




ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

GENERIC SUBMERSIONS

Ph.D. THESIS

Cem SAYAR

Department of Mathematical Engineering

Mathematical Engineering Programme

AUGUST 2019





ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

GENERIC SUBMERSIONS

Ph.D. THESIS

Cem SAYAR
(509132051)

Department of Mathematical Engineering

Mathematical Engineering Programme

Thesis Advisor: Prof. Dr. Fatma ÖZDEMİR
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GENERIC SUBMERSIONS

SUMMARY

The theory of Riemannian submersion is an area in differential geometry that gives a
chance to compare the geometries of two manifolds with a smooth map between them.
In this sense, many kinds of Riemannian submersions are defined and studied. In this
thesis, we establish a generalization of the theory of submersion step by step.

In the first chapter, the purpose of the thesis, the literature of the theory of submersion
and the hypothesis of the thesis are given. Some studies in this area are given. The aim
of the study is mentioned.

In the second chapter, the fundamental definitions, equations and theorems on
Riemannian geometry are introduced. A brief information on Riemannian manifolds
is considered. The concept of distribution is discussed. We give some basic definitions
and theorems on distributions. Finally in this chapter, we give some essential
knowledge about almost product structure and classification of the manifolds with
respect to almost product structure, that is, almost product Riemannian manifolds and
locally product Riemannian manifolds.

In the third chapter, the complex manifolds are summarized. After giving the definition
of an almost complex structure, the classification of the almost complex manifolds with
respect to the almost complex structure are mentioned. Some classes of the almost
complex manifolds are introduced. Also, the inclusion relations between complex
manifolds are given.

In the fourth chapter, which is the main part of the thesis, Riemannian submersion
concept, which is defined by O’Neill, is mentioned. The notion of a fiber, which is a
crucial point in the theory of submersion, is introduced. To study and understand the
geometry of the fibers, O’Neill tensors A and T also their some properties are given.
Furthermore, some fundamental definitions, equations and theorems are introduced
about the theory of Riemannian submersion.

After giving the concepts about Riemannian submersion, first we study on
anti-invariant submersion and Lagrangian submersion, which is a particular case of an
anti-invariant submersion, by taking the total manifold as a locally product Riemannian
manifold. In this case, we prove that for a Lagrangian submersion the fibers are always
totally geodesic. Moreover, we define the first variational formula of an anti-invariant
submersion. By means of that form, we give a new approach to investigate whether the
fibers of the submersion are harmonic or not.

Next, we study on semi-invariant submersion by taking the total manifold as a locally
product Riemannian. In the present case, an example is given for semi-invariant
submersion. Also, we prove some decomposition lemmas. The integrability conditions
of the distributions for a semi-invariant submersion are investigated. Moreover, we
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investigate the geometry of the fibers of a semi-invariant submersion and we study the
totally geodesicness of the fibers. After, we consider the fibers totally umbilical and
obtain some results. The canonical structures are considered parallel and we get certain
results about relation between canonical structures and the geometry of the fibers.
Furthermore, we define the first variational formula of a semi-invariant submersion.
By the virtue of that formula, we give a new idea to investigate whether the fibers of
the submersion are harmonic or not.

Later, we define a new type of submersion, which is called pointwise semi-slant
submersion by considering the total manifold as a locally product Riemannian. We
give an example for a pointwise semi-slant submersion. Some decomposition theorems
are obtained. Integrability of the distributions are investigated that mentioned in the
definition of the pointwise semi-slant submersion. The geometry of the fibers are
examined and some results are obtained. The canonical structures and the fibers
of the pointwise semi-slant submersion are considered parallel and totally umbilical,
respectively, and some consequences are found. Moreover, the first variational formula
of a pointwise semi-slant submersion is defined and it is given that a new view to
understanding in which conditions the fibers are harmonic.

Finally, the generic submersion (in the sense of Ronsse) is defined, which is the
generalization of the all kind of submersions. We study generic submersion by taking
the total manifold Kaehler and give some examples for a generic submersion. Also,
we give some decomposition theorems and some equations, which have same meaning
with Gauss and Weingarten equations in the theory of submanifold, to use in the proofs.
The integrability and the totally geodesicness of the distributions, which are mentioned
in the definition of the generic submersion, are investigated. By taking the fibers as
totally umbilical, we give some results and get a corollary for the minimality of the
fibers. We think the canonical structures parallel and obtain some outstanding results.

In future, it is estimated that the curvature relations between total manifold, base
manifold and fibers of a generic submersion can be investigated. Also, for the total
manifold of a generic submersion, the following problem can be studied: “in which
conditions the total manifold can be Einstein space?”. On the other hand, it is known
that all these theory of submersion have a relation with Physics. Especially, the
following question can be answered: “What is the relation of a generic submersion with
Physics?”. Finally, the theory of submersion has a relation with statistical machine
learning processes, which is popular area in the world. Generic submersion and
statistical machine learning process relation can be investigated.

xviii



KAPSAMLI SUBMERSİYONLAR

ÖZET

Diferansiyel geometride submersiyon teorisi, iki manifoldun geometrisini, aralarında
tanımlanan düzgün bir dönüşüm yardımıyla, karşılaştırma şansı sunan bir alandır.
Bu bağlamda literatürde, çok sayıda submersiyon çeşidi tanımlandı ve çalışıldı.
Verilen bir submersiyon için lifler kaynak manifoldun alt manifoldu olduğundan, alt
manifold teorisindeki yaklaşımların bir çoğundan faydalanarak submersiyon teorisinde
ilerlemeler kaydedilmiştir. Biz ise, bu çalışmada, alt manifold teorisinde var olan
yaklaşımları da kullanarak, submersiyon teorisi için adım adım bir genelleme inşa
ediyoruz.

İlk bölümde, alt manifold teorisi ve submersiyon teorisi arasındaki ilişkiden
bahsedilmiş olup, literatürde submersiyon teorisi ile alakalı kronolojik olarak elde
edilen gelişmelere yer verilmiştir. Kaynak manifoldun seçimine bağlı olarak (kontakt
manifold, hemen hemen kompleks manifold v.b.) tanımlanan submersiyon tiplerinden
bahsedilmiş olup, çalışmalar refere edilmiştir. Ayrıca, bu tezin hipotezi ve amacı da
anlatılmıştır.

İkinci bölümde, Riemann geometrisindeki temel tanımlar, denklemler ve teoremler
tanıtılmıştır. Riemann manifoldları hakkında kısaca bilgiler verilmiştir. Distribüsyon
kavramı hakkında tezde kullanılacak bilgilere kısaca değinilmiştir. Distribüsyonlar
hakkında bazı temel tanım ve teoremlere yer verilmiştir. Bu bölümde son olarak,
hemen hemen çarpım yapısı tanıtılmış olup, bu yapıya göre bazı (hemen hemen çarpım
Riemann manifoldları, yerel çarpım Riemann manifoldları v.b.) manifold sınıflarının
tanımları verilmiştir.

Üçüncü bölümde, kompleks manifoldlar hakkında temel bilgilere yer verilmiştir.
Hemem hemen kompleks yapının tanımı ve bu yapının Riemann metriği ile olan
ilişkisi verildikten sonra, bu yapıya göre manifoldların sınıflandırılması üzerinde
durulmuştur. Bazı kompleks manifold sınıflarının tanımlarından bahsedilmiş olup, bu
sınıflar arasındaki kapsama bağıntılarından söz edilmiştir.

Tezin ana parçasını oluşturan dördüncü bölümde, Riemann submersiyonu kavramı
tanıtılmış olup, kaynak ve hedef manifoldları arasındaki vektör alanları ilişkilerinden
bahsedilmiştir. Submersiyon teorisinde önemli yer tutan lif kavramı tanıtılmıştır.
Liflerin boyutları, teğetleri ve normalleri hakkında bilgiler verilmiştir. Liflerin
geometrisini incelememize yarayan ve temelini oluşturan, T ve A O’Neill tensörleri ve
bu tensörlerin bazı temel özellikleri verilmiştir. Ayrıca, submersiyon teorisi ile alakalı
bazı temel tanım, denklem ve teoremler verilmiştir.

Riemann teorisi ile ilgili gereken temel bilgiler verildikten sonra, ilk olarak, kaynak
manifoldunu yerel çarpım Riemann manifoldu alarak, ters-değişmez submersiyonları
ve ters-değişmez submersiyonların özel bir hali olan Lagrangian submersiyonları
çalıştık. Bu durumda, Lagrangian submersiyonlar için, lifleri incelediğimizde, daima
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tamamen jeodezik olduğunu elde ettik. Ayrıca, ters-değişmez submersiyonlar için
birinci varyasyonel formülünü tanımladık. Bu formül yardımıyla, ters-değişmez
submersiyonların liflerinin harmonik olup olmadığının araştırılması konusunda gerek
yeter koşul verdik. Bu yaklaşım ile literatüre farklı bir bakış açısı sunmuş olduk.

Daha sonra, yine kaynak manifoldunu yerel çarpım Riemann manifoldu alarak,
yarı-değişmez submersiyonları çalıştık. Yarı-değişmez submersiyon için örnek
verildi. Kanonik yapıları ve hemen hemen çarpım yapısını kullanarak bazı ayrışım
yardımcı önermeleri kanıtladık. Bu tip submersiyonlardaki distribüsyonlar için
integrallenebilme koşullarını araştırdık ve bazı sonuçlar elde ettik. Yarı-değişmez
submersiyonun liflerinin geometrisi hakkında bilgi sahibi olmak için, liflerin tamamen
jeodezik olma durumunu inceledik. Lifleri tamamen umbilik kabul ederek, bazı
sonuçlar elde ettik. Kanonik yapıların paralel olma tanımını verildi. Bu yapıların
paralel olmaları durumunda, kanonik yapıların birbirleri arasındaki ilişkiler hakkında
ve liflerin geometrisi hakkında bazı sonuçlar elde ettik. Ayrıca, yarı-değişmez
submersiyonlar için de birinci varyasyonel formülünü tanımlayarak ve kullanarak
liflerin hangi koşullar altında harmonik olduğuna dair yeni yaklaşım ve koşullar elde
ettik.

Dördüncü bölümün devamında, noktasal yarı-eğik adı ile yeni tip submersiyon
tanımladık. Bu submersiyon tipini kaynak manifoldunu yerel çarpım Riemann
manifoldu alarak çalıştık. Tanımlanan bu submersiyon tipi için örneğe yer verdik.
Benzer şekilde hemen hemen çarpım yapısını ve tanımdaki distribüsyonları göz
önüne alarak bazı ayrışım yardımcı teoremleri elde ettik. Alt manifold teorisinde
kullanılan Gauss ve Weingarten denklemlerinin noktasal yarı-eğik submersiyonlar
için karşılıklarını elde ettik. Noktasal yarı-eğik submersiyon tanımında bahsedilen
distribüsyonların hangi koşullar altında integrallenebileceğini araştırdık. Liflerin
geometrileri ile ilgilenerek, bazı sonuçlar elde ettik. Kanonik yapıların paralleliği
tanımlanarak çalışıldı. Ayrıca, liflerin tamamen umbilik olması koşulunda da bazı
sonuçlar elde edilmiştir. Bu sonuçlara ilave olarak, noktasal yarı-eğik submersiyonlar
için birinci varyasyonel formülü tanımlandı. Bu tanım yardımıyla, liflerin hangi
koşullar altında harmonik olduğunu araştırmak adına bir yaklaşım sunmuş olduk.

Ve son olarak, ele alınan hemen hemen kompleks yapıya göre tüm submersiyon
tiplerinin bir genelleştirmesi olan kapsamlı submersiyonu (Ronsse anlamında)
tanımladık. Bu submersiyon tipi için kaynak manifoldu Kaehler manifold aldık.
Öncelikle, bu tip submersiyonlar için örnekler verdik. Alt manifold teorisinde
kullanılan Gauss ve Weingarten denklemlerinin kapsamlı submersiyonlar için
karşılıklarını elde ettik. Bu denklemler kanıtlarda kullanıldı. Kapsamlı submersiyon
tanımındaki distribüsyonlar için integrallenebilme koşullarını inceledik. Ayrıca,
liflerin geometrisini anlayabilmek adına, liflerin tümel jeodezik olma koşulları da
incelendi. Liflerin tümel umbilik olması durumunda minimal olması için bir koşul
kanıtlandı. Bu tip submersiyonlar için, vektörlerin ayrışımında verilen kanonik yapılar
paralel düşünüldü. Bu durumda, distribüsyonların karışık jeodezik olmaları ve kanonik
yapıların paralelliği hakkında gerek ve yeter şartlar elde edildi.

Bu tezin sonrasında, gelecek çalışmalarda, tanımladığımız kapsamlı submersiyon için
kaynak manifold, hedef manifold ve liflerin eğrilikleri incelenebilir ve aralarındaki
ilişkiler araştırılabilir. Ayrıca, bir kapsamlı submersiyonun kaynak manifoldu için şu
problem çalışılabilir: “Hangi koşullar altında kaynak manifoldu Einstein uzayı olur?”.
Diğer taraftan, tüm tanımlanan submersiyonların Fizik’te karşılığının var olduğu bili-
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nen bir gerçektir. Bilhassa, şu probleme cevap aranabilir: “Kapsamlı submersiyonun
Fizik’teki karşılığı nedir?”. Disiplinlerarası çalışma adına etkili bir problem olacağı
öngörülmektedir. Son olarak, submersiyon teorisinin istatistiksel makine öğrenmesi
süreçlerinde karşılığı olduğu bilinmektedir. Tanımladığımız kapsamlı submersiyon ve
istatistiksel makine öğrenmesi arasındaki ilişkiler çalışılabilir. Dahası, submersiyon
teorisinin kullanıldığı daha başka alanlardaki kapsamlı submersiyonların karşılıkları
araştırılıp çalışılabilir.
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1. INTRODUCTION

The theory of submanifold is an important and interesting research area in differential

geometry. As a smooth map between Riemannian manifolds, a submersion is one of

the various ways to get a submanifold. With this method, a chance rises to compare

the geometries of two manifolds.

In this sense, the notion of a Riemannian submersion was first introduced by O’Neill

[1] and Gray [2], independently from each other. Watson considered Riemannian

submersions between almost Hermitian manifolds with the name of almost Hermitian

submersions [3]. In this case, the Riemannian submersion is also a complex mapping,

and consequently, the vertical and horizontal distributions are invariant with respect

to the almost complex structure of the total manifold of the submersion. Afterwards,

almost Hermitian submersions have been studied for different subclasses of almost

Hermitian manifolds, for example; see [4]. It is note that the Riemannian submersions

were extended to several subclasses of almost contact manifolds which is called

contact Riemannian submersions. Some of the studies related with almost Hermitian,

contact Riemannian and Riemannian submersions are included in [5], for the further

information we refer to [5].

Recently, Şahin introduced the notion of anti-invariant submersions from almost

Hermitian manifolds onto Riemannian manifolds [6]. He studied such submersions

from Kaehler manifolds onto Riemannian manifolds. In these circumstances, the fibers

are anti-invariant with respect to the almost complex structure of the total manifold of

the submersion. In [7, 8], it is mentioned that a Lagrangian submersion is a special

case of an anti-invariant Riemannian submersion on which almost complex structure

of the total manifold reverses the vertical and horizontal distributions. Latterly, it has

been defined various new type of Riemannian submersions from almost Hermitian

manifolds onto Riemannian manifolds such as slant submersion [9], semi-invariant

submersion [7], pointwise slant submersion [10], hemi-slant submersion [11]. Note
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that, some of these submersions have been extended to the subclasses of almost contact

manifolds, for instance see [12].

In this thesis, our goal is to define a generalization of all types of submersions that

defined previously. To reach this aim, in the first step, we study on anti-invariant

submersion and the special case of it, Lagrangian submersions, by taking the total

manifold locally product Riemannian [13]. While we study this problem, we try to

understand the theory of submersion with the help of [1, 6]. Also, we obtain some

remarkable results.

In the second step, we study semi-invariant submersion, which is defined in [7], from a

locally product Riemannian manifolds onto a Riemannian manifold [14]. In this case,

the vertical distribution kerπ∗ is a direct sum of two distributions, that is,

kerπ∗ = D⊕D⊥, (1.1)

where D is invariant and D⊥ is anti-invariant with respect to the almost product

structure. That means, we have one more distribution to investigate.

In the third step, we consider the pointwise slant distribution and in the view of [10]

define a new type of submersion so-called pointwise semi-slant submersion [15]. In

this case, since the vertical distribution has a decomposition as

kerπ∗ = D⊕Dθ , (1.2)

where Dθ is a pointwise slant distributon with pointwise slant angle θ . We improve

our knowledge about pointwise angle and pointwise slant distribution.

As a final step, we construct a generalization of all kinds of submersions by taking

the total manifold Kaehlerian. Three known generic submersion notions are given

by Yano and Kon [16], Chen [17] and Ronsse [18]. By considering an idea in

the theory of submanifold [18], we define a new type of submersion such that if

the fibers of a submersion are generic submanifold (in the sense of Ronsse) of the

vertical distribution, then the submersion is called a generic submersion (in the sense

of Ronsse) [19]. By the way, in this work [19], Prof. Dr. Mukut Mani Tripathi

contributed us and we studied in a cooperation with him. In the circumstances, the

vertical distribution can be decomposed as

kerπ∗ = D1⊕D0⊕Dλ1⊕Dλ2⊕ ...⊕Dλk , (1.3)

2



where D1 is invariant, D0 is anti-invariant, Dλi is pointwise slant distribution with slant

function θi. In section 4, the generic submersion is studied deeply.
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2. RIEMANNIAN MANIFOLDS

In this chapter, we give some fundamental definitions and theorems from [20] that we

use throughout this thesis .

Let M be a differenatiable m-dimensional manifold. It is denoted that the algebra of

differentiable functions on M by F (M) and the module of differentiable vector fields

by Γ(M), respectively. It can be seen that Γ(M) is a vector space with respect to scalar

multiplication and natural addition. Let ∇ be a map defined as

∇ : Γ(M)×Γ(M)→ Γ(M), (2.1)

such that

∇U f =U f , (2.2)

∇ fU+gV Z = f (∇U Z)+g(∇V Z), (2.3)

and

∇U( f Z +gV ) = f ∇U Z +g∇UV +(U f )Z +(Ug)V, (2.4)

for any vector fields U,V,Z and smooth functions f ,g on M. ∇ is called a linear

connection, ∇U the covariant derivative operator and ∇UV covariant derivative of V

with respect to U . Let define a (1,1)-type tensor field ∇U by (∇U)(V ) = ∇UV for any

V . Besides this, ∇U g =Ug is the covariant derivative of g along U . For a 1−form ω ,

the covariant derivative of it is defined by

(∇U ω)(V ) =U(ω(V ))−ω(∇UV ). (2.5)

The covariant derivative of a tensor T of type (r,s) along a vector field U is a tensor

field ∇U T , of type (r,s), defined by, for any vector field U , r covariant vectors

ω1,ω2, ...,ωr and s contravariant vectors V1,V2, ...,Vs

(∇U T )(ω1,ω2, ...,ωr,V1,V2, ...,Vs) = U(T (ω1,ω2, ...,ωr,V1,V2, ...,Vs))

−
r

∑
i=1

T (ω1, ...,∇U ω
i, ...,ωr,V1,V2, ...,Vs)

−
s

∑
j=1

T (ω1, ...,ωr,V1, ...,∇UVj, ...,Vs).

