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EXACT SOLITON TYPE SOLUTIONS OF HIGHER ORDER DISPERSIVE-
CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION
WITH A & 7-SYMMETRIC POTENTIAL

SUMMARY

Nowadays, nonlinear equations are used to model many different problems. Nonlinear
wave propagations shine as the most important developments in nonlinear scientific
researches. Generally, starting with the solution of the partial differential equation
(PDE), a nonlinear system should be investigated as an approach to the related
experimental system in fluid mechanics, optics, plasma physics and biology. Types
of the solutions of these kinds of equations are nonlinear wave types, and some of
these wave types called soliton. Solitons are the propagating localized waves without
changing their speeds and shapes. They are resistant to collision and can preserve
their properties after collision. For many years, PDEs such as Korteweg-de Vries
(KdV), sine-Gordon and nonlinear Schrédinger (NLS) have been used in the modeling
of nonlinear waves and soliton type solutions of these equations are widely investigated
in the literature.

In literature, the analytical and numerical solutions of the NLS equation with cubic
and / or cubic-quintic nonlinearity and second order dispersion are investigated in
detail. In inter-continent data transmission problems, it is important to investigate the
contribution of third-order dispersion terms to the problem as well as the second order
dispersion. Another factor which affects the shape and stability of optical pulses is the
external optical potentials.

In this thesis, the numerical existence and stability analysis of the soliton solutions
of the cubic-quintic nonlinear Schrodinger (CQNLS) equation with the third-order
dispersion, an external potential with parity time (4.7 )-symmetry properties are
analyzed and the results are shown with various graphics.

In chapter 1, the historical development of the solitons has been shortly discussed and
then the structure and the application areas of the CQNLS equation which includes a
P T -symmetric potential have been explained. Afterwards the aim of the thesis and
the necessary literature review have been given.

In chapter 2, an ansatz solution has been proposed in order to produce the analytical
solution under a &.7-symmetric potential and then the exact solution has been
obtained via necessary substitutions. In addition, the structure of the &7.7 -symmetric
potential was determined.

In chapter 3, a numerical method which is called spectral renormalization (SR) that
has been previously used in solutions of numerous PDEs is explained. This method
is originally developed by Ablowitz and Musslimani and in this chapter, we have
modified the method for our problem. Using this method, numerical solutions of
the CQNLS equation with the third-order dispersion containing an external potential
were obtained. Then, the numerical solutions obtained by SR algorithm and the exact
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solutions obtained in chapter 2 have been observed to be consistent; thus, the suitability
of the numerical method and the accuracy of applied algorithm have been tested and
found to be in good agreement. The effects of obtained external potential coefficients
on the soliton solution have been analyzed and the results have been shown with
adequate number of graphics. Furthermore, the effect of third order dispersion term
on the existence of soliton solution is analyzed and the results have been graphically
expressed.

In chapter 4, the split-step Fourier method is used to analyze the nonlinear stability
of previously obtained solitons. The split-step Fourier method has been modified to
apply the CQNLS equation with an external potential and third order dispersion term.
Then the effect of different potential depths on stability properties has been depicted
in graphics. Additionally, the effect of third order dispersion on the stability of soliton
was investigated.

Not only nonlinear stability but also linear stability of the obtained solitons has been
investigated. A brief information of the linear spectrum has been given and its
application to the CQNLS equation has been explained, and finally, the effect of third
order dispersion on linear stability has been shown by graphics.
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2.7 -SIMETRIK BIR POTANSIYEL iCEREN YUKSEK MERTEBEDEN
DISPERSIF KUBIK-KUINTIK NONLINEER SCHRODINGER DENKLEMININ
SOLITON TiPi KESIN COZUMLERI

OZET

Giinlimiizde, bir¢ok farkli problemin modellenmesinde dogrusal olmayan (nonlineer)
denklem sistemlerinden yararlanilmaktadir. Nonlineer bilimsel arastirma alanlarinda
en biiyiik gelismeler nonlineer dalga yayilimi problemleri konusunda one ¢ikmaktadir.
Genellikle, nonlineer bir sistemin arastirilmasina; akigkanlar mekanigi, optik, plazma
fizigi ve biyolojideki iligkili deneysel sistemin bir yaklagimi olarak, kismi tiirevli
diferansiyel denklemin ¢oOziimiiniin elde edilmesiyle baglanmaktadir. Bu tipteki
denklemlerin ¢éziimleri nonlineer dalga tipindedir ve bunlarin bir kismi soliton olarak
adlandirilir. ~ Solitonlar; yayilirken yayilma hizi ve formunu koruyarak ilerleyen
lokalize dalgalardir. Karsilikli carpismaya dayanikhidirlar (elastik carpigma) ve sahip
olduklar1 6zellikleri carpigsma sonrasinda koruyabilirler. KdV sine-Gordon ve NLS gibi
kismi tiirevli diferansiyel denklemler, nonlineer dalga yayiliminin modellenmesinde
kullanilmakta olup bu denklemlerin soliton tipi ¢oziimleri literatiirde genis yer
almaktadir.

Bir optik dalganin (atim) cesitli optik malzemeler i¢inde yayilimi NLS denklemi
ile temsil edilir. NLS denklemi, genellikle bir piko saniyelik zaman Olce8inde
optik atimlarin, dogrusal olmayan yayilimlarini modellemekte yaygin olarak
kullanilmaktadir. Bu denklem, Erwin Schrodinger tarafindan 1927°de gelistirilmis
ve yaygin olarak kullanilmistir. Literatiirde kiibik ve/veya kiibik-kuintik nonlineerite
ve yalnizca ikinci mertebe dispersiyon igeren NLS denkleminin analitik ve sayisal
coziimleri etraflica incelenmistir. Kitalar arasi veri iletimi problemlerinde, ikinci
mertebe dispersiyonun yani sira iiciincii dereceden dispersiyon terimlerinin probleme
katkilarinin arasgtirilmasi onem kazanmaktadir.  Optik atimlarin bicimlerine ve
kararliliklarina etki eden bir bagka faktor de dis optik potansiyellerdir. Bir dig
potansiyelin eklendigi NLS denklemi, literatiirde Gross-Pitaevskii denklemi olarak
adlandirilir. Son yillarda, kuantum mekanigi problemlerinde, parite-zaman simetrisine
sahip potansiyeller ilgi cekmektedir.

