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RAMAN-INDUCED SOLITONS
IN OPTICAL POTENTIALS

SUMMARY

The optical solitons refer to special kind of wave packet that propagate a long distance
without distortion due to the balance of the nonlinear and dispersive effects in the
medium. Thus, the optical solitons have become a topic of current research in the
long-distance fiber communication.

It is well known that propagation of short pulses can be described by the nonlinear
Schrédinger equation.  But in the femtosecond regime the standard Nonlinear
Schrodinger equation becomes inadequate and several higher order effects such as
the third order dispersion (TOD), self-steeping and the stimulated Raman scattering
(SRS). The stimulated Raman scattering is the most important nonlinear effect that
occur in the optical fibers. In nonlinear optic, the dispersion of light can be modelled
by the Nonlinear Schrodinger equation with Raman effect. Raman effect is change
in the magnitude of wave of light that happens when a light photon is redirected by
molecules. A small light refraction is dispersed at optical energies and at the most
of the times lower than the energy of the incident photons. This inelastic process of
disperse of light is defined as the Raman Effect. In other words, Raman Scattering, can
happen when molecule’s energy changes as vibrational, rotational or electronically. If
it is elastic process of disperse of light, it is called Rayleigh scattering. In 1928, V.C.
Raman, Indian physicist, explored Raman scattering in the other words Raman Effect,
later he deserved a Nobel prize for his study in 1930.

In this thesis, we demonstrate the existence and the stability properties of
Raman-induced solitons governed by Nonlinear Schrodinger equation with the
stimulated Raman effect and the external potentials. The external potentials can
be assumed .7 -periodic-symmetric, &?.7-symmetric and Non-Z.7 -symmetric
potentials.

The Raman induced solitons are governed by the solutions of the NLS equation for
dimensionless envelope u(x,z) of the electromagnetic wave, including the stimulated
Raman effect. The nonlinear Schrodinger equation with the Raman effect and the
external potential can be given as

iuz+uxx+|u|2u+‘cu<|u|2> + Ve =0. (1)
X

In given equation, u(x,z) yields to the complex-valued function, u,, yields to
diffraction, 7 is a complex constant which refers Raman Effect and V, is an external
potential.
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As far as we know, the exact soliton solutions for the NLS equation including the
Raman effects and periodic external potential have not been investigated up to now. By
choosing the special forms of the external potentials possessing the 2.7 or non-&.
symmetry, we can obtain the Raman induced solitons as analytically. The &7 and
non-Z.7 symmetric potentials can be given in the following from and analytical
solutions of NLS equations:

Vo7 (x) =V (x) +iW (x) = Vosech? (x) + i[Wosech(x)tanh(x) + W, sech? (x)tanh(x)],
Vopz(x) =V (x)+iW(x) = [Vocos2 (x)] + i[Wosin(2x)],
Vopg(x)=V(x)+iW(x) = [Vosech2 (x) + Visech® (x)ranh(x)]

+ i[Wosech(x)tanh(x) + W, sech? (x)tanh(x)]

2)

2 . W .
u(x’ Z) _ /2+ WTO _Vosech(x)el<z+70arctan(smh(x))> , (3)

by assuming the solution is the following form,

u(x,z) = f(x)eHrel] 4)

here f(x) and g(x) are real-valued functions.

In addition, in order to obtain the numerical solutions of NLS equation with Raman
effect and with external potentials, we introduce the pseudo-spectral renormalization
method [1] which based on the fixed point iteration [2]. Numerical and analytical
solutions compared with each other and it is found that numerical solutions converge
to analytical solutions. In order to obtain convergency, some conditions are found
based on external potentials.

One dimensional NLS equation with Raman Effect without potential, it is observed
that if the real part of T of Raman Effect term is getting to zero value, soliton solutions
convergency has also increased. It is also observed that if the complex part of 7 of
Raman Effect term is getting to zero value, and the real part of T s equal to zero,
soliton solutions are also convergent. But as we increased the value of the real part of
7 and the value of the complex part of 7 is equal to zero, then soliton solutions of NLS
equation have not been found.

It is obtained that the imaginary part (Wp) of the external potential or the real part of T
needs to be different from zero, in order to get soliton solutions of NLS equation with
the .7 -periodic symmetric potential, are consistent with the analytical solution. If
the imaginary part of the external potential (Wy) and the real part of 7 are taken as a
zero, soliton solutions cannot be found. It is very easy to show that the existence of
Raman-induced solitons depends on the propagation constant i and the real part of the
external potential (Vj). In order to get soliton solutions, the real part of the external
potential (V) should be greater than or equal to the propagation constant L.
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We obtained the existence of Raman-induced soliton under &.7 -symmetric potential,
the real part of 7 value should be taken as a zero. If the real part of 7 value is not taken
as a zero, ¥ .7 symmetry conditions cannot be satisfied and the potential will not be
& 7 -symmetric, but becomes Non- .7 -symmetric.

The pseudospectral method has been used to analyze the nonlinear stability of obtained
Raman-induced solitons. The effect of Raman term on the stability of the solitons is
investigated.

It is seen that Raman Effect term has not much impact to the stability of solitons. If
NLS equation has a higher-order nonlinearity, then the Raman Effect term will have
much impact to stability of the soliton solutions. We observed that all Raman-induced
solitons are nonlinearly stable.
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OPTIK POTENSIYELLER ALTINDA
RAMAN ETKILI SOLITONLAR

OZET

Optik solitonlar, ortamdaki dogrusal olmayan ve dagitici etkilerin dengelenmesi
sayesinde olusan bozulmalar olmaksizin, uzun mesafede yayilan dalga paketinin 6zel
bir tiiriinii ifade eder. Bu sebeple, optik solitonlar, uzun mesafe fiber iletisimde mevcut
arastirmalarin konusu olmustur.

Kisa sinyallerin yayilimlarinin dogrusal olmayan Schrédinger denklemi ile tanimlan-
abilecegi 1yi bilinen bir gercektir. Ancak, nanosayinenin milyonda biri diizeyinde,
standart dogrusal olmayan Schrodinger denklemi yetersiz olur ve bazi yiiksek
mertebeden iigiincii mertebeli yayilm (UMY), kendi kendine dik posizyona gelmesi
ve uyarlanmigs Raman sacilmasi (URS) gibi etkileri olur. Uyarlanmis Raman sagilimi
optik fiberlerde meydana gelen dogrusal olmayan en 6nemli etkidir. Dogrusal olmayan
optikte, 15181n yayilmasi1 Raman etkili dogrusal olmayan Schrodinger denklemi ile
modellenebilmektedir. Molekiiller tarafindan 151k fotonunun yonii degistirilirken
olusan dalga boyundaki degisiklik, Raman etkisidir. Ufak miktarda 1s181n kirilmasi
optik enerjide yayilir ve cogu zaman gelen 1sinin enerjisinden daha az olur. Isigin
yayilmasinin esnek olmayan bu siireci Raman Etkisi olarak tanmimlanir. Bir diger
deyisle Raman sacilmasi, molekiil enerjisinin titresimsel, doniissel ve elektronik olarak
degismesi ile meydana gelebilir. Eger 151k yayilim siireci esnek ise, buna Rayleigh
sacilmasi denir. 1928’de hint fizik¢i, V.C. Raman, Raman sacilmasi, diger adi
ile Raman etkisini kesfetmistir, daha sonra 1930°da bu ¢alismasindan dolay1 Nobel
odiiliinii almay1 hak etmistir.

Bu tez calismasinda, uyarilmis Raman etkili ve dis potansiyelli dogrusal olmayan
Schrodinger denkleminden tiiretilen Raman kaynakli solitonlarin varligin ve kararlilik
ozelliklerini gosterdik. Dig potansiyeller &2.7 -periyodik simetrik, &?.7 -simetrisi
ozelligi olan ve &7 -simetrisi 6zelligi olmayan potansiyeller olarak kabul edilebilir.