(2.6)
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One can say that the covariant derivative ∇T of tensor T is of type (r,s+1). If a vector

field U on M has constant covariant derivative along for any vector field V on M, then

U is called parallel with respect to a linear connection ∇ that is ∇VU = 0. Similarly,

a tensor field T is said to be parallel on M with respect to a linear connection ∇ if its

covariant derivative is constant for along any vector field U on M that is ∇U T = 0. Let

α : I ⊂ R be a smooth curve with (x1,x2, ...,xn) coordinates. Then, the vector field X

which is tangent to the curve α is given by

X =
dx j

dt
∂ j, (2.7)

where ∂ j =
∂

∂ j
and (x1,x2, ...,xn) is a local coordinate system.

Let Z,V ∈ Γ(M). The Lie bracket [Z,V ] on M is defined by

[Z,V ]β = Z(V β )−V (Zβ ). (2.8)

For a function β ∈F (M) and a vector field U on M, βU is a vector field on M which

is given by (βU)p = β (p)Up, for some p ∈M. It can be seen that Lie bracket [, ] is a

skew-symmetric operator. Additionally, Lie bracket has the following properties:

[βZ,γV ] = β [Z,V ]+β (Zγ)V − γ(V β )Z, (2.9)

[[U,V ],Z]+ [[V,Z],U ]+ [[Z,U ],V ] = 0 (Jacobi’s Identity) (2.10)

for U,V,Z ∈ Γ(M) and β ,γ ∈ (F)(M).

A tensor field g of type (0,2) is called a Riemannian metric if it satisfies the following

conditions:

• gp : TpM × TpM → R is positive definite bilinear form that is g(Up,Up) ≥ 0,

(g(Up,Up) = 0⇔Up = 0).

• g is symmetric that is g(U,V ) = g(V,U) for any U,V ∈ Γ(M),

In this case, (M,g) is called a Riemannian manifold.

Example 1. Let consider the Euclidean space Rn with inner product

g(U,V ) =
n

∑
i=1

uivi, (2.11)

where U = (u1,u2, ...,un) ∈ Rn and V = (v1,v2, ...,vn) ∈ Rn. Then, the inner product

g is bilinear, symmetric and positive defined. Therefore, g is a Riemannian metric and

the space (Rn,g) is a Riemannian manifold.
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Let M be a real differentiable manifold with a linear connection ∇. A tensor field of

M, denoted by R, of type (1,3) is called Riemannian curvature tensor which is given

by

R(U,V )Z = ∇U ∇V Z−∇V ∇U −∇[U,V ]Z, (2.12)

where U,V,Z ∈ Γ(M).

A tensor T of type (1,2) is called torsion tensor which is given by

T (U,V ) = ∇UV −∇VU− [U,V ]. (2.13)

∇ is called torsion-free or symmetric connection on M, if T vanishes. A linear

connection ∇ on (M,g) is called a compatible connection if g is parallel with respect

to ∇ i.e. for U,V,Z ∈ Γ(M)

(∇U g)(Z,V ) =U(g(Z,V ))−g(∇U Z,V )−g(Z,∇UV ) = 0. (2.14)

If we consider local coordinates, we obtain

gi j;k = ∂kgi j−gihΓ
h
jk−g jhΓ

h
ik = 0, (2.15)

where

Γ
h
i j =

1
2

ghk{
∂ jgki +∂igk j−∂kgi j}, Γ

h
i j = Γ

h
ji. (2.16)

The coefficients Γh
ji are called Christoffel symbols. The following theorem is the

essential conclusion of Riemannian geometry.

Theorem 1. Let M be a Riemannian manifold. Then, there exists a unique linear

connection ∇ on M such that the following conditions are hold:

• ∇ is symmetric

• ∇ is compatible with the Riemannian metric.

The connection which is mentioned in the Theorem 1 above is called Levi-Civita

(metric or Riemannian) connection on M. A metric connection ∇ has the following

identity, which is called Koszul formula

2g(∇UV,Z) = U(g(V,Z))+V (g(U,Z))−Z(g(U,V ))

+g([U,V ],Z)+g([Z,U ],V )−g([V,Z],U), (2.17)
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where U,V,Z ∈ Γ(M). Also, the following equations are called Bianchi’s identities

R(U,V )Z + R(V,Z)U +R(Z,U)V = 0, (2.18)

(∇U R)(V,Z,W ) + (∇V R)(Z,U,W )+(∇ZR)(U,V,W ) = 0. (2.19)

The Riemannian curvature tensor of type (0,4) is given by

R(U,V,Z,W ) = g(R(U,V )Z,W ), (2.20)

where U,V,Z,W ∈ Γ(M). Furthermore, Riemannian curvature tensor has the following

properties

R(U,V,Z,W ) = −R(V,U,Z,W ) (2.21)

R(U,V,Z,W ) = −R(U,V,W,Z), (2.22)

R(U,V,Z,W ) = R(V,U,W,Z). (2.23)

A tangent plane to M is, for any p ∈ M, a 2-dimensional subspace of tangent space

TpM. For every tangent plane ρ in the tangent space, for any p ∈M, TpM, it is defined

that

K(ρ) = Kp(U,V ) =
R(U,V,V,U)

‖U‖2‖V‖2− (g(U,V ))2 , (2.24)

where U and V are any tangent vectors for ρ . The smooth function K appoints the each

tangent plane ρ to a real number K(ρ) is called a sectional curvature of M, which does

not depend on choose of tangent vectors U and V . For all plane ρ in TpM and for all

points p ∈ M, if K(ρ) is constant, then M is called a space of constant curvature. A

Riemannian manifold of constant curvature is called space form. In this case, if M has

constant curvature c, then curvature tensor field R is given by [21]

R(U,V )Z = c{g(V,Z)U−g(U,Z)V}. (2.25)

Definition 1. Let (M,g) be an m−dimensional Riemannian manifold and

f : (M,g) 7→C∞(M,R) be a function. The gradient of f on M, which is a vector field,

defines as

g(∇ f ,U) = d f (U) =U( f ), (2.26)

where U ∈ Γ(T M) and ∇ f = grad f .
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2.1 Distributions

In this section, the concept of distribution and properties of distribution are given.

Let M be an m−dimensional manifold. Define a map on TpM as

D : M →
⋃

TpM

p 7→ Dp ⊂ TpM, dim(Dp) = k. (2.27)

The map D is called a k−dimensional distribution. For any U ∈ Γ(M), if Up ∈ Dp,

then U is said to belong to distribution D. If, for every single p, the subset Dp of TpM

has k linearly independent differentiable vectors, then D is said to be differentiable.

In [22], the following examples are given.

Example 2. [22] A vector field is a 1−dimensional distribution on a manifold M.

Example 3. [22] Every vector subbundle of a vector bundle, which is defined on a

manifold M, defines a distribution.

Definition 2. Let M be a C∞-manifold and D be a k−dimensional distribution on M.

If, for any U,V ∈ Γ(D), [V,U ] ∈ Γ(D), then D is called involutive.

Definition 3. Let M be a C∞-manifold, D be a k−dimensional distribution on M and

M̄ ⊂ M be a submanifold. If, for every point p ∈ M̄, the tangent space of M̄ and Dp

are same, then M̄ is called the integral manifold of the distribution D. Moreover, if M̄

is the unique integral manifold of the distribution D, then M̄ is called maximal integral

manifold of the distribution D.

We quote the following example from [22].

Example 4. [22] Integral curve of a vector field is integral manifold of vector field

which is 1−dimensional distribution.

Definition 4. Let M be a C∞-manifold and M̄ ⊂ M be a submanifold. If, for any

p ∈M, the distribution D has a maximal integral manifold which contains p, then the

distribution D is said to be integrable.
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Theorem 2. (Frobenius Theorem) [23]

Let D be distribution on M. D is integrable if and only if it is involutive. Furthermore,

through every point p ∈M there passes a unique maximal integral manifold of D and

every other integral manifold containing p is open submanifold of the maximal one.

One can see that, by the Frobenius theorem and the definition of Lie bracket, all the

1−dimensional distributions are integrable. But, for the higher dimensions it is not

valid.

Definition 5. Let M be a manifold and ∇ be the connection on M. The distribution D

is said to be parallel if, for any U,V ∈ Γ(M), ∇UV ∈ Γ(D).

2.2 Locally Product Riemannian Manifolds

An m-dimensional C∞-differentiable manifold M is called almost product manifold

with almost product structure F which is a tensor field of type (1,1) satisfying

F2 = identity, (F 6=±identity), (2.28)

denoted by (M,F). If we put

P =
1
2
(I +F), Q =

1
2
(I−F), (2.29)

thus we obtain

P+Q = I, P2 = P, Q2 = Q, PQ = QP = 0 (2.30)

and

F = P−Q. (2.31)

Hence P and Q define globally complementary distributions. It is seen that F has the

eigenvalues which are +1 or −1. An eigenvector, which corresponds to +1, lies in

the P and an eigenvector, which corresponds to −1, lies in the Q. Hence, if F is of

eigenvalue +1 with multiplicity a and eigenvalue −1 with multiplicity b, then P is of

dimension a and Q is of dimension b.

Conversely, if M has two globally complemantary distributions P and Q with

dimensions a and b, respectively, where a+ b = m and a,b ≥ 1. Then, an almost

product structure F can be defined on M as F = P−Q.
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For any vector fields E,G ∈ Γ(T M), if (M,F) has a relation with Riemannian metric

g such that

g(FE,FG) = g(E,G), (2.32)

then M is said to be an almost product Riemannian manifold [21].

Let ∇ be the Riemannian connection with respect to the metric g on M. Then M is

called a locally product Riemannian manifold (briefly, l.p.R.) if for any E ∈ Γ(T M)

the following

∇EF = 0 (2.33)

holds [21].
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3. COMPLEX MANIFOLDS

In this section, we give some fundamental definitions and basic concepts about

complex manifolds [21].

Let M be a smooth manifold. A tensor field J is of type (1,1) and which satisfies

J2 =−identity (3.1)

on M is called an almost complex structure and M is called an almost complex manifold.

In this case, the manifold M is orientable and has even dimension. A manifold (M,J)

is called an almost Hermitian manifold if (M,J) has a relation with Riemannian metric

g such that for any U,V ∈ Γ(M)

g(V,U) = g(JV,JU). (3.2)

The Nijenhuis tensor of J, denoted by N, is defined by

N(U,V ) = [JU,JV ]− J[JU,V ]− J[U,JV ]− [U,V ], (3.3)

a well-known theorem of Newlander-Nirenberg states that J is the almost complex

structure associated to a complex manifold structure on M if and only if the Nijenhuis

tensor of J vanishes, i.e., J is integrable.

The Kaehler form of an almost Hermitian manifold (M,J,g) is the smooth differential

2−form defined by, for any U,V ∈ Γ(T M)

Ω(U,V ) = g(U,JV ). (3.4)

Let ∇ be the Levi-Civita connection on M with respect to g. It can be extended to the

tensor algebra on M. Then, we have the following formulas [3].

(∇U J)V = ∇U JV − J∇UV, (3.5)

(∇U Ω)(V,Z) = g(V,(∇X J)Z), (3.6)

dΩ(U,V,Z) = (∇U Ω)(V,Z)+(∇V Ω)(Z,U)+(∇ZΩ)(U,V ), (3.7)
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Let {e1,e2, ...,em,Je1,Je2, ...,Jem} be a J-frame of M. Then, co-differential of Ω is

given by

(δΩ)(U) =−
m

∑
k=1

{
(∇ekΩ)(ek,U)+(∇JekΩ)(Jek,U)

}
. (3.8)

Now, we give the definitions of some classes of almost Hermitian manifolds [24] and

[25]. Furthermore, A. Gray and L. M. Harvella [26] give a classification of almost

Hermitian manifolds in 16 classes. Let denote the class of almost Hermitian manifolds

by AH. Then, for any (M,J,g) in AH, some of the classes of AH are defined as in the

following:

• If ∇U J = 0, then (M,J,g) is a Kaehler(K),

• if dΩ = 0, then (M,J,g) is an almost Kaehler(AK),

• if (∇U J)U = 0, then (M,J,g) is an almost Tachibana(AT),

• if dΩ(2,1) = dΩ(1,2) = 0, i.e., (∇U J)V +(∇JU J)JV = 0, then (M,J,g) is a quasi

Kaehler(QK),

• if δΩ = 0, then (M,J,g) is an almost semi-Kaehler(ASK),

• if N = 0, then (M,J,g) is a Hermitian(H),

• if δΩ = 0 and N = 0, then (M,J,g) is a semi-Kaehler(SK).

Here, one can see that K = AK∩NK = QK∩H. Between the classes of AH there is

an inclusion relation as in the following:

K ⊂ AK
NK ⊂ QK ⊂ ASK ⊂ AH. (3.9)

Additionally, if it is assumed that N = 0, then

K ⊂ SK ⊂H. (3.10)
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4. RIEMANNIAN SUBMERSIONS

One of the most rising areas of the differential geometry is the theory of submanifold.

Since, a submersion is a way to obtain a submanifold, many geometers have been

concerning about the theory of submersion. The notion of Riemannian submersion

was first defined by O’Neill [1] and Gray [2]. Later, Watson [3] studied Riemannian

submersions between almost Hermitian manifolds.

Let (M,g) and (N,gN) be Riemannian manifolds, where dim(M)> dim(N).

A surjective mapping π : (M,g)→ (N,gN) is called a Riemannian submersion [1] if

(S1) π has maximal rank, and

(S2) π∗, restricted to kerπ⊥∗ , is a linear isometry.

In this case, for each q ∈ N, π−1(q) is a k-dimensional submanifold of M and called

a fiber, where k = dim(M)− dim(N). A vector field on M is called vertical (resp.

horizontal) if it is always tangent (resp. orthogonal) to fibers. A vector field X on M is

called basic if X is horizontal and π-related to a vector field X∗ on N, i.e., π∗Xp =X∗π(p)

for all p ∈M. We will denote by V and H the projections on the vertical distribution

kerπ∗, and the horizontal distribution kerπ⊥∗ , respectively. As usual, the manifold

(M,g) is called total manifold and the manifold (N,gN) is called base manifold of the

submersion π : (M,g)→ (N,gN).

Lemma 1. [1] Let (M,g) and (N,gN) be Riemannian manifolds with a Riemannian

submersion π between them. For any basic vector fields α,β ∈ Γ(T M), we obtain the

following

1. g(α,β ) = gN(α∗,β∗)◦π ,

2. π∗(H [α,β ]) = [α∗,β∗] ,

3. π∗(H ∇αβ ) = ∇∗α∗(β∗),

where ∇∗ is the Riemannian connection on N, π∗(α) = α∗ and π∗(β ) = β∗.
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To characterize the geometry of the fibers, O’Neill tensors T and A are defined as

follows:

TŪV̄ = V ∇V ŪH V̄ +H ∇V ŪV V̄ , (4.1)

AŪV̄ = V ∇H ŪH V̄ +H ∇H ŪV V̄ (4.2)

for any vector fields Ū and V̄ on M, where ∇ is the Levi-Civita connection of g. TŪ and

AŪ are skew-symmetric operators on the tangent bundle of M reversing the vertical and

the horizontal distributions [1]. We now summarize the properties of the tensor fields

T and A. Let V,W be vertical and X ,Y be horizontal vector fields on M, then we have

TVW = TWV, (4.3)

AXY =−AY X =
1
2
V [X ,Y ]. (4.4)

Moreover, from (4.1) and (4.2), we obtain

∇VW = TVW + ∇̂VW, (4.5)

∇V X = TV X +H ∇V X , (4.6)

∇XV = AXV +V ∇XV, (4.7)

∇XY = H ∇XY +AXY, (4.8)

where ∇̂VW = V ∇VW . If X is basic

H ∇V X = AXV.

Remark 1. In this thesis, all the horizontal vector fields are considered as basic vector

fields.

We observe that T acts on the fibers as the second fundamental form while A acts on

the horizontal distribution and measures of the obstruction to the integrability of this

distribution.

Lemma 2. [1] Let (M,g) and (N,gN) be two Riemannian manifolds and π : (M,g) 7→

(N,gN) be a Riemannian submersion. Then, for any U,V vertical and X ,Y horizontal

vector fields on M, the followings are obtained:

(∇U A)V = −ATUV , (4.9)

(∇U T )X = −TTU X , (4.10)

(∇X A)U = −AAXU , (4.11)

(∇X T )Y = −TAXY . (4.12)
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Note that, if T (respectively A) vanishes, then it is said to be T (respectively A) is

parallel.

For a submersion, the curvature relations are given as in the following:

Theorem 3. [1] Let (M,g) and (N,gN) be two Riemannian manifolds and π :

(M,g) 7→ (N,gN) be a Riemannian submersion. Then, for any U,V,W,Z vertical and

X ,Y,ξ ,η horizontal vector fields

R(U,V,W,Z) = R̂(U,V,W,Z)−g(TUW,TV Z)+g(TVW,TU Z), (4.13)

R(U,V,W,X) = g((∇U T )(V,W ),X)−g((∇V T )(U,W ),X), (4.14)

R(X ,Y,ξ ,η) = R∗(X ,Y,ξ ,η)+2g(Aξ η ,AXY )

+g(AY η ,AX ξ )−g(AX η ,AY ξ ), (4.15)

R(X ,Y,ξ ,U) = −g((∇ξ A)(X ,Y ),U)−g(TU ξ ,AXY )

−g(AX ξ ,TUY )+g(AY ξ ,TU X), (4.16)

R(X ,Y,U,V ) = −g((∇U A)(X ,Y ),V )+g((∇V A)(X ,Y ),U)

−g(AXU,AYV )+g(AXV,AYU)

+g(TU X ,TVY )−g(TV X ,TUY ), (4.17)

R(X ,U,Y,V ) = −g((∇X T )(U,V ),Y )−g((∇U A)(X ,Y ),V )

g(TU X ,TVY )−g(AXU,AYV ), (4.18)

where R∗, R̂ and R are Riemannian curvature tensor for base manifold, fibers and total

manifold, respectively.

For a Riemannian submersion, the sectional curvature formulas are obtained by the

above theorem, as in the following [1]: If it is assumed that K∗, K̂ and K are sectional

curvatures for base manifold, fibers and total manifold, respectively, then for any

horizontal vector field X and vertical vector U field

K(U,V ) = K̂(U,V )+g(TUV,TUV )−g(TUU,TVV ), (4.19)

K(X ,Y ) = K∗(X ,Y )−3g(AXY,AXY ), (4.20)

K(X ,U) = g((∇X T )(U,U),X)+g(TU X ,TU X)−g(AXU,AXU). (4.21)

The fibers of a Riemannian submersion π : (M,g)→ (N,gN) is called totally umbilical

if

TVU = g(V,U)H, (4.22)
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for any U,V ∈ Γ(kerπ∗), where H is the mean curvature vector field of the fiber.

Moreover if H = 0, the fibers are called minimal.

The distribution D1 is called parallel along the distribution D2 if and only if for

V ∈ Γ(D1),U ∈ Γ(D2), ∇UV ∈ D1.

Let π be a Riemannian submersion from a Riemannian manifold (M,g) onto a

Riemannian manifold (N,gN) . Then, we say that the fibers of π are mixed geodesic, if

TXW = 0, for all X ∈ Γ(V ), W ∈ Γ(H ), [7].

4.1 Anti-Invariant Submersions

The notion of the anti-invariant submersion from almost Hermitian manifolds onto

Riemannian manifolds was defined first by Şahin [6]. We study anti-invariant and

Lagrangian submersions from locally product Riemannian manifolds onto Riemannian

manifolds. We first give a characterization theorem for Riemannian submersions. It is

proved that the fibers of a Lagrangian submersion are always totally geodesic. We also

consider the first variational formula of the anti-invariant Riemannian submersions and

give a new condition for the harmonicity of such submersions.

