(U,W)V-i—g(FV,W)FU—g(FU,W)FV}, (4.28)

where U,V,W € TI'(kerm,) . If the fibres of 7 are invariant or anti-invariant with respect
to F, then it is not difficult to see that R(U,V )W is vertical from (4.28). Hence, for any

X e T'(ker ), we easily get
R(U,V,W.X) =g(R(U,V)W,X) =0. (4.29)
Thus, follows from (4.29) and the O’Neill curvature formula {1} in [[1]:
RU,V,W.X)=g((VvT)(U,W),X)—g((VuT)(V,W),X). (4.30)

Conversely, if the equation holds, then using the above O’Neill formula we see
that R(U,V )W is vertical. By putting W = U in (4.28)), we obtain

RUV)U = %{g(V,U)U— \U|)>v —|—g(FV,U)FU}. (4.31)
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Since R(U,V)U is vertical, g(FV,U)FU is also vertical from (4.31). Thus, we conclude
that either FU is vertical or g(FV,U) = 0. It follows that either F (kerm,) C ker m, or
F(kerm,) C (kerm,)™", i.e., either the fibers of 7 are invariant or anti-invariant with

respect to F. [

Let M be a locally product Riemanian manifold with Riemannian metric g and almost
product structure F, and N be a Riemanian manifold with Riemannian metric g,.
Suppose that there exists a Riemannian submersion 7 : M — N such that the vertical
distribution ker 7, is anti-invariant with respect to F, i.e., F(kerm,) C ker ﬂj . Then,

the Riemannian submersion 7 is called an anti-invariant Riemannian submersion [0].
In this case, we observe that F (ker ;- ) Nker 7, # {0}. If we denote the complementary
orthogonal distribution of F (ker 7, ) in ker ﬂf by u, then we write

kerm} = Fkerm, & . (4.32)
Let FX € I'(Fkerm,) and Y € T'(u). Then, by (2.32)), we see that

g(FX,FY)=g(X,Y)=0. (4.33)

Therefore, u is invariant distribution of ker ;> with respect to the almost product

structure F. Thus, for any X € I'(ker n:j) , we have
FX =BX +CX, (4.34)

where BX € I'(ker7,) and CX € I'(ker7;").

Now, let © be an anti-invariant Riemannian submersion from a l.p.R. manifold
(M,g,F) onto a Riemannian manifold (N,gy). If dim(kerm,) = dim(ker;"), then
we call @ a Lagrangian submersion. In that case, the almost product structure F
of M reverses the vertical and horizontal distributions, i.e., F(kerm,) = kerir*l, and
F (ker ﬂj) = kerm,. This case has been studied; see [6,[8,[27]] for more details and

examples.

We now examine how the almost product structure on M effects the tensor fields 7'
and A of an anti-invariant submersion 7 from a 1.p.R. (M,g,F) onto a Riemannian

manifold (N, gy).
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Lemma 3. Let  be an anti-invariant Riemannian submersion from a l.p.R. manifold

(M, g,F) onto a Riemannian manifold (N,gy) . Then we have

FTyW =Ty FW , (4.35)

FVyW = #'VyFW , (4.36)
B#VyX =VyBX + Ty CX , (4.37)
FTyX +C#VyX = TyBX + #'VyCX , (4.38)
BAxV = AxFV, (4.39)

CAxV +F(¥VxV) = HVxFV, (4.40)
BA#NxY = ¥'VxBY +AxCY , (4.41)
FAxY + CH4Y = AxBY + #VxCY , (4.42)

where V, W € T'(ker ), and X, Y € I'(ker ;") .

Proof. Using (2.33) and (#.6) we have
FVyW = TyFW + #VyFW, (4.43)
where V, W € ['(ker ) . By using {@.3)), we get
FVyW +FTyW = TyFW + Vv FW, (4.44)

from (#.43)). Taking the vertical and horizontal parts of this equation we obtain (4.35)

and (4.36) . The other assertions can be obtained in a similar way. O

Corollary 1. Let m be a Lagrangian submersion from a L.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy) . Then
Ty FE = FTyE, (4.45)
AxFE = FAYE (4.46)

where V € T'(kerm,), X € T'(ker;") and E € T(TM).

Proof. The first assertion follows from (4.35) and (#.38). The other follows from

@.39) and @.42). H
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Corollary 2. Let w be a Lagrangian submersion from a L.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy) . Then,
TyFV = TyFU (4.47)

AxFY = -AyFX, (4.48)

where U,V € T'(kerm,) and X ,Y € I'(ker ;).

Proof. By using (@.3), the first assertion can be obtained from (4.45) and using (#.4),
the other assertion follows from (4.46]) . O]

Theorem 4. Let w be a Lagrangian submersion from a l.p.R. manifold (M, g,F) onto
a Riemannian manifold (N,gy). Then the fibers of m are totally geodesic. In other

words, Ty = 0, for any U € Ker T,.

Proof. Let U,V and W be any vertical fields. Then, using (4.5), (4.6), (2.28)~(2.33)
and (4.47), we have,

g(TyFV.W) =g(VyFV,W) =g(FVyV,W) = g(VyV,FW)

= —g(TyFV,W). (4.49)

Hence, it follows that Ty F'V = 0. Since FV is an arbitrary horizontal vector field, we
get Ty (ker 7t ) = 0. The property of skew-symmetry of T gives Ty (ker 7)) = 0. Thus,
we find Ty =0. [l

4.1.1 The first variational formula of anti-invariant submersions

In this section, we define the first variational formula for anti-invariant submersions
from a l.p.R. manifold (M, g,F) onto a Riemannian manifold (N,g,) and by means
of that form, we focus on a new approach to investigate whether an anti-invariant
submersion is harmonic.

Let m be an anti-invariant submersion from a l.p.R. manifold (M,g,F) onto a
Riemannian manifold (N, gy). Then, we can define the 1-form dual to the vector field

F&, for & € T'(ker ), such that

oz :T(kerm,) — Z(m,'),q €N
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Vs og(V)=g(FS,V)
for all V € I'(ker m,.). In the view of [28] and [29]], we define the followings:

The Legendre variations of any fiber of 7, denoted by the set [, where

L = {& e I'(kerm}) rdog =0, i.e., Og is closed},

the Hamiltonian variations of any fiber of 7, denoted by the set [E,
E={&ec(kern}):3f € 93(717;1) = 0z =df, i.e., O is exact}
and the harmonic variations of any fiber of 7 are given by the set
H = {& € ['(ker,") :Acg =0, i.e., O is harmonic}.
By the definitions of differential and co-differential operators, we observe that
ECL, HCL and ENH = {0}. (4.50)

Now, we examine that under what conditions the 1-form o, defined above, is a

Legendre variation.

Lemma 4. Let w0 be an anti-invariant submersion from a L.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy). The 1-form O¢ is a Legendre variation if and only if
g(AU,FV) = —g(A:V,FU), (4.51)

where U,V € I'(ker ).

Proof. LetU,V beinI'(ker m,). Then, by the definition of differential, (4.6) and (2.32)),
we obtain

:Ug(évFV)_Vg éaFU)_g(éaF[lLV])

g(Vu&,FV)+g(&,VyFV)
g(Vv&,FU) —g(&,VyFU)
)+8(&,FVyU)

(

=3(

—8(

—8(&,FVyV)+g
=8(Vu&,FV)—g(Vv&,FU)
=3(

g(ANVYE FV) +g(AHVyE FU). (4.52)
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Since, we assume & is basic, we get
(dog)(U,V) =g(AcU,FV) +g(AcV,FU). (4.53)
Thus, the assertion follows. [l

Lemma S. For § € T'(u), oz =0.

Proof. Let& € I'(u). Then FE € T'(u). For any V € I'(ker . ), we get
O (V)=g(FE,V)=0. (4.54)
So, g =0, forall V € ['(ker ;). O

Remark 2. Because of Lemma 5| throughout this subsection, we can assume that H

belongs to F(kerm,). Here, H is the mean curvature vector field of the fibers.

Proposition 2. Let w be an anti-invariant submersion from a Lp.R. manifold (M, g, F)
onto a Riemannian manifold (N,gy) and [ be a smooth function on a fiber. Then,

F(grad(f)) € E.

Proof. Let f be a smooth function on a fiber. For & = F(grad(f)), and any V €

I'(ker . ), we obtain

oz (V) =g(FG,V) = g(grad(f),V) =VI[f] =df(V). (4.55)

Thus, we get oz =df, ie., EeE. O

Let @ be an anti-invariant submersion with compact fibers from a 1.p.R. manifold
(M, g, F) onto a Riemannian manifold (N, g,) and & € ['(ker7;-). The first variational

formula of a fiber T, 1 for q € N, is defined as follows [30]

V(E)=—k | g€ H)xl, (4.56)

Ty
where k = dim(ﬂq* 1. We introduce the following terminology;
o IfV(£)=0,forall £ €L, then ! is L — minimal,
o IfV(E)=0,forall £ €E, then 7, ! is E—minimal,

o If V(&) =0, forall £ € H, then m, ! is H — minimal.
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Remark 3. One can easily see that if the fiber is minimal, then the fiber is IL,[E and
H — minimal. On the other hand, because of the facts that & C 1L and H C L, the fiber

is IE — minimal and H — minimal if it is I — minimal.

Theorem 5. Let  be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M, g, F) onto a Riemannian manifold (N,gy). Then,

(a) The fiber T, Uis I — minimal if and only if oy is co-exact.
(b) The fiber T, Vis E — minimal if and only if oy is co-closed.
(c) The fiber 717;1 is H —minimal if and only if oy is the sum of an exact and a co-exact

1-form.

Proof. (a) = : Let the fiber 7 U'is I — minimal, then for any & € L, we have
g(H,&) = 0 from (4.56). By the definition of the Hodge star operator [31]], we have

Gé /\GH(VlaV27"'7Vk) :g(gvH)*l(VlaV27“'7Vk>7 (457)

for Vi, Vs, ...,V € I'(ker m,.). From the definition of the global scalar product (.|.) ([31])
on the module of all forms on the fiber, we get

(Gg |GH) = /1 O¢ Axog = 0. (4.58)
T,

q
Denote by 6 the codifferential operator [31]] on the fiber T, I Since O is closed, for

any 2-form B on 7 !, we have
0= (dog|B) = (o¢|5p). (459)

Since T, Lig compact, by |l and lb we conclude that oy is co-exact.

<« : Suppose that oy is co-exact, we have oy = dy for some 2-form y. Then, for any
Eel,
(0z|or) = (0¢|6y) = (dog|y) =0 (4.60)

and then

V(E) =k [ g(HE)xl = —k/ (0 A #0y) = —k(0z|on) =0,  (4.61)
g )
1.e. 7'L'q_1 18 L — minimal.
(b) = : Let the fiber T, I'be E — minimal. Then, we have
0=V (§)=—k| & H)xl=—k [ (0gAx0y)=—k(0g|On), (4.62)
g g
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that is, (o¢|oy) = 0. Since § € E, oz = df for some function f on the fiber 71',]_1.
Thus,

(dflon) = (f|6ou) = 0. (4.63)
Hence it follows that oy = 0, i.e. oy is co-closed.

< : Suppose that oy is co-closed. Let & € |E, then there exists a function f € % (Jrq_ D)

such that oz = d f. Hence, we have
(0¢|on) = (dflon) = (f|6ou) = 0. (4.64)
Therefore,

V(€)= —k/n_l g(H,E)1 = —k [ (0s Axow) = —k(0glow) =0,  (4.65)

T
that is V'(§) =0 for & € E, i.e. m, ! is E — minimal.

(¢) = : If the fiber T, 1is H — minimal, then for & € H, we have

0=V (&)=—k [ gl&H)x1=—k| (0zA*on)=—k(cz|on).  (4.66)

Ty Ty
It means that, oy is orthogonal to harmonic 1-forms on the fiber T, 1 Thus, by the
Hodge decomposition theorem [31], we conclude that oy is the sum of an exact and a
co-exact 1-form.
< : Let oy be the sum of an exact 1-form @; = df and a co-exact 1-form w, = dy.

For £ € H, we have

(oglon) =(ogldf+0y) = (ogldf) + (og[Sw)

=(60¢|f) + (dog|y) =0, (4.67)

since dog = 865 = 0. Thus,
V() =k el )1 = —k/nql(cé A xy) = —k(ox|on), (4.68)
that is, the fiber is H — minimal. ]

Now, if we give a restriction in Theorem [5] we get the following theorem.

Theorem 6. Let T be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M, g, F) onto a Riemannian manifold (N,gy). If H € L, then

(a) ﬂ;l is I — minimal if and only ifﬂ;l is minimal.
(b) nq’l is £ — minimal if and only if oy is a harmonic variation.
(c) nq_l is H — minimal if and only if oy is an exact 1-form.
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Proof. (a) If the fiber T, Uis L — minimal, then by Theorem (a) we have, oy is
co-exact. Hence oy is co-closed. Taking into account the fact that doy = 0, we deduce
that oy is harmonic. But this is a contradiction because of the Hodge decomposition
theorem [31]]. So, oy must be zero. Hence we conclude that H = 0. The converse is
clear.

(b) = : If the fiber T, U'is E — minimal, then we have oy = 0 from Theorem (b).
Since doy = 0, oy is also harmonic, i.e. Aoy = 0.

< : If oy is harmonic, then oy is co-closed. By Theorem (b), the fiber T, Lis
E — minimal.

(¢) = : Assume that T, !'is H — minimal. Then, from Theorem (c), oy is the sum of
an exact 1-form and a co-exact 1-form. On the other hand, the condition H € IL implies
that oy is orthogonal to every co-exact 1-form on 7,° ! Thus,, 6 must be exact.