Bu tezde,
Vopg =V (x)+iW (x). (D)

seklinde kompleks yapida bir dis potansiyel kullamlmistir ve bu potansiyel
P T -simetrik ozelligindedir; yani potansiyelin reel kismi olan V(x), ¢ift fonksiyon
olma 6zelligine sahipken; imaginer kismi olan W(x), tek fonksiyon olma 6zelligine
sahiptir. Boylece, V(—x) =V (x) ve W(—x) = —W (x) iligkisi saglanr.

Bu calismada,
iuz+auxx+i[3uxxx+\u\2u+ \u]4u+VpTu =0. 2)
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olarak verilen, ii¢iincii mertebe dispersiyon terimi ve .7 -simetri 6zelligine sahip
bir dis potansiyel iceren, CQNLS denkleminin soliton ¢cdziimlerinin sayisal varligi ve
kararlilik analizleri incelenmis; sonuglar cesitli grafikler ile gosterilmistir.

Yukarida verilen denklemde, u kompleks degerli tiirevlenebilir fonksiyonu,
kirtlimi (dispersiyon) modelleyen terimi, & ikinci dereceden dispersiyon teriminin
katsayisini, B tictincti mertebe dispersiyon teriminin katsayisini ve Vp o &2 .7 -simetri
ozelligi olan potansiyeli temsil eder. Bu tezin amaci, &?.7 -simetri 6zelligi olan
bir dis potansiyelin ve iigiincii mertebe dispersiyon teriminin soliton ¢éziimiinde ve
coziimlerin kararliliginda yaptig1 etkiyi incelemektir.

Boliim 1°de, solitonlarin tarihsel gelisiminden kisaca soz edilmis, &?.7 simetrik
potansiyel iceren, dogrusal olmayan CQNLS denkleminin yapist ve uygulama alanlari
anlatilmistir. Sonrasinda tezin amaci ve gerekli literatiir taramasi verilmisgtir.

Bolim 2°de, asagida verilen, V 4 iW kompleks yapili potansiyel iceren CQNLS
denkleminin analitik ¢oziimlerini iiretebilmek icin u(x,z) = f(x)e!#et8W) ¢oziim
Onerisi yapilmigtir.

iUy + Oty + Bty + \u|2u+ ]ul4u—|—ngyu =0.

Burada f(x) ve g(x), yapist heniiz belli olmayan reel degerli fonksiyonlardir. Onerilen
bu ¢oziim, denklemde yerine konularak kesin ¢oziimler elde edilmistir. Ayrica,
kompleks potansiyelin reel kismi

V(x) = Vo + Vi sech(x) 4 Vasech?(x) 4 Vssech® (x) + Vssech® (x). (3)
seklinde bir ¢ift fonksiyon, imaginer kismu ise,
W (x) = Wosech?(x) tanh(x) + W sech(x) tanh(x) + W5 tanh(x). 4)

seklinde bir tek fonksiyon olarak elde edilmistir. Bdylece, bulunan potansiyel
P T -simetrik yapida olup asagidaki gibi belirlenmistir:

V7 = [Vo+ Visech(x) 4 Vasech? (x) + Vasech? (x) + Vysech* (x)]

)
+i[Wopsech?(x) tanh(x) 4+ Wi sech(x) tanh(x) + W5 tanh(x)].

Boliim 3’te, Ablowitz ve Musslimani’'nin gelistirdigi, ¢esitli alanlarda kullanilan bir
sayisal yontem olan SR yonteminden bahsedilmigtir. SR yontemiyle soliton ¢6ziim

elde etmek i¢in,
2

wo = e . (6)
Gaussian baslangi¢ kosulu kullamlmis ve yakinsama kosulu 10~!'% olarak alinmistir.
Bu sayisal yontem kullanilarak, bir dig potansiyel iceren iiciincii dereceden dispersiyon
terimi bulunan CQNLS denkleminin sayisal ¢oziimleri elde edilmistir. Daha sonra, SR
algoritmas1t MATLAB bilgisayar programina aktarilarak elde edilen sayisal ¢oziimler
ile Boliim 2’de elde edilen kesin ¢oziimlerin iist iiste diistiigli gozlemlenmis ve boylece
kullanilan sayisal yontemin uygunlugu ve uygulanan algoritmanin dogrulugu test
edilmistir.
MATLAB programi kullanilarak; belirli bir potansiyel derinliginde, 30D teriminin
katsayisindaki degisimin potansiyelin yapisina etkisi grafiksel olarak incelenmistir.
Elde edilen dig potansiyelin katsayilarinin soliton ¢oziime etkileri sayisal olarak
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incelenmis ve sonuglar grafik ile gosterilmistir. Ayrica, iigiincii mertebe dispersiyon
teriminin, elde edilen potansiyel altinda soliton ¢oziime etkisi grafiksel olarak ifade
edilmistir.

Bolim 4’te, elde edilen solitonlarin kararlilik analizini yapmak ic¢in kullanilan
ayrik adimli Fourier metodundan bahsedilmistir. Daha sonra nonlineer stabilite
(kararlilik) analizi i¢in ayrik adimli Fourier metodu; &2.7 dis potansiyeli ve tigiincii
mertebe dispersiyon igeren CQNLS denklemine uygulanmustir. Ug farkli 30D
terimi katsayisi icin O ile 4 arasinda degisen potansiyel derinliklerinde nonlineer
stabilite bolgeleri ¢izilmis ve 30D teriminin solitonun kararlilif1 iizerindeki etkisi
arastirllmisti.  Nonlineer olarak stabil ve stabil olmayan soliton Ornekleri ¢esitli
grafiklerle gosterilmistir.

Nonlineer stabilitenin yami sira, solitonlarin lineer stabilitesi de incelenmistir.
Lineer spektrum hakkinda kisa bir bilgi verilerek, CQNLS denklemine uygulanisi
anlatilmigtir.  Belirli bir potansiyel derinliginde, ti¢ farkli B katsayisi igin, elde
edilen solitonlarin lineer spektrumlar1 bulunarak 30D teriminin lineer stabiliteye etkisi
incelenmistir. Ayrica, a; kiibik nonlineerite teriminin, »; kuintik nonlineerite teriminin
katsayilar1 olmak iizere,

it + Oty + iButee + alulu+ blul*u+ Vi 7u = 0. (7)

denklemi ele alinarak, 0’dan 1’e; 0.2 artimla de8isen b katsayisi i¢in solitonlarin lineer
spektrumlari ¢izilmis ve kuintic nonlineeritenin, solitonun lineer stabilitesine etkisi
tizerinde caligilmustir.
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1. INTRODUCTION