In general, g(FV̄ ,V̄ ) 6= 0 for any unit vector V̄ ∈ Γ(TpM) in a l.p.R. manifold M,

contrary to almost Hermitian (g(JV̄ ,V̄ ) = 0) and almost contact (g(ϕV̄ ,V̄ ) = 0)

manifolds. However, we can establish that the almost product structure F in a l.p.R.

manifold M such that g(FV̄ ,V̄ ) = 0, for all V̄ ∈ Γ(TpM). In fact, if M is an even

dimensional l.p.R. manifold with an orthonormal basis {e1, ...,en,en+1, ...,e2n}, then

we can define F by

F(ei) = en+i, F(en+i) = ei, i ∈ {1,2, · · · ,n}. (4.23)

Hence, we observe that the almost product structure F satisfies

g(Fe j,e j) = 0, j = {1,2, · · · ,n, · · · ,2n} . (4.24)

Let M1(c1) (resp. M2(c2)) be a real space form with sectional curvature c1 (resp.

c2 ). Then, Riemannian curvature tensor R of locally product Riemannian manifold
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M = M1(c1)×M2(c2) has the form

R(Ū ,V̄ )W̄ (4.25)

=
1
4
(c1+c2)

{
g(V̄ , W̄ )Ū−g(Ū,W̄ )V̄+g(FV̄,W̄ )FŪ−g(FŪ ,W̄ )FV̄

}
+

1
4
(c1−c2)

{
g(FV̄ ,W̄ )Ū−g(FŪ,W̄ )V̄+g(V̄,W̄ )FŪ−g(Ū,W̄ )FV̄

}
,

where Ū ,V̄ ,W̄ ∈ Γ(T M) [21]. In case of c1 = c2 = c, the Riemannian curvature tensor

R of locally product Riemannian manifold M(c) = M1(c)×M2(c) becomes

R(Ū ,V̄ )W̄ =
c
2

{
g(V̄,W̄ )Ū−g(Ū,W̄ )V̄+g(FV̄,W̄ )FŪ−g(FŪ ,W̄ )FV̄

}
, (4.26)

where Ū , V̄ , W̄ ∈ Γ(T M(c)).

Proposition 1. Let π : (M(c),g,F)→ (N,gN) be a Riemannian submersion from a l.p.R

manifold with c 6= 0 onto a Riemannian manifold. If the almost product structure F of

M(c) satisfies (4.24), then the fibers of π are invariant or anti-invariant with respect to

F if and only if

g((∇U T )(V,W ),X) = g((∇V T )(U,W ),X), (4.27)

where U,V,W ∈ Γ(kerπ∗) and X ∈ Γ(kerπ⊥∗ ).

Proof. From (4.26), we have

R(U,V )W =
c
2

{
g(V,W )U−g(U,W )V+g(FV,W )FU−g(FU,W )FV

}
, (4.28)

where U,V,W ∈ Γ(kerπ∗) . If the fibres of π are invariant or anti-invariant with respect

to F , then it is not difficult to see that R(U,V )W is vertical from (4.28). Hence, for any

X ∈ Γ(kerπ⊥∗ ), we easily get

R(U,V,W,X) = g(R(U,V )W,X) = 0. (4.29)

Thus, (4.27) follows from (4.29) and the O’Neill curvature formula {1} in [1]:

R(U,V,W,X) = g((∇V T )(U,W ),X)−g((∇U T )(V,W ),X). (4.30)

Conversely, if the equation (4.27) holds, then using the above O’Neill formula we see

that R(U,V )W is vertical. By putting W =U in (4.28), we obtain

R(U,V )U =
c
2

{
g(V,U)U−‖U‖2V +g(FV,U)FU

}
. (4.31)
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Since R(U,V )U is vertical, g(FV,U)FU is also vertical from (4.31). Thus, we conclude

that either FU is vertical or g(FV,U) = 0. It follows that either F(kerπ∗) ⊆ kerπ∗ or

F(kerπ∗) ⊆ (kerπ∗)
⊥, i.e., either the fibers of π are invariant or anti-invariant with

respect to F .

Let M be a locally product Riemanian manifold with Riemannian metric g and almost

product structure F , and N be a Riemanian manifold with Riemannian metric gN.

Suppose that there exists a Riemannian submersion π : M→ N such that the vertical

distribution kerπ∗ is anti-invariant with respect to F , i.e., F(kerπ∗) ⊆ kerπ⊥∗ . Then,

the Riemannian submersion π is called an anti-invariant Riemannian submersion [6].

In this case, we observe that F(kerπ⊥∗ )∩kerπ∗ 6= {0}. If we denote the complementary

orthogonal distribution of F(kerπ∗) in kerπ⊥∗ by µ , then we write

kerπ
⊥
∗ = F kerπ∗⊕µ . (4.32)

Let FX ∈ Γ(F kerπ∗) and Y ∈ Γ(µ). Then, by (2.32), we see that

g(FX ,FY ) = g(X ,Y ) = 0. (4.33)

Therefore, µ is invariant distribution of kerπ⊥∗ with respect to the almost product

structure F . Thus, for any X ∈ Γ(kerπ⊥∗ ) , we have

F X = BX +CX , (4.34)

where BX ∈ Γ(kerπ∗) and CX ∈ Γ(kerπ⊥∗ ).

Now, let π be an anti-invariant Riemannian submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). If dim(kerπ∗) = dim(kerπ⊥∗ ), then

we call π a Lagrangian submersion. In that case, the almost product structure F

of M reverses the vertical and horizontal distributions, i.e., F(kerπ∗) = kerπ⊥∗ , and

F(kerπ⊥∗ ) = kerπ∗ . This case has been studied; see [6, 8, 27] for more details and

examples.

We now examine how the almost product structure on M effects the tensor fields T

and A of an anti-invariant submersion π from a l.p.R. (M,g,F) onto a Riemannian

manifold (N,gN).
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Lemma 3. Let π be an anti-invariant Riemannian submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN) . Then we have

FTVW = TV FW , (4.35)

F ∇̂VW = H ∇V FW , (4.36)

BH ∇V X = ∇̂V BX +TV CX , (4.37)

FTV X +CH ∇V X = TV BX +H ∇VCX , (4.38)

BAXV = AX FV, (4.39)

CAXV +F(V ∇XV ) = H ∇X FV , (4.40)

BH ∇XY = V ∇X BY +AXCY , (4.41)

FAXY +CHXY = AX BY +H ∇XCY , (4.42)

where V , W ∈ Γ(kerπ∗), and X , Y ∈ Γ(kerπ⊥∗ ) .

Proof. Using (2.33) and (4.6) we have

F ∇VW = TV FW +H ∇V FW, (4.43)

where V , W ∈ Γ(kerπ∗) . By using (4.5), we get

F ∇̂VW +FTVW = TV FW +H ∇V FW, (4.44)

from (4.43). Taking the vertical and horizontal parts of this equation we obtain (4.35)

and (4.36) . The other assertions can be obtained in a similar way.

Corollary 1. Let π be a Lagrangian submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN) . Then

TV FE = FTV E , (4.45)

AX FE = FAX E , (4.46)

where V ∈ Γ(kerπ∗) , X ∈ Γ(kerπ⊥∗ ) and E ∈ Γ(T M) .

Proof. The first assertion follows from (4.35) and (4.38). The other follows from

(4.39) and (4.42) .

21



Corollary 2. Let π be a Lagrangian submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN) . Then,

TU FV = TV FU , (4.47)

AX FY =−AY FX , (4.48)

where U, V ∈ Γ(kerπ∗) and X ,Y ∈ Γ(kerπ⊥∗ ).

Proof. By using (4.3), the first assertion can be obtained from (4.45) and using (4.4),

the other assertion follows from (4.46) .

Theorem 4. Let π be a Lagrangian submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN) . Then the fibers of π are totally geodesic. In other

words, TU = 0, for any U ∈ kerπ∗.

Proof. Let U , V and W be any vertical fields. Then, using (4.5), (4.6), (2.28)∼(2.33)

and (4.47), we have,

g(TU FV,W ) = g(∇U FV,W ) = g(F∇UV,W ) = g(∇UV,FW )

= g(TUV,FW ) =−g(TU FW,V ) =−g(TW FU,V )

= g(TWV,FU) = g(TVW,FU) =−g(TV FU,W )

=−g(TU FV,W ) . (4.49)

Hence, it follows that TU FV = 0. Since FV is an arbitrary horizontal vector field, we

get TU(kerπ⊥∗ ) = 0. The property of skew-symmetry of T gives TU(kerπ∗) = 0 . Thus,

we find TU = 0 .

4.1.1 The first variational formula of anti-invariant submersions

In this section, we define the first variational formula for anti-invariant submersions

from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) and by means

of that form, we focus on a new approach to investigate whether an anti-invariant

submersion is harmonic.

Let π be an anti-invariant submersion from a l.p.R. manifold (M,g,F) onto a

Riemannian manifold (N,gN). Then, we can define the 1-form dual to the vector field

Fξ , for ξ ∈ Γ(kerπ⊥∗ ), such that

σξ : Γ(kerπ∗) 7→F (π−1
q ),q ∈ N
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V 7→ σξ (V ) = g(Fξ ,V )

for all V ∈ Γ(kerπ∗). In the view of [28] and [29], we define the followings:

The Legendre variations of any fiber of π , denoted by the set L, where

L= {ξ ∈ Γ(kerπ
⊥
∗ ) : dσξ = 0, i.e. , σξ is closed},

the Hamiltonian variations of any fiber of π , denoted by the set E,

E= {ξ ∈ Γ(kerπ
⊥
∗ ) : ∃ f ∈F (π−1

q )⇒ σξ = d f , i.e. , σξ is exact}

and the harmonic variations of any fiber of π are given by the set

H= {ξ ∈ Γ(kerπ
⊥
∗ ) : ∆σξ = 0, i.e. , σξ is harmonic}.

By the definitions of differential and co-differential operators, we observe that

E⊂ L , H⊂ L and E∩H= {0}. (4.50)

Now, we examine that under what conditions the 1-form σξ , defined above, is a

Legendre variation.

Lemma 4. Let π be an anti-invariant submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN). The 1-form σξ is a Legendre variation if and only if

g(AξU,FV ) =−g(AξV,FU), (4.51)

where U,V ∈ Γ(kerπ∗).

Proof. Let U,V be in Γ(kerπ∗). Then, by the definition of differential, (4.6) and (2.32),

we obtain

(dσξ )(U,V ) =Ug(Fξ ,V )−V g(Fξ ,U)−g(Fξ , [U,V ])

=Ug(ξ ,FV )−V g(ξ ,FU)−g(ξ ,F [U,V ])

=g(∇U ξ ,FV )+g(ξ ,∇U FV )

−g(∇V ξ ,FU)−g(ξ ,∇V FU)

−g(ξ ,F∇UV )+g(ξ ,F∇VU)

=g(∇U ξ ,FV )−g(∇V ξ ,FU)

=g(H ∇U ξ ,FV )+g(H ∇V ξ ,FU). (4.52)
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Since, we assume ξ is basic, we get

(dσξ )(U,V ) = g(AξU,FV )+g(AξV,FU). (4.53)

Thus, the assertion follows.

Lemma 5. For ξ ∈ Γ(µ), σξ ≡ 0.

Proof. Let ξ ∈ Γ(µ). Then Fξ ∈ Γ(µ). For any V ∈ Γ(kerπ∗), we get

σξ (V ) = g(Fξ ,V ) = 0. (4.54)

So, σξ ≡ 0, for all V ∈ Γ(kerπ∗).

Remark 2. Because of Lemma 5, throughout this subsection, we can assume that H

belongs to F(kerπ∗). Here, H is the mean curvature vector field of the fibers.

Proposition 2. Let π be an anti-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) and f be a smooth function on a fiber. Then,

F(grad( f )) ∈ E.

Proof. Let f be a smooth function on a fiber. For ξ = F(grad( f )), and any V ∈

Γ(kerπ∗), we obtain

σξ (V ) =g(Fξ ,V ) = g(grad( f ),V ) =V [ f ] = d f (V ). (4.55)

Thus, we get σξ = d f , i.e., ξ ∈ E.

Let π be an anti-invariant submersion with compact fibers from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN) and ξ ∈ Γ(kerπ⊥∗ ). The first variational

formula of a fiber π−1
q , for q ∈ N, is defined as follows [30]

V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1, (4.56)

where k = dim(π−1
q ). We introduce the following terminology;

• If V′(ξ ) = 0, for all ξ ∈ L, then π−1
q is L−minimal,

• If V′(ξ ) = 0, for all ξ ∈ E, then π−1
q is E−minimal,

• If V′(ξ ) = 0, for all ξ ∈H, then π−1
q is H−minimal.
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Remark 3. One can easily see that if the fiber is minimal, then the fiber is L,E and

H−minimal. On the other hand, because of the facts that E⊂ L and H⊂ L, the fiber

is E−minimal and H−minimal if it is L−minimal.

Theorem 5. Let π be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

(a) The fiber π−1
q is L−minimal if and only if σH is co-exact.

(b) The fiber π−1
q is E−minimal if and only if σH is co-closed.

(c) The fiber π−1
q is H−minimal if and only if σH is the sum of an exact and a co-exact

1-form.

Proof. (a)⇒ : Let the fiber π−1
q is L−minimal, then for any ξ ∈ L, we have

g(H,ξ ) = 0 from (4.56). By the definition of the Hodge star operator [31], we have

σξ ∧σH(V1,V2, ...,Vk) = g(ξ ,H)∗1(V1,V2, ...,Vk), (4.57)

for V1,V2, ...,Vk ∈Γ(kerπ∗). From the definition of the global scalar product (.|.) ( [31])

on the module of all forms on the fiber, we get

(σξ |σH) =
∫

π
−1
q

σξ ∧∗σH = 0. (4.58)

Denote by δ the codifferential operator [31] on the fiber π−1
q . Since σξ is closed, for

any 2-form β on π−1
q , we have

0 = (dσξ |β ) = (σξ |δβ ). (4.59)

Since π−1
q is compact, by (4.58) and (4.59), we conclude that σH is co-exact.

⇐ : Suppose that σH is co-exact, we have σH = δψ for some 2-form ψ . Then, for any

ξ ∈ L,

(σξ |σH) = (σξ |δψ) = (dσξ |ψ) = 0 (4.60)

and then

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π−1(q)
(σξ ∧∗σH) =−k(σξ |σH) = 0, (4.61)

i.e. π−1
q is L−minimal.

(b)⇒ : Let the fiber π−1
q be E−minimal. Then, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH), (4.62)
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that is, (σξ |σH) = 0. Since ξ ∈ E, σξ = d f for some function f on the fiber π−1
q .

Thus,

(d f |σH) = ( f |δσH) = 0. (4.63)

Hence it follows that δσH = 0, i.e. σH is co-closed.

⇐ : Suppose that σH is co-closed. Let ξ ∈ E, then there exists a function f ∈F (π−1
q )

such that σξ = d f . Hence, we have

(σξ |σH) = (d f |σH) = ( f |δσH) = 0. (4.64)

Therefore,

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH) = 0, (4.65)

that is V′(ξ ) = 0 for ξ ∈ E, i.e. π−1
q is E−minimal.

(c)⇒ : If the fiber π−1
q is H−minimal, then for ξ ∈H, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH). (4.66)

It means that, σH is orthogonal to harmonic 1-forms on the fiber π−1
q . Thus, by the

Hodge decomposition theorem [31], we conclude that σH is the sum of an exact and a

co-exact 1-form.

⇐ : Let σH be the sum of an exact 1-form ω1 = d f and a co-exact 1-form ω2 = δψ .

For ξ ∈H, we have

(σξ |σH) =(σξ |d f +δψ) = (σξ |d f )+(σξ |δψ)

=(δσξ | f )+(dσξ |ψ) = 0, (4.67)

since dσξ = δσξ = 0. Thus,

V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH), (4.68)

that is, the fiber is H−minimal.

Now, if we give a restriction in Theorem 5, we get the following theorem.

Theorem 6. Let π be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then

(a) π−1
q is L−minimal if and only if π−1

q is minimal.

(b) π−1
q is E−minimal if and only if σH is a harmonic variation.

(c) π−1
q is H−minimal if and only if σH is an exact 1-form.
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Proof. (a) If the fiber π−1
q is L−minimal, then by Theorem 5-(a) we have, σH is

co-exact. Hence σH is co-closed. Taking into account the fact that dσH = 0, we deduce

that σH is harmonic. But this is a contradiction because of the Hodge decomposition

theorem [31]. So, σH must be zero. Hence we conclude that H = 0. The converse is

clear.

(b)⇒ : If the fiber π−1
q is E−minimal, then we have δσH = 0 from Theorem 5-(b).

Since dσH = 0, σH is also harmonic, i.e. ∆σH = 0.

⇐ : If σH is harmonic, then σH is co-closed. By Theorem 5-(b), the fiber π−1
q is

E−minimal.

(c)⇒ : Assume that π−1
q is H−minimal. Then, from Theorem 5-(c), σH is the sum of

an exact 1-form and a co-exact 1-form. On the other hand, the condition H ∈L implies

that σH is orthogonal to every co-exact 1-form on π−1
q . Thus„ σH must be exact.

⇐ : Let σH be an exact 1-form. For ξ ∈H, we obtain

V
′
(ξ ) =− k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH)

=− k(σξ |σH) = (σξ |d f ) = (δσξ | f ) = 0, (4.69)

that is, π−1
q is H−minimal.

Remark 4. The method that considering the basis to investigate the harmonicity of a

submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.

Since a l.p.R. manifold is not always even dimensional, choosing a basis and using it is

not easy. On the other hand, it is well known that, the fibers of a submersion is minimal

if and only if the submersion is harmonic. Now, we give the following corollary which

is a new approach to investigate the harmonicity of a submersion. By Theorem 6-(a),

we get the next result.

Corollary 3. Let π be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then, π is harmonic

if and only if π−1
q is L−minimal.

Lemma 6. Let π be an anti-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

δσH = 0⇔ Σig(AHEi,FEi) = 0, (4.70)

where {E1,E2, ...,Em} is a local basis of kerπ∗.
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Proof. For any {E1,E2, ...,Em}, we have

δσH = 0⇔ Σig(∇EiFH,Ei) = 0. (4.71)

Using (4.8), we get

⇒ δσH = 0⇔ Σig(∇EiH,FEi) = Σig(AHEi,FEi) = 0. (4.72)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensor A.

4.2 Semi-Invariant Submersions

The notion of the semi-invariant submersion from almost Hermitian manifold onto

Riemannian manifolds was first defined by Şahin [7]. We study semi-invariant

submersions from locally product Riemannian manifolds onto Riemannian manifolds.

We also give a characterization theorem for the proper semi-invariant submersions

with totally umbilical fibers and find some results for such submersions with parallel

canonical structures. Moreover, we define first variational formula on the fibers of a

semi-invariant submersion and by the virtue of that, we prove a new theorem which

has a condition for the harmonicity of a semi-invariant submersion.

The definition of a semi-invariant submersion from a locally product Riemannian

manifold onto a Riemannian manifold as in the following:

Definition 6. Let (M,g,F) be a l.p.R. manifold and (N,gN) be a Riemannian manifold.

A Riemannian submersion π : (M,g,F)→ (N,gN) is called semi-invariant submersion,

if there is a distribution D⊂ kerπ∗ such that

kerπ∗ = D⊕D⊥ , FD = D , FD⊥ ⊂ kerπ
⊥
∗ , (4.73)

where D⊥ is the orthogonal complement of D in kerπ∗ . In this case, the horizontal

distribution kerπ⊥∗ can be decomposed as

kerπ
⊥
∗ = FD⊥⊕µ , (4.74)

where µ is the orthogonal complementary distribution of FD⊥ in kerπ⊥∗ , and it is

invariant with respect to F . A semi-invariant submersion is called proper if both

D 6= {0} and D⊥ 6= {0}.

28



We give the following example.