< : Let oy be an exact 1-form. For & € H, we obtain

V(£) :—k/_]g@,H)*l — —k [ (0¢ Axow)

oy g

=—k(og|on) = (ogldf) = (60¢|f) =0, (4.69)

that is, 77! is H — minimal. O

Remark 4. The method that considering the basis to investigate the harmonicity of a
submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.
Since a L.p.R. manifold is not always even dimensional, choosing a basis and using it is
not easy. On the other hand, it is well known that, the fibers of a submersion is minimal
if and only if the submersion is harmonic. Now, we give the following corollary which
is a new approach to investigate the harmonicity of a submersion. By Theorem [6}(a),

we get the next result.

Corollary 3. Let  be an anti-invariant submersion with compact fibers from a Lp.R.
manifold (M, g, F) onto a Riemannian manifold (N, gy). If H € L, then, Tt is harmonic

if and only if7r;1 is . — minimal.

Lemma 6. Let m be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M, g, F) onto a Riemannian manifold (N,gy). Then,
561-] =0& El'g(AHEl',FEl') = O, 4.70)

where {E|,Es,....,Ey} is a local basis of ker 7.
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Proof. For any {E|,E,...,E,}, we have
66[{ =0«& Zig(VEiFH,E,') =0. (471)

Using (4.8)), we get
= 3(7[-1 =0< Zig(VEiH,FEi) = Zl'g(AHEl',FEl') =0. 4.72)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensor A. OJ

4.2 Semi-Invariant Submersions

The notion of the semi-invariant submersion from almost Hermitian manifold onto
Riemannian manifolds was first defined by Sahin [7]. We study semi-invariant
submersions from locally product Riemannian manifolds onto Riemannian manifolds.
We also give a characterization theorem for the proper semi-invariant submersions
with totally umbilical fibers and find some results for such submersions with parallel
canonical structures. Moreover, we define first variational formula on the fibers of a
semi-invariant submersion and by the virtue of that, we prove a new theorem which
has a condition for the harmonicity of a semi-invariant submersion.

The definition of a semi-invariant submersion from a locally product Riemannian

manifold onto a Riemannian manifold as in the following:

Definition 6. Let (M, g,F) be a L.p.R. manifold and (N, gy) be a Riemannian manifold.
A Riemannian submersion : (M,g,F) — (N, gy) is called semi-invariant submersion,

if there is a distribution D C kerm, such that
kerm,=D@&D, FD=D, FD"Ckernm,, (4.73)

where D is the orthogonal complement of D in kerm, . In this case, the horizontal

distribution kerm;- can be decomposed as
ker7r*L =FD' & u, (4.74)

where W is the orthogonal complementary distribution of FD* in kerm}, and it is
invariant with respect to F . A semi-invariant submersion is called proper if both
D # {0} and D+ # {0}.
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We give the following example.

Example. Consider the Euclidean 6-space R® with standart metric g. Define the

almost product structure F on (R®, g) by

J . a J . d J.  d

o) Ton TOn) T o s T o
J d d 0 d d

F(

Foe) o Tan) o s = o

where (x1,x2,- -+ ,Xg) are natural coordinates of RO,

Now, we define a map 7 : R — R3 by

X1 —X) X3—X4 X5 —x6)

77:<X15"'7x6):( \/§ , \/z , \/E

Then the map 7 is a proper semi-invariant submersion such that

kerm, =D Dt

where
D = span{d; + d», d3+d4},
and
D* = span{ds + d}.
Moreover,
ker7r*L = FD*+ ou,
where

u = Span{al — 82,83 — &4}

(4.75)

(4.76)

4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

Let © be a semi-invariant submersion from a lLp.R. manifold (M,g,F) onto a

Riemannian manifold (N, gy). For any V € I'(kerm, ), we put

FV = ¢V + oV,

where ¢V € I'(kerm,) and ®V € I'(kerm;t) . Also, for & € T'(kerm;) we write

FE = BE +CE,

(4.83)

(4.84)

where BE € I'(kerm,) and CE € I'(kerm) . Then, using (4.73) and (4.83), we get the

following:
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Lemma 7. Let T be a semi-invariant submersion from a l.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy). Then, we have
(a) ¢D=D,  (b) ¢D*={0}, () @D={0}, (d) @D =FD"

Proof. For any X € I'(D), by (4.83)), we have FX = ¢X 4+ @wX. On the other hand, with
the help of .73, FX € I'(D), i.e., X = 0. Thus, we obtain ¢ = D.

Moreover, for any U € T'(D1), by #.83), we obtain FU = ¢U + owU. Beside this, by
using @.73), FU € T'(kerny-), i.e., U = 0. Therefore, we get 9D+ = {0}. To prove

(¢) and (d), the same method above can be used. O

Also, using (4.74) and (4.84), we get the following result.

Lemma 8. Let 7t be a semi-invariant submersion from a l.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy). Then, we have

(@ BFDY)=D*, (b) Bu={0}, () C(FDY={0}, (&) Cu=p.
We now examine how the almost product structure on M effects the O’Neill’s tensors
T and A of a semi-invariant submersion 7 : (M, g,F) — (N, gy).

Lemma 9. Let T be a semi-invariant submersion from a l.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy). Then, we have

Vv oW + Ty oW = ¢VyW + BTy W, (4.85)
Ty oW + A Vy oW = oVyW +CTy W, (4.86)
VVen +AsCn = ¢Aen +BA Ve, (4.87)
AgBN + V0N = 0Agn +CH Ve, (4.88)
VyBE +TyCE = 9Ty & + BAVyE, (4.89)
TyBE + A#VyCE = 0Ty & +CHVYE, (4.90)
VAPV +Az 0V =BA:V + 9V VeV, (4.91)
AgQV + AV 0V =CA:V + 0V V.V, (4.92)

where V,W € I'(kerm,) and &,m € T'(kerm,-).
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Proof. Using @.5)~#.8), (2.33), (4.83) and (#.84), we can easily obtain all assertions.
O

Lemma 10. Let m be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N, gy). Then, we have
g(TxFY ,FV)= —g(Ty FX ,FV) (4.93)

where V € (D), and X ,Y € T(D4).

Proof. LetX,Y € I'(D+), and V € I'(D). Then using , and we have
g(TxFY ,FV) = —g(Tx FV ,FY)
= —g(Tpy X ,FY) = —g(Vpy X ,FY)
=—8(VrvFX,Y) = —g(Trv FX ,Y)
= g(Tpy Y ,FX) = g(Ty FV ,FX)

= —g(TyFX ,FV). (4.94)

This completes the proof. [

4.2.1 Integrability of distributions

Now, we investigate the necessary and sufficient conditions for the integrability of
all distributions including vertical and horizontal distributions of the semi-invariant

submersion 7 from l.p.R. manifold(M, g, F) onto a Riemannian manifold (N, gy).

Theorem 7. Let m be a semi-invariant submersion from a l.p.R. manifold (M, g, F)
onto a Riemannian manifold (N,g,). Then the anti-invariant distribution D* is
integrable if and only if

g(Tx FY ,FV) =0, (4.95)

where X ,Y € T(D*) and V € T(D).

Proof. Let X,Y € I'(D*) and V € T'(D). By (@.6) and (2.33), we have

g([X,Y],V) = g(FIX,Y],FV)
=g(FVxY —FVyX ,FV)
=g(VxFY —VyFX FV)
=g(IxFY —Ty FX,FV). (4.96)
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From (4.93)), we get

g([X,Y],V) =2¢(Tx FY ,FV), (4.97)
which completes the proof. ]

Theorem 8. Let @ be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gy). Then, the invariant distribution D is integrable
if and only if
TyFW = TywFV (4.98)

forallV.W € T'(D).
Proof. For V,W € I'(D), using (4.86), we have
Ty oW = oVyW +CTyW (4.99)
By using (@.3)), (#.5) and (4.99), we get
TyFW — Ty FV = @[V,W] (4.100)

Thus, our assertion comes from Lemma 7}-(c) and (@.100). O

4.2.2 Totally geodesicness of the fibers

Proposition 3. Let m be a semi-invariant submersion from a l.p.R. manifold (M, g, F)

onto a Riemannian manifold (N,gy). Then

g(Ty FW &) =g(Ty W ,F§), (4.101)
forV.W €T'(D), and & e T(u).
Proof. For V,W € T'(D) and & € I'(11), using (4.86), we have

g(TyFW,E) = g(@VyW +CTyW, )

= g(@VyW,&) +g(CTyW,&).

Using (4.83) and (4.84)), we obtain

§(TyFW,E) = g(FVyW,E) +g(FTyW, &)
=g(VyW,FE) +g(TyW,F&).
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Since g(VyW,FE) =0, we get
§(TvFW,8) = g(TyW,F&).
[

Theorem 9. Let m be a semi-invariant submersion from a Lp.R. manifold (M,g,F)
onto a Riemannian manifold (N,gy). Then, the invariant distribution D defines a

totally geodesic foliation on kerm, if and only if
g(TyW,FX)=0 (4.102)

for V,W € I'(D) and X € T(D").

Proof. The invariant distribution D defines a totally geodesic foliation on kerm, if and
only if g(VyW,X) =0, for V,W € I'(D) and X € ['(D). Here, using (2.28) and (4.5)),

we have
g(VyW,X) = g(VwW,X) = g(VwFW,FX) = g(TyFW,FX). (4.103)
Hence, (#.102) follows. O

Theorem 10. Let m be a semi-invariant submersion from a Lp.R. manifold (M, g,F)
onto a Riemannian manifold (N,gy). Then, the anti-invariant distribution D+ defines

a totally geodesic foliation on kerm, if and only if
g(TxFY,FV) =0, (4.104)
for X,Y € T(D+) and V € T(D).
Proof. LetX,Y € T(D+) and V € T'(D). Using (4.5), and (2.28)), we have
g(VxY,V) = g(VxY,V) = g(VxFY,FV) = g(TxFY,FV). (4.105)

Since the anti-invariant distribution D' defines a totally geodesic foliation on ker, if

and only if g(VxY,V) = 0, the assertion follows. O

By Theorem [9]and Theorem [I0] we have the following result.
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Corollary 4. Let © be a semi-invariant submersion from a Lp.R. manifold (M,g,F)
onto a Riemannian manifold (N, gy) . Then, the vertical distribution kerm, is a locally

product Mp x Mp,1 if and only if
g(TyFW,FX) =0 (4.106)

for W € T(D), X € T(D}) and U € T'(kerm,), where Mp and My, are integral

manifolds of the distributions D and D™, respectively.

It is well known that the vertical distribution kerm, of a Riemannian submersion
is always integrable. We now give a necessary and sufficient condition for the
integrability of the horizontal distribution (kerm,)® of a semi-invariant submersion

7 from a L.p.R. manifold (M, g, F) onto a Riemannian manifold (N, gy ).

Theorem 11. Let @ be a semi-invariant submersion from a l.p.R. manifold (M, g, F)
onto a Riemannian manifold (N,gy). Then, the horizontal distribution kerm, is

integrable and totally geodesic if and only if
(V' VeBN +AgCn) +B(AgBn + 7 VeCn) =0, (4.107)
where £,1 € T(kermy).

Proof. By || we know that the horizontal distribution kerm; is integrable and
totally geodesic if and only if A =0, i.e. Agn =0,VE,1n € ['(kerm;-). On the other
hand, from l@i this is equivalent to 7/V§T] = 0. Here, using (]2.32[), (]2.33[), (]4.83[)

and (4.84)), we have

VgT[ = FV&FTI = F(V};BT] +V5Cn)
=BA¢BN +BAVCN+ 9V VeBn +9A:Cn

+CAgBN +CHVCN+ 0V VeBN + 0A:Cn. (4.108)

Taking the the vertical part of this equation, we get
VVen =@(VVeBN+AgCn)+B(AgBn + HVCn). (4.109)
Hence, our assertion follows. O]

With a similar method, we have that:
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Theorem 12. Let @ be a semi-invariant submersion from a l.p.R. manifold (M, g, F)
onto a Riemannian manifold (N,gy). Then, the vertical distribution kerm, defines a

totally geodesic foliation if and only if
o(VydV +TyoV) +C(Ty oV + #VyoV) =0 (4.110)
forallU,V €T'(kerm,).

Corollary 5. Let m be a semi-invariant submersion from a l.p.R. manifold (M,g,F)
onto a Riemannian manifold (N, gy). Then, M is a locally product Myerz, X My, 51 if
and only if(|2.107) and (F.]lﬁl) hold, where Myon, and M,z 1 are integral manifolds

of the distributions kerm, and kerm-, respectively.

It is well known that the vertical distribution kerm, defines a totally geodesic foliation
if and only if 7 = 0 and the horizontal distribution kerm;- defines a totally geodesic
foliation if and only if A = 0. On the other hand, we know that a Riemannian
submersion 7 : (M, g) — (N, gy) is totally geodesic if and only if both O’Neill’s tensors
T and A vanish [32]. Thus, by Theorem |l 1| and Theorem we have the following

result.

Theorem 13. Let m be a semi-invariant submersion from a Lp.R. manifold (M, g,F)

onto a Riemannian manifold (N,gy). Then, 7 is a totally geodesic map if and only if

and hold.

4.2.3 Semi-invariant submersions with totally umbilical fibers

Theorem 14. Let 7w be a proper semi-invariant submersion with totally umbilical fibers
from a L.p.R. manifold (M, g, F) onto a Riemannian manifold (N, gy). If dim(D*) > 1,

then the fibers of T are totally geodesic or the mean curvature vector field H belongs

to U.

Proof. The case that the fibers of 7 are totally geodesic is obvious. Let us consider the

other case. Since dim(D") > 1, then we can choose X,Y € I'(D*) such that the set

{X,Y} is orthonormal. By using (4.5), (2.28), (4.83) and (#.84), we have

TxFY + #VxFY = VxFY = FVxY = 0VxY + 0VxY + BTxY + CTxY (4.111)
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Hence, we obtain

g(TxFY,X) = g(¢VxY + BTxY,X). (4.112)

Here, using (2.28)) and (4.83)), we get

g(TxFY,X) = g(TxY,FX). (4.113)

Thus, using (4.22) and (4.113)), we find

g(H,FY) =g(TxX,FY) = —g(TxFY,X) = —g(TxFY,X)

— —g(TxY,FX) = —g(X,Y)g(H,FX) =0, (4.114)

since g(X,Y) = 0. So, we deduce that H | F D*. Therefore, it follows H € u from
4.74). O

Corollary 6. Let @ be a proper semi-invariant submersion with totally umbilical fibers
from a Lp.R. manifold (M, g, F) onto a Riemannian manifold (N, gy) . If kern} = FD*,
i.e. L= {0}, then the fibers of T are totally geodesic.