Solitons arises in many fields of nonlinear science like nonlinear optics, Bose-Einstein
condensates, plasma physics, biology, fluid mechanics [1], [2]. Thus, in recent years,
the importance of optical solitons has increased rapidly. NLS equation which was
discovered by Erwin Schrodinger in 1927 is used for modeling nonlinear propagation
of optical pulses on a picosecond time scale. In order to obtain the soliton type
solutions of NLS equation, diverse analytical and numerical methods are used. He et al.
use the similarity transformation method under certain parametric conditions in order
to investigate exact bright, dark and gray analytical nonautonomous soliton solutions of
generalized CQNLS equation with spatially inhomogeneous group velocity dispersion
and amplification or attention in [3]. Exact solutions of quintic NLS equations with
time and space modulated nonlinearities and potentials are obtained through similarity
transformations by Belmonte-Beitia et al [4]. They also develop nontrivial explicit
solutions such as periodic, quasi periodic, bright and dark solitons. Novel bright
solitons of the NLS equation with third order dispersion (30D) in some complex
P T -symmetric potentials (e.g. physically relevant &2.7 -symmetric Scarf-II like and
harmonic-Gaussian potentials) are demonstrated by Chen et al. [5]. Their conclusion
concludes the dynamical phoneme of soliton equation in the presence of 30D and
& T -symmetric potentials arising in nonlinear fiber optics and other physically
relevant fields. Using the extended hyperbolic auxiliary equation method, Zhu derives
new exact travelling solutions of the high-order NLS equation in [6]. In general, NLS
equation is defined as

it + e + tu*u = 0. (1.1)
Here, u represents the differentiable complex valued; u,, represents the diffraction; z

is a scaled propagation distance; o is the coefficient of cubic nonlinearities.

Moreover, higher order dispersion terms are needed because the dynamics of pulses
smaller than 1 picosecond cannot be managed with cubic nonlinear Schrodinger

(CNLS) equation. The contribution of 30D is important for performance enhancement



in data transmission across continents. Furthermore, another structure that affects
the shape and stability of optical pulses is the external optical potential added to the

system.

In this thesis, CQNLS equation with 30D term and &?.7 -symmetric optical potential
given as

iuz+auxx+i[3uxxx+|u|2u+|u]4u+ngyu:0. (1.2)

is examined. Here, B is a coefficient of 30D term and &2.7 is a symmetric external
potential. Then, exact and numerical solutions of the Eq. (1.2) are obtained and

stabilities of soliton solutions are examined.

A flexible novel numerical scheme with which to compute self-localized states of
nonlinear wave guides and also be applied to many nonlinear systems is improved by
Ablowitz and Musslimani. They also represent how to solve lattice solutions by means
of SR method in [7]. The SR method presents numerically solutions of existence and
stability properties of the (1+1)D CQNLS equation with a &.7 -symmetric potential
for diverse potential depths and in different self-focusing/defocusing cubic-quintic
media. In addition to numerically and analytically obtained solutions, their linear and
nonlinear stability properties are examined through linear spectrum analysis and by

direct simulations in [8].

1.1 Purpose of Thesis

In this thesis, examining of the existence of soliton solutions and their stability analysis

of CQNLS equation with 30D and &?.7 -symmetric potential is aimed.

1.2 Literature Review

Exact solutions of one/two dimensional NLS equations (knowns as the Gross-Pitaevski
equation in Bose-Einstein condensates) with several complex &.7-symmetric
nonlinear wave equation starting from both &?.7 -symmetric (e.g. the Kdv equation)
and non &.7 -symmetric (e.g. the Burgers equation) nonlinear wave equations are
found by some complex Z.7-symmetric extension principle in [9]. Many novel
solutions which fundamentally differentiate from the others of CQNLS equation are

obtained by means of the complete discrimination system method in [10]. The



existence and the stability of lattice solitons in &7.7 -symmetric mixed linear-nonlinear
optical lattice in Kerr media are represented in [11]. They also find that the
combination of &.7-symmetric linear and nonlinear lattices can stabilize lattice
solitons and can improve unique soliton properties. Goksel et al.[10] study the
numerical existence and nonlinear stability of fundamental solitons in saturable media
with crystal and certain type of quasi crystal lattices by means of computational
methods. They also examined the effect of lattice depth to the gap width and in a certain
parameter regime of the lattice depth and the propagation constant, the first nonlinear
band-gap structures are obtained in [12]. The effect of the competing nonlinearity
and the gain-loss coefficient on the existence and stability of the both 2D fundamental
solution and vortex solitons are investigated in [13]. The existence and stability regions
are also obtained for fundamental and vortex solitons. In addition, the coefficients
of nonlinear terms and the propagation constants of solitons determine the whole
nonlinearity. The existence and stability of solitons forming in &Z.7 -symmetric optical
lattice with spatially periodic modulation of the local strength of nonlinear media are
investigated in [14]. They also present that the spatial modulation of the nonlinearity

significantly effects the stability of solitons in &7.7 —symmetric optical lattices.

Spatial localized mode solution of a (2+1) dimensional NLS equation with constant
diffraction and cubic-quintic nonlinearity in &.7 -symmetric potential is investigated
in [15]. They also examined the linear stability of these solutions. Exact
spatial localized mode solutions in a cubic-quintic medium with harmonic and
& T -symmetric potentials are obtained according to their results. The detailed
analysis of conditions for the stable propagation of (1+1)D spatial solutions in media
exhibiting nonlinearities up to the seventh order is studied in [16]. Yang et al.
[17] numerically investigated stability of soliton families in 1D NLS equations with
non-%’ .7 -symmetric complex potentials. Eigenvalues of linear-stability operators
of solitons appear in quartest (A,—A,A*,—A%), such as conservative systems and
P T -symmetric systems are the most significant numerical findings which are
obtained in [17]. Results of solitons in models of waveguides with focusing
or defocusing saturable nonlinearity and &7.7 -symmetric complex valued external
potential of the Scarf-Il type are searched by Li et al. in [18]. They also

indicate that the instability of the stationary solutions can be mitigated or completely



suppressed according to their results. Khare et al. [19] study the consequences
of competing nonlinearities on beam dynamics in &?.7 -symmetric potentials. The
effect of nonlinearity on beam dynamics in &.7-symmetric potentials are studied
by Musslimani in [20]. Musslimani particularly represents the main features of

Floquet-Bloch (FB) mode in &.7 -symmetric optical lattice in [21].