Example. Consider the Euclidean 6-space R6 with standart metric g. Define the

almost product structure F on (R6,g) by

F(
∂

∂x1
) =

∂

∂x2
, F(

∂

∂x2
) =

∂

∂x1
, F(

∂

∂x3
) =

∂

∂x4
, (4.75)

F(
∂

∂x4
) =

∂

∂x3
, F(

∂

∂x5
) =

∂

∂x5
, F(

∂

∂x6
) =− ∂

∂x6
, (4.76)

where (x1,x2, · · · ,x6) are natural coordinates of R6.

Now, we define a map π : R6→ R3 by

π(x1, · · · ,x6) =
(x1− x2√

2
,

x3− x4√
2

,
x5− x6√

2

)
. (4.77)

Then the map π is a proper semi-invariant submersion such that

kerπ∗ = D⊕D⊥ (4.78)

where

D = span{∂1 +∂2, ∂3 +∂4}, (4.79)

and

D⊥ = span{∂5 +∂6}. (4.80)

Moreover,

kerπ
⊥
∗ = FD⊥⊕µ, (4.81)

where

µ = span{∂1−∂2,∂3−∂4}. (4.82)

Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F) onto a

Riemannian manifold (N,gN). For any V ∈ Γ(kerπ∗) , we put

FV = φV +ωV, (4.83)

where φV ∈ Γ(kerπ∗) and ωV ∈ Γ(kerπ⊥∗ ) . Also, for ξ ∈ Γ(kerπ⊥∗ ) we write

Fξ = Bξ +Cξ , (4.84)

where Bξ ∈ Γ(kerπ∗) and Cξ ∈ Γ(kerπ⊥∗ ) . Then, using (4.73) and (4.83), we get the

following:
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Lemma 7. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN). Then, we have

(a) φD = D , (b) φD⊥ = {0}, (c) ωD = {0}, (d) ωD⊥ = FD⊥.

Proof. For any X ∈ Γ(D), by (4.83), we have FX = φX +ωX . On the other hand, with

the help of (4.73), FX ∈ Γ(D), i.e., ωX = 0. Thus, we obtain φD = D.

Moreover, for any U ∈ Γ(D⊥), by (4.83), we obtain FU = φU +ωU . Beside this, by

using (4.73), FU ∈ Γ(kerπ⊥∗ ), i.e., φU = 0. Therefore, we get φD⊥ = {0}. To prove

(c) and (d), the same method above can be used.

Also, using (4.74) and (4.84), we get the following result.

Lemma 8. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN). Then, we have

(a) B(FD⊥)=D⊥ , (b) Bµ = {0}, (c) C(FD⊥)= {0}, (d) Cµ = µ.

We now examine how the almost product structure on M effects the O’Neill’s tensors

T and A of a semi-invariant submersion π : (M,g,F)→ (N,gN).

Lemma 9. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN). Then, we have

∇̂V φW +TV ωW = φ ∇̂VW +BTVW, (4.85)

TV φW +H ∇V ωW = ω∇̂VW +CTVW, (4.86)

V ∇ξ η +AξCη = φAξ η +BH ∇ξ η , (4.87)

Aξ Bη +H ∇ξCη = ωAξ η +CH ∇ξ η , (4.88)

∇̂V Bξ +TVCξ = φTV ξ +BH ∇V ξ , (4.89)

TV Bξ +H ∇VCξ = ωTV ξ +CH ∇V ξ , (4.90)

V Aξ φV +Aξ ωV = BAξV +φV ∇ξV, (4.91)

Aξ φV +H ∇ξ ωV =CAξV +ωV ∇ξV, (4.92)

where V,W ∈ Γ(kerπ∗) and ξ ,η ∈ Γ(kerπ⊥∗ ).
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Proof. Using (4.5)∼(4.8), (2.33), (4.83) and (4.84), we can easily obtain all assertions.

Lemma 10. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN). Then, we have

g(TX FY ,FV ) =−g(TY FX ,FV ) (4.93)

where V ∈ Γ(D), and X ,Y ∈ Γ(D⊥).

Proof. Let X ,Y ∈ Γ(D⊥), and V ∈ Γ(D). Then using (4.3), (4.5) and (2.28) we have

g(TX FY ,FV ) =−g(TX FV ,FY )

=−g(TFV X ,FY ) =−g(∇FV X ,FY )

=−g(∇FV FX ,Y ) =−g(TFV FX ,Y )

= g(TFV Y ,FX) = g(TY FV ,FX)

=−g(TY FX ,FV ) . (4.94)

This completes the proof.

4.2.1 Integrability of distributions

Now, we investigate the necessary and sufficient conditions for the integrability of

all distributions including vertical and horizontal distributions of the semi-invariant

submersion π from l.p.R. manifold(M,g,F) onto a Riemannian manifold (N,gN).

Theorem 7. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN). Then the anti-invariant distribution D⊥ is

integrable if and only if

g(TX FY ,FV ) = 0, (4.95)

where X ,Y ∈ Γ(D⊥) and V ∈ Γ(D).

Proof. Let X ,Y ∈ Γ(D⊥) and V ∈ Γ(D). By (4.6) and (2.33), we have

g([X ,Y ],V ) = g(F [X ,Y ],FV )

= g(F∇X Y −F∇Y X ,FV )

= g(∇X FY −∇Y FX ,FV )

= g(TX FY −TY FX ,FV ) . (4.96)
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From (4.93), we get

g([X ,Y ],V ) = 2g(TX FY ,FV ), (4.97)

which completes the proof.

Theorem 8. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the invariant distribution D is integrable

if and only if

TV FW = TW FV (4.98)

for all V,W ∈ Γ(D).

Proof. For V,W ∈ Γ(D), using (4.86), we have

TV φW = ω∇̂VW +CTVW (4.99)

By using (4.3), (4.5) and (4.99), we get

TV FW −TW FV = ω[V,W ] (4.100)

Thus, our assertion comes from Lemma 7-(c) and (4.100).

4.2.2 Totally geodesicness of the fibers

Proposition 3. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then

g(TV FW ,ξ ) = g(TV W ,Fξ ), (4.101)

for V,W ∈ Γ(D), and ξ ∈ Γ(µ) .

Proof. For V,W ∈ Γ(D) and ξ ∈ Γ(µ), using (4.86), we have

g(TV FW,ξ ) = g(ω∇̂VW +CTVW, ξ )

= g(ω∇̂VW,ξ )+g(CTVW,ξ ) .

Using (4.83) and (4.84), we obtain

g(TV FW,ξ ) = g(F∇̂VW,ξ )+g(FTVW,ξ )

= g(∇̂VW,Fξ )+g(TVW,Fξ ) .
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Since g(∇̂VW,Fξ ) = 0, we get

g(TV FW,ξ ) = g(TVW,Fξ ).

Theorem 9. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the invariant distribution D defines a

totally geodesic foliation on kerπ∗ if and only if

g(TVW,FX) = 0 (4.102)

for V,W ∈ Γ(D) and X ∈ Γ(D⊥).

Proof. The invariant distribution D defines a totally geodesic foliation on kerπ∗ if and

only if g(∇̂VW,X) = 0, for V,W ∈ Γ(D) and X ∈ Γ(D⊥). Here, using (2.28) and (4.5),

we have

g(∇̂VW,X) = g(∇VW,X) = g(∇V FW,FX) = g(TV FW,FX). (4.103)

Hence, (4.102) follows.

Theorem 10. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the anti-invariant distribution D⊥ defines

a totally geodesic foliation on kerπ∗ if and only if

g(TX FY,FV ) = 0, (4.104)

for X ,Y ∈ Γ(D⊥) and V ∈ Γ(D).

Proof. Let X ,Y ∈ Γ(D⊥) and V ∈ Γ(D). Using (4.5), (4.6) and (2.28), we have

g(∇̂XY,V ) = g(∇XY,V ) = g(∇X FY,FV ) = g(TX FY,FV ). (4.105)

Since the anti-invariant distribution D⊥ defines a totally geodesic foliation on kerπ∗ if

and only if g(∇̂XY,V ) = 0, the assertion follows.

By Theorem 9 and Theorem 10, we have the following result.
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Corollary 4. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the vertical distribution kerπ∗ is a locally

product MD×MD⊥ if and only if

g(TU FW,FX) = 0 (4.106)

for W ∈ Γ(D), X ∈ Γ(D⊥) and U ∈ Γ(kerπ∗), where MD and MD⊥ are integral

manifolds of the distributions D and D⊥, respectively.

It is well known that the vertical distribution kerπ∗ of a Riemannian submersion

is always integrable. We now give a necessary and sufficient condition for the

integrability of the horizontal distribution (kerπ∗)
⊥ of a semi-invariant submersion

π from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN).

Theorem 11. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the horizontal distribution kerπ⊥∗ is

integrable and totally geodesic if and only if

φ(V ∇ξ Bη +AξCη)+B(Aξ Bη +H ∇ξCη) = 0, (4.107)

where ξ ,η ∈ Γ(kerπ⊥∗ ).

Proof. By (4.4), we know that the horizontal distribution kerπ⊥∗ is integrable and

totally geodesic if and only if A ≡ 0, i.e. Aξ η = 0,∀ξ ,η ∈ Γ(kerπ⊥∗ ). On the other

hand, from (4.8), this is equivalent to V ∇ξ η = 0. Here, using (2.32), (2.33), (4.83)

and (4.84), we have

∇ξ η = F∇ξ Fη = F(∇ξ Bη +∇ξCη)

= BAξ Bη +BH ∇ξCη +φV ∇ξ Bη +φAξCη

+CAξ Bη +CH ∇ξCη +ωV ∇ξ Bη +ωAξCη . (4.108)

Taking the the vertical part of this equation, we get

V ∇ξ η = φ(V ∇ξ Bη +AξCη)+B(Aξ Bη +H ∇ξCη). (4.109)

Hence, our assertion follows.

With a similar method, we have that:
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Theorem 12. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, the vertical distribution kerπ∗ defines a

totally geodesic foliation if and only if

ω(∇̂U φV +TU ωV )+C(TU φV +H ∇U ωV ) = 0 (4.110)

for all U,V ∈ Γ(kerπ∗).

Corollary 5. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, M is a locally product Mkerπ∗×Mkerπ⊥∗
if

and only if (4.107) and (4.110) hold, where Mkerπ∗ and Mkerπ⊥∗
are integral manifolds

of the distributions kerπ∗ and kerπ⊥∗ , respectively.

It is well known that the vertical distribution kerπ∗ defines a totally geodesic foliation

if and only if T ≡ 0 and the horizontal distribution kerπ⊥∗ defines a totally geodesic

foliation if and only if A ≡ 0. On the other hand, we know that a Riemannian

submersion π : (M,g)→ (N,gN) is totally geodesic if and only if both O’Neill’s tensors

T and A vanish [32]. Thus, by Theorem 11 and Theorem 12, we have the following

result.

Theorem 13. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, π is a totally geodesic map if and only if

(4.107) and (4.110) hold.

4.2.3 Semi-invariant submersions with totally umbilical fibers

Theorem 14. Let π be a proper semi-invariant submersion with totally umbilical fibers

from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) . If dim(D⊥)> 1,

then the fibers of π are totally geodesic or the mean curvature vector field H belongs

to µ .

Proof. The case that the fibers of π are totally geodesic is obvious. Let us consider the

other case. Since dim(D⊥) > 1, then we can choose X ,Y ∈ Γ(D⊥) such that the set

{X , Y } is orthonormal. By using (4.5), (2.28), (4.83) and (4.84), we have

TX FY +H ∇X FY = ∇X FY = F∇XY = φ ∇̂XY +ω∇̂XY +BTXY +CTXY (4.111)
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Hence, we obtain

g(TX FY,X) = g(φ ∇̂XY +BTXY,X). (4.112)

Here, using (2.28) and (4.83), we get

g(TX FY,X) = g(TXY,FX). (4.113)

Thus, using (4.22) and (4.113), we find

g(H,FY ) = g(TX X ,FY ) =−g(TX FY,X) =−g(TX FY,X)

=−g(TXY,FX) =−g(X ,Y )g(H,FX) = 0, (4.114)

since g(X ,Y ) = 0. So, we deduce that H ⊥ FD⊥. Therefore, it follows H ∈ µ from

(4.74).

Corollary 6. Let π be a proper semi-invariant submersion with totally umbilical fibers

from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) . If kerπ⊥∗ =FD⊥,

i.e. µ = {0}, then the fibers of π are totally geodesic.

4.2.4 Semi-invariant submersions with parallel canonical structures

In this section, we study semi-invariant submersions from l.p.R. manifolds onto

Riemannian manifolds with parallel canonical structures.

Let π be semi-invariant submersion from a l.p.R. manifold (M,g,F) onto a Riemannian

manifold (N,gN) . Then, we define

(∇U φ)V = ∇̂U φV −φ ∇̂UV, (4.115)

(∇U ω)V = H ∇U ωV −ω∇̂UV, (4.116)

(∇U B)ξ = ∇̂U Bξ −BH ∇U ξ , (4.117)

(∇UC)ξ = H ∇UCξ −CH ∇U ξ , (4.118)

where U,V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

We say that φ (resp. ω , B or C) is parallel if ∇φ = 0 (resp. ∇ω = 0, ∇B = 0 or

∇C = 0).
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Lemma 11. Let π be a semi-invariant submersion with parallel canonical structures

from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) . Then for any

U,V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we have

(∇U φ)V = BTUV −TU ωV, (4.119)

(∇U ω)V =CTUV −TU φV, (4.120)

(∇U B)ξ = φTU ξ −TUCξ , (4.121)

(∇UC)ξ = ωTU ξ −TU Bξ . (4.122)

Proof. (4.119) follows from (4.115) and (4.85), (4.120) follows from (4.116) and

(4.86), (4.121) follows from (4.117) and (4.89) and (4.122) follows from (4.118) and

(4.90).

Theorem 15. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . If φ is parallel, i.e. ∇φ = 0 then, the following

two facts hold:

Each leaf of the anti-invariant distribution D⊥ is totally geodesic. (4.123)

The fibres of π are mixed geodesic. (4.124)

Proof. Let φ be parallel. Then, for any X ,Y ∈ Γ(D⊥), from (4.115) we have

φ ∇̂XY = 0, (4.125)

since φY = 0. By Lemma 7-(b), it follows that ∇̂XY ∈ D⊥, so we obtain (4.123) .

On the other hand, for any Z ∈ Γ(D) and X ∈ Γ(D⊥), from (4.119) we have

BTZX = TZωX . (4.126)

Since ωX = FX , from (4.126), we get

B2TZX = BTZωX = TZω
2X = TZX . (4.127)

But, using (4.3) and Lemma 7-(c), we have

B2TZX = B2TX Z = BTX ωZ = 0. (4.128)

From (4.127) and (4.128), we find TZX = 0 which proves (4.124).
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Theorem 16. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . If ω is parallel, i.e. ∇ω = 0, then the following

three facts hold:

Each leaf of the invariant distribution D is totally geodesic. (4.129)

The fibers of π are mixed geodesic. (4.130)

Tkerπ∗D
⊥ ⊂ FD⊥. (4.131)

Proof. Let ω be parallel. Then, for any U,Z ∈ Γ(D), from (4.116), we have

ω∇̂U Z = 0, since ωZ = 0. By Lemma 7-(c), it follows that ∇̂U Z ∈D, so we get (4.129).

On the other hand, for any Z ∈ Γ(D) and X ∈ Γ(D⊥), we have

CTX Z = TX φZ (4.132)

from (4.120). Since φZ = FZ, we get

C2TX Z =CTX φZ =CTX φ
2Z = TX Z. (4.133)

from (4.126). Hence, using (4.3) and Lemma 7-(b), we obtain

C2TX Z =C2TZX =CTZφX . (4.134)

Thus, the assertion (4.130) follows from (4.133) and (4.134).

Now, take ξ ∈ Γ(µ). Then, for any V ∈ Γ(kerπ∗), using (4.120), we get

g(TV X ,ξ ) = g(FTV X ,Fξ ) = g(CTV X ,Fξ ) = g(TV φX ,Fξ ) = 0, (4.135)

since µ is invariant with respect to F , that is, we find

g(TV X ,ξ ) = 0. (4.136)

Thus, by (4.136) and (4.74), the assertion (4.131) follows.

Proposition 4. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) . Then, ω is parallel if and only if B is parallel.

Proof. Let ω be parallel. For any U,V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), using (2.32)

and (4.120), we have

g(φTU ξ ,V ) = g(FTU ξ ,V ) = g(TU ξ ,φV ) =−g(TU φV,ξ ) =−g(CTUV,ξ )
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=−g(FTUV,ξ ) =−g(TUV,Fξ ) =−g(TUV,Cξ ) = g(TUCξ ,V ), (4.137)

that is; g(φTU ξ ,V ) = g(TUCξ ,V ). So, by (4.121), we find B is parallel.

The converse can be calculated in a similar way.

4.2.5 First variational formula of a semi-invariant submersion

In this subsection, we investigate the first variational formula of a semi-invariant

submersion from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN). We

use the definitions which are given in Subsection 4.1.1.

We start our study by investigating the conditions that under which a 1-form σξ is a

Legendre variation.

Lemma 12. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN). The 1-form σξ is a Legendre variation if and

only if

g(TU ξ ,φV )−g(TV ξ ,φU) = g(AξU,ωV )−g(AξV,ωU) (4.138)

for all U,V ∈ Γ(kerπ∗).

Proof. Let U,V ∈ Γ(kerπ∗). Then, by the definition of differential, (4.6) and (2.32),

we obtain

(dσξ )(U,V ) =Ug(Fξ ,V )−V g(Fξ ,U)−g(Fξ , [U,V ])

=Ug(ξ ,FV )−V g(ξ ,FU)−g(ξ ,F [U,V ])

=g(∇U ξ ,FV )+g(ξ ,∇U FV )

−g(∇V ξ ,FU)−g(ξ ,∇V FU)

−g(ξ ,F∇UV )+g(ξ ,F∇VU)

=g(∇U ξ ,φV +ωV )−g(∇V ξ ,φU +ωU)

=g(∇U ξ ,φV )+g(∇U ξ ,ωV )

−g(∇V ξ ,φU)+g(∇V ξ ,ωU)

=g(TU ξ ,φV )+g(H ∇U ξ ,ωV )

−g(TV ξ ,φU)+g(H ∇V ξ ,ωU). (4.139)
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Since we assume ξ is basic, we obtain

(dσξ )(U,V ) =g(TU ξ ,φV )+g(AξU,ωV )

−g(TV ξ ,φU)+g(AξV,ωU). (4.140)

Thus, the assertion follows.

Lemma 13. For ξ ∈ Γ(µ), σξ ≡ 0.

Proof. Let ξ ∈ Γ(µ). Then, Fξ ∈ Γ(µ). For any V ∈ Γ(kerπ∗), we get

σξ (V ) = g(Fξ ,V ) = 0. (4.141)

So, σξ ≡ 0, for all V ∈ Γ(kerπ∗).

Remark 5. Because of Lemma 13, throughout this subsection, we can assume that H

belongs to Γ(ωD⊥).

Proposition 5. Let π be a semi-invariant submersion from a l.p.R. manifold (M,g,F)

onto a Riemannian manifold (N,gN) and f be a smooth function on a fiber. Then,

F(grad( f )|
ωD⊥) ∈ E.

Proof. Let f be a smooth function on a fiber. For ξ = F(grad( f )|
ωD⊥), and any

V ∈ Γ(kerπ∗), we obtain

σξ (V ) =g(Fξ ,V ) = g(grad( f ),V ) =V [ f ] = d f (V ). (4.142)

Thus, we get σξ = d f , i.e., ξ ∈ E.

Theorem 17. Let π be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

(a) The fiber π−1
q is L−minimal if and only if σH is co-exact.

