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A DYNAMICAL SYSTEMS APPROACH TO THE INTERPLAY
BETWEEN TOBACCO SMOKERS, ELECTRONIC-CIGARETTE SMOKERS
AND SMOKING QUITTERS

SUMMARY

In this thesis, the effect of e-cigarettes on smoking cessation is studied using the
tools of dynamical systems theory. The purpose here is to examine this efficacy by
representing and analysing a non-linear ODE system modelling potential smokers,
tobacco smokers, e-cigarette smokers and quitters. Fundamental theories required
for the interpretation of the behaviour of dynamical systems are given and some
epidemiological models are analyzed.

The natural behaviour of some linear physical systems is quite predictable. Contrary
to that, many natural phenomena are unpredictable. So, we employ non-linear systems
which are more complex and are not exactly suitable for the solution to the problem
at hand as opposed to linear systems. Non-linear systems are ubiquitous throughout
the natural world. As presented in this work, biological systems can be represented by
non-linear systems. For instance, several disease models are generally investigated by
using non-linear mathematical models.

From a wider perspective, mathematical modelling is significant in describing the
smoking cessation models. These models have been examined using ODE systems
in view of the fact that we can analyse the spread and control of smoking with these
systems.

It is well known that smoking is a common social phenomenon in today’s world. Since
smoking is an addiction, some individuals see the use of electronic cigarette as a way
of quitting tobacco smoking. We also know that the prevalence of smoking extremely
affects the social behaviour of people in a population. Therefore, peer pressure is quite
substantial in starting or quitting the act of smoking.

This thesis consists of three chapters which are shaped by the above information.

In the first chapter, necessary elementary definitions and examples about stability
analysis of dynamical systems are given. The classification of the equilibrium points
is listed for two- and three-dimensional systems.

Chapter 2 covers the basic epidemiological models. Mathematical analysis of these
epidemiological models is done all in detail. Importance of the basic reproduction
number is examined with several infectious disease models. These models are
diversified by adding different compartments or parameters. The analysis of these
epidemic models is mostly done by non-dimensionalisation.

In Chapter 3, the proposed model to analyze the effect of electronic cigarettes on
smoking cessation is given and described in detail. The standard term of "peer
pressure” is used in this model. As part of the analysis, some theoretical results are
obtained by the Next Generation Matrix Method and the Lyapunov Function Method.
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Furthermore, some numerical simulations are plotted in the Mathematica using data
obtained from the literature. Using this data, we verified our theoretical and numerical
results by only slightly changing the parameters. We changed these parameters in a
way to ensure that the equilibrium points are biologically meaningful.

In the conclusions section, the significance of the basic reproduction number is
theoretically confirmed in numerical results. Theoretically observed bifurcation is
confirmed in numerical illustrations. Thanks to the graphics used in our work, we
noticed that the effect of using electronic cigarette on smoking cessation takes a long
time to emerge.

As a conclusion of our work, we are under the impression that using e-cigarettes is
quite effective to decrease the number of tobacco smokers, but our analysis indicates
that it does not have a remarkable effect on the number of quitters. We conclude that
e-cigarette is not a tool to quit tobacco smoking. We therefore recommend that, the
society should be made conscious about the correct methods of quitting smoking and
create awareness about the right methods of smoking cessation.

Keywords: Linear stability analysis, Lyapunov function, Dynamical systems,
Epidemiological models.
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SIGARA ICENLER, ELEKTRONIK SIGARA ICENLER
VE SIGARAYI BIRAKANLAR ARASINDAKI ETKILESIME YONELIK
BIR DINAMIK SISTEMLER YAKLASIMI

OZET

Bu tezde, elektronik sigara kullaniminin sigara birakma tizerindeki etkisi matematiksel
modelleme yontemleriyle olusturulan dinamik bir sistem iizerinden incelenmistir.
Buradaki asil amag; sigara igme potansiyeline sahip bireyler, sigara i¢enler, elektronik
sigara icenler ve sigaray1 birakan bireyler arasinda yer alan dinamigi lineer olmayan bir
adi diferansiyel denklem modeli ile temsil ederek bu modelin analizini yapmaktir. Bu
sebeple, dinamik sistemlerin davraniglarim1 yorumlamak i¢in gerekli bilgiler verilmig
ve bu bilgiler 1s181nda bazi salgin hastalik modellerinin dinamik yapilar1 incelenmistir.

Hepimizin bildigi gibi, lineer denklemlerle modellenen fiziksel sistemlerin davraniglar
oldukca tahmin edilebilirken, bircok doga olay1 lineer olmayan bir modellemeyi
gerekli kilar. Lineer olmayan bu sistemler, lineer sistemlere gore ¢ok daha karmagiktir
ve bu denklemleri kesin ¢oziimlerini elde etmek ¢ogu zaman miimkiin degildir. Buna
ragmen, bazi metotlar yardimiyla lineer olmayan dinamik sistemlerin davraniglar
hakkinda tahminler yapilabilmektedir.