Raman kaynakli solitonlar, uyarilmis Raman etkisini igererek, elektromanyetik
dalganin boyutsuz sarmali u(x,z) i¢in dogrusal olmayan Schrodinger denkleminin
coziimleri olarak tiiretilir ~ Raman etkili ve dis potansiyelli dogrusal olmayan
Schrodinger denklemi asagidaki gibi verilebilir

iuz+uxx+|u]2u+fu<|u|2> + Vi =0. 3)
X

Verilen denklemde, u(x,z) karmasik degerli fonksiyonu ifade etmektedir, uy, yayilim
ifade etmektedir, 7 Raman etkisini ifade eden karmasik olan sabit bir sayidir ve V, dig
potansiyeli temsil etmektedir.
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Bildigimiz kadar1 ile, bu zamana kadar Raman etkisi ve periyodik potansiyel iceren
dogrusal olmayan Schrodinger denklemi i¢in tam soliton ¢oziimleri bulunamamustir.
PT ve P olmayan simetrik Ozelligi olan dig potansiyelinin 6zel bir formu
secilerek, analitik olarak Raman kaynakli solitonlar elde edebiliriz. .7 ve
& olmayan simetrik potansiyelleri ve dogrusal olmayan Schrodinger denkleminin
analitik ¢coziimii asagidaki formda verilebilir:

Vo7 (x) =V (x) +iW (x) = Vosech? (x) + i[Wosech(x)tanh(x) + W, sech? (x)tanh(x)],
Vopz(x) =V (x)+iW(x) = [Vocos2 (x)] + i[Wosin(2x)],
V(x)+iW(x) = [Vosech2 (x) 4 Visech® (x)tanh (x)]

+ i[Wosech(x)tanh(x) + W, sech? (x)tanh(x)]

)

S

=
I

(6)

2 . W .
u(x’ Z) _ /2+ WTO _Vosech(x)el<z+70arctan(smh(x))> , (7

asagidaki gibi ¢oziim Onerisi verilerek hesaplanmistir,

u(x,z) = f(x)eHrel] 8)

burada f(x) ve g(x) gercek degerli fonksiyonlardir.

Buna ek olarak, Raman etkili ve dis potansiyelli dogrusal olmayan Schrodinger
denkleminin sayisal ¢oziimlerini elde etmek icin, sabit nokta iterasyonuna dayanan
pseudo-spektral renormalizasyon yontemini kullandik.  Sayisal ¢oziimler kesin
coziimlerle karsilastirilmis ve sayisal ¢oziimlerin analitik ¢oziimlere yakinsadigi
bulunmustur.

Potansiyel olmayan birinci derece Raman etkili NLS denkleminin, terim igerisinde
bulunan 7 karmagik sayr sabitinin gercek kisminin degeri sifira yaklastikca,
yakinsakligin arttig1 gozlemlenmistir. Eger Raman etkisi terim icerisindeki 7 sabitinin
karmagik kisminin degeri sifira yaklastiginda ve 7 sabitinin degeri 0’a esit oldugunda
soliton ¢oziimlerinin yakinsak oldugu gozlemlenmistir. Ancak 7T sabitinin gercek
kisminin biiyiik degerleri ve sanal kisminin sifir degeri i¢in soliton tipi ¢Oziimler
bulunamamustir.

P T -periyodik simetrik potansiyelli ve Raman etkili NLS denkleminin soliton tipi
coziimlerini elde etmek icin dis potansiyelin sanal kisminin (Wp) veya T sabitinin
gercek kisminin sifirdan farkli olmasi gerektigi, boylece ¢coziimlerin analitik ¢oziimle
uyumlu oldugu elde edilmistir. Eger dis potansiyelin sanal kism1 (W) ve 7 sabitinin
gercek kismi sifir olarak alinirsa, soliton tipi ¢oziimler bulunamamistir. Raman
kaynakl1 solitonlar yayilim sabiti pt degerine ve dis potansiyelin gercek kisminin (Vp)
degerine bagli oldugu kolaylikla goriilmektedir. Soliton tipi ¢oziimler elde etmek icin
dis potansiyelin gercek kisminin (V) yayilim sabiti 1 degerinden daha biiyiik veya esit
olmalidir.
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P T -simetrik potansiyel altinda Raman kaynakli solitonlarin varligini elde ettik, ©
sabitinin gergek kismu sifir olarak alinmalidir. Eger 7 sabitinin gergek kismu sifir olarak
alinmaz ise, &.7 simetri kosullar1 saglanmaz ve potansiyel &.7 -simetrik olmaz,
ancak & .7 olmayan simetrik olur.

Elde edilen Raman kaynakli solitonlarin dogrusal olmayan kararliliklar1 pseudospek-
tral yontemi ile analiz edilmistir. Raman teriminin solitonlarin kararhiliklarina olan
etkisi sorgulanmustir.

Raman etkisi teriminin solitonlarin kararliliklarina ¢ok biiyiikk bir etkisi olmadig
goriilmiistiir. Eger NLS denklemi yiiksek dereceden bir dogrusal olmayan mertebesi
var ise, Raman etkisi teriminin soliton c¢Oziimlerinin kararliligina etkisi olacaktir.
Raman kaynakl tiim elde edilen solitonlarin dogrusal olmayan ve kararli solitonlar
olduklarim gozlemledik.
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1. INTRODUCTION

In the past decades, nonlinear knowledge have been comprehensively improved to
discover the riverting angle of nonlinear systems. Nonlinear knowledges are not new
issue of science, even though they gives considerably a new notion and outstanding
conclusions. It is easy to analyse nonlinear phenomena in quite variant systems with
the suitable experimental equipments. The all scope of nonlinear science can be

considered into some categories, such as fractals, solitons, complex systems etc.

Solitons are nonlinear waves which localized and take place in several scopes of
physics [1]. The basic comprehension of complicated nonlinear systems have been
figured out by soliton features. Nonlinear Schrédinger equation (NLS) is described
by the nonlinear dynamics of waves. In 1927, Erwin Schrodinger discovered NLS
equation [2]. Many amount of studies have been made about NLS equations with
different nonlinearities and different analytical and numerical methods have been used

to solve the problems.

In optical science, the dispersion distance z occurs of the time parameter ¢ of quantum
mechanics. From this point of view, NLS type of equations are used in order to
pattern &?.7 -symmetric structures. Many studies have been made about the diffusion
of electromagnetic waves in photorefractive substances. For this purpose, optical
solitons investigated on &.7 -symmetric lattices as a solution of two-dimensional NLS

equation with cubic and quintic terms [3].

The most of the photons are elastically dispersed when the light is dispersed from
the cyrstal or the molecule. The dispersed photons have the same frequency and the
same length of wave like the incident photons. A small light refraction is dispersed
at optical energies and at the most of the times lower than the energy of the incident
photons. This inelastic process of disperse of light is defined as the Raman Effect.
In other words, Raman Scattering, can happen when molecule’s energy changes as
vibrational, rotational or electronically. If it is elastic process of disperse of light, it

is called Rayleigh scattering [4]. In 1928, V.C. Raman, Indian physicist, explored

1



Raman scattering in the other words Raman Effect, later he deserved a Nobel prize for

his study in 1930 [5].

Many researches have been proven higher-order dissipative and nonlinear impacts in
NLS equation [6]. In nonlinear optics, Raman scattering which is a term in NLS
equation as u <|u|2>x, has a significant role among the higher-order nonlinear impacts.
Raman effects on solitons which generated by the Raman scattering term in NLS
equation, were experientially obtained in 1985 [7]. It became a phenomenon as
soliton self-frequency rotation and then investigations have been widely made about
Raman scattering and higher-order nonlinear impacts [7]. Raman scattering induces
to deceleration of the soliton forwarder frequency when the pulse spectrum occurs so
prevalent which defines a energy flow from the high-frequency components of a pulse
to the low frequency components of the identical pulse through raman amplification. It
is proven that if NLS equation has Raman effect term, then pulse-like solutions cannot

be obtained and Raman result has a delayed nature.

1.1 Purpose of Thesis

In this thesis, investigating of the existence of the Raman-induced solitons and
their nonlinear stability analysis of NLS equation with Raman effect and periodic,

P T -symmetric and Non-Z .7 -symmetric potential is aimed.

1.2 Literature Review

Solitons are obtained as a result of solutions of nonlinear dissipative partial differential
equations which defining pyhsical systems [8]. Soliton theory has been developed

since ’soliton” was defined by Zabusky and Krusal in 1965 in [9].

The nonlinear optics is one of the best area to investigate the optical solitons. Optical
solitons, temporal optical solitons, spatial optical solitons are derived from the balance
between nonlinearity and dispersion or diffraction. It is well-known that the perturbed
nonlinear Schrodinger equation can be used to describe the propagation of the short
optical pulses. The perturbed terms include the higher-order effects, the third-order
dispersion self-steeping and the stimulated Raman scattering. The Raman scattering

effect is the most important effect in the optical fiber communication.