4.2.4 Semi-invariant submersions with parallel canonical structures

In this section, we study semi-invariant submersions from l.p.R. manifolds onto

Riemannian manifolds with parallel canonical structures.

Let 7 be semi-invariant submersion from a 1.p.R. manifold (M, g, F') onto a Riemannian

manifold (N, gy) . Then, we define

(Vuo)V =VyoV —oVyV, (4.115)
(Vyo)V = #VyoV —oVyV, (4.116)
(VuB)E = VyBE —BAVyE, (4.117)
(VyC)E = A VyCE —CHVYE, (4.118)

where U,V € I'(kerm,) and & € T'(kermy-).

We say that ¢ (resp. @, B or C) is parallel if V¢ =0 (resp. Vo =0, VB =0 or
VC =0).
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Lemma 11. Let  be a semi-invariant submersion with parallel canonical structures
from a Lp.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). Then for any
U,V € T'(kerm,) and & € T'(kerm,), we have

(Vy9)V = BTyV — Ty oV, (4.119)
(Vyw)V =CTyV — Ty 9V, (4.120)
(VuB)E = §Ty& — TyCE, (4.121)
(VUC)(: = (J)Tyé — TUBg. (4.122)

Proof. (@.119) follows from @.115) and @.85), @.120) follows from (4.116) and
(4.86), @.121)) follows from (@.117) and (4.89) and (@.122) follows from (@.118)) and
@-90). O

Theorem 15. Let @ be a semi-invariant submersion from a l.p.R. manifold (M, g, F)
onto a Riemannian manifold (N, gy). If ¢ is parallel, i.e. V§ = 0 then, the following

two facts hold:
Each leaf of the anti-invariant distribution Dt is totally geodesic. (4.123)

The fibres of T are mixed geodesic. (4.124)

Proof. Let ¢ be parallel. Then, for any X,Y € I'(D*), from (4.115) we have
OVxY =0, (4.125)

since Y = 0. By Lemma (b), it follows that VxY € DL, so we obtain 1} .
On the other hand, for any Z € I'(D) and X € I'(D*), from (4.119) we have

BT;zX = T,0X. (4.126)
Since wX = FX, from {.126), we get
B*T;X = BT;0X = T;0°X = TzX. (4.127)
But, using and Lemma [7}(c), we have
B*TzX = B*TxZ = BTxwZ = 0. (4.128)

From (#.127)) and @.128), we find 72X = 0 which proves (.124). O
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Theorem 16. Let w be a semi-invariant submersion from a l.p.R. manifold (M, g, F)

onto a Riemannian manifold (N,gy). If @ is parallel, i.e. V@ = 0O, then the following

three facts hold:
Each leaf of the invariant distribution D is totally geodesic.

The fibers of T are mixed geodesic.

Tyern. D= C FD*.

Proof. Let  be parallel. Then, for any U,Z € I'(D), from (4.116), we have

(4.129)

(4.130)

(4.131)

a)@UZ =0, since wZ =0. By Lemma(c), it follows that @UZ € D, so we get (4.129)).

On the other hand, for any Z € T'(D) and X € I'(D*), we have
CTxZ = Tx$Z
from (#.120). Since ¢Z = FZ, we get
C*TxZ = CTx9Z = CTx ¢>Z = Tx Z.
from (4.126). Hence, using (.3) and Lemma [7-(b), we obtain
C*TxZ = C*TzX = CTz9X.

Thus, the assertion (4.130)) follows from (4.133) and (4.134).
Now, take & € I'(i). Then, for any V € I'(kerm,), using (4.120)), we get

8(TvX,8) =g(FTvX,F&) =g(CTyX,FS) = g(Ty X ,F&) =0,
since U is invariant with respect to F, that is, we find

Thus, by (#.136) and (4.74), the assertion (4.131) follows.

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

O

Proposition 4. Let © be a semi-invariant submersion from a l.p.R. manifold (M, g, F)

onto a Riemannian manifold (N,gy). Then, ® is parallel if and only if B is parallel.

Proof. Let @ be parallel. For any U,V € I'(kerm,) and & € T'(kerm,-), using (2.32)

and (4.120)), we have

g(9TyE,V) =g(FTyE,V) = g(Ty&,9V) = —g(Ty ¢V, &) = —g(CTyV, &)
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—8(FTyV,¢) = —¢(TyV, F§) = —g(TyV,CS) = g(TuCs, V), (4.137)

that is; g(@Ty &, V) = g(TyCE, V). So, by (4.121)), we find B is parallel.

The converse can be calculated in a similar way. 0

4.2.5 First variational formula of a semi-invariant submersion

In this subsection, we investigate the first variational formula of a semi-invariant
submersion from a 1.p.R. manifold (M, g, F) onto a Riemannian manifold (N, gy). We

use the definitions which are given in Subsection {.1.1]
We start our study by investigating the conditions that under which a 1-form o is a

Legendre variation.

Lemma 12. Let & be a semi-invariant submersion from a Lp.R. manifold (M,g,F)

onto a Riemannian manifold (N,gy). The 1-form O¢ is a Legendre variation if and

only if
8(Tus,0V) —g(Tvs,9U) = g(AcU, 0V) — g(AsV, 0U) (4.138)

forallU,V €T (kerm,).

Proof. Let U,V € I'(kerm,). Then, by the definition of differential, (4.6) and (2.32),

we obtain

g(Fg,[U,V])

(dog)(U,V) =Ug(F&,V)—Vg(F§,U
( —g(&,FlU,V])

) —
=Ug(&,FV)—Vg )

,FU

—g(Ty&,0U) + g(AVyE, 0U). (4.139)
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Since we assume & is basic, we obtain
(dog)(U,V) =g(Ty&,9V) +g(A:U, @V)
—g(TV§,¢U)+g(A§V, oU). (4.140)
Thus, the assertion follows. ]

Lemma 13. For & € T'(u), oz =0.

Proof. Let & € T'(u). Then, FE € T'(u). For any V € I'(kerm,), we get
oz (V) = g(FE,V) =0. (4.141)
So, g =0, forall V € ['(kerm). O

Remark S. Because of Lemmal|l3| throughout this subsection, we can assume that H

belongs to T'(wD").

Proposition 5. Let T be a semi-invariant submersion from a l.p.R. manifold (M, g, F)

onto a Riemannian manifold (N,gy) and f be a smooth function on a fiber. Then,

F(grad(f)|gp:) € E.

Proof. Let f be a smooth function on a fiber. For & = F(grad(f)|,p.), and any

V € I'(kerm,), we obtain

oz (V) =g(F&.,V) =g(grad(f),V) =V[f]| =df (V). (4.142)
Thus, we get 6z =df,ie., & €E. O

Theorem 17. Let  be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M, g, F) onto a Riemannian manifold (N,gy). Then,

(a) The fiber m; Uis L — minimal if and only if oy is co-exact.

(b) The fiber T, Uis E — minimal if and only if oy is co-closed.

(¢) The fiber m, Uis H — minimal if and only if Oy is the sum of an exact and a co-exact

1-form.

Proof. (a) = : Let the fiber m ' be L — minimal, then for any & € L, we have
g(H,&) =0 from (4.56). By the definition of the Hodge star operator [31]], we have

G& /\GH<V17V2;-"7V/€) = g(§7H>*1(V17V27-“7Vk);
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for Vi, Vs, ..., Vi € I'(kerm,). From the definition of the global scalar product (.|.) [31]
on the module of all forms on the fiber, we get
(G& |GH) = / | O¢ Axog =0. (4.143)
Ty
Denote by 6 the codifferential operator [31]] on the fiber T, ! Since O¢ is closed, for

any 2-form f3 on 7!, we have

0= (doz|B) = (z|5B). (4.144)

Since T, s compact, by (14.143[) and (l4.144|), we conclude that oy is co-exact.

< : Suppose that oy is co-exact, we have oy = 6 ¥ for some 2-form . Then, for any
Eel,
(0glon) = (og|6y) = (dog|y) =0 (4.145)

and then
V(&) = [ glHE)1=—k [ (0 hson)=—kozlow) =0,
my n(q)

1.e. n;l i1s L — minimal.
(b) = : Let the fiber T, I ve E — minimal. Then, we have

0=V'(&)=—k [ g(&H)xl= —k/_l(cg A x0k) = —k(0¢ |on),

Ty Ty

that is, (og|oy) = 0. Since for § € E, o = df for some function f on the fiber n L.

q
Thus,
(df|on) = (fl6on) = 0.
Hence it follows that oy = 0, i.e. oy is co-closed.

< : Suppose that o is co-closed. Let & € E, then there exists a function f € F (nq’ h

such that oz = df. Hence, we have
(oglon) = (dflon) = (f|6on) = 0. (4.146)

Therefore,

V(E)=—k [ g(HExl=—k| (0fAx0n)=—k(olon)=0, (4.147)
g Ttq
thatis V'(£) =0 for & € E, ie. 7, ! is E— minimal.

(¢) = : If the fiber T, U'is H — minimal, then for & € H, we have

0=V'(&)=—k | g&H)xl=—k| (0fN*0n)=—k(ozlon). (4.148)

g oy
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It means that, o is orthogonal to harmonic 1-forms on the fiber 7, L. Thus, by the
Hodge decomposition theorem, we conclude that oy is the sum of an exact and a
co-exact 1-form.

< : Let oy be the sum of an exact 1-form @, such that w; = d f and a co-exact 1-form

@, such that @, = 8. For & € H, we have

(0¢lon) =(ogldf+6y) = (og|df) + (og|0Y)

=(60¢|f) + (dog|y) =0, (4.149)

since dog = 565 = 0. Thus,
V(E)=—k - g(E,H)x1 = —k/ﬂq_l (¢ Axoy) = —k(og |on), (4.150)
that is, the fiber is H — minimal. ]

If we give a restriction of Theorem |17, we have the following results.

Theorem 18. Let © be a semi-invariant submersion with compact fibers from a l.p.R.
manifold (M, g, F) onto a Riemannian manifold (N,gy). If H € L, then

(a) nq_l is I — minimal if and only if7rq_1 is minimal.

(b) ﬂ;l is £ —minimal if and only if oy is a harmonic variation.

(c) nq’l is H — minimal if and only if oy is an exact 1-form.

Proof. (a) If the fiber T, U'is I — minimal, then by Theorem (a) we have, oy is
co-exact. Hence oy is co-closed. Taking into account the fact that dog = 0, we
deduce that oy is harmonic. But this is a contradiction because of Hodge de Rham
decomposition theorem. So, oy must be zero. Hence we conclude that H = 0. The
converse is clear.

(b) = : If the fiber T, lis E — minimal, then we have 86y = 0 from Theorem (b).
Since doy = 0, oy is also harmonic, i.e. Aoy = 0.

< : If oy is harmonic, then oy is co-closed. By Theorem (b), the fiber T, lis
K — minimal.

(¢) = : Assume that T, 1'is H— minimal. Then, from Theorem (c), oy is the sum of
an exact 1-form and a co-exact 1-form. On the other hand, the condition H € IL implies

that oy is orthogonal to every co-exact 1-form on 7, ! Thus, oy must be exact.
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< : Let oy be an exact 1-form. For £ € H, we obtain

‘V@)z—kﬁqg@Jﬂ*L:—k (0 A *on)

u

=—k(oglon) = (o¢ldf) = (60¢|f) =0, (4.151)
that is, 77! is H — minimal. O

Remark 6. The method that considering the basis to investigate the harmonicity of a
submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.
Since a l.p.R. manifold is not always even dimensional, choosing a basis and using it is
not easy. On the other hand, it is well known that, the fibers of a submersion is minimal
if and only if the submersion is harmonic. Now, we give the following corollary which
is a new approach to investigate the harmonicity of a submersion. By Theorem[I8(a),

we have the following result.

Corollary 7. Let w be a semi-invariant submersion with compact fibers from a Lp.R.
manifold (M, g, F) onto a Riemannian manifold (N, gy). If H € L, then, Tt is harmonic

if and only ifﬂ:q’l is . — minimal.

Lemma 14. Let © be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M, g, F) onto a Riemannian manifold (N,gy). Then,
56]-1 =0« Zig(T¢EiEi7H) = _Zig(Aa)EfEi’H)a (4152)

where {E|,E»,...,Ep} is a local basis of kerT,.

Proof. By the definition of the co-differential of a 1-form, we have
56]-1 =0< Zig(VEiFH,El’) =0.
Here, we assume that H is basic. Then using (4.83)), and Remark[I], we get

= 50'H =0& Zig(VEiH,FE,') =0«& Z,g(VEiH, (PE,' + COE,')
= Zig(VEiH7 ¢El) + Zig(VEiHa (DEl)

= Y,g(Tg,H,9E;) +Xig(AnE;, wE;) = 0. (4.153)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensor A and T. ]
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4.3 Pointwise Semi-Slant Submersions

The notion of the pointwise slant submersion from almost Hermitian manifolds onto
Riemannian manifolds was first defined by Lee and Sahin [10]. In this section,
we construct on the idea of pointwise slant submersion and define a new type of

submersion which is called pointwise semi-slant submersion.

Definition 7. [/0] Let © be a Riemannian submersion from an almost Hermitian
manifold (M, g,J) onto a Riemannian manifold (N, gy). If, at each given point p € M,
the Wirtinger angle 0(V') between JV and the space (kerm.), is independent of the
choice of the non-zero vector V € (kerm,), then we say that & is a pointwise slant
submersion. In this case, the angle 6 can be regarded as a function on M, which is

called the slant function of the pointwise slant submersion.