Lineer olmayan sistemler, yeryiiziinde gerceklesen dogal olaylarin hemen hemen
hepsinde yer alir. Bu calismada da yer verildigi iizere, biyolojik sistemler lineer
olmayan dinamik sistemler araciligiyla temsil edilebilirler. Bir¢cok bulasici hastalik
matematiksel modelleme ile temsil edilmektedir. Ornegin, veba ve grip bu yolla
modellendirilmis salgin hastaliklardandir.

Daha genis bir perspektiften bakacak olursak, matematiksel modelleme yontemi
sadece salgin hastaliklarin ve sigara birakma modellerinin temsilinde degil farkli di-
namiklerin modellenmesinde de kullanilmaktadir. Bu modellemelere ek olarak; alkol,
eroin, uyusturucu madde kullanimlari, iklim-bitki ortiisii ve av-avci dinamikleri de
benzer metotlarla olusturulmaktadir. Ayrica, olusturulan bu adi diferansiyel denklem
sistemleriyle bahsedilen salgin modellerinin kontroliiniin analizi yapilabilmektedir.

Giinlimiiz diinyasinda sigara kullaniminin yaygin bir sosyal olay oldugu herkes
tarafindan iyi bilinmektedir. Sigara i¢cmek, viicuttaki hemen hemen her organa
zarar verir ve cesitli hastaliklara sebep olur. Sigara icmek bir bagimliliktir ve bu
bagimliliktan kurtulabilmek igin cesitli tedavi yontemleri vardir. Sigara biraktirma
programlari, nikotin ¢ikletleri seklindeki tedavi yontemleri var oldugu gibi toplumdaki
baz1 bireyler elektronik sigara kullanmay1 da sigarayr birakmak icin bir yol olarak
gormektedir. Tiitiin sigarasi nikotin, arsenik ve karbonmonoksit de dahil olmak iizere
7000’den fazla bilesene sahip iken elektronik sigara yalnizca nikotin icermektedir.
Diger bir ifadeyle elektronik sigara, tiitiin sigarasina oranla daha az zararhidir. Bu
sebepler dogrultusunda, bu calismadaki modelde elektronik sigara kullaniminin sigara
birakma tizerindeki etkisi analiz edilmistir.

Akran baskisi, bireylerin sigara icme deneyimini erken yasta gerceklestirmelerinde
etkili oldugu gibi ilerleyen yaslarda sigara icmeye devam etme istekleri iizerinde de
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etkili olan 6nemli bir faktor olarak kabul edilmektedir. Diger bir ifadeyle, sigara icme
yaygihiginin artisinda toplumdaki bireylerin sosyal davraniglarinin etkisinin biiyiik
oldugu oldukc¢a agiktir. Bu sebepler dogrultusunda, bu calismada Onerilen model
"akran baskis1" g6z oniinde bulundurularak olusturulmustur.

Yukarida bahsedildigi gibi lineer olmayan sistemlerdeki dinamik gecislerin incelendigi
bu tez calismasi ii¢ boliimden olugsmaktadir.

Birinci boliimde, dinamik sistemlerin kararlilik analizini yapabilmek i¢in gerekli
olan temel tanimlar verilmis ve birka¢ diferansiyel denklem sisteminin kararlilik
analizi yapilmistir. Iki boyutlu ve iic boyutlu sistemlere ait olan denge noktalarinin
siniflandirilmast yapilmisti.  Ayrica Lyapunov Fonksiyon Metodu hakkinda bilgi
verilmis ve uygun Lyapunov fonksiyonunun secilmesiyle basit bir diferansiyel
denklem sisteminin kararlilik analizi yapilmigtir.

Ikinci boliim, temel salgin hastalik modellerini kapsamaktadir. Bu boliimde SI, SIS,
SIR, SIRS ve SEIR isimleri ile nitelendirilen temel hastalik modelleri verilmis ve bu
modellerin detayli analizleri yapilmistir. Bu modellemelere ek olarak, sadece dogal
yollarla gerceklesen dliimlerin yer aldig1 ve hem dogal hem de hastaliga bagh yollarla
gerceklesen Oliimlerin yer aldigi temel SIR modelleri iizerinde c¢alisilmis ve yine
bu modellerin kararli olma durumlar1 analiz edilmistir. Salgin hastaliklarin kontrol
metotlarindan biri olan agilama yontemi goz Oniinde bulundurularak olusturulan
bir SIR modelinin detaylar1 verilmistir Bu modelleme ile salgin hastaliklarin
yayilimini kontrol etmek i¢in etkili oldugu diisiiniilen baz1 stratejilerden bahsedilmistir.
Bahsedilen hastalik modellerinin tiimiintin incelenmesiyle birlikte temel iireme
oraninin Oonemi ortaya konmustur. Dinamik gecislerin incelendigi bu hastalik
modellerinin kararlilik analizi yapilirken boyutsuzlastirma yontemi kullanilmustir.