Since the refractive index of the optical solitond can be complex, it is very important
to investigate the light propagation in optics governed by the NLS equation with real

external potentials or gain and loss distributions [10]- [13].

In optics, optical mode which means soliton, indicates to any optical field which does
not evolve during dispersion by reason of a delicate equilibrium between linear and

nonlinear impacts in the medium.

Bender and Boettcher showed that necessary but not sufficient condition for
Hamiltonians to be &.7 symmetric is that real part of 7.7 potentials should be even
functions of position and the imaginary part of the potentials should be odd [14]. In
optics, there have been a growing interest in .7 symmetry because of 2.7 optical

complex potentials can be seen both theorically and experimentally.

In 2008, Musslimani et al, studied the optical solitons in &7 symmetric optical
potential theoretically [15]. The existence and stability of &?.7-symmetric optical

solitons have been widely studied.

Spectral renormalization method is a form of Fourier iteration method. This method
was asserted by Petviashvili in [16]. In [17], numerical approximations of localized

solitons in periodic potential is shown by spectral renormalization method.

Spectral renormalization method has improved to pseudospectral renormalization
method for using in various nonlinearities in [18]. Pseudospectral renormalization
method is based on inverse fourier transform for nonlocal terms in NLS. Method has

applied to (2+1) dimensional NLS with the qubic and quintic nonlinear terms.

It is explained that in [19], the &2.7 -symmetric nonlinear lattices supported existence
of localized solitons. In [20], by using spectral renormalization method, the solutions
of saturable NLS equation with an external periodic and Penrose type potentials are
obtained. It was investigated that the existence of solutions and stability of solitons in

periodic and quasicrystal lattices.

It is investigated the existence of exact solutions for bright and dark solitons in weakly
nonlocal media and with the cubic and quintic nonlinear terms in [21]. It is shown that

when the solitons are unstable in local media, nonlocal effects can make them stable.



In [22], it is observed bright and dark solitons for the higher-order NLS with Raman
Effect and with the cubic, quintic and septic terms. Raman effect and self-steepening
terms investigated seperately, and it is proven that Raman Effect term is more dominant

than self-steepening term.

It is reported conclusions of the analytical and numerical works for the modulational
instability of continuous wave in NLS with the pseudo stimulated Raman scattering
term in [6] and found that the modulation is able to control the multi-soliton patterns
which are found by modulation instability in stable or unstable form. Modulation
instability defines exponential of perturbations joint to continuous wave because of the

nonlinearity.

1.3 Hypothesis

The existence of Raman-induced solitons and the linear and nonlinear stability
properties are investigated. We found that all Raman-induced solitons are nonlinearly

stable.



2. SOLITARY WAVES AND SOLITONS

The soliton means as a defition of a word that special kind of wave which spreads
unvaried for long distances. Because of the cancelation of dissipative and nonlinear
impacts in the medium. John Scott Russel observed solitons in 1834, in Edinburgh
canal where a horse was pulling a boat after it stopped, a water wave created. Scott
Russel followed that created water wave and he noticed that the wave was moving with
a constant speed and conserving its magnitude. He lost the wave after it moved couple
of miles in the turning of the canal [23]. After this observation, Scott Russel did some
experiment and he figured out following results [24]. It is called Solitary waves if the
wave holds following features. A nonlinear solitary waves called solitons with second
feature below that they conserves their structure, even after being in interaction with

other soliton [25].

e Waves are not dispersive which means they conserves their shapes and sizes
e After collision of two diferrent waves, they still conserves their shapes and sizes

e Velocity of the waves are constant even after collision

There are several examples for the traceable solitons, such as solitary waves in water,
on the surface of the sea or deep inside of the water and for atmospheric solitons as
an example Morning Glory clouds. Korteweg and de Vries who are two Physicists in
Holland, 1895 invented the KdV equation that defines the dynamics of solitary waves
in water [26]. In 1965, Zabusky and Kruskal numerically calculated the solution
of the KdV equation [9]. They obtained that calculated numerical solutions came
into collision one another and conserved their shapes and velocity after the collision.

Therefore, Zabusky and Kruskal defined the waves as solitons.

Zakharov and Shabat who are russian scientists, discovered solitons in optical fibers
in 1971 [27]. In 1973, they calculated the Nonlinear Schrodinger Equation (NLS)

by using the inverse scattering method [28]. Hasegwa and Tappert noticed that NLS



conducts the pulse diffusing in optical fibers in 1973 [29]. Moreover, Mollenauer and
Smith experientially found the same kind of solitons in 1988. They transferred the
soliton pulses more than 2500 miles by using Raman effect in order to ensure optical

gain in the fiber [30].

In several subjects of physics, scientists comprehensively work on solitons such as
optics, plasmas, condensed matter physics, uid mechanics, particle physics and even
astrophysics. Optical transmission systems which are based on solitons, can take
advantage of over range of many thousands of miles with enormous information
conveying capacity by using optical amplifiers. Solitons come in the one of the
essential technologies in the present transmission reformation since it is noticed
that the transfer of data is faster without any decreasement. Moreover, solitons are
significant in optics because they are implemented to communication systems in order

to obtain high velocity data transmission and optical changing.

2.1 Optical Solitons

The surround of light waves for which the nonlinear Schrodinger equation (NLS)
defined some fundamental features, is called optical solitons [31]. The optical solitons
have been theorically and experimentally studied since they are helpfully applied in the
area of fiber-optic communications. Optical solitons are developed from a nonlinear
change in the refractive list of a substance caused by the light field. This change
in the refractive list of a substance because of an applied field is called optical Kerr
effect. The Kerr effect, the density subjection of the refractive list, induces to nonlinear

impacts responsible for soliton generation in an optical medium.

A bunch of a optical wave, naturally tends to disperse in a medium, either because of
chromatic diffusion or because of spatial refraction. Such a bunch of wave, in time or

in space or both, is called an optical soliton.

2.2 Spatial and Temporal Solitons

The optical solitons can be categorized as spatial or temporal depending on the
restriction of light in space or time during diffusion. If the electromagnetic field

is localized in time, then solitons are temporal, and the dispersion in a medium is



because of chromatic diffusion. If the optical field is localized in the transverse
directions, then solitons are spatial, and the dispersion in a medium is because of
spatial refraction. The temporal solitons’ dynamics can be defined by NLS equation.
The spatial solitons’ dynamics can be defined by normalized NLS equation. Hasegawa
and Tappert are made researches about the existence of temporal solitons [29], and
Mollenauer experimented with temporal solitons [30]. Ashkin and Bjorkholm made

an experiment about optical spatial solitons in 1974 [32].

The spatial self-focusing (or self-defocusing) of optical rays and temporal self-phase
modulation (SPM) of pulses nonlinearly effect to the improvement of spatial and
temporal solitons in a nonlinear optical medium. When self-focusing of an optical
ray exactly atone the propagating because of diffraction, it results to the generation
of spatial soliton, and a temporal soliton is generated when SPM balances the effect
of dispersion-caused expanding of an optical pulse. The wave diffused without any
differences in its shape and is called as self-trapped. Chiao, Garmire and Townes
invented the spatial soliton named as self-trapping of optical ray in a nonlinear medium
in 1964 [33]. McCall and Hahn observed the temporal soliton named as self-caused

trapping of optical pulses in nonlinear medium [34].

In NLS equation, there are the lower order velocity diffraction term and nonlinear cubic
term, these terms give balance to optical solitons. Optical solitons have a inclination

to disperse either by reason of chromatic or spacial diffraction.

2.3 Bright Solitons

It is mentioned before that solitons are special form of the solutions of NLS equation.