Now, we define the pointwise semi-slant submersion.

Definition 8. Let (M, g, F) be a L.p.R. manifold and (N, gy) be a Riemannian manifold.
A Riemannian submersion ©t : (M,g,F) — (N,gy) is called a pointwise semi-slant

Riemannian submersion, if there is a distribution D C kerm, such that
kerm, =D®Dg, FD=D, (4.154)

where Dy is orthogonal complement of D in kerm, and the angle 0 = 0(X) between
FX and the space (Dg), is independent of the choice of non-zero vector X € I'((Dg) p)
for p € M, i.e. 0 is a function on M, which is called slant function of the pointwise

semi-slant submersion. We say that 1 is proper if the slant function is 6 # 0 and

0 #m/2.

Remark 7. From now on, in this section, instead of using the term “pointwise
semi-slant Riemannian submersion”, we will briefly use the term “pointwise semi-slant

submersion”.

In this case, for any V € I'(kerm, ), we have
V=PV 40V, (4.155)
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where PV € T'(D) and QV € I'(Dg).

For V € I'(kerm,), we have
FV =¢V+ oV, (4.156)

where ¢V € I'(kerm,) and @V € [(kerm}").

For & € I'(kerm,), we have
FE = BE +CE, (4.157)

where BE € I'(kerm,) and C& € I'(kerm}-).
For any E € I'(TM), we obtain

E=7VE+ JE, (4.158)

where ¥ E € I'(kerm,) and SZE € T'(kerny).

Therefore, the horizontal distribution (kerm, )= is decomposed as
kerm = @Dy @ U, (4.159)

where u is the orthogonal complementary distribution of WDy in (kerm;"), and it is
invariant with respect to F'.
Example. Consider the Euclidean 6-space R® with usual metric g. Define the almost

product structure F on (RS, g) by
Foy =0, Foh=0|, Fd3=04, Foy=03 Fds=0d5, Fds=—0s,

where 0; = %, i=1,---,6 and (x1,x2,- -+ ,Xx¢) are natural coordinates of R®. Now,

we define a map 7 : R — R3 by

Tc(xlv'“ ,X6) = (f17f2af3)7

where

fi = (X1 + (\/E— 1))62 — X3+ X4 +x6),

2 2
= ((x;) +(\/§—1)x2—(x;) + x4 —Xg),

fi = (+(V2=1)xy—x3—x3+xg), (4.160)

and x| # x3. Then, the Jacobian matrix of 7 is:

1 v2—-1 -1 1 0 1
x1 V2-1 —x3 1 0 —1 |. (4.161)
1 v2—-1 -1 -1 0 1
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Since the rank of this matrix is equaled to 3, the map 7 is a submersion. After some

calculations, we see that

kerm, = D® Dy, 4.162)
where
D = span{ds}, (4.163)
and
Do :span{%al—i—%az—{—%,)g&l x5}, (4.164)

1 X3

Moreover, the slant function of Dg is 0 = arccos(z R ). By direct calculation,

(x1)2+(x3)
we see that 7 satisfies the condition (S2) of the definition of Riemannian submersion.

Hence the map 7 is a proper pointwise semi-slant submersion with the slant function

0.
Using (2.28), (.156) and (@.157), we get the following useful facts.

Lemma 15. Let @ be a pointwise semi-slant submersion from a lLp.R. manifold

(M, g,F) onto a Riemannian manifold (N,gy). Then, we have

(@) 9>+Bo=1, (b)) wp+Cw=0,

(c)9)B+BC=0, (d)oB+C>=1,
where I is the identity operator on TM.
Proof. For any V € I'(kerm,), by (2.28)), we have
F*V=V. (4.165)

Using (@.156]) and (4.157)), we obtain

FV =V =F(FV)=F(¢V + V)= ¢*V + 0V +BoV +CaoV. (4.166)

If (4.166) is considered as decomposed into the vertical and horizontal parts, we obtain
the following: ¢>+ Bw = I and w¢ +Cw = 0.

(c) and (d) can be proved with the same method above. [l

By using (@.154)~(@.159), we get the following two results.

Lemma 16. Let @ be a pointwise semi-slant Riemannian submersion from a l.p.R.
manifold (M, g, F) onto a Riemannian manifold (N,gy). Then, we have
(a) ¢D=D (b) ¢Dy CDg (c) oD ={0}.
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Lemma 17. Let @ be a pointwise semi-slant Riemannian submersion from a l.p.R.

manifold (M, g,F) onto a Riemannian manifold (N, gy). Then, we have

(@ B(FDg)=Dy (b) Bu=1{0} (c) C(FDg)=wDg (d) Cu=p.

Now we investigate the effect of the almost product structure F on the O’Neill’s tensors
T and A of a pointwise semi-slant Riemannian submersion

w:(M,g,F)— (N,gy).

Lemma 18. Let w be a pointwise semi-slant submersion from a Lp.R. manifold

(M, g,F) onto a Riemannian manifold (N,gy). Then, we have

VoW + Ty oW = ¢VyW + BTy W, (4.167)
Ty oW + #Vy oW = oVyW +CTyW, (4.168)
VVeBN+A:CN = AN +BAVe, (4.169)

AeBN+AVCN = 0AeN +CH Ve, (4.170)

VyBE + TyCE = 9Ty & + BAVYE, (4.171)
TyBE + HVyCE = 0Ty E +CHAVYE, (4.172)
VVV +A: 0V = BA:V + 9V VeV, (4.173)
AV + AV 0V =CALV + 0V V:V, (4.174)

where V,W € I'(kerm,), and &, 1 € T(kerm;).

Proof. Forany V € ['(kerm,) and & € T'(kerm;-), using (2.33), we have
FVEV = V:ngV.

Hence, using (4.7), (4.8), .156) and (#.157)), we obtain

BAéV —I—CAgV + (])/VV&V + (D’VV&V = A,:q)V + "f/V§(])V —|—A§ oV —l—%Vg wV.
(4.175)
Taking the vertical and horizontal parts of this equation, we get and (4.174).
The other assertions can be obtained by using @.5)~#.8), (#.156) and @.157). O
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Proposition 6. Let w be a pointwise semi-slant submersion from a Lp.R. manifold

, g, onto a Kiemannian manifo y 8N )- en, we ootain
Mg, F Ri ] ifold (N Th btai
¢°X = cos’0X,

for X € T'(Dg), where 0 denotes the slant function.

Proof. For any non-zero X € I'(Dg) we can write following equations:

FX.0X X, 02X X
cosezg( ,(Z)):g( ¢ )andcosezm.
[FX||oX]| X|[¢X]| [FX|

Then, we obtain

X,0%X) |oX
COSzezg( 7¢ )|¢ |
IX|[¢X]| |FX]|

Therefore, we get the equality
g(cos’0X, X) = g(X,9°X),

which gives the assertion.

(4.176)

(4.177)

(4.178)

(4.179)

]

Remark 8. We easily observe that the converse of the Proposition|6]also holds.

Now we give a theorem for pointwise semi-slant submersions, which has similar idea

with the Theorem 4.2. in [33]].

Theorem 19. Let 7w be a Riemannian submersion from a L.p.R. manifold (M, g, F) onto

a Riemannian manifold (N,gy). Then, Tt is a proper pointwise semi-slant submersion

if and only if there exists a constant A € [0, 1] such that
(@D ={xeD|¢>X = AX},
(b) For anyX € T(TM), orthogonal to D', X = 0.

Moreover, in this case A = cos>0, where 0 denotes the slant function.

Proof. Letm: (M,g,F)— (N,gy) be a pointwise semi-slant submersion. Then,

A =cos?0 and D = Dg. By the definition of the pointwise semi-slant submersion,

X = 0, where X belongs to orthogonal complement of D.

Conversely, (a) and (b) imply that TM = D EBD,. Since ¢D, C D/, from (b), D is an

invariant distribution. Thus, 7 is a pointwise semi-slant submersion.
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4.3.1 Integrability of distributions

In this subsection, we investigate the integrability conditions for invariant and slant

distributions.

Theorem 20. Let © be a pointwise semi-slant Riemannian submersion from an almost
product Riemannian manifold (M,g,F) onto a Riemannian manifold (N,gy). Then,

the invariant distribution D is integrable if and only if

¢(VyW —VyV) €D (4.180)
for V,\W € T'(D).
Proof. For V,W € I'(D) and X € I'(Dg), we know [V,W] € D if and only if F[V,W| €
D. Then, by (4.156) we obtain,

—g(F(TyW +VyW — TV — Vi V), X)

=g(¢(VyW — Vy V), X). (4.181)

Thus, [V,W] € D if and only if ¢(VyW — Vy V) € D. O

In a similar way, we get the following theorem.

Theorem 21. Let © be a pointwise semi-slant Riemannian submersion from an almost
product Riemannian manifold (M, g,F) onto a Riemannian manifold (N,gy). Then,

the slant distribution Dy is integrable if and only if
¢(VxY —VyX) € Dy
for X,Y € T'(Dy).
If we consider the total manifold 1.p.R. instead of almost product Riemannian, we
obtain the following results.

Lemma 19. Let w be a proper pointwise semi-slant submersion from a l.p.R. manifold
(M, g,F) onto a Riemannian manifold (N,gy). Then, we have the following:
g(VyW,X) = csc?0{g(TyW,0¢X) + g(Ty oW, »X)}, (4.182)
g(VxY,V) = csc?0{g(Txw¢Y,V)+g(TxoY,pV)}, (4.183)
where 0 is the slant function, V,.W € I'(D) and X,Y € T'(Dy).
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Proof. Let V.W € I'(D) and X,Y € I'(Dg). Then, by using (2.32) and (4.156), we

obtain

g(VyW.X) =g(VvFW,FX)

=g(VvW,0°X) +g(Vy W, 09 X) + g(Vv oW, 0X). (4.184)

If we regard (4.176), {@.5) and (@.6) for the last expression, we get the following
equality

= (1—cos?0)g(VyW,X) = g(TyW, 09X ) + g(Ty 0 X, 0X). (4.185)

Thus, we obtain the first assertion.

For the second equation we apply the same idea. Let X,Y € I'(Dy) and V € I'(D).
Then by using (2.32)) and (#.156)), we get

g(VXY, V) :g(VXFY, FV)
=g(Vx9Y,FV)+g(Vx@Y,FV)

=g(Vx02Y,V)+g(Vx0oY,V)+g(VxwY,FV). (4.186)
If we consider (4.176),(.5) and (4.6) with the last equation, we get the following

g(VxY,V) =g(Vx(cos’0)Y,V) +g(Vx¢Y,V) + g(VxoY,FV)
—g(—(sin20)(X0)Y,V) + g(cos> OVyxY, V) + g(Tx @9Y, V)

+g(Ty @Y, §V). (4.187)
Therefore, since g(—(sin20)(X0)Y,V) = 0, we get the assertion. O

Theorem 22. Let 7w be a proper pointwise semi-slant submersion from a L.p.R. manifold
(M, g,F) onto a Riemannian manifold (N,gy). Then, the invariant distribution D is

integrable if and only if
g(TyoW — Ty oV, 0X) =0 (4.188)

forV.W €I'(D) and X € I'(Dg).
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Proof. Let V,W € I'(D) and X € I'(Dg). Then, by Lemma[19)and (4.3), we have

g([va W],X) :g(VVW,X) - g(VWV,X)
=csc? 0{g(TyW, 09X )+ g(Ty oW, 0X)
—8(TwV, 09X) +g(Tw oV, 0X )}

=csc? 0{g(Ty oW, wX) — g(Tiw oV, wX)}. (4.189)

Therefore, D is integrable if and only if g(Ty ¢W — Ty ¢V, wX) = 0. O

In the same way, we examine the slant distribution.

Theorem 23. Let  be a proper pointwise semi-slant submersion from a l.p.R. manifold
(M,g,F) onto a Riemannian manifold (N,gy). Then, the slant distribution Dy is

integrable if and only if
g(TXa)¢Y—Ty(D¢X,V) :g(Tya)X—Tx(DY,¢V) (4190)

forX,Y € T'(Dg) and V € I'(Dy).

Proof. LetX,Y € I'(Dg) and V € T'(D). By using Lemma 19} we obtain

g([X,Y],V) :CSC2 G{g(TXw¢Y7V) —f—g(TX(DY, ¢V>
—e(Tyw¢X V) +g(TywX,¢V)}. (4.191)

Thus, slant distribution Dy is integrable if and only if
g(TXw¢Y—Tyw¢X,V):g(Tya)X—TXa)Y,q)V). L]

4.3.2 Totally geodesicness of the fibers

Now, we focus on the geometry of the fibers and the distributions that is mentioned in

the definition of a pointwise semi-slant submersion.

Proposition 7. Let w be a pointwise semi-slant submersion from a Lp.R. manifold
(M,g,F) onto a Riemannian manifold (N, gy). Then, kerm, defines a totally geodesic
foliation if and only if

C(Ty oW + 4 VyoW) + o(Vy oW + Ty oW) =0 (4.192)

forV.W e I'(kerm,).
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Proof. For V,W € T'(kerm,), by using (4.5), (4.6) and (4.156), we get
VyW =FVyFW = F(Vv¢W + Vva)W)
—=F(Ty oW + Vy oW + Ty oW + 2 Vy oW)
=BTy oW +CTy oW + ¢Vy oW + oVy oW
+ 0Ty oW + 0Ty ®W + BFVy oW + CHVy oW. (4.193)
Therefore, kerm, defines a totally geodesic foliation if and only if
C(Ty oW + 2 VyoW) + o(Vy oW + Ty oW) = 0. O

Proposition 8. Let w be a pointwise semi-slant submersion from a Lp.R. manifold
(M, g,F) onto a Riemannian manifold (N,g,). Then, kerr;- defines a totally geodesic

foliation if and only if
B(AéBn +¢%”V§Cn)+¢(7/V§Bn —|—A§CT1) =0 (4.194)

for &,m € T(kerm;:).
Proof. This proof can be done using the techniques of the proof of Proposition|[/|. [

In the view of Proposition [7]and Proposition 8] we obtain the following result.