In [22], in order to obtain the solution of NLS type equation, fast numerical methods
are developed in fiber optics. While for solving a stiff system of ordinary differential
equations (ODEs) Split-Step method is utilized, implicit Runge Kutta formulas of
Gauss type are handled for more complex nonlinearities. In [23], exploiting weak
external localized potentials which can convey or reflect the soliton related to the
initial speed, coactions of soliton are examined. Li J. et al. [24] reproduce two
species of Gauss-type solitons in cubic-quintic-septimal nonlinear media and also,
form properties of two species of Gauss-type solitons are compared. Then, analysis
of linear stability of solutions is studied by means of the method of eigenvalue.
Furthermore, in order to inspect Gauss-type solitons’ stability in diverse nonlinear
media, numerical simulation based on the split-step Fourier method is used in [24].
In defocusing &2.7 -symmetric nonlocal nonlinear media, the existence, stability and
inner coactions of two dimensional multipole solitons are studied in [25]. In addition,

easier stabilizing of dipole solitons with intermediate nonlocality is presented.

In [26], group of periodic solutions of NLS equation with periodically modulated 30D
and complex valued potential is examined not only analytically but also numerically.
With the usage of plane wave expansion method, Liu B. et al. [26] have observed
periodic solutions band structure of the stability problem together with periodic
complex potential. Generic complex hyperbolic refractive index distribution and fourth
order diffraction (FOD) featured &.7-symmetric optical media, at the same time
existence and the stability of solitons are researched in [27]. In the linear situation,
it is numerically presented that the 2.7 breaking points can be changed by the FOD
parameter. Xu B. et al. [28] have studied the (1+1)-dimensional higher-order NLS
equation with &7 -symmetric potentials. According to [28], propagation constant of
soliton is identified by the factors of the fourth-order and the second-order diffraction,
while phase of soliton is detected by the factors of the gain or loss distribution. For

the generalized nonlinear Schrédinger (DNLS) equation the system of a Lagrangian



and Hamiltonian are acquired and using the method of amplitude ansatz, equations’
bright, dark and bright-dark solitary wave solutions are reproduced in [29]. Besides,
existence of solitons is provided by exploiting some conditions. Moreover, with the

aid of method of the standard linear stability analysis, stability analysis is examined.






2. EXACT SOLUTION OF CQNLS EQUATION WITH THIRD ORDER
DISPERSION AND A .7 -SYMMETRIC POTENTIAL

Exact solutions provide one to understand the structure of the complex nonlinear
physical phenomena which is related to wave propagation in a higher-order CQNLS

equation with &7 -symmetric potential.

General form of CQNLS equation with a complex potential in the form V +iW is given
below:

itz + Ottt + iBtgex + |u2u+ |u*u+ (V +iW)u = 0. (2.1)

Obviously u = 0 is the trivial solution of Eq. (2.1). To obtain non-zero solutions,
we assume that u # 0. When Eq. (2.1) is divided by u, then we have the following
equation:

z—+a—+ iB ”x+|u|2+yu\4+v+iwzo. (2.2)

The following ansatz is used to get non-zero stationary solutions:
u(x,z) = f(x)eHrsle)), 2.3)

where f(x) and g(x) are real-valued functions different than zero, u is a function of
x and z to be determined and u is the propagation constant. Taking derivatives of

Eq. (2.3) with respect to z and x, results in following equations

uy = f(x)ipe’ ) — jyy (2.4)

e = & HTEO [ () 421 ()¢ (x) +if ()8 (x) — £ (%) (&' (%)) (2.5)

e = € RO () 4+ 30 f" (x )&/ (x) +3if (x)g" (x) = 3f'(x)(¢' (x)) (2.6)
—3f(x)g' (x)g" (x) +if (x)g" (x) —if (¢ (x))°]-

juf? = f(x)e 8 fx)e TSN = (£(x))2. 2.7)

jul* = (£ (0)*. (2.8)



Substituting Eq. (2.4)-Eq. (2.8) into Eq. (2.2) yields

[+ ol — (g (1)~ 3855 4 (g () — 3p L
B8 () (F0)2+ (F)* +V ()] + 12075+ ag” (x) 2.9)
—3B LN 3B/ (x)g" (x) + BLE + W (x)] = 0.

To obtain soliton solutions, we used the following ansatz

f(x) = fosech?(x), g (x) = gosech?(x). (2.10)

where fo and g( are non-zero real constants and p,q € N. In order to simplify Eq. (2.9),

we need to calculate the derivatives of the functions f and g. By using Eq. (2.10) we

obtain
f'(x) = — foptanh(x)sech? (x). (2.11)
" (x) = —fop(1 + p)sech? "2 (x) + fop*sech? (x). (2.12)
"(x) = fol—=p> + (p® +3p* +2p)sec h*(x)] sec P (x) tanh(x). (2.13)
g (x) = gosech?(x). (2.14)
g"(x) = gogsec h?(x) tanh(x). (2.15)
g" (x) = gog*sech?(x) — go(¢” + q)sech? (). (2.16)

Substituting Eq. (2.10)-Eq. (2.16) into Eq. (2.9) we obtain
—p+ap?+[~a(p* + p)lsech®(x) + [~Bgo(3p” +3pg +¢*)] sech? (x)
+[—0go?]sech(x) + [Bgo(3p* +3p +3pq + ¢* + q)] sec hT+2(x)
+[Bgo®] sech39(x) + [fo2] sec h2P (x) + [fo] sec h*P (x) + V (x) 2.17)
+i[[3B20%(p + q)] sec h*(x) tanh (x) + [—0tgo(2p + ¢)] sec h(x) tanh(x)

+[B(p® +3p? +2p)]sech?(x) tanh(x) + [~ B p?| tanh(x) + W (x)] = 0.
When we split Eq. (2.17) into real and imaginary parts, we get the expressions for the

real and imaginary parts of the complex potential as we can see below:



Real Part

The real part of the Eq. (2.17) can be written as,
[—1+ ap’] +[—a(p® + p)sech? (x) + [~ Bgo(3p° +3pg +¢°)] sech (x)
+[—ago?] sech?(x) + [Bgo(3p* +3p+3pg+4* +g)] sechi™2(x) (2.18)
+[Bgo’sec(x) + [fo’] sec h*P (x) + [ fo*] sec i* (x) + V (x) = 0.