Standard NLS equation can be written as
ity + e & [uPu =0 | (2.1)

where if the sign of nonlinear term is (4 ), it is self-focusing nonlinearity, if the sign
is (—), it is self-defocusing nonlinearity. Solutions of NLS equation can be calculated
as bright soliton for the self-focusing case of NLS. It is called bright soliton that it
vanishes to background status at infinity. The common form of bright soliton of NLS

equation as follows [35]:

u(x,z) = asechla(r — vx)]ei(V’+(az_V2)x/2) : (2.2)
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a refers to the magnitude of soliton and v represents the speed of diffusing soliton. The

bright soliton for NLS equation can be seen in Fig.(2.1) for some values of a and v.
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Figure 2.1 : (a) Bright Soliton of NLS equation

2.4 Dark Solitons

Solutions of NLS equation can be calculated as dark soliton for the self-focusing case
of NLS. It is called dark soliton that it does not vanish to background at infinity. The

common form of dark soliton of NLS equation as follows [35]:
u(x,z) = up[Branh(upP (t — auox))ia]e_i“"zx : (2.3)

ug refers to continuos-wave background and a®> + B2 = 1, here a = sin¢ and B = cos¢
and ¢ is single constant that 2¢ angle refers to the total degree of rotation across the
dark soliton. The dark soliton for NLS equation is shown in Fig.(2.2) for some values

of ug, a, B and ¢.
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Figure 2.2 : (a) Dark Soliton of NLS equation



3. OPTICAL LATTICES

3.1 Z.7-Symmetry

All the phsical mesurements rely on a real quantity. In quantum mechanics,
measurements match up with eigenvalues of operators. Therefore, all the eigenavalues

of operators require to be real.

Take the Hamiltonian operator H:

9
H=T+v=L1v® G.1)
2m
where 7 is the sum of the kinetic energy operator, Vis potential energy operator, p is

the momentum operator, m is the mass and X is the position operator.

Real eigenvalues of Eq.(3.1) conform with a real energy spectrum. In order to assure
a real spectrum, it was supposed that all measurements conformed with eigenvalues of
Hermitian (i.e. selfjoint) operators by looking back the result from linear algebra that
Hermitian matrices have real spectra. In fact, a Hermitian Hamiltonian provides a real
energy spectrum. Nervetheless, analyzed non-Hermitian Hamiltonians and discovered
that the most of them have completely real spectra given that they are named the
parity-time (&.7) symmetry property [14]. Moreover, they indicated in the most of

the cases a threshold value above which spectrum becomes complex.

P 7 -Symmetry is defined by the parity operator 2 and the time operator T whose

actions are given below:

P.p——D,X——X (Z(ay+b9))(x) =ay(—x)+bop(—x) (3.2)
T po PR —Rio—i  (T(ay+bp))(x) =a ¥ (x) +b9"(x)

[36,37]. A Hamiltonian is called &2.7 -symmetric is it has the same eigenfunctions as



the 2.7 operator and satisfies as follows:

PTH=HPT. (3.3)

Firstly,

2

—(27)( L + Vi) )

(P TH)(f(x.1))
_ o (ﬂf’%x )V (0 f* (x r>>
2m b b

(3.4)

2
P ox ) 1V (20 (x00)

and secondly,
(HZT)(f(x.1)) = (HZ)(f"(x.1))
= H(f*(-x.1))

2
L pe(x,t) + VA X) £ (—x,1).

2m

(3.5)

The necessary but not sufficient condition Eq.(3.3) states

HP?T = ;; +V(x)
= V(x) =V'(-x) (3.6)
e ]/7\2
H="— *(—
PT o +V*(—x)
Let us consider the complex potential as
Vopz(x)=V(X)+iW(x) , V,WeR" (3.7
And
=V(—x)—iW(—x), (3.8)

Vog'(—x) =

the real part of the potential, V(x) needs to be an even function and the complex part

of the potential, W (x) needs to be an odd function so that Eq.(4.6) satisfies [38].
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3.2 Optical Lattices with &.7 and Non-%”.7 Symmetry

In this thesis, we will consider the optical lattice of the following form:

V (x) = Vgsech®(x) + Vysech*(x)tanh(x)
(3.9
W (x) = Wosech(x)tanh(x) + Wysech? (x)tanh(x)

with the real parameters Vy , Vi , Wy and W. Here V; (i =0,1) and W; (i =0, 1) refer to
the depths of the real and complex part of the optical lattice. V(x) and W (x) describe
the real-valued external lattice and gain-loss distribution respectively. According to
values of parameters, we will define even and odd functions of potential, moreover; it

will be defined &7 and Non-Z.7 Symmetric potentials.

3.2.1 .7 -Symmetric Optical Lattices

In this section, the 2.7 symmetric optical lattice (V (x) +iW (x)) requires that the real
and imaginary parts should satisfy V(x) = V(—x) and W(—x) = —W(x). In order to
obtain the &2.7 symmetry optical lattice for NLS equation with Raman effect, it will
be proved that it must be V; = 0. In this case, V(x) is an even function and W (x) is an
odd function which satisfy the &2.7 -symmetry requirements, hence &.7 -symmetric
potential is in the following form:

V(x) = Vosech?(x)

(3.10)
W (x) = Wysech(x)tanh(x) + Wy sech® (x)tanh(x)

In Fig. (3.1), we plotted the real-valued external lattice and the gain-loss distribution

W (x).

11
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Figure 3.1 : (a) Real part of the 2.7 -Symmetric Potential, (b) Imaginary part of the
P T -Symmetric Potential, Eq.(3.9) with V) = Wy = W; =0.1.

3.2.2 Non-Z.7 -Symmetric Optical Lattices

In this section, we will consider non-£.7 -symmetric potential.

V7 (x) =V (x)+iW (x) = [Vosech®(x) + Visech® (x)tanh(x)| + -
i[Wosech(x)tanh(x) + Wy sech? (x)tanh(x)] .

where V;(i =0,1) and W;(j = 0, 1) refer to depths of the real and complex parts of the

potentials, respectively.

If we take V| # 0 in the (3.10), V(x) will not become an even function. Hence, the
potential will not be &.7-Symmetric potential, but it will be Non-Z2.7 -Symmetric

Potential.

The &7 symmetry require V(x) should be an even function. In order to show
Eq.(3.10) do not satisfy the &7 symmetry requirement we plotted the real valued
of the optical lattice, V (x) and gain-loss distribution W (x). As it is seen from this Fig.

(3.2), V(x) is not an even function, but the W (x) is still an odd function.
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Figure 3.2 : (a) Real part of the Non-£2.7 -Symmetric Potential, (b) Imaginary part
of the Non-&#.7 -Symmetric Potential, Eq.(3.10) with
Vo=Vi=Wy=W; =0.1.

3.3 &7 -Periodic Symmetric Lattices

In this section, we will consider the following &2.7 -periodic symmetric potential

Vopz(x)=V(x)+iW(x) = [Vocosz(x)] + i[Wosin(2x)] (3.12)

where Vp and W, refer to depths of the real and complex parts of the potentials,
respectively. It is easy to see that from the Fig. (3.3), V is an even real-valued function

and W is an odd real-valued function.

0.4 ——a—x S
el
0.08fL == VEx)
__ 0.6
e
~ 004
RATARRRANE
0 ‘ ‘ ‘ 0 — —
15 10 -5 0 5 10 15 5 10 -5 0 5 10 15

Figure 3.3 : (a) Real part of the 2.7 -Periodic Symmetric Potential, (b) Imaginary
part of the &2 .7 -Periodic Symmetric Potential, Eq.(3.11) with
Vo =Wy =0.1.
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4. SPECTRAL METHODS

4.1 Pseudo-Spectral Renormalization Method

Self-localized solutions of many nonlinear system can be found by using
different computational techniques such as shooting, self-consistency, relaxation
and Newton-Conjugate-Gradient method, Squared-Operator Iteration methods [39] ,
Imaginary-Time Evolution methods [40] or different variational procedure [41]. One
of the most useful method is Petviashvili’s method. This method based on a fixed-point
algorithm. In this method governing nonlinear equations are transformed into Fourier
space. Patviashvili’s method appeared to generate numerically lump solitary wave
of the KP-I equation, a converge factor is determined from the algebric equation. In
this section, we use a fixed-point pseudo-spectral renormalization method to solve the
equation,

it + e + [ u+ Tl w4 [V (x) +iW (x)]u = 0 4.1)

where z is the propopation direction of optical pulse, x is the transverse coordinate, i
denotes the imaginary number and u is the complex amplitude of the optical pulse, and

V(x) is the optical lattice, 7 is the raman effect.

We look for the self-localized solutions to Eq.(4.1) in the form:

u = q(x)e'H= (4.2)

Taking the derivatives of u and substituting Eq.(4.2) into Eq.(4.1) we get the following
equation

—1q+ g+ gl g +V (x)g— (% +it)g+]q/ g =0 (4.3)
where U is the propopation constant.