Corollary 8. Let w be a pointwise semi-slant submersion from a lLp.R. manifold

(M,g,F) onto a Riemannian manifold (N, gy). Then, M is a locally product Mye,r, X
My, if and only if (@) and hold, where Myern, and My,,,\ are integral

manifolds of the distributions kerm, and kerm}, respectively.

Proposition 9. Let w be a pointwise semi-slant submersion from a Lp.R. manifold
(M,g,F) onto a Riemannian manifold (N,gy). Then, the invariant distribution D

defines a totally geodesic foliation on kerm, if and only if for U,V € T'(D),

O(BTy ¢V + ¢Vy¢V) =0 and (CTy9V + oVyoV) = 0. (4.195)

Proof. For U,V € I'(D), from (4.5), (4.6), (4.156) and (4.157) we obtain
VuV =FVyFV = F(VyoV +VyoWw)
=F(VyoV) = F(Ty¢V +VyoV)
=BTy ¢V +CTy ¢V + oVy oV + oVyoV. (4.196)

Therefore, we obtain the assertion. [l
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Proposition 10. Let @ be a pointwise semi-slant submersion from a l.p.R. manifold
(M, g,F) onto a Riemannian manifold (N, gy). Then, the slant distribution Dg defines

a totally geodesic foliation on kerm, if and only if for

X,Y eT(Dg),
P(B(Tx 9Y + #VxoY)+¢(Tx oY +VxoY)) =0 (4.197)
and
o(Vx9Y +Tx oY)+ C(Tx Y + #VxoY) = 0. (4.198)
Proof. The argument is the same as the proof of Proposition [9] [

By Proposition [9]and Proposition [[0] we have the following result.

Corollary 9. Let w be a pointwise semi-slant submersion from a Lp.R. manifold

(M, g,F) onto a Riemannian manifold (N,gy). Then, the vertical distribution ker,

is a locally product Mp x Mp, if and only if (#.195), and hold, where

Mp and Mp, are intergral manifolds of D and Dy, respectively.

Theorem 24. Let w be a pointwise semi-slant submersion from a Lp.R. manifold

(M,g,F) onto a Riemannian manifold (N,gy). Then, 7 is a totally geodesic map if

and only if
o (Vy oW + Ty @W)+C(Ty ¢W + ' Vy W) =0 (4.199)
and
o(VyBE + TyCE)+C(Ty BE + ' VyCE) =0 (4.200)

for V.W € I'(kerm,) and & € T'(kerm-).
Proof. Since 7 is a Riemannian submersion, we have

(Vm)(E,n) =0, for&,n e F(kem’f).
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For V,W € I'(kerm,), we obtain

(V) (V,W) = V{ (W) — . VyW
=—n.(FVyFW)=—n.(F(VyoW + VyoW)
= — 1 (F(Ty oW + Vy oW + Ty oW + ' Vy W)
= — 1, (BTy W +CTy oW + ¢Vy oW + oVy oW
+0Ty oW + 0Ty ©W + BAVy oW + CHVy W)
= — 1, (CTy oW + oVy oW + 0Ty oW + CHVy oW). (4.201)
Thus,

(Vi) (V,W) =0 o(VyoW + Ty oW ) +C(Ty oW + ' Vy oW ) = 0.

By a similar way above, for V € I'(kerm,) and & € I'(kerm,-), we get

(Vr)(V,E) =0 < o(VyBE + Ty CE) + C(Ty BE + ' VyCE) = 0.

4.3.3 Parallel canonical structures and totally umbilical case of the fibers

Let 7 be a pointwise semi-slant submersion from a l.p.R. manifold (M,g,F) onto a

Riemannian manifold (N, g,) . We can define

(Vud)V =VyoV —oVyV, (4.202)
(Vyo)V = A VyoV —oVyV, (4.203)
(VuB)E = VyBE —BAVyE, (4.204)
(VyC)& = A VyCE —CHVYE, (4.205)

where U,V € I'(kerm,) and & € T'(kermy-).
We say that ¢ (resp. @, B or C) is parallel if V¢ =0 (resp. Vo =0, VB =0 or

VC =0).

Lemma 20. Let @ be a pointwise semi-slant submersion with parallel canonical
structures from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). Then
forany U,V € T(kerm,) and & € T'(kerm;-), we have

(VU(P)V =BTyV — Ty oV, (4.206)
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(VUO))V =CTyV — Tu¢V, 4.207)

(VuB)E = ¢Ty & — Ty CE, (4.208)
(VUC)é = OJTUg - TUBé. (4209)
Proof. All of the equations follow from Lemma [I8 and (4.202)~(#4.203). 0

Theorem 25. Let  be a proper pointwise semi-slant submersion with totally umbilical
fibers from a Lp.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). If
dim(Dg) > 2 and ¢ is parallel, then the fibers of T are totally geodesic or the mean

curvature vector field H belongs to [L.

Proof. The case of totally geodesic fibers is obvious. Let us assume the other case.

Since dim(Dg) > 2, then we can choose X,Y € I'(Dg) such that the set {X, Y} is

orthonormal. By using (2.32)), (2.33), @.156)), (4.157), (4.5)) and (4.6)), we have

VxFY =FVyxY (4.210)
Vx oY +VxoY =F (TxY + VxY) (4.211)

Tx @Y +Vx oY + Tx Y + ' VxoY =BTxY +CIxY + ¢VxY + oVyxY. (4.212)

Therefore, we obtain

g(Vx oY +TxoY,X) =g(BTxY + ¢VxY,X) (4.213)
g(0VxY —Vx oY, X) =g(Tx®Y — BIxY,X) (4.214)
g((Vx9)Y,X) =g(FTxY — TxFY,X). (4.215)

Since ¢ is parallel, we get
g(FTIxY,X) = g(TxFY,X). (4.216)

Thus, using (4.22)) and @.216]), we have

g(H,FY) =g(TxX,FY) = —g(TxFY,X) = —g(FTxY,X)

= —g(TxY,FX) = —g(X,Y)g(H,FX) =0, 4.217)

since g(X,Y) = 0. So, we deduce that H 1. wDgy. Therefore, it follows H € u from

(@.159). O
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Corollary 10. Let m be a proper pointwise semi-slant submersion with totally
umbilical fibers from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N, gy) .
If (kerm,)* = Dy, i.e. 1= {0} and ¢ is parallel, then the fibers of ™ are totally

geodesic.

Theorem 26. Let T be a proper pointwise semi-slant submersion from a l.p.R. manifold
(M, g,F) onto a Riemannian manifold (N, gy). If @ is parallel, i.e. V@ = 0, then the

fibers of T are mixed geodesic.

Proof. Let m be parallel, then for any U,V € I'(kerm,) from (@.207), we have
CTyV = Ty ¢V. (4.218)
Using (4.218]), we obtain
C*TyV =Ty ¢*V. (4.219)
IfweputU =W €T'(D) and V =X € I'(Dyg) in and using (4.176)), we get
C* Ty X = cos* 0Ty X. (4.220)

On the other hand, using the symmetry property of 7 on I'(kerm,) and (.218), we

have
C*TywX = CPTxW = Tx 0°W = Tx W, (4.221)
that is
C*TwX = TxW. (4.222)

Since submersion 7 is proper, from (.220)) and (@.222)), it follows that

IxW =0. (4.223)

[]
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4.3.4 The first variational formula of a pointwise semi-slant submersion

In this section, we give a different approach to check whether a pointwise semi-slant
submersion is harmonic. We use the definitions from Subsection for pointwise

semi-slant submersions.
Now, we investigate the conditions under which the 1-form o is a Legendre variation.

Lemma 21. Let w be a pointwise semi-slant submersion from a Lp.R. manifold
(M,g,F) onto a Riemannian manifold (N,gy). The 1-form o is a Legendre variation
if and only if

forallU,V €T '(kerm,).

Proof. Let U,V be in kerm,. Then, by the definition of differential, (4.6) and (2.32),

we obtain

(dog)(U,V) =Ug(FG,V) —Vg(Fe,U) —g(F&,[U,V])

Va(

=Ug(c,FV)—Vg(¢,FU) —g(5, FIU,V])
=8(Vus,FV)+8(§,VyFV)

—8(Vv&,FU) — (&,

—8(8,FVyV)+g(8,.FVvU)

=8(VuS, oV + V) —g(Vve,oU + oU)

=8(Vu&, V) +2(Vué, V)

—8(Vv&,9U) +5(VvE, 0U)

=g(Ty&,9V) +8(H'Vu&, wV)

—8(Iv&.9U) +g(H#Vv S, 0U). (4.225)

Since we assume & is basic, we have

(dog)(U,V) =¢(Tu&,9V) +8(AeU, 0V)
—g(TvE,9U) +g(AsV,0U). (4.226)

Thus, the assertion follows. ]
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Lemma 22. For & € T'(u), oz =0.

Proof. Let& e T'(u). Then, FE € T(u). For any V € T'(kerm,), we get
0x(V) = g(FE,V) = 0. 4.227)
So, g =0, forall V € ['(kerm,). O

Remark 9. Because of Lemma 22| throughout this subsection, we can assume that H

belongs to I'(wDg).

Proposition 11. Let w be a pointwise semi-slant submersion from a l.p.R. manifold
(M, g,F) onto a Riemannian manifold (N, gy) and f be a smooth function on a fiber.
Then, F(grad(f)|wp,) € E.

Proof. Let f be a smooth function on a fiber. For § = F(grad(f)|wp,), and any V €

I'(kerm,), we obtain

0z (V) =¢(F&,V) = g(grad(f),V) =VI[f]|=df(V). (4.228)
Thus, we get 6z =df,ie. § € E. O

Theorem 27. Let T be a pointwise semi-slant submersion with compact fibers from a
L.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). Then,

(a) The fiber 7rq_1 is I — minimal if and only if oy is co-exact.

(b) The fiber T, Vis E — minimal if and only if oy is co-closed.

(¢) The fiber m, Uis H — minimal if and only if oy is the sum of an exact and a co-exact

1-form.

Proof. (a) = : Let the fiber 7~ Uis I — minimal, then for any & € L, we have
g(H,&) =0 from (4.56). By the definition of the Hodge star operator [31]], we have

og N\ oy (Vi,Va, ... Vi) = g(&,H)x1(V, Vs, ... Vi), (4.229)

for V1, Va,..., Vi € I'(kerm,). From the definition of the global scalar product (.|.) (see

[31]]) on the module of all forms on the fiber, we get

(ox|o) = /1 Gs A%y =0, (4.230)
TT

q
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Denote by 6 the codifferential operator [31]] on the fiber T, ! Since O¢ is closed, for

any 2-form 3 on 71, we have

0= (dog|B) = (0¢|5). 4.231)

Since 7, I'is compact, by (]4.230[) and (I4.231|) we conclude that oy is co-exact. <= :

Suppose that oy is co-exact, we have oy = oy for some 2-form y. Then, for any
Eel,
(oz|on) = (og|6y) = (dog|y) =0 (4.232)

and then

V(&) =k [ g(HE)x1 =k [ (0 Axou) = ~k(ozlow) =0, (4233
g n1(q)

ie. ﬂq_l is I — minimal.

(b) = : Let the fiber T, ! be E — minimal. Then, we have

0=V(&)=—k [ gl H)xl=—k| (0zA*0u)=—k(ct|on),
Ty Ty
that is, (0¢|on) = 0. Since § € E, oz = df for some function f on the fiber 71:[1*1.
Thus,

(df|on) = (f|6on) =0. (4.234)

Hence it follows that oy = 0, i.e. oy is co-closed.
< : Suppose that oy is co-closed. Let £ € E, then there exists a function f € .% (nq’ D)

such that oz = df. Hence, we have

(Gg ’GH) = (df|GH) = (f|5(7H) =0. (4.235)

Therefore,

V(&) =k [ g(H.Ex1=—k / (0¢ Awoy) = —k(0g|own) =0, (4.236)
g g
thatis V'(£) =0 for & € E, i.e. 7, ! is E— minimal.
(¢) = : If the fiber T, Uis H — minimal, then for & € H, we have
0=V (&) =—k

Tty

8(8,H)x1=—k | (0oz Axoy) = —k(og|on).  (4.237)
Tq
It means that, oy is orthogonal to harmonic 1-forms on the fiber 7, . Thus, by the

Hodge decomposition theorem [31]], we conclude that o is the sum of an exact and a
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co-exact 1-form.
< : Let oy be the sum of an exact 1-form @, such that w; = df and a co-exact 1-form

@, such that @, = dy. For & € H, we have

(oglon) =(ogldf+0y) = (ogldf) + (og[Sw)

=(60¢|f) + (dog|y) =0, (4.238)

since dog = 565 = 0. Thus,
V(&)= —k/nq_l (& H)el =~k [ (0 Avou) = —K(oglow), (4239
that is, the fiber is H — minimal. [l

Theorem 28. Let T be a pointwise semi-slant submersion with compact fibers from a
L.p.R. manifold (M, g,F) onto a Riemannian manifold (N, gy). If H € L, then

(a) 717,]_1 is I — minimal if and only ifﬂtq_1 is minimal.

(b) 7rq_1 is E — minimal if and only if 6y is a harmonic variation.

(c) 7rq*1 is H — minimal if and only if oy is an exact 1-form.

Proof. (a) If the fiber T, Uis L — minimal, then by Theorem (a) we have, oy is
co-exact. Hence oy is co-closed. Taking into account the fact that doy = 0, we deduce
that oy is harmonic. But this is a contradiction because of Hodge decomposition
theorem [31]]. So, oy must be zero. Hence we conclude that H = 0. The converse is
clear.

(b) = : If the fiber T, 'is E — minimal, then we have 86y = 0 from Theorem (b).
Since doy = 0, oy is also harmonic, i.e. Aoy = 0.