(b) The fiber π−1
q is E−minimal if and only if σH is co-closed.

(c) The fiber π−1
q is H−minimal if and only if σH is the sum of an exact and a co-exact

1-form.

Proof. (a) ⇒ : Let the fiber π−1
q be L−minimal, then for any ξ ∈ L, we have

g(H,ξ ) = 0 from (4.56). By the definition of the Hodge star operator [31], we have

σξ ∧σH(V1,V2, ...,Vk) = g(ξ ,H)∗1(V1,V2, ...,Vk),
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for V1,V2, ...,Vk ∈ Γ(kerπ∗). From the definition of the global scalar product (.|.) [31]

on the module of all forms on the fiber, we get

(σξ |σH) =
∫

π
−1
q

σξ ∧∗σH = 0. (4.143)

Denote by δ the codifferential operator [31] on the fiber π−1
q . Since σξ is closed, for

any 2-form β on π−1
q , we have

0 = (dσξ |β ) = (σξ |δβ ). (4.144)

Since π−1
q is compact, by (4.143) and (4.144), we conclude that σH is co-exact.

⇐ : Suppose that σH is co-exact, we have σH = δψ for some 2-form ψ . Then, for any

ξ ∈ L,

(σξ |σH) = (σξ |δψ) = (dσξ |ψ) = 0 (4.145)

and then

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π−1(q)
(σξ ∧∗σH) =−k(σξ |σH) = 0,

i.e. π−1
q is L−minimal.

(b)⇒ : Let the fiber π−1
q be E−minimal. Then, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH),

that is, (σξ |σH) = 0. Since for ξ ∈ E, σξ = d f for some function f on the fiber π−1
q .

Thus,

(d f |σH) = ( f |δσH) = 0.

Hence it follows that δσH = 0, i.e. σH is co-closed.

⇐ : Suppose that σH is co-closed. Let ξ ∈ E, then there exists a function f ∈F (π−1
q )

such that σξ = d f . Hence, we have

(σξ |σH) = (d f |σH) = ( f |δσH) = 0. (4.146)

Therefore,

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH) = 0, (4.147)

that is V′(ξ ) = 0 for ξ ∈ E, i.e. π−1
q is E−minimal.

(c)⇒ : If the fiber π−1
q is H−minimal, then for ξ ∈H, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH). (4.148)
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It means that, σH is orthogonal to harmonic 1-forms on the fiber π−1
q . Thus, by the

Hodge decomposition theorem, we conclude that σH is the sum of an exact and a

co-exact 1-form.

⇐ : Let σH be the sum of an exact 1-form ω1 such that ω1 = d f and a co-exact 1-form

ω2 such that ω2 = δψ . For ξ ∈H, we have

(σξ |σH) =(σξ |d f +δψ) = (σξ |d f )+(σξ |δψ)

=(δσξ | f )+(dσξ |ψ) = 0, (4.149)

since dσξ = δσξ = 0. Thus,

V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH), (4.150)

that is, the fiber is H−minimal.

If we give a restriction of Theorem 17, we have the following results.

Theorem 18. Let π be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then

(a) π−1
q is L−minimal if and only if π−1

q is minimal.

(b) π−1
q is E−minimal if and only if σH is a harmonic variation.

(c) π−1
q is H−minimal if and only if σH is an exact 1-form.

Proof. (a) If the fiber π−1
q is L−minimal, then by Theorem 17-(a) we have, σH is

co-exact. Hence σH is co-closed. Taking into account the fact that dσH = 0, we

deduce that σH is harmonic. But this is a contradiction because of Hodge de Rham

decomposition theorem. So, σH must be zero. Hence we conclude that H = 0. The

converse is clear.

(b)⇒ : If the fiber π−1
q is E−minimal, then we have δσH = 0 from Theorem 17-(b).

Since dσH = 0, σH is also harmonic, i.e. ∆σH = 0.

⇐ : If σH is harmonic, then σH is co-closed. By Theorem 17-(b), the fiber π−1
q is

E−minimal.

(c)⇒ : Assume that π−1
q is H−minimal. Then, from Theorem 17-(c), σH is the sum of

an exact 1-form and a co-exact 1-form. On the other hand, the condition H ∈L implies

that σH is orthogonal to every co-exact 1-form on π−1
q . Thus, σH must be exact.
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⇐ : Let σH be an exact 1-form. For ξ ∈H, we obtain

V
′
(ξ ) =− k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH)

=− k(σξ |σH) = (σξ |d f ) = (δσξ | f ) = 0, (4.151)

that is, π−1
q is H−minimal.

Remark 6. The method that considering the basis to investigate the harmonicity of a

submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.

Since a l.p.R. manifold is not always even dimensional, choosing a basis and using it is

not easy. On the other hand, it is well known that, the fibers of a submersion is minimal

if and only if the submersion is harmonic. Now, we give the following corollary which

is a new approach to investigate the harmonicity of a submersion. By Theorem 18-(a),

we have the following result.

Corollary 7. Let π be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then, π is harmonic

if and only if π−1
q is L−minimal.

Lemma 14. Let π be a semi-invariant submersion with compact fibers from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

δσH = 0⇔ Σig(TφEiEi,H) =−Σig(AωEiEi,H), (4.152)

where {E1,E2, ...,Em} is a local basis of kerπ∗.

Proof. By the definition of the co-differential of a 1-form, we have

δσH = 0⇔ Σig(∇EiFH,Ei) = 0.

Here, we assume that H is basic. Then using (4.83), (4.6) and Remark 1, we get

⇒ δσH = 0⇔ Σig(∇EiH,FEi) = 0⇔ Σig(∇EiH,φEi +ωEi)

= Σig(∇EiH,φEi)+Σig(∇EiH,ωEi)

= Σig(TEiH,φEi)+Σig(AHEi,ωEi) = 0. (4.153)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensor A and T .
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4.3 Pointwise Semi-Slant Submersions

The notion of the pointwise slant submersion from almost Hermitian manifolds onto

Riemannian manifolds was first defined by Lee and Şahin [10]. In this section,

we construct on the idea of pointwise slant submersion and define a new type of

submersion which is called pointwise semi-slant submersion.

Definition 7. [10] Let π be a Riemannian submersion from an almost Hermitian

manifold (M,g,J) onto a Riemannian manifold (N,gN). If, at each given point p ∈M,

the Wirtinger angle θ(V ) between JV and the space (kerπ∗)p is independent of the

choice of the non-zero vector V ∈ (kerπ∗), then we say that π is a pointwise slant

submersion. In this case, the angle θ can be regarded as a function on M, which is

called the slant function of the pointwise slant submersion.

Now, we define the pointwise semi-slant submersion.

Definition 8. Let (M,g,F) be a l.p.R. manifold and (N,gN) be a Riemannian manifold.

A Riemannian submersion π : (M,g,F) → (N,gN) is called a pointwise semi-slant

Riemannian submersion, if there is a distribution D⊂ kerπ∗ such that

kerπ∗ = D⊕Dθ , FD = D , (4.154)

where Dθ is orthogonal complement of D in kerπ∗ and the angle θ = θ(X) between

FX and the space (Dθ )p is independent of the choice of non-zero vector X ∈ Γ((Dθ )p)

for p ∈ M, i.e. θ is a function on M, which is called slant function of the pointwise

semi-slant submersion. We say that π is proper if the slant function is θ 6= 0 and

θ 6= π/2.

Remark 7. From now on, in this section, instead of using the term “pointwise

semi-slant Riemannian submersion”, we will briefly use the term “pointwise semi-slant

submersion”.

In this case, for any V ∈ Γ(kerπ∗) , we have

V = PV +QV, (4.155)
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where PV ∈ Γ(D) and QV ∈ Γ(Dθ ).

For V ∈ Γ(kerπ∗), we have

FV = φV +ωV, (4.156)

where φV ∈ Γ(kerπ∗) and ωV ∈ Γ(kerπ⊥∗ ).

For ξ ∈ Γ(kerπ⊥∗ ), we have

Fξ = Bξ +Cξ , (4.157)

where Bξ ∈ Γ(kerπ∗) and Cξ ∈ Γ(kerπ⊥∗ ).

For any E ∈ Γ(T M), we obtain

E = V E +H E, (4.158)

where V E ∈ Γ(kerπ∗) and H E ∈ Γ(kerπ⊥∗ ).

Therefore, the horizontal distribution (kerπ∗)
⊥ is decomposed as

kerπ
⊥
∗ = ωDθ ⊕µ , (4.159)

where µ is the orthogonal complementary distribution of ωDθ in (kerπ⊥∗ ), and it is

invariant with respect to F .

Example. Consider the Euclidean 6-space R6 with usual metric g. Define the almost

product structure F on (R6,g) by

F∂1 = ∂2, F∂2 = ∂1, F∂3 = ∂4, F∂4 = ∂3, F∂5 = ∂5, F∂6 =−∂6,

where ∂i =
∂

∂xi
, i = 1, · · · ,6 and (x1,x2, · · · ,x6) are natural coordinates of R6. Now,

we define a map π : R6→ R3 by

π(x1, · · · ,x6) =
(

f1, f2, f3),

where

f1 = (x1 +(
√

2−1)x2− x3 + x4 + x6),

f2 = (
(x1)

2

2
+(
√

2−1)x2−
(x3)

2

2
+ x4− x6),

f3 = (x1 +(
√

2−1)x2− x3− x4 + x6), (4.160)

and x1 6= x3. Then, the Jacobian matrix of π is: 1
√

2−1 −1 1 0 1
x1
√

2−1 −x3 1 0 −1
1
√

2−1 −1 −1 0 1

 . (4.161)
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Since the rank of this matrix is equaled to 3, the map π is a submersion. After some

calculations, we see that

kerπ∗ = D⊕Dθ , (4.162)

where

D = span{∂5}, (4.163)

and

Dθ = span{ 1√
2

∂1 +
1√
2

∂2 +∂3,x3∂1 + x1∂3}. (4.164)

Moreover, the slant function of Dθ is θ = arccos(1
2

x3√
(x1)2+(x3)2

). By direct calculation,

we see that π satisfies the condition (S2) of the definition of Riemannian submersion.

Hence the map π is a proper pointwise semi-slant submersion with the slant function

θ .

Using (2.28), (4.156) and (4.157), we get the following useful facts.

Lemma 15. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, we have

(a) φ
2 +Bω = I, (b) ωφ +Cω = 0,

(c) φB+BC = 0, (d) ωB+C2 = I,

where I is the identity operator on T M.

Proof. For any V ∈ Γ(kerπ∗), by (2.28), we have

F2V =V. (4.165)

Using (4.156) and (4.157), we obtain

F2V =V = F(FV ) = F(φV +ωV ) = φ
2V +ωφV +BωV +CωV. (4.166)

If (4.166) is considered as decomposed into the vertical and horizontal parts, we obtain

the following: φ 2 +Bω = I and ωφ +Cω = 0.

(c) and (d) can be proved with the same method above.

By using (4.154)∼(4.159), we get the following two results.

Lemma 16. Let π be a pointwise semi-slant Riemannian submersion from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then, we have

(a) φD = D (b) φDθ ⊂ Dθ (c) ωD = {0}.
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Lemma 17. Let π be a pointwise semi-slant Riemannian submersion from a l.p.R.

manifold (M,g,F) onto a Riemannian manifold (N,gN). Then, we have

(a) B(FDθ ) = Dθ (b) Bµ = {0} (c) C(FDθ ) = ωDθ (d) Cµ = µ.

Now we investigate the effect of the almost product structure F on the O’Neill’s tensors

T and A of a pointwise semi-slant Riemannian submersion

π : (M,g,F)→ (N,gN).

Lemma 18. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, we have

∇̂V φW +TV ωW = φ ∇̂VW +BTVW, (4.167)

TV φW +H ∇V ωW = ω∇̂VW +CTVW, (4.168)

V ∇ξ Bη +AξCη = φAξ η +BH ∇ξ η , (4.169)

Aξ Bη +H ∇ξCη = ωAξ η +CH ∇ξ η , (4.170)

∇̂V Bξ +TVCξ = φTV ξ +BH ∇V ξ , (4.171)

TV Bξ +H ∇VCξ = ωTV ξ +CH ∇V ξ , (4.172)

V ∇ξ φV +Aξ ωV = BAξV +φV ∇ξV, (4.173)

Aξ φV +H ∇ξ ωV =CAξV +ωV ∇ξV, (4.174)

where V,W ∈ Γ(kerπ∗), and ξ ,η ∈ Γ(kerπ⊥∗ ).

Proof. For any V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), using (2.33), we have

F∇ξV = ∇ξ FV.

Hence, using (4.7), (4.8), (4.156) and (4.157), we obtain

BAξV +CAξV +φV ∇ξV +ωV ∇ξV = Aξ φV +V ∇ξ φV +Aξ ωV +H ∇ξ ωV.
(4.175)

Taking the vertical and horizontal parts of this equation, we get (4.173) and (4.174).

The other assertions can be obtained by using (4.5)∼(4.8), (4.156) and (4.157).
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Proposition 6. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, we obtain

φ
2X = cos2

θX , (4.176)

for X ∈ Γ(Dθ ), where θ denotes the slant function.

Proof. For any non-zero X ∈ Γ(Dθ ) we can write following equations:

cosθ =
g(FX ,φX)

|FX ||φX |
=

g(X ,φ 2X)

|X ||φX |
and cosθ =

|φX |
|FX |

. (4.177)

Then, we obtain

cos2
θ =

g(X ,φ 2X)

|X ||φX |
|φX |
|FX |

. (4.178)

Therefore, we get the equality

g(cos2
θX ,X) = g(X ,φ 2X), (4.179)

which gives the assertion.

Remark 8. We easily observe that the converse of the Proposition 6 also holds.

Now we give a theorem for pointwise semi-slant submersions, which has similar idea

with the Theorem 4.2. in [33].

Theorem 19. Let π be a Riemannian submersion from a l.p.R. manifold (M,g,F) onto

a Riemannian manifold (N,gN). Then, π is a proper pointwise semi-slant submersion

if and only if there exists a constant λ ∈ [0,1] such that

(a) D
′
= {x ∈ D

′|φ 2X = λX},

(b) For any X ∈ Γ(T M),orthogonal to D
′
,ωX = 0.

Moreover, in this case λ = cos2θ , where θ denotes the slant function.

Proof. Let π : (M,g,F)→ (N,gN) be a pointwise semi-slant submersion. Then,

λ = cos2θ and D
′
= Dθ . By the definition of the pointwise semi-slant submersion,

ωX = 0, where X belongs to orthogonal complement of D
′
.

Conversely, (a) and (b) imply that T M = D⊕D
′
. Since φD

′ ⊆ D
′
, from (b), D is an

invariant distribution. Thus, π is a pointwise semi-slant submersion.
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4.3.1 Integrability of distributions

In this subsection, we investigate the integrability conditions for invariant and slant

distributions.

Theorem 20. Let π be a pointwise semi-slant Riemannian submersion from an almost

product Riemannian manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

the invariant distribution D is integrable if and only if

φ(∇̂VW − ∇̂WV ) ∈ D (4.180)

for V,W ∈ Γ(D).

Proof. For V,W ∈ Γ(D) and X ∈ Γ(Dθ ), we know [V,W ] ∈ D if and only if F [V,W ] ∈

D. Then, by (4.156) we obtain,

g(F [V,W ],X) =g(F(∇VW −∇WV ),X)

=g(F(TVW + ∇̂VW −TWV − ∇̂WV ),X)

=g(φ(∇̂VW − ∇̂WV ),X). (4.181)

Thus, [V,W ] ∈ D if and only if φ(∇̂VW − ∇̂WV ) ∈ D.

In a similar way, we get the following theorem.

Theorem 21. Let π be a pointwise semi-slant Riemannian submersion from an almost

product Riemannian manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

the slant distribution Dθ is integrable if and only if

φ(∇̂XY − ∇̂Y X) ∈ Dθ

for X ,Y ∈ Γ(Dθ ).

If we consider the total manifold l.p.R. instead of almost product Riemannian, we

obtain the following results.

Lemma 19. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, we have the following:

g(∇VW,X) = csc2
θ{g(TVW,ωφX)+g(TV φW,ωX)}, (4.182)

g(∇XY,V ) = csc2
θ{g(TX ωφY,V )+g(TX ωY,φV )}, (4.183)

where θ is the slant function, V,W ∈ Γ(D) and X ,Y ∈ Γ(Dθ ).

49



Proof. Let V,W ∈ Γ(D) and X ,Y ∈ Γ(Dθ ). Then, by using (2.32) and (4.156), we

obtain

g(∇VW,X) =g(∇V FW,FX)

=g(∇V FW,φX)+g(∇V FW,ωX)

=g(∇VW,φ 2X)+g(∇VW,ωφX)+g(∇V φW,ωX). (4.184)

If we regard (4.176), (4.5) and (4.6) for the last expression, we get the following

equality

⇒ (1− cos2
θ)g(∇VW,X) = g(TVW,ωφX)+g(TV φX ,ωX). (4.185)

Thus, we obtain the first assertion.

For the second equation we apply the same idea. Let X ,Y ∈ Γ(Dθ ) and V ∈ Γ(D).

Then by using (2.32) and (4.156), we get

g(∇XY,V ) =g(∇X FY,FV )

=g(∇X φY,FV )+g(∇X ωY,FV )

=g(∇X φ
2Y,V )+g(∇X ωφY,V )+g(∇X ωY,FV ). (4.186)

If we consider (4.176),(4.5) and (4.6) with the last equation, we get the following

g(∇XY,V ) =g(∇X(cos2
θ)Y,V )+g(∇X ωφY,V )+g(∇X ωY,FV )

=g(−(sin2θ)(Xθ)Y,V )+g(cos2
θ∇XY,V )+g(TX ωφY,V )

+g(TX ωY,φV ). (4.187)

Therefore, since g(−(sin2θ)(Xθ)Y,V ) = 0, we get the assertion.

Theorem 22. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, the invariant distribution D is

integrable if and only if

g(TV φW −TW φV,ωX) = 0 (4.188)

for V,W ∈ Γ(D) and X ∈ Γ(Dθ ).
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Proof. Let V,W ∈ Γ(D) and X ∈ Γ(Dθ ). Then, by Lemma 19 and (4.3), we have

g([V,W ],X) =g(∇VW,X)−g(∇WV,X)

=csc2
θ{g(TVW,ωφX)+g(TV φW,ωX)

−g(TWV,ωφX)+g(TW φV,ωX)}

=csc2
θ{g(TV φW,ωX)−g(TW φV,ωX)}. (4.189)

Therefore, D is integrable if and only if g(TV φW −TW φV,ωX) = 0.

In the same way, we examine the slant distribution.

Theorem 23. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, the slant distribution Dθ is

integrable if and only if

g(TX ωφY −TY ωφX ,V ) = g(TY ωX−TX ωY,φV ) (4.190)

for X ,Y ∈ Γ(Dθ ) and V ∈ Γ(Dθ ).

Proof. Let X ,Y ∈ Γ(Dθ ) and V ∈ Γ(D). By using Lemma 19, we obtain

g([X ,Y ],V ) =csc2
θ{g(TX ωφY,V )+g(TX ωY,φV )

−g(TY ωφX ,V )+g(TY ωX ,φV )}. (4.191)

Thus, slant distribution Dθ is integrable if and only if

g(TX ωφY −TY ωφX ,V ) = g(TY ωX−TX ωY,φV ).

4.3.2 Totally geodesicness of the fibers

Now, we focus on the geometry of the fibers and the distributions that is mentioned in

the definition of a pointwise semi-slant submersion.