The real part of the complex potential is found as

V (x) = Vo + Visech? (x) + Vasech? (x) + Vasech?? (x) + Visech? 2 (x)

+Vssech’ (x) 4 Vgsech?” (x) 4 Vasech* (x). @1
where

Vo= —ap’. (2.20)
Vi =a(p®+p). (2.21)
Va=PBgo(3p° +3pg+q°). (2.22)
Vs = ago’. (2.23)
Vi =—PBgo(3p° +3p+3pg+4*+q). (2.24)
Vs = —Bgo’. (2.25)
Ve = —fo’. (2.26)
Ve = —fot. (2.27)

We can see in the following form that V (x) is indeed an even function

V(—x) = Vo + Vysech?(—x) + Vasech?(—x) + Vasech??(—x) + Vysech? ™2 (—x)
+Vssech3?(—x) 4 Vgsech?” (—x) + Vysech*” (—x)

= Vo + Visech?(x) + Vasech?(x) 4 Vasech?? (x) 4 Vysech?d+2 (x) (2.28)

+Vssech?(x) + Vgsech?” (x) + Vssech?” (x)
=V(x).

Now, V(x) can be simplified by equating the powers of sech(x). Considering the case
of p =g =1, then Eq. (2.19) can be rewritten as following form,
V(x) = [u— o] +[7Bgo] sech(x) + 20 + agy® — fo*]sech?(x)

(2.29)
+[—Bgo(11+4 go*)]sech® (x) + [— fo*]sech* (x).
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Then, the real part of the complex potential is found as

V(x) = Vo + Vi sech(x) + Vasech?(x) + Vasech® (x) + Visech? (x). (2.30)
where
Vo=u—a. (2.31)
Vi =7Bgo. (2.32)
Vo =20+ ago’ — fo. (2.33)
Vs =—Bgo(11+g0%). (2.34)
Vi = —fit. (2.35)

Imaginary Part

The complex part of the Eq. (2.17) can be written as

[3Bg0 (p +q)]sech (x) tanh(x) + [~ ago(2p +¢)Jsech? (x) tanh(x)
(2.36)
+[B(p? +3p* +2p)]sech? (x) tanh(x) + [~ B p*] tanh(x) + W (x) = 0.

Then the imaginary part of the complex potential is obtained as

W (x) = Wosech??(x) tanh(x) + Wy sech? (x) tanh(x) 4+ Wasec h* (x) tanh (x) + W tanh x).

(2.37)
where
Wo = —3Bgo’(p+4)- (2.38)
Wi = ago(2p+q). (2.39)
W = —B(p> +3p*+2p). (2.40)
w; = Bp . (2.41)
We can see in the following form that W (x) is indeed an odd function.
W (—x) = Wosech??(—x) tanh(—x) + Wy sech?(—x) tanh(—x)
+Wssech?(—x) tanh(—x) + W3 tanh(—x)
= Wysech??(x)(—tanh(x)) + W;sech? (x)(— tanh(x)) (2.42)

+Wasech?(x)(— tanh(x)) + W3 (— tanh(x))
=—W(x).

Considering the case of p = g = 1, then we can rewritten Eq. (2.37) as following form,

W (x) = —6B(go* + 1) sec h%(x) tanh(x) 4+ 30tgg sec h(x) tanh(x) + B tanh(x). (2.43)
10



Then the imaginary part of the complex potential is obtained as

W (x) = Wosech? (x) tanh(x) + W sech(x) tanh(x) + W5 tanh (x). (2.44)
where
Wo = —6B(g0> +1). (2.45)
Wi = 3ago. (2.46)
W, = B. (2.47)

Attention should be paid in case of p = ¢ = 1, by considering Eq. (2.29) and Eq. (2.43)

the analytical solution of the problem can begin with
M(X,Z) = f Sech(x)ei[/,tz+g0 arctan i(x) sinh(x)]' (2.48)
Consequently, Eq. (1) corresponding to %27 -symmetric potential with the real and
imaginary parts in Eq. (2.30) and Eq. (2.44) can be given as
Vpr = [Vo + Visech(x) + Vasech?(x) + Vasech® (x) + Visech?* (x)]

(2.49)
+i[Wopsech?(x) tanh(x) 4+ Wy sech(x) tanh(x) 4+ W, tanh(x)].
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3. NUMERICAL METHODS

3.1 Spectral Renormalization Method

In nonlinear optics, localized wave solutions namely solitons establish a significant
solution class. To compute localized solitons in nonlinear waveguides, a numerical
scheme based on a Fourier iteration method was proposed by Petviashvili [30]. Then,
this method was improved by Musslimani and Ablowitz [7]. Fourier iteration is the
basis of this method. Like a NLS-type equation, fundamental equation leading the
soliton is transformed into Fourier space through this method. The main purpose of
this method is to specify a nonlinear nonlocal integral equation linked to an algebraic

equation. Numerical scheme does not diverge through the coupling.

In nonlinear optics and related fields such as Bose—Einstein condensation and fluid
mechanics, this method have comprehensive utilization. Subsequently, solitons
in diverse self-focusing/self-defocusing cubic-quintic media are obtained using SR

method by Goksel [8].

In this chapter, numerical solutions of the 30D CQNLS equation with &2.7 -symmetric

potential in Eq. (2) will be achieved by using the SR method as follows:
iuz+ocuxx+iﬁuxxx+|u|2u+|u|4u+ngu:O. (3.1)

The following equations are obtained by using u(x,z) = f(x)e’*? formula where u is

the propagation constant (or eigenvalue) and f(x) is a complex-valued function:
u, = i fet,
Uyx = fxxemz-

_ iuz
Upex = fraxe He,

. (3.2)
u* = fe Mz,
ju?> = |-
ul*=1/1*.
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The following nonlinear equation for f is acquired by putting Eq. (3.2) into Eq. (3.1)
—Uf et 0 frae i frne® | fP e 4 | fI fEH 4 Vi 7 feh = 0. (3.3)

After simplifying these equations we get

—Wf+ Qfat B+ 1P+ f+Vazf=0. (3.4)

Taking the Fourier transformation of Eq. (3.4) gives us

FA-uf}+ F{afu + F{iB fon} + FUSP 1Y+ FUS Y+ T Vo f} = 7 {0}
(3.5)

a7

Here, Fourier transformation is represented by .# and the following equation is

obtained with utilizing this transformation’s qualities:

—uf + aike)f + B (k) f + FAIf P} + FAUS Y+ F{V +iW)f} =0
(3.6)
where .7 (f) = f and k, are Fourier variables. When we solve the Eq. (3.6) for the f,

W€ S€€

F{fLPF+ ZAF )+ Z{V +iW) £}
[H+akx2_ﬁkx ] .