< : If oy is harmonic, then oy is co-closed. By Theorem (b), the fiber T, Lis
E — minimal.

(¢) = : Assume that T, 1'is H— minimal. Then, from Theorem (c), oy is the sum of
an exact 1-form and a co-exact 1-form. On the other hand, the condition H € I implies
that oy is orthogonal to every co-exact 1-form on 7, !, Thus, o must be exact.

<« : Let oy be an exact 1-form. For £ € H, we obtain

V(&) =—k [ g(&.H)x1= —k/ﬂl(crg A #0w)

Ty

=—k(ogloy) = (o¢ldf) = (60¢|f) =0, (4.240)

that is, 7, ! is H — minimal. O
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Remark 10. The method that considering the basis to investigate the harmonicity of a
submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.
Since a l.p.R. manifold is not always even dimensional, choosing a basis and using
it is not easy. On the other hand, it is well known that, the fibers of a submersion is
minimal if and only if the submersion is harmonic. Now, we give a new approach for
harmonicity of a pointwise semi-slant submersion. By Theorem [28}(a), we obtain the

following result.

Corollary 11. Let m be a pointwise semi-slant submersion with compact fibers from
a Lp.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). If H € L, then T is

harmonic if and only if7rq_1 is I — minimal.

Lemma 23. Let © be a pointwise semi-slant submersion with compact fibers from a

L.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gy). Then,
5(7[-1 =0 E,'g(Tq;E,.Ei,H) = Eig(Aa)EiEiaH)7 (4241)
where {E|,E»,...,Ep} is a local basis of Dyg.

Proof.
561-] =0& El'g(VEiFH,El') =0. (4.242)

Using (2.33),
= 60[1 =0 @Zig(VEiH,FE,‘) ~ Z,'g(VEiH, (PE,' + O)E,')
=Yig(VeH, 9E;) + Lig(VEH, OF;)
:Z,’g(TEiH, (Z)El) + Z,’g(AHEi, (DE,'). (4.243)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensors A and T'. ]

4.4 Generic Submersions

This section is the main part of our thesis. Until this section, we improved our
knowledge about invariant, anti-invariant and pointwise slant distributions. And now,
we construct a generalization for the Riemannian submersions and study on it. We

define generic submersion from Kaehler manifolds onto Riemannian manifolds.
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Let M be an almost Hermitian manifold with Riemannian metric g and almost complex
structure J, and M be a Riemannian manifold isometrically immersed in M. For any
V eT(TM), we write

JV=PV+FV, (4.244)

where PV € T(TM) and FV € T(TM™). By (3.1) and (4.244), we have

g(P*U,V) = g(U,P?V) for all U,V € T'(TM). It means that P? is symmetric operator
on the tangent space T,M, p € M. Therefore its eigenvalues are real and diagonalizable.
Moreover, its eigenvalues are in the closed interval [—1,0]. For each point p € M, we

may set

D} = ker{P*+ A*(p)I}, (4.245)

where [ is the identity transformation and A (p) belongs to the closed real interval [0, 1]
such that —A2(p) is an eigenvalue of Pg. Since P? is symmetric and diagonalizable,
there is some integer k such that —A2(p),—A3(p),...,—AZ(p) are distinct eigenvalues
of P? and T,M can be decomposed as the direct sum of the mutually orthogonal

P—invariant eigenspaces, i.e.
_ nh Ao Ak
T)\M =D ©D @ ... & D~ (4.246)

Note that DII, = kerF), and D?, = kerP,. Here D}n is the maximal J—invariant subspace
of T,M and Dg is the maximal anti—J—invariant subspace of T,,M.
Ronsse defined the generic and skew CR-submanifolds of an almost Hermitian

manifold as follows [18]].

Definition 9. [/8] A submanifold M of an almost Hermitian manifold M is called a
generic submanifold of M if there are k functions Ay, Ay, ..., A defined on M with values

in the open interval (0,1) such that the following two conditions hold:

° —112, e —7Lkz are distinct eigenvalues of P> at p € M with
T,M =D, ® D@ DN oD & ... @D, (4.247)
where D}, = kerF), D?, = kerP, and Df;i = ker(P* + A2 (p)I), i € 1,k,

e the dimensions of D},,DS,D;” , ...,D%" are independent of p € M.

Moreover, if each A; is constant, then M is called a skew CR-submanifold.
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It is seen that, the distributions Dg, D}, and Df}" in Definition @ state the same idea with
totally real, holomorphic [|34]] and pointwise slant distribution [35]], respectively.

Note that, such submanifolds were also studied by Tripathi [36]] for generalized
complex space forms.

We construct a new type of submersion, which is generalization of all kinds of

submersions, by considering the idea of Ronsse [18].

Definition 10. Let (M, J, g) be an almost Hermitian manifold, (N,gy) be a Riemannian
manifold and w: (M,J,g) — (N,gn) be a Riemannian submersion. Then, we say that
T is a generic submersion if the fibers of the submersion T are generic submanifold (in

the sense of Ronsse [|I8]) of M.

Remark 11. 7o be more clear, in this thesis generic submersion means generic

submersion in the sense of Ronsse.

In this case, there are k functions A1, A,, ..., A; defined on the fibers with values in the

open interval (0, 1) such that kerm, is decomposed as
kerm,=D'®D°®D" @ D2 & ... DM, (4.248)

where D! is invariant, D is anti-invariant, D% is pointwise slant distribution with slant
function 6; and —)Liz is a distinct eigenvalue of P? for each i = 1, k.

If each A; is a constant for i = 1,k, then 7 is called a skew CR-submersion.

Remark 12. Each distribution D% has the slant function 6; for i = 1,k. Since for
any unit vector Z; € T(D*), g(PZ;,JZ;) = g(PZ;,PZ;) = 67 it is known that —A? =

—co0s26;. From now on, to avoid confusion, we denote the distributions D% by Db for

i=1,k

In the view of Remark the decomposition of ker 7, can be written as follows:
kerm, =D' D’ ® D% & D% ¢ ... o D% (4.249)

where D! is invariant, DV is anti-invariant, D% is pointwise slant distribution with slant
function 6; for i = ﬁ
Let 7 be a generic submersion from an almost Hermitian manifold (M,g,J) onto a

Riemannian manifold (N, gy). Then, for V € I'(kerm, ), we set

JV =PV L+ FV, (4.250)
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where PV € I'(kerm,) and FV € I'(kerm,). Also, for & € T'(kermy-), we put

JE =tE+ fE, (4.251)

where t& € T'(kerm,) and f€ € T'(kerm;-). Therefore, the horizontal distribution kerm;-

can be decomposed as
kermi =D'aD’®D% D% o ... @ D%, (4.252)
where D' = Ker(t), D = Ker(f), FD® = D% and tD® = D®, 6 € {6,,6,...,6;}.

Remark 13. By defining generic submersion, we give a generalization for submersions
from an almost Hermitian manifold onto a Riemannian submersion. Here are the some
generalizations:

A generic submersion from an almost Hermitian manifold becomes

e an anti-invariant submersion [6] if k = 0 and D' = {0},

e a semi-invariant submersion [|7] if k = 0,

e a hemi-slant submersion [11] if D' = {0} and k = 1 (8y is constant),

e a proper slant submersion [9] if D' = {0}, D° = {0} and k = 1 (8 is constant),
e a proper semi-slant submersion [37] if D = {0} and k =1 (6y is constant),

e a proper pointwise slant submersion [10] if D' = {0}, D’ = {0} and k = 1,

Example 5. Let R® be 8-dimensional Euclidean space. We choose Kaehler structure
on R8. Namely, (R®,g,J) is a Kaehler manifold with Eucliedan metric g on R® and

canonical complex structure J. Consider the map

7 : R® — R3 defined by
(X0 Xg) = (%,xz, x5) (4.253)

Then, the Jacobian matrix of T is:

1 1

EOO—WOOOO

0O 10 0 0O0O0O0 (4.254)
0O 00 O 1000



Since the rank of this matrix is equal to 3, the map T is a submersion. By direct

calculation, we observe that

kerm, = D' & D° & D® (4.255)
where
D! :span{87,38} (4.256)
D° :span{aﬁ} (4.257)
(4.258)
and
D% = span{ \%(a. +9,),0, } (4.259)

Moreover, the slant function of D? is 6 = %. After some calculations, we see that

7 satisfies the condition (S2), which is in the definition of Riemannian submersion.

Therefore, the map 7 is a skew CR-submersion with the constant slant function 6.

Example 6. Let R*6 pe (4k + 6)-dimensional Euclidean space. We choose the
usual Kaehler structure on R¥*+6_ Namely, (R4k+6, g,J) is a Kaehler manifold with

Euclidean metric g on R**® and canonical complex structure J. Consider the map

7 R¥H6 s RZKH3 defined by

X +x
fi= '\/52,
X; + X
f= 3\@5,
=t

fi = cos(x;) — sin(xy,),
fs =Xy,

(4.260)
Jaiva = €08(xy ) — sin(xy 1),

f21+3 = X4it4,

Soir = COS(x4k+3) - Sin(x4k+6)7
kaH = Xkt 45
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where X, ., # X4;,4 for i # j. Since the Jacobian matrix of T is of rank 2k + 3, the map

T is a submersion. After some calculations, for i = 1,k we see that

kerm, =D'@D°® D% & D% ¢ ... D%, (4.261)

where,
D! :span{X L Catayr=Lcat aﬁ)}, (4.262)

V2 V2
1
Do :span{V - %(_al n az)} (4.263)
and

D% = Span{zi = - Sin(x4i+3) Oui s +C03<x4i+6) Oyiroy Wi = a4i+5}' (4.264)

Moreover, the slant function of the pointwise slant distribution D% is
0, =xy.,, fori= ﬁc By direct calculation, we observe that T satisties condition (S2).

Hence the map 7 is a generic submersion.

Example 7. Let R'0 be 10-dimensional Euclidean space. Define the map

n:R'9— R as follows

(4.265)

Xs + X X7+ X x8+x10)
V2NV V2 )

Then the map T is a generic submersion with slant function 0 = x, such that

(X, X ey Xpg) = (cosx, —sinx,, x,,

kerm., = D' @D’ @ D% (4.266)
where
D' =s an{X—L(—3 +0,) Y—L(—Q +0 )} (4.267)
- p - \/i 7 9)s - \/5 8 10 9 .
D° :span{V = %(—aﬁaﬁ)} (4.268)
and

Do = span{Z — —sin(x,) d, +cos(x,) d,, W = 83}. (4.269)

We give some useful identities, which are obtained by means of the definition of

generic submersion and the complex structure of Kaehler manifold.
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Lemma 24. Let @ be a generic submersion from an almost Hermitian manifold

(M, g,J) onto a Riemannian manifold (N,gy). Then we have,
(@) PP+tF=—1, (b) FP+ fF=0,

(c) Pt+1f =0, (d) Fr+f>=—I,

where I is the identity operator on TM.

Proof. All the identities could be obtain by simple calculations with the help of (3.1)),
(3.2), @.250) and @.251). ]

If we consider some vector fields specific in Lemma which are involved in the

definition of generic submanifold, we get the following Corollary.

Corollary 12. Let w be a generic submersion from an almost Hermitian manifold

(M, g,J) onto a Riemannian manifold (N,gy). Then we have

(a) P°X = —X, (b) tFZ; = —sin’6,Z;,
(¢c) FPX =0, (d) fFU =0,
(e) tFU = —U, (f) P°Zi+1FZ; = —Z,

(¢) FPZi+ fFZ: =0,  (h) P*Z = —cos26,Z,

where X ¢ T(D'), U € T'(D), Z;,W; € (DY) fori = 1,k.

By considering the decomposition of kerr, and kerm;- with the equations (#.250) and
(4.25T), we obtain the following Lemma.

Lemma 25. Let @ be a generic submersion from an almost Hermitian manifold

(M, g,J) onto a Riemannian manifold (N,gy). Then, for i = 1,k we have

pp'=p', pPD’={0}, PD%C DY, (4.270)
D’ c D’ tD'={0}, D% C DY (4.271)
fp%cp®  fp°={0}, fD'=D' (4.272)
FD'={0}. (4.273)
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From now on, we will focus on the generic submersions whose total manifolds are
Kaehler manifolds. We start by examining the effect of the complex structure J on the

O’Neill tensor fields 7 and A and get a lot of results.

Lemma 26. Let © be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then, we obtain

tTg,Ey+PVp Ey = Ty FE,+ Vg, PEy, (4.274)
fTg,Es+FVg Ey = Tg PEy+Apg,El, (4.275)
Veté +TpfE = PTpE +1A¢E, (4.276)
Tpté +ApE = FTpE + fA¢E, (4.277)

where E E1,E, € T(kerm,) and & € T(kerm;).

Proof. By the definition of a Kaehler manifold, for any E1, E; € I'(kerm,), we have
JVi By = Vi JEs. (4.278)
With the help of and (@.250), we get
= J(Tg,Ey + Vi, Ey) = Vi, PEy + Vi, FE,. (4.279)
Now, by @.3), (.6), @.250) and (4.25T)), we obtain

= 1T, Es+ fTg, Ey+ PV, Es+ FVg Ey = Tz PEy+ Vi, PE>

+ TEIFE2+%VE1FE2. (4.280)

In the view of Remark I} by separating the last equation into the horizontal and vertical

parts, we obtain the assertions and (.275). To get and (4.277), the
same idea should be applied. ]

Now, we give remarkable lemmas which are equivalent to Gauss and Weingarten

equations for generic submersions.