Proposition 7. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, kerπ∗ defines a totally geodesic

foliation if and only if

C(TV φW +H ∇V ωW )+ω(∇̂V φW +TV ωW ) = 0 (4.192)

for V,W ∈ Γ(kerπ∗).
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Proof. For V,W ∈ Γ(kerπ∗), by using (4.5), (4.6) and (4.156), we get

∇VW =F∇V FW = F(∇V φW +∇V ωW )

=F(TV φW + ∇̂V φW +TV ωW +H ∇V ωW )

=BTV φW +CTV φW +φ ∇̂V φW +ω∇̂V φW

+φTV ωW +ωTV ωW +BH ∇V ωW +CH ∇V ωW. (4.193)

Therefore, kerπ∗ defines a totally geodesic foliation if and only if

C(TV φW +H ∇V ωW )+ω(∇̂V φW +TV ωW ) = 0.

Proposition 8. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, kerπ⊥∗ defines a totally geodesic

foliation if and only if

B(Aξ Bη +H ∇ξCη)+φ(V ∇ξ Bη +AξCη) = 0 (4.194)

for ξ ,η ∈ Γ(kerπ⊥∗ ).

Proof. This proof can be done using the techniques of the proof of Proposition 7 .

In the view of Proposition 7 and Proposition 8, we obtain the following result.

Corollary 8. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, M is a locally product Mkerπ∗×

Mkerπ⊥∗
if and only if (4.192) and (4.194) hold, where Mkerπ∗ and Mkerπ⊥∗

are integral

manifolds of the distributions kerπ∗ and kerπ⊥∗ , respectively.

Proposition 9. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, the invariant distribution D

defines a totally geodesic foliation on kerπ∗ if and only if for U,V ∈ Γ(D),

Q(BTU φV +φ ∇̂U φV ) = 0 and (CTU φV +ω∇̂U φV ) = 0. (4.195)

Proof. For U,V ∈ Γ(D), from (4.5), (4.6), (4.156) and (4.157) we obtain

∇UV =F∇U FV = F(∇U φV +∇U ωW )

=F(∇U φV ) = F(TU φV + ∇̂U ωV )

=BTU φV +CTU φV +φ ∇̂U ωV +ω∇̂U ωV. (4.196)

Therefore, we obtain the assertion.
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Proposition 10. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, the slant distribution Dθ defines

a totally geodesic foliation on kerπ∗ if and only if for

X ,Y ∈ Γ(Dθ ),

P(B(TX φY +H ∇X ωY )+φ(TX ωY + ∇̂X φY )) = 0 (4.197)

and

ω(∇̂X φY +TX ωY )+C(TX φY +H ∇X ωY ) = 0. (4.198)

Proof. The argument is the same as the proof of Proposition 9.

By Proposition 9 and Proposition 10 we have the following result.

Corollary 9. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, the vertical distribution kerπ∗

is a locally product MD×MDθ
if and only if (4.195), (4.197) and (4.198) hold, where

MD and MDθ
are intergral manifolds of D and Dθ , respectively.

Theorem 24. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). Then, π is a totally geodesic map if

and only if

ω(∇̂V φW +TU ωW )+C(TV φW +H ∇V ωW ) = 0 (4.199)

and

ω(∇̂V Bξ +TVCξ )+C(TV Bξ +H ∇VCξ ) = 0 (4.200)

for V,W ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

Proof. Since π is a Riemannian submersion, we have

(∇π∗)(ξ ,η) = 0, f or ξ ,η ∈ Γ(kerπ
⊥
∗ ).
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For V,W ∈ Γ(kerπ∗), we obtain

(∇π∗)(V,W ) = ∇
π
V (π∗W )−π∗∇VW

=−π∗(F∇V FW ) =−π∗(F(∇V φW +∇V ωW )

=−π∗(F(TV φW + ∇̂V φW +TV ωW +H ∇V ωW )

=−π∗(BTV φW +CTV φW +φ ∇̂V φW +ω∇̂V φW

+φTV ωW +ωTV ωW +BH ∇V ωW +CH ∇V ωW )

=−π∗(CTV φW +ω∇̂V φW +ωTV ωW +CH ∇V ωW ). (4.201)

Thus,

(∇π∗)(V,W ) = 0⇔ ω(∇̂V φW +TV ωW )+C(TV φW +H ∇V ωW ) = 0.

By a similar way above, for V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we get

(∇π∗)(V,ξ ) = 0⇔ ω(∇̂V Bξ +TVCξ )+C(TV Bξ +H ∇VCξ ) = 0.

4.3.3 Parallel canonical structures and totally umbilical case of the fibers

Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M,g,F) onto a

Riemannian manifold (N,gN) . We can define

(∇U φ)V = ∇̂U φV −φ ∇̂UV, (4.202)

(∇U ω)V = H ∇U ωV −ω∇̂UV, (4.203)

(∇U B)ξ = ∇̂U Bξ −BH ∇U ξ , (4.204)

(∇UC)ξ = H ∇UCξ −CH ∇U ξ , (4.205)

where U,V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

We say that φ (resp. ω , B or C) is parallel if ∇φ = 0 (resp. ∇ω = 0, ∇B = 0 or

∇C = 0).

Lemma 20. Let π be a pointwise semi-slant submersion with parallel canonical

structures from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) . Then

for any U,V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we have

(∇U φ)V = BTUV −TU ωV, (4.206)
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(∇U ω)V =CTUV −TU φV, (4.207)

(∇U B)ξ = φTU ξ −TUCξ , (4.208)

(∇UC)ξ = ωTU ξ −TU Bξ . (4.209)

Proof. All of the equations follow from Lemma 18 and (4.202)∼(4.205).

Theorem 25. Let π be a proper pointwise semi-slant submersion with totally umbilical

fibers from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) . If

dim(Dθ ) ≥ 2 and φ is parallel, then the fibers of π are totally geodesic or the mean

curvature vector field H belongs to µ .

Proof. The case of totally geodesic fibers is obvious. Let us assume the other case.

Since dim(Dθ ) ≥ 2, then we can choose X ,Y ∈ Γ(Dθ ) such that the set {X , Y } is

orthonormal. By using (2.32), (2.33), (4.156), (4.157), (4.5) and (4.6), we have

∇X FY =F∇XY (4.210)

∇X φY +∇X ωY =F(TXY + ∇̂XY ) (4.211)

TX φY + ∇̂X φY +TX ωY +H ∇X ωY =BTXY +CTXY +φ ∇̂XY +ω∇̂XY. (4.212)

Therefore, we obtain

g(∇̂X φY +TX ωY,X) =g(BTXY +φ ∇̂XY,X) (4.213)

g(φ ∇̂XY − ∇̂X φY,X) =g(TX ωY −BTXY,X) (4.214)

g((∇X φ)Y,X) =g(FTXY −TX FY,X). (4.215)

Since φ is parallel, we get

g(FTXY,X) = g(TX FY,X). (4.216)

Thus, using (4.22) and (4.216), we have

g(H,FY ) =g(TX X ,FY ) =−g(TX FY,X) =−g(FTXY,X)

=−g(TXY,FX) =−g(X ,Y )g(H,FX) = 0, (4.217)

since g(X ,Y ) = 0. So, we deduce that H ⊥ ωDθ . Therefore, it follows H ∈ µ from

(4.159).
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Corollary 10. Let π be a proper pointwise semi-slant submersion with totally

umbilical fibers from a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN) .

If (kerπ∗)
⊥ = ωDθ , i.e. µ = {0} and φ is parallel, then the fibers of π are totally

geodesic.

Theorem 26. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). If ω is parallel, i.e. ∇ω = 0, then the

fibers of π are mixed geodesic.

Proof. Let ω be parallel, then for any U,V ∈ Γ(kerπ∗) from (4.207), we have

CTUV = TU φV. (4.218)

Using (4.218), we obtain

C2TUV = TU φ
2V. (4.219)

If we put U =W ∈ Γ(D) and V = X ∈ Γ(Dθ ) in (4.219) and using (4.176), we get

C2TW X = cos2
θTW X . (4.220)

On the other hand, using the symmetry property of T on Γ(kerπ∗) and (4.218), we

have

C2TW X =C2TXW = TX φ
2W = TXW, (4.221)

that is

C2TW X = TXW. (4.222)

Since submersion π is proper, from (4.220) and (4.222), it follows that

TXW = 0. (4.223)
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4.3.4 The first variational formula of a pointwise semi-slant submersion

In this section, we give a different approach to check whether a pointwise semi-slant

submersion is harmonic. We use the definitions from Subsection 4.1.1 for pointwise

semi-slant submersions.

Now, we investigate the conditions under which the 1-form σξ is a Legendre variation.

Lemma 21. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN). The 1-form σξ is a Legendre variation

if and only if

g(TU ξ ,φV )−g(TV ξ ,φU) = g(AξU,ωV )−g(AξV,ωU), (4.224)

for all U,V ∈ Γ(kerπ∗).

Proof. Let U,V be in kerπ∗. Then, by the definition of differential, (4.6) and (2.32),

we obtain

(dσξ )(U,V ) =Ug(Fξ ,V )−V g(Fξ ,U)−g(Fξ , [U,V ])

=Ug(ξ ,FV )−V g(ξ ,FU)−g(ξ ,F [U,V ])

=g(∇U ξ ,FV )+g(ξ ,∇U FV )

−g(∇V ξ ,FU)−g(ξ ,∇V FU)

−g(ξ ,F∇UV )+g(ξ ,F∇VU)

=g(∇U ξ ,φV +ωV )−g(∇V ξ ,φU +ωU)

=g(∇U ξ ,φV )+g(∇U ξ ,ωV )

−g(∇V ξ ,φU)+g(∇V ξ ,ωU)

=g(TU ξ ,φV )+g(H ∇U ξ ,ωV )

−g(TV ξ ,φU)+g(H ∇V ξ ,ωU). (4.225)

Since we assume ξ is basic, we have

(dσξ )(U,V ) =g(TU ξ ,φV )+g(AξU,ωV )

−g(TV ξ ,φU)+g(AξV,ωU). (4.226)

Thus, the assertion follows.
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Lemma 22. For ξ ∈ Γ(µ), σξ ≡ 0.

Proof. Let ξ ∈ Γ(µ). Then, Fξ ∈ Γ(µ). For any V ∈ Γ(kerπ∗), we get

σξ (V ) = g(Fξ ,V ) = 0. (4.227)

So, σξ ≡ 0, for all V ∈ Γ(kerπ∗).

Remark 9. Because of Lemma 22, throughout this subsection, we can assume that H

belongs to Γ(ωDθ ).

Proposition 11. Let π be a pointwise semi-slant submersion from a l.p.R. manifold

(M,g,F) onto a Riemannian manifold (N,gN) and f be a smooth function on a fiber.

Then, F(grad( f )|ωDθ
) ∈ E.

Proof. Let f be a smooth function on a fiber. For ξ = F(grad( f )|ωDθ
), and any V ∈

Γ(kerπ∗), we obtain

σξ (V ) =g(Fξ ,V ) = g(grad( f ),V ) =V [ f ] = d f (V ). (4.228)

Thus, we get σξ = d f , i.e. ξ ∈ E.

Theorem 27. Let π be a pointwise semi-slant submersion with compact fibers from a

l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

(a) The fiber π−1
q is L−minimal if and only if σH is co-exact.

(b) The fiber π−1
q is E−minimal if and only if σH is co-closed.

(c) The fiber π−1
q is H−minimal if and only if σH is the sum of an exact and a co-exact

1-form.

Proof. (a)⇒ : Let the fiber π−1
q is L−minimal, then for any ξ ∈ L, we have

g(H,ξ ) = 0 from (4.56). By the definition of the Hodge star operator [31], we have

σξ ∧σH(V1,V2, ...,Vk) = g(ξ ,H)∗1(V1,V2, ...,Vk), (4.229)

for V1,V2, ...,Vk ∈ Γ(kerπ∗). From the definition of the global scalar product (.|.) (see

[31]) on the module of all forms on the fiber, we get

(σξ |σH) =
∫

π
−1
q

σξ ∧∗σH = 0. (4.230)
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Denote by δ the codifferential operator [31] on the fiber π−1
q . Since σξ is closed, for

any 2-form β on π−1
q , we have

0 = (dσξ |β ) = (σξ |δβ ). (4.231)

Since π−1
q is compact, by (4.230) and (4.231) we conclude that σH is co-exact. ⇐ :

Suppose that σH is co-exact, we have σH = δψ for some 2-form ψ . Then, for any

ξ ∈ L,

(σξ |σH) = (σξ |δψ) = (dσξ |ψ) = 0 (4.232)

and then

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π−1(q)
(σξ ∧∗σH) =−k(σξ |σH) = 0, (4.233)

i.e. π−1
q is L−minimal.

(b)⇒ : Let the fiber π−1
q be E−minimal. Then, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH),

that is, (σξ |σH) = 0. Since ξ ∈ E, σξ = d f for some function f on the fiber π−1
q .

Thus,

(d f |σH) = ( f |δσH) = 0. (4.234)

Hence it follows that δσH = 0, i.e. σH is co-closed.

⇐ : Suppose that σH is co-closed. Let ξ ∈ E, then there exists a function f ∈F (π−1
q )

such that σξ = d f . Hence, we have

(σξ |σH) = (d f |σH) = ( f |δσH) = 0. (4.235)

Therefore,

V
′
(ξ ) =−k

∫
π
−1
q

g(H,ξ )∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH) = 0, (4.236)

that is V′(ξ ) = 0 for ξ ∈ E, i.e. π−1
q is E−minimal.

(c)⇒ : If the fiber π−1
q is H−minimal, then for ξ ∈H, we have

0 = V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH). (4.237)

It means that, σH is orthogonal to harmonic 1-forms on the fiber π−1
q . Thus, by the

Hodge decomposition theorem [31], we conclude that σH is the sum of an exact and a
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co-exact 1-form.

⇐ : Let σH be the sum of an exact 1-form ω1 such that ω1 = d f and a co-exact 1-form

ω2 such that ω2 = δψ . For ξ ∈H, we have

(σξ |σH) =(σξ |d f +δψ) = (σξ |d f )+(σξ |δψ)

=(δσξ | f )+(dσξ |ψ) = 0, (4.238)

since dσξ = δσξ = 0. Thus,

V
′
(ξ ) =−k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH) =−k(σξ |σH), (4.239)

that is, the fiber is H−minimal.

Theorem 28. Let π be a pointwise semi-slant submersion with compact fibers from a

l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then

(a) π−1
q is L−minimal if and only if π−1

q is minimal.

(b) π−1
q is E−minimal if and only if σH is a harmonic variation.

(c) π−1
q is H−minimal if and only if σH is an exact 1-form.

Proof. (a) If the fiber π−1
q is L−minimal, then by Theorem 27-(a) we have, σH is

co-exact. Hence σH is co-closed. Taking into account the fact that dσH = 0, we deduce

that σH is harmonic. But this is a contradiction because of Hodge decomposition

theorem [31]. So, σH must be zero. Hence we conclude that H = 0. The converse is

clear.

(b)⇒ : If the fiber π−1
q is E−minimal, then we have δσH = 0 from Theorem 27-(b).

Since dσH = 0, σH is also harmonic, i.e. ∆σH = 0.

⇐ : If σH is harmonic, then σH is co-closed. By Theorem 27-(b), the fiber π−1
q is

E−minimal.

(c)⇒ : Assume that π−1
q is H−minimal. Then, from Theorem 27-(c), σH is the sum of

an exact 1-form and a co-exact 1-form. On the other hand, the condition H ∈L implies

that σH is orthogonal to every co-exact 1-form on π−1
q . Thus, σH must be exact.

⇐ : Let σH be an exact 1-form. For ξ ∈H, we obtain

V
′
(ξ ) =− k

∫
π
−1
q

g(ξ ,H)∗1 =−k
∫

π
−1
q

(σξ ∧∗σH)

=− k(σξ |σH) = (σξ |d f ) = (δσξ | f ) = 0, (4.240)

that is, π−1
q is H−minimal.
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Remark 10. The method that considering the basis to investigate the harmonicity of a

submersion, while the total manifold is taken as a l.p.R. manifold, is not always easy.

Since a l.p.R. manifold is not always even dimensional, choosing a basis and using

it is not easy. On the other hand, it is well known that, the fibers of a submersion is

minimal if and only if the submersion is harmonic. Now, we give a new approach for

harmonicity of a pointwise semi-slant submersion. By Theorem 28-(a), we obtain the

following result.

Corollary 11. Let π be a pointwise semi-slant submersion with compact fibers from

a l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN). If H ∈ L, then π is

harmonic if and only if π−1
q is L−minimal.

Lemma 23. Let π be a pointwise semi-slant submersion with compact fibers from a

l.p.R. manifold (M,g,F) onto a Riemannian manifold (N,gN). Then,

δσH = 0⇔ Σig(TφEiEi,H) = Σig(AωEiEi,H), (4.241)

where {E1,E2, ...,Em} is a local basis of Dθ .

Proof.

δσH = 0⇔ Σig(∇EiFH,Ei) = 0. (4.242)

Using (2.33),

⇒ δσH = 0⇔Σig(∇EiH,FEi)⇔ Σig(∇EiH,φEi +ωEi)

=Σig(∇EiH,φEi)+Σig(∇EiH,ωEi)

=Σig(TEiH,φEi)+Σig(AHEi,ωEi). (4.243)

Thus, the assertion follows from the skew-symmetry and symmetry properties of the

O’Neill tensors A and T .

4.4 Generic Submersions

This section is the main part of our thesis. Until this section, we improved our

knowledge about invariant, anti-invariant and pointwise slant distributions. And now,

we construct a generalization for the Riemannian submersions and study on it. We

define generic submersion from Kaehler manifolds onto Riemannian manifolds.
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Let M̄ be an almost Hermitian manifold with Riemannian metric g and almost complex

structure J, and M be a Riemannian manifold isometrically immersed in M̄. For any

V̄ ∈ Γ(T M), we write

JV̄ = PV̄ +FV̄ , (4.244)

where PV̄ ∈ Γ(T M) and FV̄ ∈ Γ(T M⊥). By (3.1) and (4.244), we have

g(P2Ū ,V̄ ) = g(Ū ,P2V̄ ) for all Ū ,V̄ ∈ Γ(T M). It means that P2 is symmetric operator

on the tangent space TpM, p∈M. Therefore its eigenvalues are real and diagonalizable.

Moreover, its eigenvalues are in the closed interval [−1,0]. For each point p ∈M, we

may set

Dλ
p = ker{P2 +λ

2(p)I}p (4.245)

where I is the identity transformation and λ (p) belongs to the closed real interval [0,1]

such that −λ 2(p) is an eigenvalue of P2
p . Since P2 is symmetric and diagonalizable,

there is some integer k such that −λ 2
1 (p),−λ 2

2 (p), ...,−λ 2
k (p) are distinct eigenvalues

of P2 and TpM can be decomposed as the direct sum of the mutually orthogonal

P−invariant eigenspaces, i.e.

TpM = Dλ1
p ⊕Dλ2

p ⊕ ...⊕Dλk
p . (4.246)

Note that D1
p = kerFp and D0

p = kerPp. Here D1
p is the maximal J−invariant subspace

of TpM and D0
p is the maximal anti−J−invariant subspace of TpM.

Ronsse defined the generic and skew CR-submanifolds of an almost Hermitian

manifold as follows [18].

Definition 9. [18] A submanifold M of an almost Hermitian manifold M̄ is called a

generic submanifold of M if there are k functions λ1,λ2, ...,λk defined on M with values

in the open interval (0,1) such that the following two conditions hold:

• −λ 2
1 , ...,−λ 2

k are distinct eigenvalues of P2 at p ∈M with

TpM = D1
p⊕D0

p⊕Dλ1
p ⊕Dλ2

p ⊕ ...⊕Dλk
p , (4.247)

where D1
p = kerFp, D0

p = kerPp and Dλi
p = ker(P2 +λ 2

i (p)I)p, i ∈ 1,k,

• the dimensions of D1
p,D

0
p,D

λ1
p , ...,Dλk

p are independent of p ∈M.