Let us define the 1D Fourier transform of ¢ as

a(k) = Flgl)) = [ _qlx)e™s @4



and inverse 1D Fourier transform as follows:
g) = 71 = | _atoe k. @3)

Applying Fourier and inverse Fourier transform to g, and substitute in Eq.(4.3) then

we get the following equation:

—pg— 7 [KP] + V(@) + W @)+ (5 +im)aF [ 7 |iklgl?] | +1aPg =0
4.6)

Let us define ¢ such as

—ug=—pnF ' [F[q]l. (4.7)

Substituting Eq.(4.7) into Eq.(4.6) then we get

— 77 (w42 a] + V) + W @la + (r+im)gF 7 |7 iklaP| | + lalPg =o.
4.8)

Solving g from Eq.(4.8), we obtain

7| (ot i) 7 ik |laP || +laPa+ 1V (x) + W (x))q]
w+ [k

q(k) = (4.9)

In order to find the self-localized solutions of the Eq.(4.1), we use fixed-point iteration
method. However the iterations of Eq.(4.9) may grow unboundadly or it may tend to
0. In order to get convergent fixed-point iteration method, we introduce a new field
variable

g(x)=2Aw(x) , L#0 (4.10)

A is called a converging factor to be determined in each iteration step substituting

(4.10) into the function w(x) satisfy the following equation

— g1 [(u + yk|2)w} (1 + it wF ! [ik|/l|2ﬁ[]wlzﬂ FIAPw]Pw 4 [V (x) + W (x)]w = 0.
4.11)

In order to find |A|, we multiply Eq.(4.1) by w and integrate we obtain an algebric

equation for the convergence factor |A|:

AP =21, (4.12)



Where S| and S, are defined by

S) = /_Zw[[V(x) +iW (x)jw—.F ! [(,u-l— |k|2>W”dx,
(4.13)

Sy = /Zw[[w]zw—f— (7, +it))w.F ! [ikﬁ [\wﬂ”dx.

The fixed-point pseudo-spectral iteration scheme for w is given as follows:

F [(r,ﬂq)wn%l [ik|7tn|3/2fi [|w,,|2H Al 2wl w2 4 A V2V () A iW ()] W

e (k)
(4.14)

which subject to the additional constraint where Im(A4,,) = 0.

It was been found that pseudo-spectral iretative method prevents the numerical scheme
from diverging. This the self-localized solutions of Eq.(4.1) can be obtained fro
convergent iterative scheme. The initial condition for w is typically choosen to be
as a Gaussian such as

w(x,0) = e*(x*x(’)z. (4.15)

The iteration continuous until the relative error as follows:

;{n—i— 1
An

Aerror =

— 1’. (4.16)
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S. STABILITY ANALYSIS

5.1 Nonlinear Stability

Nonlinearly stable soliton is proven that it preserves the shape, position and maximum
magnitude. In order to investigate nonlinear stability of solitons, calculated soliton
solutions will be computed for long distances in z. For this purpose, Runge-Kutta

method and Pseudospectral method is used for nonlinear stability.

5.1.1 Runge-Kutta Method

The Runge-Kutta method is a well-known numerical method in order to solve ODE

and PDE systems. Consider systems of ODEs as follows:
F (005171 ) =y (5.1)

where y is the vector valued function,

y:R - R™, (5.2)

in x and y(”) represents nth derivative of y.

In this section, in order to solve Eq.(5.1), Runge-Kutta method will be used with the

vector valued functions.
Consider following initial value problem written as

d
d—f = £(t,y),  y(to) = 0. (5.3)

The Runge-Kutta method for given inital value problem Eq.(5.3)

1
— v+ —h(ky + 2k + 2ks + Ky,
Y+l =Ynt ¢ (k1 2 3+kg) (5.4)

Iny1=1n +h,
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where y, 1| represents approximation of y(t,41),
ky=f (tnvyﬂ)

1 1
ko = f(tn + Ehvyn + Ehkl>
(5.5

1 1
k3 = f(tn + Ehvyn + ihk2>

ka = f(ta+ h,yn + hk3).

The next value y,;; will be found by the value of y, and the size of interval h. [42]
In Eq.(5.5), k| represents the slope at the first step of interval, k, represents the slope
at the middle step of interval, k3 represents the slope at the middle step of interval, k4
represents the slope at the last step of interval, and the avareage of the slopes represents

approximately numerical solution of ODE Eq.(5.3) as follows: [42]

1
y:gh+%ﬁ4@+my (5.6)

Eq.(5.6) is called 4th order Runge-Kutta method result which refers the error in each
step on the order of /°, and the total error approximately is 4*. Runge-Kutta method

formulae are applicable for scalar-valued and vector-valued functions. [42]

5.1.2 Pseudospectral Method

The pseudospectral method is one of the first spectral method found for wave

equations. In order to explain the method, let define the NLS equation as
ity + e+ 2|ul*u = 0. (5.7)

Discretize Eq.(5.7) in space,

umt::i(unﬁx%—ZhhAzun>, (5.8)

where u, refers the solution on x, grid point. The fundamental meaning of the
pseudospectral method is that using discrete Fourier transform to obtain the spatial
derivative u, ,y, and use and proper scheme such as Runge-Kutta to advance in
time. [39] For this computation, we used the fourth-order Runge-Kutta method. uy, x.

obtained by discrete Fourier transform as

e = F () F (). (5.9)
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where .Z refers to the discrete Fourier, .Z ! refers to the inverse Fourier transforms

and k is the wave number.

In this thesis, we used pseudospectral method for stability of the wave equation. The
presicion of this calculation is spectral, and the error is smaller than Ax which is power

of spatial difference. [39]

After uy, x, 1s found, Eq.(5.8) can be calculated by Runge-Kutta method which is a
time-stepping scheme. Stability of numerical solution calculated by pseudospectral
method by taking diferent time-step value Ar and spatial difference Ax. It is found that
the numerical solution became unstable for large time-step value. This is stated that
the pseudospectral method has a condition for stability on the time-step size Ar and
this condition is enough for the stable numerical solution. [39]

At <2\ﬁ

A2 S T2 (5.10)

Eq.(5.10) is the necessary and sufficient condition for stability, for the pseudospectral

method on the NLS equation Eq.(5.7).

5.2 Linear Stability

Linear stability will be calculated by obtaining and analyzing the linear spectrum or

the linear evolution.

5.2.1 Linear Evolution

In order to examine the linear stability of the equation below,

i (x,2) + e (%, 2) + |u(x, 2) Pu(x,2) + (T + i) u(x, 2) <|u(x,z)|2>

=

(5.11)
+Vo7(x,2)u(x,z) =0,

the soliton solution of Eq.(5.11) is perturbed as:

u(x,z) = [u(x) + €U (x,z)] ™ (5.12)
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where € << 1 and U refers to governing equation of the NLS. Substitute solution form
to Eq.(5.11) as follows:
u, = ipt [u(x) + €U (x,2)] e + [U,(x,2)] =
Uy =[xy + EUyy] €
uPu=u-w* u=u*u = [|u|2u + 8<u2(7* +2|u|2l~]>]e’“Z
<|u|2>xu = (uxrt” + )i = up|u)® + ulu’

— [uzu;" + |u|2ux+8<2uu;17—i—uzfl);k + 1y (0O +ulU") —|—Ux|u|2>]ei"‘z.

(5.13)
When we substitute to Eq. (5.11) and seperate 6(&”) terms, we obtain
— pu A wex + |u) s+ T Puy 4 TPu + Vi gu =0,
5 ) (5.14)
— U+ gy + |u u+‘c<]u| ) u+Vepsu=0.
X
When we seperate 6(¢) terms as follows:
—uU +iU, + Uy, + (uZU* +2yu\2l7>+
B r _ _ B (5.15)
T (u*uxU +uU%u, + |u|2Ux + 2uu U + uzU;> +Vopou=0.
Rewrite the Eq.(5.15), then obtain the Linear Evolution,
iU, +Un+U [2|u|2 + tuuy — W+ 2Tuu + ng} +U, [|u|2} 5.16)
+U* [u* + tuu,] + U [tu?] = 0.

5.2.2 Linear Spectrum

Linear spectrum is the eigenvalues of linear stability operator of soliton. Concened

eigenvalues will give an idea about the linear stability of the soliton.