Lemma 27. Let 0 be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N, gy). Then, we have the following equations

g(VXY, Z,') = CSCZG,'g<TyFPZ,' — prFZ,',X), (4281)
g(VxY,U) = —g(Tpy FU, X), (4.282)
g(VxU,Y) =g(TpyFU,X), (4.283)

where XY € T(D'), U € T'(D) and Z; € T(D?%) for i =1,k.
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Proof. Let X,Y € T'(D') and Z; € T(DY%) for i = 1,k. From (.1, (3.2), #.250) and
Lemma [25] we have

g(VXY,Zi) = g(VXJY,JZ,’)

= g(VXJY, PZ,‘) + g(VXJY, FZ,‘)

= —g(VxY,P*2))—g(VxY,FPZ)+g(VxPY,FZ). (4.284)

Then, by Corollary [12]and (.5)), we get (4.28T))

g(VXy,Zi) = —g(VXY, —COSZQZ'Z,') —g(TXy,FPZi) +g(TXpY, FZ,')
= sin’0,g(VxY,Z;) = g(TxPY,FZ;) — g(TxY,FPZ;)

= g(VxY,Z) = csc?0,g(TyFPZ; — Tpy FZ;, X). (4.285)

To prove (4.282), let X,Y € ['(D') and U € T(D?). By (3.1), (3.2), (4.250), Proposition
and the properties of 7', we prove the following

— g(TxPY,FU) = —g(TpyFU,X). (4.286)

Finally, for the assertion (4.283)), we could apply the similar idea which is used above.
L]

Lemma 28. Let w0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then, we have

g(VuV,X) = g(Tpx FV,U), (4.287)
8(VuV,Z)) = csc®6; [g(ApvU,FZ;) — g(TyV.FPZ)), (4.288)
g(VuX,Z) = csc?6;g(TxFPZ; — Tpx FZ;,U), (4.289)

where X € T(D'), U,V € T(D®) and Z; € T(D?) for i = 1,k.

Proof. LetX € [(D') and U,V € (D). Then, by Lemma[25] JV = FV and JX = PX.

So, by (3.1) and (3.2)) we obtain
g(VyV,X) =g(VyFV,PX). (4.290)
If we consider (4.5)) and the properties of the tensor 7', we get

8(VuV.X) = g(TpxFV,U). (4.291)
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To obtain , assume that U,V € T'(D°) and Z; € T(D?%) for i = 1,k. If we use
G.1), (3.2), @#.250), @.5), @.6), Lemma [25]and the properties of the tensor T' with the
fact that F'V can be considered basic, then we get
e(Vuv,z)) = g(VyJdV,JZ))
= g(VuJV,PZ;)+g(VuyJV,FZ;)
= —g(VyV,P*2) —g(VyV,FPZ;)+g(VyFV,FZ)

= g(VyV,cos?6,Z;)) — g(TyV,FPZ) + g(AVyFV,FZ;) (4.292)

= (1—cos’6)g(VyV,Z) = g(ApyU,FZ;) — g(TyV,FPZ;)

= sin’0;g(VyV,Z) = —g(ArvFZ;,U) + g(Ty FPZ;,U). (4.293)

Thus, we obtain (4.288). To get (4.289), we use the same idea with the proof of
(#.288). O

Lemma 29. Let © be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N, gy). Then, we obtain

g(Vz Wi, X) = —csc6; g(Tpx FW; — Tx fPW;, Z;), (4.294)
g(VZW,,U) = —csc?0,g(Ty FPW; + Apw, FU, Z;), (4.295)
8(VzW;,Z;) = csc®0ig(Tpz, FW; — Tz, F PW; — Apw,F Z;,Z;), (4.296)

where X € T(D'), U € T(D°), Z;,W; e T(D%) and Z; € T(DY%) (i # j) i,j = 1,k.

Proof. Let X € T(D') and Z;,W; € T'(D%) for i = 1,k so g(W;,X) = 0. From (3.1)),
(3.2), (.6), {@.250), Corollary [12]and @.270), we have

g(VzWi,X) = g(VzJW;,JX)
= g(Vz,PW;,JX)+g(VzFW,;,JX)
= —g(VzJPW;,X)+ g(Tz,FW;, PX)
= —8(VZP°W;, X) — g(Vz,FPW,X) + g(Tz,FW;, PX)
= &(Vz(cos*OW:),X) — g(Tz,F PW, X)) + g(Tz,F Wi, PX)
= —g(sin26;(Z;6,)W;, X) + cos*0,g(VZW;, X)
— g(TzFPW,;,X)+ g(Tz,FW;,PX)
= cos?0,g(VzW;, X)+ g(Tz FW;, PX) — g(Tz.PX, FW;). (4.297)
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= (1—c0s’6,)g(VzW;,X) = g(T7,FW;,PX) — g(Tz.PX,FW;). (4.298)

So, we obtain (4.294). To obtain (#.295) and (4.296)), the same method can be used.
]

4.4.1 Integrability of distributions

In this subsection, some conditions are given for the integrability of distributions which
are mentioned in the definition of generic submersion. First, we give some helpful

lemmas.

Lemma 30. Let w0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then, we obtain

g(AF‘/FZi,U> = g(AFUFZi,V) (4299)
for U,V € T'(D®) and Z; € T(DY) fori = 1,k.
Proof. For U,V € F(DO) and Z; € F(Dei ), if we consider (3.1)), (3.2), 1i 1|
Lemma 25| and skew-symmetry property of tensor A, we get

g(AFyFZ,V) = —g(AFZl.FU,V) = —g(VFZiFU,V) — —g(VFZl.JU,V)
= g(VFZI.U,JV) = g(VjZiU,FV) = g(AFZiU,FV)
= —g(AFZiFV,U) = g(AFUFZi,V). (4300)

]

Lemma 31. Let w be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then we obtain
g(TpxFV,U) :g(TpxFU,V) (4301)
forU,V € T'(D®) and X € T'(D").
Proof. For U,V € T(D®) and X € T'(D"), if we consider 3.1), (3.2), (4.5), (4.6),
Lemma [25]and the properties of 7', we have
g(TpxFV,U) = —g(TpxU,FV) = —g(VpxU,JV) = g(VpxJU,V)
= g(VpxFU,V) = g(Tpx FU,V). (4302)
O
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We examine the integrability of the distributions D°, D' and D% for i = 1,k. Since
the second fundamental form of the fibers of a generic submersions is 7" and the fibers

of submersions are CR-submanifolds, following conclusions could be obtained from

Lemma 1.1 of [[18]].

Theorem 29. Let 0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, g,). Then, D° is always integrable.

Proof. Let X € T(D"), U,V € T(D°) and Z; € T'(D%) for i = 1,k. With the help of
#.287), (.288) Lemma [30|and Lemma [3T| we get the assertion as in the following:

g([U,V],X) = g<VUVaX) _g(VVU7X>
=g(TpxFV,U) —g(TpxFU,V) =0
g([U,V],Z) = g(VuV,Z;) — g(VvU,Z)

= CSCzei{g(TvFPZi —AF\/FZ,',U) —g(TUFPZ,' —AFUFZ,',V)}

= csc?0{g(ApvFZi,U) — g(ApyFZi,V)} = 0. (4.303)
O

Theorem 30. Let w be a generic submersion from a Kaehler manifold (M, g,J) onto
a Riemannian manifold (N,gy). Then, D' is integrable if and only if the following two

conditions hold:

g(prX - Tpr,FU) = O, (4304)

g(prX — Tpr, FZ,') =0 (4305)

forX,Y e T(D"), U e T(D®) and Z; € T(D?%) for i = 1,k.

Proof. Let X,Y ¢ T'(D"), U € T'(D®) and Z; € T'(D%) for i = 1,k. Then, by #@282)

and the properties of tensor field 7', we get

g([X7Y],U) :g(VXYaU) _g<VYX7U)
— —g(prFU,X)—l—g(TpxFU,Y)

= g(TpyX —TpxY,FU). (4.306)
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So, we obtain the first condition. For the second condition, we apply the same idea; by

(4.281)) and the properties of tensor field 7', we get

g([X7Y]7Zi) = g<VXY72i) _g(VYXaZi)
= CSCZOi{g(TyFPZi - prFZl',X) - g(TxFPZi — TpxFZ,',Y)}
= csc*0i{g(TpxFZ;,Y) — g(TpyFZi,X)}

= csc?0;{g(TpyX — TpxY,FZ;)}. (4.307)
Therefore we have the assertion. O]

Theorem 31. Let & be a generic submersion from a Kaehler manifold (M,g,J) onto
a Riemannian manifold (N, gy). Then, DY for each i = 1,k is integrable if and only if

the following three conditions hold:

g(TpxF‘/Vi — TxFPVVi,Z,') == g(TpxFZi — TxFPZi, VV,) (4308)
g(TUFP‘/Vl' —|—AFV[/iFU7Z,') = g(TUFPZl' —f—AFZiFU,VV,') (4.309)
g(TPZjFVVi—TZjFPm—AFV‘/iFZJ’,Zi) (4310)

= g(TPZjFZi == TZjFPZl' —AFZI.FZ]‘,VVZ')

for X e (DY), U e T(D), Z;,W; € T(D%) and Z; e T(D%),(i # j) i, j = 1,k.

Proof. LetX € [(D"), U e T(DY), Z;,W; € T(D%) and Z; € T(D%),(i # j) i,j = 1,k.
By (4.294), (4.295)), (4.296) and Remark[I] we get following three equalities

g([Zi,W],.X) = g(VzW,X)—g(VwZ;,X)
= csc?0;{g(Tpx FW; — TxFPW;, Z;)

— g(TpxFZ; — TxFPZ;,W;) }. (4.311)

g([Zl7vVl]7U) = g(VZ,‘/VlvU)_g<VVV,Zl7U)
= —osc?0,{g(TyFPW; +Apw,FU,Z)

— TyFPZi+ApzFU,W;)} (4.312)

= osc?6;{g(Tpz, FW; — Tz, FPW; — Apw,F Z;,Z;)
— 8(Tpz;FZi— Tz, FPZi — Apz,FZ;,W;)}. (4.313)
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So, with the help of last three equalities, we conclude that DY is integrable if and only

if (4.308)~(@.310) hold. [

4.4.2 Totally geodesicness of the fibers

We investigate the geometry of the fibers for a generic submersion. Some conditions

are given for totally geodesicness.

Theorem 32. Let &t be a generic submersion from a Kaehler manifold (M,g,J) onto
a Riemannian manifold (N,gy). Then, the vertical distribution kerm, defines a totally

geodesic foliation if and only if
f(Tg, PEy + App,E\ ) + F (Vg PEy 4+ Tg, FE) = 0 (4.314)

for E1,E; € T'(kerm,).

Proof. Let E| and E; be in kerm,. By (3.1), (3.2), @-3), (4.6), and (4.251)), we

have

VE]EZ = —JVE]JEz = —J(VE] PE, + VEI FEz)
= —J(Tg,PEy + Vg, PEy + Tg, FEy + /' Vg, FEy)
— — fTg,PEy — tTg, PEy — PV, PEy — FV g, PE,

— PTg,FEy — FTg, FEy — t. Vg, FEy — f Vi FEy. 4.315)

kerm, defines a totally geodesic foliation if and only if the horizontal part of the last

equation vanishes so we obtain the assertion. O]

Remark 14. By and , Ag =0 for any horizontal vector field &. That means,
the integrability and totally geodesicness of the horizontal distribution kerm;- are equal

to each other.

Theorem 33. Let 0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N,g,). Then, kern;- is totally geodesic (integrable) if and only
if
tAgtn + Ve fn) +P(V'Vetn +Agfn) =0 (4.316)

for &,m € T(kerm).
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Corollary 13. Let & be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gy). Then, M is a locally product Mye,z, X Miorr 1 if and
only if (]2_3’77[) and (]2_3’73[) hold, where Myeyr, and My, are integral manifolds of

the distributions kerm, and kerm-, respectively.

It is known that the horizontal distribution (kerm, )" defines a totally geodesic foliation
if and only if A = 0. Also kerm, defines a totally geodesic foliation if and only if 7 = 0.
On the other hand, we know that a Riemannian submersion 7 : (M,g) — (N,gn) is
totally geodesic if and only if both O’Neill tensors 7 and A vanish, [32]]. Thus, by
Theorem [32]and Theorem [33] we have the following result.

Corollary 14. Let 0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N,gy). Then, T is a totally geodesic map if and only if (4.314)
and hold.

Theorem 34. Let & be a generic submersion from a Kaehler manifold (M,g,J) onto
a Riemannian manifold (N,gy). Then, the invariant distribution D' defines a totally
geodesic foliation on ker . if and only if the following two facts hold:
g(TpyFU,X) =0, (4.317)
g(TyFPZi—TPyFZ,’,X) = O, (4.318)

where XY € T(D"), U € T(D®) and Z; € T(D?%) fori = 1,k.