Moreover, if each λi is constant, then M is called a skew CR-submanifold.
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It is seen that, the distributions D0
p, D1

p and Dλi
p in Definition 9 state the same idea with

totally real, holomorphic [34] and pointwise slant distribution [35], respectively.

Note that, such submanifolds were also studied by Tripathi [36] for generalized

complex space forms.

We construct a new type of submersion, which is generalization of all kinds of

submersions, by considering the idea of Ronsse [18].

Definition 10. Let (M,J,g) be an almost Hermitian manifold, (N,gN) be a Riemannian

manifold and π : (M,J,g) 7→ (N,gN) be a Riemannian submersion. Then, we say that

π is a generic submersion if the fibers of the submersion π are generic submanifold (in

the sense of Ronsse [18]) of M.

Remark 11. To be more clear, in this thesis generic submersion means generic

submersion in the sense of Ronsse.

In this case, there are k functions λ1,λ2, ...,λk defined on the fibers with values in the

open interval (0,1) such that kerπ∗ is decomposed as

kerπ∗ = D1⊕D0⊕Dλ1⊕Dλ2⊕ ...⊕Dλk , (4.248)

where D1 is invariant, D0 is anti-invariant, Dλi is pointwise slant distribution with slant

function θi and −λ 2
i is a distinct eigenvalue of P2 for each i = 1,k.

If each λi is a constant for i = 1,k, then π is called a skew CR-submersion.

Remark 12. Each distribution Dλi has the slant function θi for i = 1,k. Since for

any unit vector Zi ∈ Γ(Dλi), g(PZi,JZi) = g(PZi,PZi) = θ 2
i it is known that −λ 2

i =

−cos2θi. From now on, to avoid confusion, we denote the distributions Dλi by Dθi for

i = 1,k.

In the view of Remark 12, the decomposition of kerπ∗ can be written as follows:

kerπ∗ = D1⊕D0⊕Dθ1⊕Dθ2⊕ ...⊕Dθk (4.249)

where D1 is invariant, D0 is anti-invariant, Dθi is pointwise slant distribution with slant

function θi for i = 1,k.

Let π be a generic submersion from an almost Hermitian manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, for V ∈ Γ(kerπ∗), we set

JV = PV +FV, (4.250)
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where PV ∈ Γ(kerπ∗) and FV ∈ Γ(kerπ⊥∗ ). Also, for ξ ∈ Γ(kerπ⊥∗ ), we put

Jξ = tξ + f ξ , (4.251)

where tξ ∈ Γ(kerπ∗) and f ξ ∈ Γ(kerπ⊥∗ ). Therefore, the horizontal distribution kerπ⊥∗

can be decomposed as

kerπ
⊥
∗ = D1⊕D0⊕Dθ1⊕Dθ2⊕ ...⊕Dθk , (4.252)

where D1 = Ker(t), D0 = Ker( f ), FDθ = Dθ and tDθ = Dθ , θ ∈ {θ1,θ2, ...,θk}.

Remark 13. By defining generic submersion, we give a generalization for submersions

from an almost Hermitian manifold onto a Riemannian submersion. Here are the some

generalizations:

A generic submersion from an almost Hermitian manifold becomes

• an anti-invariant submersion [6] if k = 0 and D1 = {0},

• a semi-invariant submersion [7] if k = 0,

• a hemi-slant submersion [11] if D1 = {0} and k = 1 (θ1 is constant),

• a proper slant submersion [9] if D1 = {0}, D0 = {0} and k = 1 (θ1 is constant),

• a proper semi-slant submersion [37] if D0 = {0} and k = 1 (θ1 is constant),

• a proper pointwise slant submersion [10] if D1 = {0}, D0 = {0} and k = 1,

Example 5. Let R8 be 8-dimensional Euclidean space. We choose Kaehler structure

on R8. Namely, (R8,g,J) is a Kaehler manifold with Eucliedan metric g on R8 and

canonical complex structure J. Consider the map

π : R8 7−→ R3 defined by

π(x1, ...,x8) =
(x1− x4√

2
, x2, x5

)
(4.253)

Then, the Jacobian matrix of π is: 1√
2

0 0 − 1√
2

0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

 (4.254)
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Since the rank of this matrix is equal to 3, the map π is a submersion. By direct

calculation, we observe that

kerπ∗ = D1⊕D0⊕Dθ (4.255)

where

D1 =span
{

∂7,∂8

}
(4.256)

D0 =span
{

∂6

}
(4.257)

(4.258)

and

Dθ = span
{

1√
2
(∂1 +∂4),∂3

}
. (4.259)

Moreover, the slant function of Dθ is θ = π

4 . After some calculations, we see that

π satisfies the condition (S2), which is in the definition of Riemannian submersion.

Therefore, the map π is a skew CR-submersion with the constant slant function θ .

Example 6. Let R4k+6 be (4k + 6)-dimensional Euclidean space. We choose the

usual Kaehler structure on R4k+6. Namely, (R4k+6,g,J) is a Kaehler manifold with

Euclidean metric g on R4k+6 and canonical complex structure J. Consider the map

π : R4k+6 7−→ R2k+3 defined by

π(x1,x2, ...,x4k+6) = ( f1, f2, ..., f2k+3)

f1 =
x1 + x2√

2
,

f2 =
x3 + x5√

2
,

f3 =
x4 + x6√

2
,

f4 = cos(x7)− sin(x10),

f5 = x8,

... (4.260)

f2i+2 = cos(x4i+3)− sin(x4i+6),

f2i+3 = x4i+4,

...

f2k+2 = cos(x4k+3)− sin(x4k+6),

f2k+3 = x4k+4,
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where x4i+4 6= x4 j+4 for i 6= j. Since the Jacobian matrix of π is of rank 2k+3, the map

π is a submersion. After some calculations, for i = 1,k we see that

kerπ∗ = D1⊕D0⊕Dθ1⊕Dθ2⊕ ...⊕Dθk , (4.261)

where,

D1 =span
{

X =
1√
2
(−∂3 +∂5), Y =

1√
2
(−∂4 +∂6)

}
, (4.262)

D0 =span
{

V =
1√
2
(−∂1 +∂2)

}
(4.263)

and

Dθi = span
{

Zi =−sin(x4i+3)∂4i+3 + cos(x4i+6)∂4i+6,Wi = ∂4i+5

}
. (4.264)

Moreover, the slant function of the pointwise slant distribution Dθi is

θi = x4i+4 for i = 1,k. By direct calculation, we observe that π satisties condition (S2).

Hence the map π is a generic submersion.

Example 7. Let R10 be 10-dimensional Euclidean space. Define the map

π : R10 7−→ R5 as follows

π(x1,x2, ...,x10) =

(
cosx1− sinx4,x2,

x5 + x6√
2

,
x7 + x9√

2
,
x8 + x10√

2

)
. (4.265)

Then the map π is a generic submersion with slant function θ1 = x4 such that

kerπ∗ = D1⊕D0⊕Dθ1 , (4.266)

where

D1 =span
{

X =
1√
2
(−∂7 +∂9), Y =

1√
2
(−∂8 +∂10)

}
, (4.267)

D0 =span
{

V =
1√
2
(−∂5 +∂6)

}
(4.268)

and

Dθ1 = span
{

Z =−sin(x1)∂1 + cos(x4)∂4,W = ∂3

}
. (4.269)

We give some useful identities, which are obtained by means of the definition of

generic submersion and the complex structure of Kaehler manifold.
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Lemma 24. Let π be a generic submersion from an almost Hermitian manifold

(M,g,J) onto a Riemannian manifold (N,gN). Then we have,

(a) P2 + tF =−I, (b) FP+ f F = 0,

(c) Pt + t f = 0, (d) Ft + f 2 =−I,

where I is the identity operator on TM.

Proof. All the identities could be obtain by simple calculations with the help of (3.1),

(3.2), (4.250) and (4.251).

If we consider some vector fields specific in Lemma 24, which are involved in the

definition of generic submanifold, we get the following Corollary.

Corollary 12. Let π be a generic submersion from an almost Hermitian manifold

(M,g,J) onto a Riemannian manifold (N,gN). Then we have

(a) P2X =−X , (b) tFZi =−sin2
θiZi,

(c) FPX = 0, (d) f FU = 0,

(e) tFU =−U, (f) P2Zi + tFZi =−Zi,

(g) FPZi + f FZi = 0, (h) P2Zi =−cos2
θiZi,

where X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) for i = 1,k.

By considering the decomposition of kerπ∗ and kerπ⊥∗ with the equations (4.250) and

(4.251), we obtain the following Lemma.

Lemma 25. Let π be a generic submersion from an almost Hermitian manifold

(M,g,J) onto a Riemannian manifold (N,gN). Then, for i = 1,k we have

PD1 = D1, PD0 = {0}, PDθi ⊆ Dθi, (4.270)

tD0 ⊆ D0, tD1 = {0}, tDθi ⊆ Dθi, (4.271)

f Dθi ⊆ Dθi, f D0 = {0}, f D1 = D1, (4.272)

FD1 = {0}. (4.273)
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From now on, we will focus on the generic submersions whose total manifolds are

Kaehler manifolds. We start by examining the effect of the complex structure J on the

O’Neill tensor fields T and A and get a lot of results.

Lemma 26. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we obtain

tTE1E2 +P∇̂E1E2 = TE1FE2 + ∇̂E1PE2, (4.274)

f TE1E2 +F∇̂E1E2 = TE1PE2 +AFE2E1, (4.275)

∇̂Etξ +TE f ξ = PTEξ + tAξ E, (4.276)

TEtξ +A f ξ E = FTEξ + f Aξ E, (4.277)

where E,E1,E2 ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

Proof. By the definition of a Kaehler manifold, for any E1,E2 ∈ Γ(kerπ∗), we have

J∇E1E2 = ∇E1JE2. (4.278)

With the help of (4.5) and (4.250), we get

⇒ J(TE1E2 + ∇̂E1E2) = ∇E1PE2 +∇E1FE2. (4.279)

Now, by (4.5), (4.6), (4.250) and (4.251), we obtain

⇒ tTE1E2 + f TE1E2 +P∇̂E1E2 +F∇̂E1E2 = TE1PE2 + ∇̂E1PE2

+ TE1FE2 +H ∇E1FE2. (4.280)

In the view of Remark 1, by separating the last equation into the horizontal and vertical

parts, we obtain the assertions (4.274) and (4.275). To get (4.276) and (4.277), the

same idea should be applied.

Now, we give remarkable lemmas which are equivalent to Gauss and Weingarten

equations for generic submersions.

Lemma 27. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we have the following equations

g(∇XY,Zi) = csc2
θig(TY FPZi−TPY FZi,X), (4.281)

g(∇XY,U) =−g(TPY FU,X), (4.282)

g(∇XU,Y ) = g(TPY FU,X), (4.283)

where X ,Y ∈ Γ(D1), U ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k.
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Proof. Let X ,Y ∈ Γ(D1) and Zi ∈ Γ(Dθi) for i = 1,k. From (3.1), (3.2), (4.250) and

Lemma 25, we have

g(∇XY,Zi) = g(∇X JY,JZi)

= g(∇X JY,PZi)+g(∇X JY,FZi)

= −g(∇XY,P2Zi)−g(∇XY,FPZi)+g(∇X PY,FZi). (4.284)

Then, by Corollary 12 and (4.5), we get (4.281)

g(∇XY,Zi) = −g(∇XY,−cos2
θiZi)−g(TXY,FPZi)+g(TX PY,FZi)

⇒ sin2
θig(∇XY,Zi) = g(TX PY,FZi)−g(TXY,FPZi)

⇒ g(∇XY,Zi) = csc2
θig(TY FPZi−TPY FZi,X). (4.285)

To prove (4.282), let X ,Y ∈Γ(D1) and U ∈Γ(D0). By (3.1), (3.2), (4.250), Proposition

25 and the properties of T , we prove the following

g(∇XY,U) = g(∇X JY,JU) = g(∇X PY,FU)

= g(TX PY,FU) =−g(TPY FU,X). (4.286)

Finally, for the assertion (4.283), we could apply the similar idea which is used above.

Lemma 28. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we have

g(∇UV,X) = g(TPX FV,U), (4.287)

g(∇UV,Zi) = csc2
θi
[
g(AFVU,FZi)−g(TUV,FPZi)

]
, (4.288)

g(∇U X ,Zi) = csc2
θi g(TX FPZi−TPX FZi,U), (4.289)

where X ∈ Γ(D1), U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k.

Proof. Let X ∈Γ(D1) and U,V ∈Γ(D0). Then, by Lemma 25, JV =FV and JX =PX .

So, by (3.1) and (3.2) we obtain

g(∇UV,X) = g(∇U FV,PX). (4.290)

If we consider (4.5) and the properties of the tensor T , we get

g(∇UV,X) = g(TPX FV,U). (4.291)
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To obtain (4.288), assume that U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k. If we use

(3.1), (3.2), (4.250), (4.5), (4.6), Lemma 25 and the properties of the tensor T with the

fact that FV can be considered basic, then we get

g(∇UV,Zi) = g(∇U JV,JZi)

= g(∇U JV,PZi)+g(∇U JV,FZi)

= −g(∇UV,P2Zi)−g(∇UV,FPZi)+g(∇U FV,FZi)

= g(∇UV,cos2
θiZi)−g(TUV,FPZi)+g(H ∇U FV,FZi) (4.292)

⇒ (1− cos2
θi)g(∇UV,Zi) = g(AFVU,FZi)−g(TUV,FPZi)

⇒ sin2
θig(∇UV,Zi) =−g(AFV FZi,U)+g(TV FPZi,U). (4.293)

Thus, we obtain (4.288). To get (4.289), we use the same idea with the proof of

(4.288).

Lemma 29. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we obtain

g(∇ZiWi,X) =−csc2
θi g(TPX FWi−TX f PWi,Zi), (4.294)

g(∇ZiWi,U) =−csc2
θig(TU FPWi +AFWiFU,Zi), (4.295)

g(∇ZiWi,Z j) = csc2
θig(TPZ jFWi−TZ jFPWi−AFWiFZ j,Zi), (4.296)

where X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j) (i 6= j) i, j = 1,k.

Proof. Let X ∈ Γ(D1) and Zi,Wi ∈ Γ(Dθi) for i = 1,k so g(Wi,X) = 0. From (3.1),

(3.2), (4.6), (4.250), Corollary 12 and (4.270), we have

g(∇ZiWi,X) = g(∇ZiJWi,JX)

= g(∇ZiPWi,JX)+g(∇ZiFWi,JX)

= −g(∇ZiJPWi,X)+g(TZiFWi,PX)

= −g(∇ZiP
2Wi,X)−g(∇ZiFPWi,X)+g(TZiFWi,PX)

= g(∇Zi(cos2
θiWi),X)−g(TZiFPWi,X)+g(TZiFWi,PX)

= −g(sin2θi(Ziθi)Wi,X)+ cos2
θig(∇ZiWi,X)

− g(TZiFPWi,X)+g(TZiFWi,PX)

= cos2
θig(∇ZiWi,X)+g(TZiFWi,PX)−g(TZiPX ,FWi). (4.297)
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⇒ (1− cos2
θi)g(∇ZiWi,X) = g(TZiFWi,PX)−g(TZiPX ,FWi). (4.298)

So, we obtain (4.294). To obtain (4.295) and (4.296), the same method can be used.

4.4.1 Integrability of distributions

In this subsection, some conditions are given for the integrability of distributions which

are mentioned in the definition of generic submersion. First, we give some helpful

lemmas.

Lemma 30. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we obtain

g(AFV FZi,U) = g(AFU FZi,V ) (4.299)

for U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k.

Proof. For U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi), if we consider (3.1), (3.2), (4.27), (4.8),

Lemma 25 and skew-symmetry property of tensor A, we get

g(AFU FZi,V ) =−g(AFZiFU,V ) =−g(∇FZiFU,V ) =−g(∇FZiJU,V )

= g(∇FZiU,JV ) = g(∇JZiU,FV ) = g(AFZiU,FV )

=−g(AFZiFV,U) = g(AFU FZi,V ). (4.300)

Lemma 31. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then we obtain

g(TPX FV,U) = g(TPX FU,V ) (4.301)

for U,V ∈ Γ(D0) and X ∈ Γ(D1).

Proof. For U,V ∈ Γ(D0) and X ∈ Γ(D1), if we consider (3.1), (3.2), (4.5), (4.6),

Lemma 25 and the properties of T , we have

g(TPX FV,U) =−g(TPXU,FV ) =−g(∇PXU,JV ) = g(∇PX JU,V )

= g(∇PX FU,V ) = g(TPX FU,V ). (4.302)
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We examine the integrability of the distributions D0, D1 and Dθi for i = 1,k. Since

the second fundamental form of the fibers of a generic submersions is T and the fibers

of submersions are CR-submanifolds, following conclusions could be obtained from

Lemma 1.1 of [18].

Theorem 29. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, D0 is always integrable.

Proof. Let X ∈ Γ(D1),U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k. With the help of

(4.287), (4.288) Lemma 30 and Lemma 31 we get the assertion as in the following:

g([U,V ],X) = g(∇UV,X)−g(∇VU,X)

= g(TPX FV,U)−g(TPX FU,V ) = 0

g([U,V ],Zi) = g(∇UV,Zi)−g(∇VU,Zi)

= csc2
θi{g(TV FPZi−AFV FZi,U)−g(TU FPZi−AFU FZi,V )}

= csc2
θi{g(AFV FZi,U)−g(AFU FZi,V )}= 0. (4.303)

Theorem 30. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, D1 is integrable if and only if the following two

conditions hold:

g(TPY X−TPXY,FU) = 0, (4.304)

g(TPY X−TPXY,FZi) = 0 (4.305)

for X ,Y ∈ Γ(D1),U ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k.

Proof. Let X ,Y ∈ Γ(D1),U ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k. Then, by (4.282)

and the properties of tensor field T , we get

g([X ,Y ],U) = g(∇XY,U)−g(∇Y X ,U)

=−g(TPY FU,X)+g(TPX FU,Y )

= g(TPY X−TPXY,FU). (4.306)
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So, we obtain the first condition. For the second condition, we apply the same idea; by

(4.281) and the properties of tensor field T , we get

g([X ,Y ],Zi) = g(∇XY,Zi)−g(∇Y X ,Zi)

= csc2
θi{g(TY FPZi−TPY FZi,X)−g(TX FPZi−TPX FZi,Y )}

= csc2
θi{g(TPX FZi,Y )−g(TPY FZi,X)}

= csc2
θi{g(TPY X−TPXY,FZi)}. (4.307)

Therefore we have the assertion.

Theorem 31. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, Dθi for each i = 1,k is integrable if and only if

the following three conditions hold:

g(TPX FWi−TX FPWi,Zi) = g(TPX FZi−TX FPZi,Wi) (4.308)

g(TU FPWi +AFWiFU,Zi) = g(TU FPZi +AFZiFU,Wi) (4.309)

g(TPZ jFWi−TZ jFPWi−AFWiFZ j,Zi) (4.310)

= g(TPZ jFZi−TZ jFPZi−AFZiFZ j,Wi)

for X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j),(i 6= j) i, j = 1,k.

Proof. Let X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j),(i 6= j) i, j = 1,k.