Consider the following NLS equation with Raman effect:

it (,2) 1 (,2) (e, 2) P, 2) 4+ (- im)u,2) (Jue2) )

(5.17)
+Vp 7 (x,2)u(x,z) = 0.
Soliton solutions of Eq.(5.17) form is u(x,t) = f(x)e™.
Substitute solution form to Eq.(5.17) as follows:
u, = fe*ip
Uy = fxxemZ
(5.18)

Ul =u-ut = fele. frehE = o fr = | £
(1uP) =2IA1171,
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and multiplying by e ~** results
~f + et RS+ (@t im)f(IF2) +Virf =0, (5.19)
In order to obtain linear stability, perturb the soliton solution as

u(x,t) = [f(x) +& <g(x)em +h (x)el*t)] et (5.20)

where € << 1 and €2 ~ 0, g and h are perturbation eigenfunctions and A is the

eigenvalue.
U = [8 <7Lgeh F AR M 4 gett +h*el*t> + iuf] eM

X ' 5.21)
Uxx = |:fxx + € (gxxeh + h;xe/l t)] et

uPu= [ |2+ e (1fPget + 7P e + e (f2hr|fPg) + M (g +1fPh7) ) [
(5.22)

(1uP) u=(1P) s +ee (fhin+haf+f1ig+ il /P + (Iul) g)e™

et ! (1" + FPoi L1+ PR+ (lul?) B ) e
(5.23)

Substituting Eq.(5.21), (5.22) and (5.23) into Eq.(5.17) gives
i( [8 (lge’l’ + A% h T 4 geM + h*el*t) + i,uf} ) et
+ |:fxx +& <gxxem + h;ckxel*t>} eiﬂt

1727+ e(IfPae + 11 Phe + M (2he+ | fPg) + e (£ + I f1%h") )|
+<rr+ir,->e"“f{ (I17) f+ee (fr+hef*+ fhig+aul P+ () )
et (fhg + Ler LI+ P+ (|u|2)xh*)}

+Vpq <f+ € (geh + h*e’l*’>>eim =0.
(5.24)
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—iut

Classifying the terms and multiplying by e
[_Hf+fxx+|f‘2f+(rr lTl)(’ﬂ ) +fof}

—}-gelt{—‘ug—l—ilg‘f‘gxx‘f’|f|2g+f2h+|f‘2g

. 2 * 2 2
—|—(‘L’,+lfl-)<fth+hxf + I8+ glf +<|f| );)“’@98} (5.25)
+gel*’{—uh* AR I | f PR+ P | fIPR

. * 2 % * g% 2% 2 * *
+(rr+zri)<ffxg + g LR+ S hx+<|f| )xh >+V<W‘h }:0-

First line of Eq.(5.25) is equal to 0, since f is a solution, it is seem from Eq.(5.19).
In order to make Eq.(5.25) equal to 0, the coefficients of the exponentials must be O.

Therefore, first coefficient of M

—ug+irg+gu+IfPe+ 2h+ g

(5.26)
+ (54 i) (ffh+ haf + ffig+ il /P + (/) 8) +Virrg =0
and second coefficient of e*"
— W AR B PR+ P | PR
(5.27)
(6 +i) (g + g+ L1+ P+ (1) B) +Vorrh® =0,
Eq.(5.26) and Eq.(5.27) can be written as
gt (~u 1P+ 1P+ (et iw) (£ + (17F) ) +Virr )
x (5.28)
+ <f2 +ffx(rr + iTi))h + (Tr + iTi)fzhx + (Tr + iTi)|f|2gx = —i?Lg,
* 2 2 2 *
Bt (=t P+ 7P+ (gt im) (15 + (IF7) ) + Vi )i 529
+ (2 S fl T i10)) 8+ (T +i) f2g5 + (5 i) | f Py = —id D,
Taking the conjugate of Eq.(5.29) as follows:
ot (s P17+ (o= im) (£ A (1£12) ) + Vi )
(5.30)

+ () + £ £ —im) ) g+ (T — i) (£2) gt (5 — iw)| 1P = iAh.
Multiplying Eq.(5.30) by -1
e = (A PP+ = i) (£ e+ (1)) + V55 )

- ((f2>* + 1 f (= iTi))é’_ (T —im) (f ) & — (T ’Tt)|f| hy = —iAh.
(5.31)
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Writing Eq.(5.28) and Eq.(5.31) in the matrix form

1L L, g | _ 8
|5 &1l e
where
L= L il P 2P i) (164 (10R) ) et Virs
o T ox R x T (5.33)
L, = (rrJrz‘r,-)fzi + 24 (5 + i) ffr

ox

The eigenvalues A can be numerically obtained. According to obtained eigenvalues,

linear stability can be investigated.
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6. SOLITONS OF THE NLS EQUATION WITH RAMAN EFFECT

6.1 NLS Equation with Raman Effect with a &7.7 -Symmetric Potential

First of all, we study the analytical solution of NLS equation with Raman effect and

P 7 symmetric and non-#.7 symmetric optical lattices.

6.1.1 Analytical Solutions

In this section, we concentrate on the analytical self-localized soliton solutions of the
NLS equation for &2.7 -Symmetric optical lattices. NLS equation with Raman effect

can be given as follows:

00,2+ s (2) + (.2 P 2) (5 imue ) (Jue2) )
V) + W @u(r) =0

It is clear to see that if u(x,z) = 0 in Eq.(6.1), it will be trivial solution. In order to

obtain non-zero solutions, it will be set u(x,z) # 0. Dividing Eq.(6.1) by u(x,z) as

follows:

M R (ot )l V() + ()] =0 62)

To get solution, the following form of solution will be used:

u(x,z) = f(x)ektet] (6.3)

where f(x) and g(x) are realed valued and non-zero functions. Substituting this along
with
w, = ip feeH8) = iy
o= (1" 2018 +if'g" ()7 ) elh+e)

u? = fellHats) fomiluzte) — 42 (6.4)

(1uP) =2171171;
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into Eq.(6.1) results

—ur Loy |f|2+2rr|f||f|x+v] +z[

2f'¢
f

+g"+zfc,-|f||f|x+w] —o.
(6.5)

Seperating real and imaginary parts of the equation (6.5), we get the following coupled
system of equations for f and g. In order to get the soliton solutions, following solutions

for f and g will be used

f(x) = fosech”(x) where fo€R/{0} and peN ,
(6.6)
g'(x) = gosech?(x) where go€R/{0} and g€ N .

Substituting
f' = fopsech”~ ! (x)(—sech(x)tanh(x)) = f(— ptanh(x))
f" = f'(—ptanh(x)) +f(—psech2(x)) = f[p2 - (p2 +p)sech2(x)} (6.7)
g’ = gogsechd™ ! (x)(—sech(x)tanh(x)) = —gogsech? (x)tanh(x)
into Eq.(6.5) results
—u+p’— ( PP+ p) sech®(x) — go>sech®(x) + fo*sech®? (x)
—2p7, fo>sech® (x)tanh(x) 4+ V (x) (6.8)
+i [—(Zp + q)gosech?(x)tanh(x) — 2p7Tifolsech®” (x)tanh(x) + W(x)} =0
Let us divide Eq.(6.8) into real and imaginary parts as follow:
Real Part of the Analytic Solution
We can rewrite the real part of Eq.(6.8) as,
—u+p*— ( PP+ p) sech®(x) — go>sech®(x) + fo’sech®? (x)

(6.9
—2p7, folsech®” (x)tanh(x) 4V (x) = 0.

V(x) should be given in a form as,

V(x) = Vo + Visech® (x) + Vasech®®(x) + Vssech® (x) 4 Vysech®” (x)tanh(x)  (6.10)

where

Vo=u—p> , Vi=p*+p, Va=go> , Va=—fo> , Va=2pt.fo? . (6.11)
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In order to make the real part of the potential simple, let us set it = p? to get rid of V.
V(x) needs to be an even function for &2.7 -symmetry as
V(—x) = Visech®(—x) + Vasech®!(—x) 4 Vssech® (—x) + Vysech®” (—x)tanh(—x)
= Visech® (x) + Vasech®® (x) + Vssech® (x) — Vysech®? (x)tanh(x) # V (x) .
(6.12)

To make V(x) an even function, it has to be taken as V4 = 0. Since, V4 = 2p7, f02 =0,
as given fy # 0 and p # 0. Hence, in order to make the potential &.7 -symmetric, it

has to be taken as 7, = 0. Now,

V(—x) = Visech*(—x) + Vasech® (—x) + Vasech®” (—x) 6.1%
= Visech? (x) + Vasech?¥(x) 4 Vasech®” (x) = V (x) . .