In order to find f(x), this equation could be indexed and utilized but the scheme does

f=

(3.7)

not converge. At this point, we should make acquainted with a new field variable
f(x) = Aw(x) with A € R where A is a parameter to be determined. So, putting
f(x) = Aw(x) into Eq. (3.7) yields

FwALwAY + Z{(w*A[ WA} + F{V +iW)Aw)

AW = 3.8
-+ ak? — Bk G

Therefore, w satisfies
o ZAWPIAPWY+ Z (YA )+ F(V +W)w) .

u + akxz - ﬁ kx3
For finding out w, Eq. (3.9) can be utilized in an iterative method. In order to succeed

this, we can calculate W using the following iteration approach:

_ APF {walPwa} + AL F {wal Wi} + F LY+ iW)wn}

V1 = , neN. (3.10
n+1 + (Xk 2 Bk 3 ( )
with the initial condition taken as a Gaussian type function
2
wo=e *. (3.11)

14



where our convergence criterions are |w, | — w,| < 10712, Multiplying both sides of

Eq. (3.9) by (i + ak,> — Bk,>) and we obtain
(1 + ok — Bl ) = [APF {|wlw} + AL Z {{w[*w} + FZ{(V +iW)w}. (3.12)
When we take all terms of Eq. (3.12) to the left side, we lead to following equation
(1t aky® = Bl o — AP F{IwPw} = A F {w*w} = F{(V +iW)w} =0. (3.13)
After multiplying Eq. (3.13) by w* which is the conjugate of w, we get

(1 + ok — BhS) W — A PZ {w]Pwhw* — AL Z {|w]| Wi — F{(V +iW)whw* =
(3.14)
Moreover, the following equation is obtained when we take integral of Eq. (3.14):
/ (1t + otk — Ble) |w|2dk — |7L|2/ F{|wlPwhi*di

it [ F itk [ @ wwpiae=0. G19

or in a more compact form

— [ [V W+ -+ aki® — Bl
T e - (3.16)
AR [~ F (wPwpidicr Al [ Fwlwyirak=o.

Actually, Eq. (3.16) is a fourth order polynomial of A which has the form P(1) = aA*+

bA?* + ¢; thus, roots of this polynomial i.e. A is worked out exploiting the following

formula:
—b+ Vb2 -4
Al;zzi\/ bt Vb —dac (3.17)
2a
where
a:/ F{|wlwhitdk. (3.18)
b= / (w2} dk. (3.19)
c—— / (= F{(V +iW)whi* + (1 + ke — Bke)|w?]dk. (3.20)

The required soliton will be f(x) = A (wx) = A.% ~!(W) when the iteration converges.

Thus, the soliton is obtained from a convergent iterative scheme.
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In Fig. 3.1, the soliton numerically obtained by the SR method which is defined above
is plotted with dashed green solid line while analytically obtained soliton which is
explained in Chapter 1 is plotted with red solid line. It is seen from the figure that, two
solitons overlap and obtained numerical solution satisfies Eq. (3.1) with absolute error
is 107°. Therefore, it shows that SR method used in this chapter is suitable for getting

solitons.

Ifl
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0.8

0.6

0.4

0.2

20 15 -10 -5 0 5 10 15 20

Figure 3.1 : Analytically and numerically obtained soliton for W; = 1.8, V, = 1.2 and
B=0.1

In Fig. 3.2, numerically obtained solution, its real and imaginary parts of the specific
P T -symmetric potential which is depicted in Chapter 1 are plotted. In Fig. 3.3, for
given potential depths and a constant value of u and «, the effect of 30D term 3 to

potential that is given in Chapter 2 is viewed.
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X
Figure 3.2 : Numerically obtained soliton, real and imaginary parts of the
P T -symmetric potential.
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-20 -10 0 10 20 -20 -10 0 10 20

Figure 3.3 : Real and imaginary parts of the potential for u =1, o« =1, W; = 1.8,
V> = 1.2 and various values of 3: (a) B = —0.1,(b) B =0, (c) B =0.1.
In Fig. 3.4, existence regions of numerical solitons of CQNLS equation with 30D for

various values of f are plotted. Therefore, it can be seen from this figure, 30D has

positive effect for obtaining soliton solutions.

(a)

Figure 3.4 : Numerically obtained solitons of CQNLS equation with 30D for various
potential depths of &2.7 -symmetric potential for (a) f = —0.1,
(b) B=0,(c)pB =0.1.

17






4. STABILITY ANALYSIS OF CQNLS EQUATION WITH THIRD ORDER
DISPERSION AND A .7 -SYMMETRIC POTENTIAL

4.1 Split-Step Fourier Method

The split-step method is one of the evolution method that the evolution equation is split
into several pieces. The thought of the split step method occurred long time ago. This
method was greatly improved in later years and high order schemes were forged for
linear equations in two decades. After starting to be famous, this method was often

made use of physicist.

4.2 Nonlinear Stability Analysis

During direct simulations, solitons are defined nonlinearly unstable if they preserve
their shape, maximum amplitude and position. To investigate the nonlinear stability
of solitons, they are derived throughout long distance. To be able to perform this,
Split-Step Fourier Method is used to advance in z.

Consider the form of nonlinear PDE for u(x,z) which can be written as
u; = (M+N)u. 4.1)
where M and N are operators independent of z. If Eq. (2.1) is rewritten, we have
;= i( 00y + iB O+ i(Jul* + [u* + Vip 7 ). (4.2)

and thus, it can be split as in Eq. (4.1) with the operator M = i( a0y + i3 dxxx) and the

operator N = i(|ul* + |u|* + V7).

u;, = Mu which is solved by means of Fourier transform. After applying the Fourier

transform both sides of equation
U; = iQUyy — Bllyy- (4.3)
then the below equation is obtained.

i, = (ia(ik)” = (ko)) i = —i(ak,® — Bh)a (4.4)
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Therefore, this equation is actually an ordinary differential equation (ODE) of i and its
exact solution can be obtained as in Eq. (4.5). Moreover, by taking the inverse Fourier

transform of i, u is found as below.
0= Cle_"(‘)‘kx2_ﬁk)‘3)Z = u=7"! (C1e_i(“k)‘2_ﬁkx3)z> ) 4.5)
The second step u, = Nu, i.e.
112 4 ]
u; = i(jul”+u|" +Vaz)u. (4.6)
has the exact solution
§= Czei(\u\2+\u\4+vp,—>y)z . (4.7)

Having found solutions to both parts, the split-step Fourier method can now be

employed for the CQNLS equation by using any splitting scheme.