By (4.294), (4.295), (4.296) and Remark 1, we get following three equalities

g([Zi,Wi],X) = g(∇ZiWi,X)−g(∇WiZi,X)

= csc2
θi
{

g(TPX FWi−TX FPWi,Zi)

− g(TPX FZi−TX FPZi,Wi)
}
. (4.311)

g([Zi,Wi],U) = g(∇ZiWi,U)−g(∇WiZi,U)

= −csc2
θi
{

g(TU FPWi +AFWiFU,Zi)

− TU FPZi +AFZiFU,Wi)
}

(4.312)

g([Zi,Wi],Z j) = g(∇ZiWi,Z j)−g(∇WiZi,Z j)

= csc2
θi
{

g(TPZ jFWi−TZ jFPWi−AFWiFZ j,Zi)

− g(TPZ jFZi−TZ jFPZi−AFZiFZ j,Wi)
}
. (4.313)

73



So, with the help of last three equalities, we conclude that Dθi is integrable if and only

if (4.308)∼(4.310) hold.

4.4.2 Totally geodesicness of the fibers

We investigate the geometry of the fibers for a generic submersion. Some conditions

are given for totally geodesicness.

Theorem 32. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, the vertical distribution kerπ∗ defines a totally

geodesic foliation if and only if

f (TE1PE2 +AFE2E1)+F(∇̂E1PE2 +TE1FE2) = 0 (4.314)

for E1,E2 ∈ Γ(kerπ∗).

Proof. Let E1 and E2 be in kerπ∗. By (3.1), (3.2), (4.5), (4.6), (4.250) and (4.251), we

have

∇E1E2 =−J∇E1JE2 =−J(∇E1PE2 +∇E1FE2)

=−J(TE1PE2 + ∇̂E1PE2 +TE1FE2 +H ∇E1FE2)

=− f TE1PE2− tTE1PE2−P∇̂E1PE2−F∇̂E1PE2

−PTE1FE2−FTE1FE2− tH ∇E1FE2− f H ∇E1FE2. (4.315)

kerπ∗ defines a totally geodesic foliation if and only if the horizontal part of the last

equation vanishes so we obtain the assertion.

Remark 14. By (4.4) and (4.8), Aξ = 0 for any horizontal vector field ξ . That means,

the integrability and totally geodesicness of the horizontal distribution kerπ⊥∗ are equal

to each other.

Theorem 33. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, kerπ⊥∗ is totally geodesic (integrable) if and only

if

t(Aξ tη +H ∇ξ f η)+P(V ∇ξ tη +Aξ f η) = 0 (4.316)

for ξ ,η ∈ Γ(kerπ⊥∗ ).
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Corollary 13. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, M is a locally product Mkerπ∗ ×Mkerπ⊥∗
if and

only if (4.314) and (4.316) hold, where Mkerπ∗ and Mkerπ⊥∗
are integral manifolds of

the distributions kerπ∗ and kerπ⊥∗ , respectively.

It is known that the horizontal distribution (kerπ∗)
⊥ defines a totally geodesic foliation

if and only if A≡ 0. Also kerπ∗ defines a totally geodesic foliation if and only if T ≡ 0.

On the other hand, we know that a Riemannian submersion π : (M,g) 7→ (N,gN) is

totally geodesic if and only if both O’Neill tensors T and A vanish, [32]. Thus, by

Theorem 32 and Theorem 33, we have the following result.

Corollary 14. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, π is a totally geodesic map if and only if (4.314)

and (4.316) hold.

Theorem 34. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, the invariant distribution D1 defines a totally

geodesic foliation on kerπ∗ if and only if the following two facts hold:

g(TPY FU,X) = 0, (4.317)

g(TY FPZi−TPY FZi,X) = 0, (4.318)

where X ,Y ∈ Γ(D1), U ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k.

Proof. Let X ,Y ∈ Γ(D1), U ∈ Γ(D0) and Zi ∈ Γ(Dθi). Then, by (4.281) and (4.282)

g(∇̂XY,U) = g(∇XY,U) =−g(TPY FU,X), (4.319)

g(∇̂XY,Zi) = g(∇XY,Zi)

= csc2
θi{g(TY FPZi−TPY FZi,X)}. (4.320)

So, we obtain the assertion.

Theorem 35. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, the anti-invariant distribution D0 defines a totally

geodesic foliation on kerπ∗ if and only if the following two conditions hold:

g(TPX FV,U) = 0, (4.321)

g(TV FPZi−AFV FZi,U) = 0, (4.322)

where U,V ∈ Γ(D0), X ∈ Γ(D1) and Zi ∈ Γ(Dθi) for i = 1,k.
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Proof. Let U,V ∈ Γ(D0), X ∈ Γ(D1) and Zi ∈ Γ(Dθi) for i = 1,k. By (4.287) and

(4.288), we obtain

g(∇̂UV,X) = g(∇UV,X) = g(TPX FV,U), (4.323)

g(∇̂UV,Zi) = g(∇UV,Zi)

= csc2
θi{g(TV FPZi−AFV FZi,U)}. (4.324)

Therefore, we get the assertion.

Theorem 36. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). Then, the pointwise slant distribution Dθi defines a

totally geodesic foliation on kerπ∗ if and only if the following conditions hold:

g(TPX FWi−TX FPWi,Zi) = 0, (4.325)

g(TU FPWi +AFWiFU,Zi) = 0, (4.326)

g(TPZ jFWi−TZ jFPWi−AFWiFZ j,Zi) = 0, (4.327)

where X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j), (i 6= j) i, j = 1,k.

Proof. Let X ∈ Γ(D1), U ∈ Γ(D0), Zi,Wi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j),(i 6= j) i, j = 1,k.

If we use the equations (4.294) ∼ (4.296), we get

g(∇̂ZiWi,X) = g(∇ZiWi,X)

= csc2
θig(TPX FWi−TX FPWi,Zi), (4.328)

g(∇̂ZiWi,U) = g(∇ZiWi,U)

= csc2
θig(TU FPWi +AFWiFU,Zi), (4.329)

and

g(∇̂ZiWi,Z j) = g(∇ZiWi,Z j)

= csc2
θig(TPZ jFWi−TZ jFPWi−AFWiFZ j,Zi). (4.330)

So, we obtain the assertion.

Corollary 15. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, the vertical distribution kerπ∗ is a locally product

MD1×MD0×MDθ1× ...×MDθk if and only if (4.317), (4.318), (4.321), (4.322), (4.325),

(4.326) and (4.327) hold, where MD1 , MD0 and MDθi are integral manifolds of the

distributions D1,D0 and Dθi for i = 1,k, respectively.
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4.4.3 Totally umbilical case of fibers

Theorem 37. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN). If the fibers of π are totally umbilical, then D0 = {0}

or dimD0 = 1 or H ⊥ D0. Moreover, if Dθi is parallel along to kerπ∗ for i = 1,k, then

H ∈ D1.

Proof. If D0 = {0} or dimD0 = 1, then the result is obvious. So, consider the case

dimD0 > 1. Let U and V be vector fields in D0 such that g(U,V ) = 0 and

‖U‖= ‖V‖= 1. Then, by (3.1), (3.2), (4.5), (4.22) and Corollary 12-(e), we get

g(H,JU) =g(H,FU) = g(TVV,FU) = g(∇VV,FU)

=g(∇V JV,JFU) = g(∇V FV, tFU) = g(TVU,FV )

=g(V,U)g(H,FV ) = 0. (4.331)

i.e. H⊥D0. Now, suppose that Dθi is parallel along to kerπ∗ i.e. ∇kerπ∗D
θi ∈ Dθi .

Let Zi be any vector field in Dθi for i = 1,k, E be any vector field in kerπ∗ such that

‖E‖= 1. Then, with the help of (4.6) and (4.22), we obtain

g(H,FZi) = g(TEE,FZi) =−g(TEFZi,E)

=−g(∇EFZi,E) = 0. (4.332)

i.e. H⊥Dθi . Therefore, H ∈ D1.

Thus, we reach the following result.

Corollary 16. Let π be a generic submersion from a Kaehler manifold (M,g,J) with

totally umbilical fibers onto a Riemannian manifold (N,gN). If D1 = {0} and Dθi is

parallel along to kerπ∗, then the fibers are minimal.

4.4.4 Parallel canonical structures

In this section, we study on parallel canonical structures and give some remarkable

results for a generic submersion.

Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a Riemannian
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manifold (N,gN). Then we define

(∇E1P)E2 = ∇̂E1PE2−P∇̂E1E2, (4.333)

(∇E1F)E2 = H ∇E1FE2−F∇̂E1E2, (4.334)

(∇E1t)ξ = ∇̂E1tξ − tH ∇E1ξ , (4.335)

(∇E1 f )ξ = H ∇E1 f ξ − f H ∇E1ξ , (4.336)

where E1,E2 ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ). Then, we say that if ∇P ≡ 0, then P is

parallel,

if ∇F ≡ 0, then F is parallel,

if ∇t ≡ 0, then t is parallel,

if ∇ f ≡ 0, then f is parallel.

Lemma 32. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then for any E1,E2 ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we

obtain

(∇E1P)E2 = tTE1E2−TE1FE2, (4.337)

(∇E1F)E2 = f TE1E2−TE1PE2, (4.338)

(∇E1t)ξ = PTE1ξ −TE1 f ξ , (4.339)

(∇E1 f )ξ = FTE1ξ −TE1tξ . (4.340)

Proof. Obviously, it can be seen that using the equations (4.274), (4.275), (4.276) and

(4.277) can be proven by (4.337), (4.338), (4.339) and (4.340), respectively.

Now, with the help of parallel canonical structures we obtain some results.

Theorem 38. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, we have the following:

If t is parallel, then Tkerπ∗D
0 ⊥ D1, (4.341)

If f is parallel, then Tkerπ∗D
1 ⊥ D0, (4.342)

If P is parallel, then Tkerπ∗D
1 ⊥ D0, (4.343)

If F is parallel, then Tkerπ∗D
0 ⊥ D1, (4.344)
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Proof. Let t be parallel. Then, for ξ ∈ Γ(D0) and E1 ∈ Γ(kerπ∗) from (4.339) we have

PTE1ξ = TE1 f ξ . Since, for ξ ∈ Γ(D0), f ξ = 0, we obtain PTE1ξ = 0. Therefore, for

X ∈ Γ(D1) by (3.1), (3.2) and (4.273), we get

g(TE1ξ ,X) = g(JTE1ξ ,JX)

= g(PTE1ξ ,PX) = 0. (4.345)

So, we get (4.341).

Let f be parallel. Then, for ξ ∈ Γ(D1) and E1 ∈ Γ(kerπ∗) from (4.340) we have

FTE1ξ = TE1tξ . Since, for ξ ∈ Γ(D1), tξ = 0, we get FTE1ξ = 0. Thus, for V ∈ Γ(D0)

by (3.1), (3.2) and (4.270), we obtain

g(TE1ξ ,V ) = g(JTE1ξ ,JV )

= g(FTE1ξ ,FV ) = 0. (4.346)

That means Tkerπ∗D
1 ⊥ D0.

Assume that P is parallel. Then, for E1 ∈ γ(kerπ∗) and X ∈ Γ(D1) from (4.337) we

have tTE1X = TE1FX . Since, for X ∈ Γ(D1), FX = 0, we obtain tTE1X = 0. Therefore,

for JU ∈ Γ(D0) by (3.1) and (3.2), we get

g(TE1X ,JU) = −g(JTE1X ,U)

= −g(tTE1X ,U) = 0 (4.347)

Hence, (4.343) is obtained.

Assume that F is parallel. Then, for E1 ∈ Γ(kerπ∗) and U ∈ Γ(D0) from (4.338) we

get f TE1U = TE1PU . Since, for U ∈ Γ(D0), PU = 0, we have f TE1U = 0. Thus, for

ξ ∈ Γ(D1) by (3.1) and (3.2), we have

g(TE1U,ξ ) = g(JTE1U,Jξ )

= g( f TE1U,Jξ ) = 0. (4.348)

So, Tkerπ∗D
0 ⊥ D1.

We observe that there is a relation between paralellism of F and t. The following

lemma establishes that relationship.

Theorem 39. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN). Then, F is parallel if and only if t is parallel.
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Proof. Let E1,E2 ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ). Assume that F is parallel. Then,

from (4.338) we have f TE1E2 = TE1PE2. By using (3.1), (3.2) and the properties of

tensor field T , we get

g(PTE1ξ ,E2) = g(JTE1ξ ,E2) =−g(TE1ξ ,JE2)

= −g(TE1ξ ,PE2) = g(TE1PE2,ξ ). (4.349)

Since f TE1E2 = TE1PE2, with the help of (3.1), (3.2) and the properties of tensor field

T , we have

⇒ g(PTE1ξ ,E2) = g( f TE1E2,ξ ) = g(JTE1E2,ξ )

= −g(TE1E2,Jξ ) =−g(TE1E2, f ξ )

= g(TE1 f ξ ,E2). (4.350)

⇒ g(PTE1ξ ,E2) = g(TE1 f ξ ,E2) for any E2 ∈ Γ(kerπ∗). (4.351)

Thus, PTE1ξ = TE1 f ξ . From (4.339) that means t is parallel. Similarly, the converse

follows.

In the view of Theorem 35, we obtain the following result.

Corollary 17. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN) with parallel canonical structure P. Then, D0 is totally

geodesic.

Proof. Let P be parallel. Then, by (4.287), we have

g(TPX FV,U) = g(∇̂UV,X) (4.352)

for U,V ∈ Γ(D1) and X ∈ Γ(D0). Using (3.1), (3.2), (4.273) and (4.333) , we obtain

⇒ g(TPX FV,U) = g(∇̂U PV,PX). (4.353)

Since, PV = 0 for any V ∈ Γ(D0), we find

g(TPX FV,U) = 0. (4.354)

On the other hand, with the help of (4.288), we have

g(TV FPZi−AFV FZi,U) = sin2
θig(∇̂UV,Zi) (4.355)
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for U,V ∈ Γ(D0) and Zi ∈ Γ(Dθi) for i = 1,k. Then, by using (3.1), (3.2) and (4.250),

we get

⇒ sin2
θig(∇̂UV,Zi) = sin2

θi{g(P∇̂UV,PZi)+g(F∇̂UV,FZi)} (4.356)

By (4.333), (4.251) and (4.270) we have

⇒ sin2
θig(∇̂UV,Zi) =−sin2

θig(∇̂UV, tFZi). (4.357)

Finally, from Corollary 12-(b), we obtain

⇒ sin2
θig(∇̂UV,Zi) = sin4

θig(∇̂UV,Zi) (4.358)

⇒ (sin2
θi− sin4

θi)g(∇̂UV,Zi) = 0. (4.359)

Since, (sin2
θi− sin4

θi) = sin2
θi cos2θi 6= 0, and we have

g(TV FPZi−AFV FZi,U) = sin2
θig(∇̂UV,Zi) = 0. (4.360)

By Theorem 35, we get the following result.

Corollary 18. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto

a Riemannian manifold (N,gN) with parallel canonical structure F. Then, D1 is totally

geodesic.

Proof. Let F be parallel. Then, by (4.282), we obtain

g(TPY FU,X) =−g(∇̂XY,U) (4.361)

for X ,Y ∈ Γ(D1) and U ∈ Γ(D0). Using (3.1), (3.2) and (4.250), we get

⇒ g(TPY FU,X) =−g(F∇̂XY,FU). (4.362)

Thus, by (4.334), we have

g(TPY FU,X) = 0. (4.363)

Otherwise, with the help of (4.281), we have

g(TY FPZi−TPY FZi,X) = sin2
θig(∇̂XY,Zi) (4.364)
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where X ,Y ∈ Γ(D1) and Zi ∈ Γ(Dθi) for i = 1,k. By (3.1), (3.2) and (4.250), we get

⇒ sin2
θig(∇̂XY,Zi) = sin2

θi{g(P∇̂XY,PZi)+g(F∇̂XY,FZi)}. (4.365)

From (4.334), we obtain

⇒ sin2
θig(∇̂XY,Zi) = sin2

θig(J∇̂XY,PZi). (4.366)

And from (3.1) and (3.2), we get

⇒ sin2
θig(∇̂XY,Zi) =−sin2

θig(∇̂XY,P2Zi). (4.367)

So, with the help of Corollary 12-(h), we have

⇒ sin2
θig(∇̂XY,Zi) = sin2

θi cos2
θig(∇̂XY,Zi) (4.368)

⇒ (sin2
θi− sin2

θi cos2
θi)g(∇̂XY,Zi) = 0. (4.369)

Since, (sin2
θi− sin2

θi cos2θi) = sin4
θi 6= 0, and we have

g(TY FPZi−TPY FZi,X) = sin2
θig(∇̂XY,Zi) = 0. (4.370)

In the case of parallelism of F , we obtain the following results.

Theorem 40. Let π be a generic submersion from a Kaehler manifold (M,g,J) onto a

Riemannian manifold (N,gN) with parallel canonical structure F. Then, for i 6= j, the

followings hold:

the fibers are D0−D1 mixed geodesic (4.371)

and

the fibers are Dθi−Dθ j mixed geodesic. (4.372)

Proof. Let F be parallel. Then, for X ∈ Γ(D1) and U ∈ Γ(D0) from (4.338), we have

f TU X = TU PX . (4.373)

By (4.373) and Corollary 12-(a), we get

f 2TU X = f (TU PX) = TU P2X =−TU X . (4.374)
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On the other hand, from (4.270) and (4.373), we have

f 2TU X = f 2TXU = f (TX PU) = 0. (4.375)

Then, with the help of (4.374) and (4.375), we obtain TU X = 0. It means that the fibers

are D0−D1mixed geodesic.

At this time, for Zi ∈ Γ(Dθi) and Z j ∈ Γ(Dθ j) (i 6= j) i, j = 1,k, from (4.338), we have

f TZiZ j = TZiPZ j. (4.376)

By (4.376) and Corollary 12-(h), we get

f 2TZiZ j = f (TZiPZ j) = TZiP
2Z j =−cos2

θ jTZiZ j. (4.377)

Otherwise, from (4.376) and Corollary 12-(h), we obtain

f 2TZiZ j = f 2TZ jZi = f (TZ jPZi) = TZ jP
2Zi =−cos2

θiTZ jZi. (4.378)

Thus, with the help of (4.377) and (4.378), we have

f 2TZiZ j =−cos2
θ jTZiZ j =−cos2

θiTZ jZi (4.379)

⇒ (cos2
θ j− cos2

θi)TZ jZi = 0. (4.380)

Since, for (i 6= j), i, j = 1,k, cos2θ j 6= cos2θi, we have TZ jZi = 0. It means that the

fibers are Dθi−Dθ j mixed geodesic.
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5. CONCLUSIONS

This thesis is based on to giving a generalization for Riemannian submersions whose

total manifolds are Kaehlerian and base manifolds are Riemannian. Thus, as a

generalization we define the generic submersion. In future, the curvature relations

between total manifold, base manifold and fibers of a generic submersion can be

investigated. It is an open area to study. Furthermore, this type of submersion

can be studied for Weyl manifolds and a new concept, which can be called as

“Weyl submersion”, can be defined. Moreover, in the contact geometry the generic

submersion can be studied.

Also, for the total manifold of a generic submersion, the following problem can be

studied: “under what conditions the total manifold can be Einstein space”. On the other

hand, it is known that all these theory of submersion have a relation with Mathematical

Physics. Especially, the following question can be answered: “What is the relation of

a generic submersion with Mathematical Physics?”. Finally, the theory of submersion

has a relation with statistical machine learning processes, which is popular area in the

world. Generic submersion and statistical machine learning process relation can be

investigated.
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[13] Taştan, H.M., Özdemir, F. and Sayar, C. (2017). On anti-invariant Riemannian
submersions whose total manifolds are locally product Riemannian,
Journal of Geometry, 108(2), 411–422.
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• Sayar, C., Özdemir, F., Taştan, H.M., Tripathi, M.M., 2019. Generic
submersions from Kaehler manifolds, Bull. Malays. Math. Sci. Soc.,
https://doi.org/10.1007/s40840-018-00716-2.

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:
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