Proof. LetX,Y ¢ I'(D'), U € T(D°) and Z; € T'(D?%). Then, by @281) and #.282)
g(VxY,U) = g(VxY,U) = —g(TpyFU,X), (4.319)
g(VxY,Z) = g(VxY,Z)

= csc?0,{g(TyFPZ — TpyFZ;,X)}. (4.320)

So, we obtain the assertion. [

Theorem 35. Let w0 be a generic submersion from a Kaehler manifold (M, g,J) onto a
Riemannian manifold (N, gy). Then, the anti-invariant distribution D° defines a totally
geodesic foliation on ker 7, if and only if the following two conditions hold:
g(TpxFV,U) =0, (4.321)
g(TvFPZi—AvaZi,U) = O, (4322)
where U,V € T(D%), X € T'(D') and Z; € T(D%) fori =1,k
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Proof. Let U,V € T'(D°), X € T(D") and Z; € T(D%) for i = 1,k. By and
(4.288)), we obtain
g(VuV,X) = g(VyV,X) = g(Tpx FV,U), (4.323)
g(VuV,z)) = g(VuV,Z;)
= csc?6;{g(TyFPZi— ApyFZ;,U)}. (4.324)
Therefore, we get the assertion. ]

Theorem 36. Let T be a generic submersion from a Kaehler manifold (M,g,J) onto
a Riemannian manifold (N,gy). Then, the pointwise slant distribution DY defines a

totally geodesic foliation on ker i, if and only if the following conditions hold:

g(Tpx FW; — Tx FPW;,Z;) =0, (4.325)
g(Ty FPW; —l—AFWl.FU,Zl') =0, (4.326)
g(TPZ_,«F"Vi—TZjFPW/i—AFV[/iFZj,Zi) =0, (4.327)

where X € T(D'), U e T(D°), Z;,W; e T(D%) and Z; e T(DY%), (i # j)i,j=1,

bl

Proof. LetX € (DY), U e (DY), Z;,W; € T(D%) and Z; € T(D%),(i # j) i,j = 1,k.
If we use the equations (#.294) ~ ([@.296)), we get

g(ﬁzi‘/Vi,X) = g(VZiVViaX)
= csc?0,g(Tpx FW; — Ty FPW;, Z;), (4.328)

g(@zivVi, U) = g(VZiVVia U)

— csc?0;g(Ty FPW; 4+ Apw.FU, Z;), (4.329)
and
e(Vz Wi, Z;) = g(V2 Wi, Z;)
= csc®0;g(Tpz, FW; — Tz, F PW; — Apw,F Z;,Z;). (4.330)
So, we obtain the assertion. [l

Corollary 15. Let 7 be a generic submersion from a Kaehler manifold (M, g,J) onto a
Riemannian manifold (N, gy). Then, the vertical distribution kerm, is a locally product
Mp1 X Mpo X Mpe, X ... X My, if and only if (.317), {.318), ({.321), {.322), ({.325),
(#.326) and {@.327) hold, where My, Mpo and My, are integral manifolds of the

distributions D',D° and D® fori= m, respectively.
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4.4.3 Totally umbilical case of fibers

Theorem 37. Let w be a generic submersion from a Kaehler manifold (M, g,J) onto
a Riemannian manifold (N, gy). If the fibers of T are totally umbilical, then D° = {0}
ordimD® =1 or H L D°. Moreover, if D% is parallel along to kerm, for i =1,k, then

He D'

Proof. If D = {0} or dimD = 1, then the result is obvious. So, consider the case

dimD° > 1. Let U and V be vector fields in DY such that g(U,V) = 0 and
|U|| = |IV|| = 1. Then, by 3-1), (3:2), @-3), (#-22) and Corollary [12}(e), we get

g(H,JU)=¢(H,FU)=g(TyV,FU) = g(VyV,FU)
—¢(VyJV,JFU) = g(VyFV,tFU) = g(TyU,FV)

=g(V,U)g(H,FV)=0. (4.331)

ie. H1LD. Now, suppose that DY is parallel along to kerm, i.e. Vkem*Qef e DY
Let Z; be any vector field in D% for i = 1,k, E be any vector field in kerm, such that
|E|| = 1. Then, with the help of (@.6) and (@.22)), we obtain

§(H,FZ;) = g(TgE FZ;) = —g(TgFZ;,E)

— —g(VgFZi,E) =0. (4.332)

i.e. HLD®. Therefore, H € D'. O

Thus, we reach the following result.

Corollary 16. Let & be a generic submersion from a Kaehler manifold (M,g,J) with
totally umbilical fibers onto a Riemannian manifold (N,g,). If D' = {0} and D% is

parallel along to kerm,, then the fibers are minimal.

4.4.4 Parallel canonical structures

In this section, we study on parallel canonical structures and give some remarkable
results for a generic submersion.

Let 7 be a generic submersion from a Kaehler manifold (M, g,J) onto a Riemannian
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manifold (N, gy). Then we define

(Vg,P)E; = Vg,PEy—PVg Ey, (4.333)
(Ve,F)Ey = Vg, FEy—FVg E, (4.334)
(Ve )é = Vg ité—1HVEE, (4.335)
(VE, )§ = HVE fE—fHVEE, (4.336)

where E1,E; € T'(kerm,) and & € T'(kerm;-). Then, we say that if VP = 0, then P is
parallel,

if VF =0, then F is parallel,

if Vi =0, then ¢ is parallel,

if Vf =0, then f is parallel.

Lemma 32. Let © be a generic submersion from a Kaehler manifold (M,g,J) onto a
Riemannian manifold (N,gy). Then for any E1,E; € T'(kerm,) and & € T'(kerm;t), we

obtain

(Ve,P)Ey = tTg Ey—Tg FEy, (4.337)
(Ve,F)Ey = fTg Ey—Tg PEy, (4.338)
(V)6 = PTp, & —Tg, fE, (4.339)
(Ve f)§ = FTg & —Tgts. (4.340)

Proof. Obviously, it can be seen that using the equations (4.274)), @#.273), (@.276]) and
(4.277) can be proven by (4.337), (4.338), (4.339) and (4.340), respectively. [l

Now, with the help of parallel canonical structures we obtain some results.

Theorem 38. Let 0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then, we have the following:

If tis parallel, then Tyepz D° 1 D', (4.341)
Iffis parallel, then Tyerz, D' L D, (4.342)
If P is parallel, then Tyepz D' L D, (4.343)
If F is parallel, then Tkem*DO L Ql, (4.344)
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Proof. Lett be parallel. Then, for & € I'(DY) and E; € I'(kerm.) from (#.339) we have
PTg, & = Tg, f€. Since, for & € T'(DP), f€ =0, we obtain PTg, & = 0. Therefore, for
X e (D" by (3.1), (3.2) and [@#.273)), we get

g(TE1€7X) = g(JTE1€7JX)

= g(PTg, &, PX)=0. (4.345)

So, we get (4.341).
Let f be parallel. Then, for & € I'(D') and E; € I'(kerr,) from [@#.340) we have
FTg & = Tg,tE. Since, for & € (D), t€ =0, we get FTg, & = 0. Thus, for V € I'(DY)

by (3.1)), (3.2) and (4.270), we obtain

g(TE1§7V) = g(JTE1§7JV)

= g(FTg &, FV)=0. (4.346)

That means Tkem*Ql 1 DY
Assume that P is parallel. Then, for E; € y(kerm,) and X € I'(D') from we
have 1T, X = Tg, FX. Since, for X € (D), FX =0, we obtain tTg, X = 0. Therefore,

for JU € T'(D°) by (3.1)) and (3.2)), we get

g(Tg, X, JU) = —g(JTgX,U)
= (1T, X,U) =0 (4.347)
Hence, (4.343) is obtained.
Assume that F is parallel. Then, for E; € T'(kerr,) and U € T'(D°) from #338) we
get fTg, U = Tg, PU. Since, for U € F(DO), PU =0, we have fTg,U = 0. Thus, for
& eT(D") by (B-1) and (3-2), we have

g(TE1U7§) = g<JTE1U’Jé:)

= g(fTgU,J&)=0. (4.348)
S0, Trern, D' L D'. O
We observe that there is a relation between paralellism of F and ¢. The following
lemma establishes that relationship.

Theorem 39. Let 0 be a generic submersion from a Kaehler manifold (M, g,J) onto a

Riemannian manifold (N, gy). Then, F is parallel if and only if t is parallel.
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Proof. Let E1,E, € T'(kerm,) and & € I'(kerm;"). Assume that F is parallel. Then,
from (.338) we have fTg E> = Tg, PE>. By using (3.1), (3.2) and the properties of

tensor field 7', we get

g(PTElgaE2) - g(JTElngZ):_g(TElgv‘]EZ)

= _g(TElgvPEz) = g<TE1PE27§)~ (4.349)

Since fTg, E» = Tk, PE;, with the help of (3.1, (3.2) and the properties of tensor field

T, we have

= g(PTg, 8, E2) = g(fTg Ex, &) = g(JTg Ea, &)
= —g(Tg E2,JE) = —g(Tg, Ea, f§)

= g(Tg, f&.Er). (4.350)

= g(PTg, &, Ey) = g(Tg, f&, Ey) for any E; € T'(kerm,.). (4.351)

Thus, PTg, & = Tg, f§. From (4.339) that means 7 is parallel. Similarly, the converse
follows. [

In the view of Theorem [35] we obtain the following result.

Corollary 17. Let &t be a generic submersion from a Kaehler manifold (M,g,J) onto
a Riemannian manifold (N,g,) with parallel canonical structure P. Then, DV is totally

geodesic.

Proof. Let P be parallel. Then, by (4.287), we have
g(TpxFV,U) = g(VyV,X) (4.352)
for U,V € I'(D') and X € T'(D). Using B3-1), (3.2)., and (4.333) , we obtain
= g(TpxFV,U) = g(VyPV,PX). (4.353)
Since, PV = 0 for any V € I'(D), we find
g(TpxFV,U) = 0. (4.354)
On the other hand, with the help of {.288), we have

g(TvFPZi —AvaZi, U) = sinzeig(@UV, Zi) (4355)
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for U,V € T'(D°) and Z; € T(D%) for i = 1,k. Then, by using (3.1), (3.2) and (#250),

we get
= sin’0;g(VyV,Z;) = sin®0;{g(PVyV,PZ) + g(FVyV,FZ)} (4.356)

By @.333), (¢.251) and (4.270) we have

= sin’0;g(VyV,Z;) = —sin’0,g(VyV,tFZ;). (4.357)
Finally, from Corollary [I2}(b), we obtain
= sin0,g(VyV, Z;) = sin*0,¢(VyV, Z) (4.358)

= (sin?6; — sin*6;)g(Vy V, Z;) = 0. (4.359)

Since, (sin2 0; — sin* ;) = $in6; cos? 6; # 0, and we have
g(TyFPZ — ApyFZ;,U) = sin®0;g(VyV, Z;) = 0. (4.360)

O]

By Theorem [35] we get the following result.

Corollary 18. Let w be a generic submersion from a Kaehler manifold (M, g,J) onto
a Riemannian manifold (N, g, ) with parallel canonical structure F. Then, D" is totally

geodesic.

Proof. Let F be parallel. Then, by (4.282)), we obtain
g(TpyFU,X) = —g(VxY,U) (4.361)
for X,Y € T(D') and U € T'(D). Using (3.1), (3.2) and [#.250), we get
= g(TpyFU,X) = —g(FVxY,FU). (4.362)

Thus, by (4.334)), we have
g(prFU,X) =0. (4363)

Otherwise, with the help of (4.281]), we have
g(TyFPZ;—TpyFZ;, X ) = sin®0g(VxY, Z;) (4.364)
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where X,Y € T'(D") and Z; € T'(D%) for i = 1,k. By (3.1)), (3.2) and (#250), we get
= sin’0;g(VxY,Z) = sin?0;{g(PVxY,PZ) + g(FVxY,FZ)}. (4.365)
From (4.334)), we obtain
= sin’0;g(VxY,Z) = sin’6;g(JVxY, PZ;). (4.366)
And from (3.1) and (3.2)), we get
= sin’0g(VxY,Z) = —sin’0g(VxY, P’Z)). (4.367)
So, with the help of Corollary [[2}(h), we have
= sin’0,g(VxY,Z;) = sin’6;cos>0;g(VxY,Z;) (4.368)
= (sin’6; — sin’6;cos’6;)g(VxY, Z;) = 0. (4.369)
Since, (sin2 0, — sin’ 6; cos> 0;) = sin* 0; # 0, and we have
g(TyFPZ; — TpyFZ;, X) = sin*6;g(VxY,Z;) = 0. (4.370)

[]

In the case of parallelism of F', we obtain the following results.

Theorem 40. Let 7w be a generic submersion from a Kaehler manifold (M,g,J) onto a
Riemannian manifold (N, gy) with parallel canonical structure F. Then, for i # j, the

followings hold:

the fibers are D°—D'" mixed geodesic (4.371)
and
the fibers are D% — DO mixed geodesic. (4.372)

Proof. Let F be parallel. Then, for X € T'(D') and U € T'(D°) from (#338), we have
FTyX = Ty PX. (4.373)

By and Corollary [I2}(a), we get

FIyX = f(TyPX) = TyP*’X = —TyX. (4.374)
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On the other hand, from and (4.373), we have
fPTyX = f*TxU = f(TxPU) = 0. (4.375)

Then, with the help of (4.374)) and {.373)), we obtain Ty X = 0. It means that the fibers

are D' —D'mixed geodesic.

At this time, for Z; € [(D%) and Z; € T(D%) (i # j) i,j = 1,k, from [#.338), we have
fT7Z; = T4,PZ;. (4.376)
By and Corollary [[2}(h), we get
P T4.Z; = f(IzPZj) = Tz P*Z; = —cos*0,Tz,Z;. (4.377)
Otherwise, from (4.376) and Corollary @-(h), we obtain
PT2; = f*T5,Z; = f(T3,PZ) = Tz, P*Z; = —cos* 6Ty, Z;. (4.378)

Thus, with the help of (#.377) and (@.378), we have

szZ[Zj = —COSZGJ‘TZ[ZJ' = — COSzeiTZjZi (4.379)

= (cos6; — cos?6;)Tz,Z; = 0. (4.380)

Since, for (i # j), i, j = 1,k, cos?8; # cos>6;, we have Tz,Z; = 0. It means that the

fibers are D% — D% mixed geodesic. [
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S. CONCLUSIONS

This thesis is based on to giving a generalization for Riemannian submersions whose
total manifolds are Kaehlerian and base manifolds are Riemannian. Thus, as a
generalization we define the generic submersion. In future, the curvature relations
between total manifold, base manifold and fibers of a generic submersion can be
investigated. It is an open area to study. Furthermore, this type of submersion
can be studied for Weyl manifolds and a new concept, which can be called as
“Weyl submersion”, can be defined. Moreover, in the contact geometry the generic

submersion can be studied.

Also, for the total manifold of a generic submersion, the following problem can be
studied: “under what conditions the total manifold can be Einstein space”. On the other
hand, it is known that all these theory of submersion have a relation with Mathematical
Physics. Especially, the following question can be answered: “What is the relation of
a generic submersion with Mathematical Physics?”. Finally, the theory of submersion
has a relation with statistical machine learning processes, which is popular area in the
world. Generic submersion and statistical machine learning process relation can be

investigated.
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