Using split-step Fourier method, nonlinearly stability of obtained solitons is
investigated. In Fig. (4.1), stability regions of solitons are plotted for a three different
values of beta and for potential depths varying from O to 4. It can be seen from this
figure that positive values of beta (here B = 0.1) improves the nonlinear stability while

negative beta (here f = —0.1) causes a decline in nonlinear stability.

Figure 4.1 : Nonlinearly stable (marked as green) and nonlinearly unstable (marked
as red) solitons of (a) CQNLS equation with 30D for = —0.1;

(b) CQNLS equation without 30D; (c) CQNLS equation with 30D for

B = 0.1 for varying potential depths of the &7.7 -symmetric potential.

In Fig. (4.2) and Fig. (4.4), nonlinearly stable solitons are shown. It is seen from these
figures that the solitons conserve their shapes and maximum amplitudes during the
evolution. In Fig. (4.3) and Fig. (4.5), the nonlinear evolutions of solitons are depicted
and it can be seen from these figures that as the propagation distance increases, the

maximum amplitude of the soliton becomes oscillatory and after z = 50, the shape of
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Figure 4.2 : Nonlinear stability of soliton for«c = 1,u =1, = 0.1, W; = 0.6 and
V, =2 with a & .7 -symmetric potential; (a) Numerically produced
soliton (blue dashes) on top of the solution after the evolution (red solid),
(b) Nonlinear evolution of the soliton, (¢)The view from top and (d)
Maximum amplitude as a function of the propagation distance z.
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Figure 4.3 : Nonlinear instability of soliton fora =1,u =1, 8 =0.1, W; = 1.8 and
Vo, = 2.3 with a & .7 -symmetric potential; (a) Numerically produced
soliton (blue dashes) on top of the solution after the evolution (red solid),
(b) Nonlinear evolution of the soliton, (¢)The view from top and (d)
Maximum amplitude as a function of the propagation distance z.

the soliton is deteriorated which leads to nonlinear instability for the chosen potential

depths.
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Figure 4.4 : Nonlinear stability of soliton fora = 1,u =1, B = —0.1, W; = 0.2 and
V, = 3.3 with a &.7 -symmetric potential; (a) Numerically produced
soliton (blue dashes) on top of the solution after the evolution (red solid),
(b) Nonlinear evolution of the soliton, (c)The view from top and (d)
Maximum amplitude as a function of the propagation distance z.
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Figure 4.5 : Nonlinear instability of soliton fora = 1,u =1, = —0.1, W; = 1.7
and V, =2 with a &.7 -symmetric potential; (a) Numerically produced
soliton (blue dashes) on top of the solution after the evolution (red solid),
(b) Nonlinear evolution of the soliton, (¢)The view from top and (d)
Maximum amplitude as a function of the propagation distance z.

4.3 Linear Stability

Linear stability will be investigated by acquiring and analyzing the linear spectrum

and/or by evolving the linearized solitons.
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4.3.1 Linear spectrum

Linear stability spectrum or short, linear spectrum are the eigenvalues of the linear
stability operator of a soliton. These eigenvalues give information about the linear

stability of a soliton.

Eq. (2.1) can be written as the following (1+1)D NLS equation having general type of

nonlinearities:

it (x) 4 Qe (x) + iBter (x,2) + F (|u(x)|*)ut(x) + Vipp 7 (x)u(x) = 0. (4.8)

where F () € R and F(0) = 0. As explained before, Eq. (4.8) admits soliton solutions

of the form u(x) = f(x) ¢'*<. Substituting

u, = ipL fe'te.
Upx = frx etz
, 4.9)
Uprx = frox e,
u? = = e fre i = ff* = | f2.
in Eq. (4.8) and multiplying by e =< gives
—WS + @ fect BB frax+ F(IfP)f + Vo7 f =0. (4.10)
For investigating the linear stability, the soliton solution is perturbed as follows
u(x) = [f(x) +g(x)eM + h*(x)e’l*z} eHz, (4.11)
where g and h are perturbation eigenfunctions and A is the eigenvalue.
U, = (the’IZ + AR iuf +ingett + iuh*el*z) eHz,
Upy = <fxx + g+ h;xek*z> eHz, (4.12)
Uxxx = (fxxx + g)cxxe/lz + h)txxel*z> eiuz'
|u]2 =uu* = (f—l—ge’IZ + h*e’l*z> etz <f* +g*el*Z + he’lz> e iHz
= ff* —i—fg*el*z —|—fhe’lz +f*geM _|_gg*e(/l+l*)z
(4.13)

+gh62)tz —|—f*h*el*z —|—g*h*62}”*z +hh*e(l+l*)z

~ |f‘2‘|‘ <g*e/l*z+he?uz> f+ (gelz—l—h*e)'*Z) f*
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Using linear Taylor expansion F (x +h) = F (x) + hF'(x) + O(h?),
F(uP) =F (1P + [(g"¢" 7+ net) £+ (gh+17e ) 1] i)
~F(fP) + [(ge¥ +he?s) £+ (s 406 =) 1 PP

Hence,
F(Juf*yue™
= F(fP)f + | (g"e¥ e+ he??) 12+ (gebe 072 2) I£P /(1P
+F(|f[?)ge
+ [(gg"e(’”’“)Z +ghe””> f+ (gze”“ +gh*e(“’l*)z> f*} F'(|f1)
+F(|fP)he*
i [(g*h*ew“r|h|2e(“’l*)z>f+ <gh*e(x+x*)z+(h*)zeza*z> f*} F’(|f|2)
~ F(fP) |f +ge +he]
+F(fP) (P4 11Pg) ¥+ (g + 7P ) 2]
(4.15)
Substituting Eq.(4.11), (4.12) and (4.15) into Eq.(4.8) gives
i (),ge)LZ AR I inf +inge + i,uh*el*z) eH=
+o (fxx + g+ hixel*z> P
18 (b ) O
F(fP) [f+ge+het]
+F(fP) [(Pr1r1%) e+ (2 + 17707 7]
Vs ( f+geh +h*e"*1) Mz — () |

(4.16)

+ eiuz

Grouping the terms and multiplying by e ~"# yields
[—uf + afect iB et FSP)f +Vir 7 S|
ilg— g+ 0gu+iBgax+F(|f°)g N
(PrelrPe) F P 4 Ve [
AT — ph* + ahy + i, + F (| f|P)h*
+ (128 + 1P ) F PP + Vi i
=0.

4.17)

"
e/lz

Since f is a solution seen in Eq.(4.10), the first bracket in Eq.(4.17) is equal to zero.