Imaginary Part of the Analytic Solution

Now, we can rewrite the imaginary part of Eq.(6.8) as,

—(2p + q)gosechd (x)tanh(x) — 2p; fo*sech®” (x)tanh(x) + W (x) = 0. (6.14)

The imaginary part of the &2.7 -symmetric potential is obtained in a form as,

W (x) = Wysech? (x)tanh(x) + Wy sech®” (x)tanh(x) = 0 (6.15)

where

Wo= (2p+q)go , Wi =2ptifo’ . (6.16)

W (x) needs to be an odd function for &.7 -symmetry as

W (—x) = Wosech? (—x)tanh(—x) + Wsech®” (—x)tanh(—x)
(6.17)
— —Wosech? (x)tanh(x) — Wy sech?” (x)tanh(x) = —W (x) .

As aresult, the general soliton solution of Eq.(6.1) with
V(x)=( pP+ p) sech®(x) + go>sech®(x) — fo*sech®” (x) + 2p7, fo*sech®” (x)tanh(x)

W (x) = (2p + q)gosech? (x)tanh(x) + 2pT; fo*sech®” (x)tanh(x)
(6.18)

is given as

u(x, Z) _ fosechp(x)ei[p2z+go fsech‘l(x)dx] . (619)
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Now, we can make V (x) simple by equating sech(x) powers. The three powers 2p,2q

and 2 can be equated in only on way:
D{2=2p=2¢} = p=q=1:
V(x)=(2+ 0> — foz)sech2 (x)
W (x) = 3gosech(x)tanh(x) + 271; fo>sech? (x)tanh(x) (6.20)

u(x, Z) = fosech(x)ei(z—i-goarclan(sinh(x))) '

We will take the &2.7 -symmetric potential in the case.

V (x) = Vosech®(x)

(6.21)
W (x) = Wosech(x)tanh(x) + W sech®(x)tanh(x)
where
Vo=2+g0"— fo
Wo = 320 (6.22)

Wi =27fo° .

This results will give the potential Eq.(3.10) along with the exact solution to Eq.(6.1).
It follows from Eq.(6.21) that

9 (6.23)

and the exact solution can be given as follow:

2 oW
u(x,z) = |2+ WTO _ Visech(x)e! (- Fartantsinh(x))) (6.24)

6.1.2 Numerical Solutions

Numerical solutions to Eq.(6.1) are investigated with the four different cases of
potentials by means of Pseudo-Spectral Renormalization Method. The propagation
constant can be taken as g = 1 by the choice of the potential. To determine the
potentials, we get the different values of potential depths Vj,V;,Wy and Wj. For the

numerical results, we set different values of 7, and 7;.
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6.1.2.1 Numerical Solutions of the Optical Soliton without Potential

First of all, NLS equation is considered without any potential. The real and imaginary

part of the optical solitons and error analysis can be seen in Fig. 6.1 for 7, = 0.1 and

7,=0.1.

1.4 05 10'
1.2 0a
. 0
; 10
S o8 So3 =
= > e 1o
Q 06 € 02 w
0.4 -2
0.1 10
0.2
-3
0 0 10
-20 0 20 -20 0 20 0 100 200 300
X X Number of Iterations

Figure 6.1 : (a) Real part, (b) Imaginary part of optical solitons without potential for
T, = 0.1 and 7; = 0.1, (c) Error of convergency.

It is seen from Fig. 6.1. the convergency cannot be achieved. When 7, value will
be decreased as 7, = 0.001, it is easy to notice that by comparing Fig. 6.1 and Fig.

6.2, the error started to decrease. Therefore, it is found out that while 7, value is

(a) x10°  (b) (©)

15 5 10°
4
10°
1 =
= > =
5 g £ 10
9 € 2 L
05 B AK
0 0 107
-20 0 20 -20 0 20 0 100 200 300
X X Number of Iterations

Figure 6.2 : (a) Real part, (b) Imaginary part of optical solitons without potential
7, = 0.001 and 7; = 0.1, (c¢) Error of convergency.

approaching to 0 (7, = 0.0), numerical solution of optical solitons without potential

can be obtained in Fig. 6.3.
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Figure 6.3 : (a) Real part,(b) Imaginary part of optical solitons without potential
T, = 0.0 and 7; = 0.1, (c) Error of convergency.

When 7, = 0.0 and we decrease the value of 7; as 0.001, it is observed that

optical solitons without potential is convergent. It is shown in Fig. 6.4.

(a) x10  (0) . (©)

1.4 10
6
1.2 .
0
1 10
—_ = 2
S o08 = 5
= 2 0 2 10°
© 06 = e
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0.2 ]
0 107"°
-20 0 20 -20 0 20 0 20 40
X X Number of Iterations

Figure 6.4 : (a) Real part,(b) Imaginary part of optical solitons without potential
T, = 0.0 and 7; = 0.001, (c) Error of convergency.

If we assume both the value of 7, and 7; is 0, then we get the optical soliton and an
error of order 10719 in 30 iteration, approximately in Fig. 6.5. Moreover, the order of

the pseudospectral method is linear.

(a) (b)
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Figure 6.5 : (a) Real part,(b) Imaginary part of optical solitons without potential
T, = 0.0 and 7; = 0.0, (c) Error of convergency.
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If we set 7, = 0.1 and 7; = 0.0, we found that soliton solutions cannot be found since,

convergency cannot be achieved in Fig. 6.6.

(a) x10® (b) (c)
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Figure 6.6 : (a) Real part,(b) Imaginary part of optical solitons without potential
7, =0.1 and 7; = 0.0, (c) Error of convergency.

If we change 7, = 0.2, it is shown in Fig. 6.7. that solitons are not still convergent.

(a) <10 (b) (c)
1.5 4
3
1 2
/5 =} —
= = (@] 0
= [ I = 10
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0.5 T 0
/ .
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20 0 20 -20 0 20 0 100 200 300
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Figure 6.7 : (a) Real part,(b) Imaginary part of optical solitons without potential
T, = 0.2 and 7; = 0.0, (c) Error of convergency.

In conclusion, NLS equation with Raman effect without potential the error of order
changes, according to different 7 values. When 7, value is closing to 0, and by choosing
different values of 7;, soliton solutions are obtained. But when we get 7, = 0 and

nonzero values of 7,, we could not find any solitons.

6.1.2.2 Numerical Solutions of the Optical Soliton with 7.7 -Periodic-Symmetric

Potential

Secondly, NLS equation is considered with &2.7 -periodic-symmetric potential as

follows:

V (x) = Vocos*(x) + iWpsin(2x) . (6.25)
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For this potential, there is no analytical solution for NLS equation given in Eq.(6.1).
The propagation constant is fixed to u = 1, it is investigated different potentials by
setting 7., 7;, Vo and Wy different values. The real and imaginary part of the optical
solitons and error analysis can be seen for 7, = 0.1, 7; = 0.1, Vj = 1 and Wy = 0.0 in

Fig. 6.8.
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Figure 6.8 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7; = 0.1, Vy = 1 and
Wo = 0.0, (c) Error of convergency.

When W, value will be increased as Wy = 0.3, it is easy to see that by comparing Fig.
6.8 and Fig. 6.9, soliton shapes are different from each other. In Fig. 6.9, solution type

is dark solitons and soliton solution is not convergent.

(a) (b) (c)
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X X Number of lterations

Figure 6.9 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7, = 0.1, Vo = 1 and
Wo = 0.3, (c) Error of convergency.

Moreover, as soon as T, value is approaching to 0, independently from the other values
by comparing Fig. 6.9 and Fig 6.10, 7, = 0.0, numerical solution of optical solitons

with & 7 -periodic-symmetric potential is converging. It is shown in Fig. 6.10.
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Figure 6.10 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.0, 7; = 0.1, Vo = 1 and
Wy = 0.3, (c) Error of convergency.
If we only change the depth of the real part of the external potential Vy = 2 and
the other values of 7,, 7; and Wy keep the same, we could not find any soliton solution

(see in Fig. 6.11.).
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Figure 6.11 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7; = 0.1, Vo = 2, Wy = 0.0
and u = 1, (¢) Error of convergency.

When we increase the propagation constant, tt as 2, the convergency can be achieved

in 30 iterations in Fig 6.12.
If we take Vy = 3 and u = 2, we could not find soliton form of solutions in Fig. 6.13.

When we choose the values of 1 = 3 and V) = 3, it can be seen in Fig. 6.14, soliton

form of the solution exists.
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Figure 6.12 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7; = 0.1, Vy = 2, Wy = 0.0
and u = 2, (c) Error of convergency.
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Figure 6.13 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7; = 0.1, Vo = 3, Wy = 0.0
and u = 2, (c) Error of convergency.
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Figure 6.14 : (a) Real part, (b) Imaginary part of optical solitons with
P T -periodic-symmetric potential 7, = 0.1, 7, = 0.1, Vj =3, Wy = 0.0
and u = 3, (c) Error of convergency.
As a result of the numerical observations, we can conclude that the existence of

Raman-induced solitons depend on the propagation constant, the depth of the real part

of the potential and 7 parameters. In order to find the Raman-induced solitons, the
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propagation constant (i) should be equal to or greater than the depth of the real part

of the potential (Vp).

6.1.2.3 Numerical Solutions of the Optical Soliton with .7 -Symmetric Potential

In this part of the thesis, we numerically demonstrate the soliton solutions of NLS
equation with Raman effect and &?.7 -symmetric potential for different values of
(the coefficients of Raman effect) and the depth of the real and the imaginary part of

the potential.

P 7 symmetry condition means that the real part of potential should be even function
of the position and the imaginary part of the potential should be odd. It is necesaary to
take 7, = 0 in order to satisfy &7 symmetry condition. Let us consider the following

& T -symmetric potential:

V (x) = Vosech? (x)
(6.26)
W (x) = Wosech(x)tanh(x) + Wysech? (x)tanh(x)
First, we show numerical soliton solutions of NLS equaiton with Raman effect for

7, = 0 in Fig. 6.15.
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Figure 6.15 : (a) Real part, (b) Imaginary part of optical solitons with
& T -symmetric potential 7, = 0.0, 7; = 0.1, V; = 0.1 and Wy = 0.1, (c)
Error of convergency

We show the analytical soliton solution and soliton solution obtained numerically in
Fig. 6.16. As can be seen from this figure the pseudospectral renormalization method
converges to the analytical solution for the parameters 7, = 0.0, 7; = 0.1, V5 = 0.1 and

Wo =0.1.
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Figure 6.16 : (a) Real part, (b) Imaginary part of optical solitons with
& T -symmetric potential 7, = 0.0, 7; = 0.1, Vo = 0.1 and Wy = 0.1, u,
represents numerical solution and u, represents analytical solution

6.1.2.4 Numerical Solutions of the Optical Soliton with Non-2.7 -Symmetric

Potential

So far, we have assumed that the external potential used in this thesis, are the periodic
and &7 -symmetric potential. Now we will consider the Non-&.7-symmetric
potential which requires 7, # 0 (the real part of the coefficient of the Raman effect).

Let us consider the following Non- .7 -symmetric potential:

Vopg(x)=V(x)+iW(x) = [Vosech2 (x) + Visech® (x)ranh(x)]+
(6.27)
i[Wosech(x)tanh(x) + W, sech® (x)tanh(x)]
It is concluded that even if potential is not 2.7 -symmetric, soliton solution can be

found and it can be seen in Fig. 6.17. An error of order is 10719 in 30 iterations,

approximately.
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Figure 6.17 : (a) Real part, (b) Imaginary part of optical solitons with
Non- &£ .7 -symmetric potential 7, = 0.1, 7; = 0.1, Vo = 1 and Wy = 0.3,
(c) Error of convergency.
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It is shown that even if potential is Non-Z7.7-symmetric, numerical solution is

converging to analytical solution in Fig. 6.18.
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Figure 6.18 : (a) Real part, (b) Imaginary part of optical solitons with
Non- & .7 -symmetric potential 7, = 0.1, 7; = 0.1, Vy = 1 and Wy = 0.3,
u, represents numerical solution and u, represents analytical solution

6.1.3 Nonlinear Stability

In this section, we will numerically show how the Raman scattering effect nonlinear
stability properties. In order to study nonlinear stability, obtained Raman-induced
solitons are computed over a long-distance, for this purpose, pseudospectral method

and Runge-Kutte method are used to advance in z.

First, we took Raman-induced soliton without external potential (Vpr(x)) obtained by
pseudo-spectral renormalization method and evolved it for z = 10. The numerical
results are shown in Fig 6.19. This figure shows that Raman-induced soliton is

nonlinearly stable as it preserves its maximum amplitude during the evolution.

Nonlinear stability of Raman-induced solitons with &?.7 -periodic potential are given
in Fig. 6.20 and Fig. 6.21. It can be seen from these figures all solitons obtained
numerically are nonlinearly stable for the parameters (7, =0, 7; = 0.1, Vo = 1 and

Wo =0.3)and (7, =0, 7; = 0.1, Vy = 1 and Wy = 0.3), respectively.

Nonlinear stable Raman-induced soliton is demonstrated in Fig. 6.22. It is proved that

if the potential is 2.7 -symmetric potential, the soliton is stable.

In Fig. 6.23, we take 7, # 0 and Non-Z.7 -symmetric potential. We observed from the
figure that the maximum amplitude of soliton remains the same during the evolution.

It means that this soliton is nonlinearly stable.
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As a conclusion, we proved that &7 -symmetry is not necessary condition for soliton

solutions to become stable.
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Figure 6.19 : (a) Nonlinear evolution of the soliton without potential for 7, = 0 and
7; = 0.1, (b) Maximum magnitude as a function of the distance z
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Figure 6.20 : (a) Nonlinear evolution of the soliton with &2.7 -periodic potential for
17, =0.1, 7, =0.1, Vy = 1 and Wy = 0, (b) Maximum magnitude as a
function of the distance z
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Figure 6.21 : (a) Nonlinear evolution of the soliton with &2.7 -periodic potential for
1. =0,7,=0.1, Vo = 1 and Wy = 0.3, (b) Maximum magnitude as a
function of the distance z
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Figure 6.22 : (a) Nonlinear evolution of the soliton with &?.7 -symmetric potential
for 7, =0, 7, = 0.1, Vo = 0.1 and Wy = 0.1, (b) Maximum magnitude as
a function of the distance z
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Figure 6.23 : (a) Nonlinear evolution of the soliton with Non-£2.7 -symmetric
potential for 7, = 0.1, 7; = 0.1, Vj = 1 and Wy = 0.3, (b) Maximum
magnitude as a function of the distance z
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7. CONCLUSION

In this thesis, we have investigated the existence of the Raman-induced optical solitons
and their nonlinear stability properties governed by NLS equation with the Raman
effect and periodic, &?.7-symmetric and Non-Z.7 -symmetric potentials. Firsty,
the Raman-induced solitons are found numerically by means of the pseudospectral
method for varies T values and the real and the imaginary potentials. The obtained
numerical results are compared the analytical solutions for the case &7.7 -symmetric
and Non- % .7 -symmetric potentials. It is shown that numerical and analytic results

are in good agreement.

As a result of the numerical observation, we concluded that

(i) In order the get the optical solitons, the propagation constant should be equal or
greater than the depth of the real external potential.

(1) It is shown that NLS equation with Raman effect and without potential,
convergency is investigated according to different 7 values. It is obtained that for the
smaller values of real part of 7, numerical solutions converge to analytical solutions
for NLS equation with Raman effect without potential. When the real part of 7 is
approaching to zero, and letting the imaginary part of 7 as constant value, soliton
solutions have obtained and the convergency has been achieved.

(iii)) The solution of NLS equation with Raman effect and periodic potential are
obtained for the different Vy, W and 7 values. It is found that Wy or real part of 7
value must be zero in order to get the convergency. If both of Wy or real part of 7 value
are not equal to zero, bright soliton solutions have not been found.

(iv) It is necessary but not sufficient condition for the &2.7 -symmetry requires that the
real and imaginary parts of the external potential are even and odd functions of the
position respectively. In this thesis, in order to get the &.7 -symmetric potential, the
real part of the coefficient 7, must be zero.

(v) The Raman-induced solitons have been also obtained for the Non-£2.7 -symmetric
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potential.
(vi) We shown that obtained Raman-induced solitons are nonlinearly stable for all the

external potentials including periodic, .7, and Non- .7 -symetric potentials.
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