For Eq.(4.17) to hold true, the factors of the exponentials must be zero simultaneously.
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Hence, one has on one hand

iAg — Hg+ agu+ iBguec+ F(f1P)g+ (S2h+1f1%8) F/(If1P) +Vip7g = 0. (4.18)

which can be rewritten as

0gua+ Bt [FUFP)+F ()P = +Virr | g+ F/(1FP)fh = —ikg.
(4.19)

and moreover, by Eq.(4.17), second exponential factor is equal to zero.

iR — U+ al + B+ F ()R + (fzg* + |f\2h*) F(If)+Vopsh* =0.
(4.20)

which can be rewritten as

b+ B+ [FUFP) +F(f PSR =+ Vs | 1+ F( )18 = —id ",
(4.21)
Taking the conjugate of Eq.(4.21) gives

Ohet B+ [FFP) -+ F (fPSP =1+ Vi | h+ F (P (£2) g = ik,
(4.22)
Multiplying Eq.(4.22) by —1 gives

—ahy = iBhoo— [F(FP)+ F (PP =1+ Vi | h—F(fP) () g = —ikh.

(4.23)
Writing Eq.(4.19) and (4.23) in matrix form yields
A L L, g | _ 8
[ 5l
where
Ly = 00u+iBu + F(If )+ F'(IfP)f P — 4+ V7.
) (4.25)
L =F'(IfI")f*.
For the cubic-quintic nonlinearity,
F(x) = ax+bx*.
(4.26)
F'(x) =a+2bx.
Using Eq.(4.26) in Eq.(4.25) yields
L = oc&xx + iﬁaxxx + 2a|f’2 + 3b’f‘4 —u—+ Vg}y.
(4.27)

Ly =af>+2bf3f*.
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If the soliton and potential are real, i.e. f, Vo4 € R, Eq.(4.24) becomes

A L Ly g | _ 8
I (428)
where
Li = 00+ if O +2af> +3bf* — U+ V.
(4.29)
Ly=af>+2bf*.
Linear spectrum of numerically obtained solitons are found by taking f = —0.1, B =0

and B = 0.1 in order to examine the impact of the 30D term to linear stability of
solitons of CQNLS equation. It can be seen from Fig. (4.6) that, obtained solitons for
B =—0.1and B = 0.1 are found to be linearly stable while soliton obtained for = 0
is linearly unstable. This fact reveals that adding 30D to the problem increases linear

stability properties of CQNLS solitons in this specific &2.7 -symmetric potential.

a b c
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Figure 4.6 : Linear spectrum of CQNLS equation (a) with 30D for § = —0.1; (b)
without 30D; (c¢) with 30D for B = 0.1 for W; =4 and V, = 3.7

In order to investigate the effect of quintic nonlinearity on linear stability of soliton
solutions, we consider following equation with coefficients of cubic and quintic

nonlinearities as a and b respectively
itz + Ottt + iButees + alu)?u+ blu[*u+ Vi 7u = 0. (4.30)

Here we fix the cubic nonlinearity (¢ = 1) and assume that b is varying from O to 1
by 0.2 steps. To investigate the effect of increasing quintic nonlinearity, linear spectra
of solitons are plotted in Fig. (4.7) for progressively increasing b values. It can be
concluded from Fig. (4.7), while other parameters are fixed, increasing the quintic

nonlinearity has a positive effect on linear stability of a soliton.
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Figure 4.7 : Linear spectrum of numerically obtained solitons of the CQNLS

equation with &2.7 -symmetric potential and 30D for f = 0.1, W; =4
and V, = 3.7 in the (a) cubic case (a=1, b=0) and cubic-quintic cases: (b)
a=1, b=0.2, (¢) a=1, b=0.4, (d) a=1, b=0.6, (e) a=1, b=0.8, (f) a=1, b=1.
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S. CONCLUSION

In this thesis, we have investigated the existence and the stability of soliton type
solutions of higher order dispersive-cubic quintic nonlinear Schrodinger equation with
a Z .7 -symmetric potential. As the &.7 -symmetric potential, an extension of well

known Scarff II type potential is taken into account.

Firstly, exact soliton type solution of CQNLS equation with 30D and a
& 7 -symmetric potential is obtained and structure of .7 -symmetric potential is

determined.

In the second section, SR method is explained and modified in order to obtain
numerical solutions of the equation. Then, it is shown that the analytical and the
numerical soliton solutions overlap; here, the numerical solutions satisfy the Eq. (1.2)
with an error less than 10~%. Moreover, effect of 30D term on existence region of
soliton type solutions is studied and shown that adding the 30D term to the problem

enlarges soliton existence region for both positive and negative coefficients.

In the last section of this thesis, using Split-Step Fourier method, nonlinear
stability properties of previously obtained solitons are examined and nonlinear
stability/instability regions are depicted for varying values of the coefficients of
potential depths. It is observed that, for negative 30D term the nonlinear stability
region of the solitons is smaller than that of the region for positive 30D term.
So one can conclude that, considering a positive higher order dispersion may
enlarge the nonlinear stability region for CQNLS equation for this specific type of

& 7 -symmetric potential.

Moreover, linear stability analysis based on the effect of 30D term and quintic term on
linear stability are studied. For fixed potential depth values it is observed that 30D term
has a positive effect on the linear stability for both negative and positive coefficients

of 30D. Also, the effect of quintic term on linear stability is investigated by slowly
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increasing the coefficient of the quintic term from O to 1. It is shown that quintic

nonlinearity has a positive effect on linear stability of the solitons.

For future studies, the competing nonlinearity can be discussed for a deeper
understanding of the effect of cubic and quintic nonlinearities. Also, in order to observe
the contribution of fourth order dispersion (40D) to the problem, one may consider
taking both 30D and 40D into account and study the competing dispersion effect by

comparing the results to the existing literature.
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APPENDIX A.1
Fourier Transform

The Fourier transform of f(x) is

1 0 .
Flk) = / Fetay (A1)

for a continuous, smooth and absolutely integrable function f(x) and conversely, the
inverse Fourier transform of F (ky)

1 [ .
Flk) = / fx)e g (A2)

Z(f) = f is called the Fourier transform of f and .%Z~!(f) is called the inverse
Fourier transform of f.

One of the classical properties of Fourier transform is given as
d 0 oA
F |51 0)| = e ((0) = ikef (A3)

This property can be generalized to higher order differantiation property of Fourier
transform as Eq. (A.4).

dn
(dx)"

A

f@ﬂza@ﬂQUQ»za@ﬂﬂ nen A4
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