Uciincii boliimde, elektronik sigaranin sigarayr birakma iizerindeki etkisini analiz
etmek icin Onerilen model tiim detaylariyla birlikte verilmistir.  Bu modelde,
sigara icenlerin oldugu gruptan elektronik sigara icenlerin oldugu gruba gecis
“akran baskis1” terimiyle modellenmigtir. Yapilan kararlilik analizinde Lyapunov
Fonksiyon Yontemi’'nden yararlamilmis ve temel iireme oraninin saptanmasinda
bir metot olarak kullanilan Yeni Nesil Matris Yontemi ile sistemin temel lireme
orant ayrica gosterilmistir.  Ayrica; bazi niimerik simiilasyonlar, literatiirde yer
alan bazi1 veriler kullanilarak Mathematica’da ¢izdirilmistir. Bu veriler iizerinde
oldukca kiiciik degisiklikler yapilmis ve bu verilerle olusturulan grafiklerle de teorik
sonuglarin dogrulugu gosterilmistir. Sistemdeki denge noktalarinin biyolojik olarak
anlamli olmasin saglamak amaciyla bu veriler iizerinde oldukca kiigiik degisiklikler
yapilmistir.

Sonuglarin verildigi kisimda ise temel iireme oraninin éneminin hem teorik hem de
niimerik olarak gozlemlendiginden bahsedilmistir. Yapilan niimerik simiilasyonlarin,
sistemde catallanma olduguna dair ortaya koydugumuz teorik sonuglart dogruladig:
goriilmiistir. Calismalarimizda elde edilen grafikler sayesinde, elektronik sigara
kullaniminin sigaray1 birakma tizerinde kayda deger bir etki birakmasi i¢in cok uzun
bir zaman ge¢mesi gerektigi gézlemlenmistir.

Calismalarimizin bir sonucu olarak, elektronik sigara kullaniminin tiitiin sigara
kullantmin1 bir dereceye kadar azalttigini ancak sigarayir birakanlarin sayisini her
zaman artirmadigini gozlemledik. Bu nedenle; elektronik sigara kullaniminin,
tiittin sigara kullanimin1 kontrol etmek icin bir ara¢ olarak goriilmemesi gerektigi
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sonucuna vardik. Dolayisiyla; elektronik sigara kullaniminin bir tedavi yontemi olarak
goriilmesinin Oniine gegebilmek icin, toplumun sigaray1 birakma metotlar1 hakkinda
dogru sekilde bilin¢lendirilmesi gerektigini diisiiniiyor ve bununla ilgili farkindalik
olusturulacak calismalarda bulunulmasim tavsiye ediyoruz.

Anahtar Kelimeler: Lineer kararlilik analizi, Lyapunov fonksiyonu, Dinamik
sistemler, Salgin hastalik modelleri.
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1. INTRODUCTION

In this chapter, we give the necessary elementary definitions and examples about
stability analysis of dynamical systems. Theories on dynamical systems have been

well established in many fundamental works. For more details, see [3,4,18-20,24-29].

1.1 Basic Definitions

Let f : R" — R" and consider the ODE

dx

— = 1.1
with the initial condition

x(0) = xo (1.2)

In (1.1), the time derivative is also represented as X = %. Besides, a differential

equation of the form (1.1) is called autonomous since the independent variable ¢ can

not be explicitly found.

From Basic Theory of ODE’s, we know that if f is Lipschitz continuous in a
neighbourhood of xg, then (1.1) and (1.2) has a unique solution

x:I—-R" x(0)=xp
where I C R is the maximal interval of existence. Here we will assume that [0,c0) C 1.

This ensures that we can take the limit of the solution as t goes to infinity.

Let x(z,x0) be the unique solution of (1.1) and (1.2) and x* be an equilibrium solution

of (1.1) that is
f(x) =0.
This means x* does not change in time. Also note that for an equilibrium solution

x(t,x*) =x7, vVt > 0.

An equilibrium solution is also known as a fixed point, critical point, singular point,
or steady-state solution. Moreover, it is common to use the term "fixed point" when

referring to a map and "equilibrium" when referring to a flow.

1



Example 1.1.1 As an example, let us find the fixed points of the differential equation

i=x*—4.

Solution 1.1.1 The differential equation, which is given above, can be written as

dx
i (x—=2)(x+2).

Since the definition of a fixed point is % =0, we get

(x—=2)(x+2)=0
Thus, the differential equation has two fixed points which are x{ = —2 and x; = 2.
Definition 1.1.1 The derivative of a map f = (fi,...,fm) : R* = R™ at an x is written

as Df(x) and organized into an m X n matrix called the partial derivative matrix or

Jacobian matrix of f at x.

I 9h 9h
ox;  dxp Tt dxy
Df(x) _ a?cl a.xz . 0x,
fm  Ifm 9fm
ox;  0xp T dxy

Definition 1.1.2 Let A be an n X n square matrix. A is called an eigenvalue of A =

(aij) if there exists a nonzero column vector x providing
Ax = Ax
or, equivalently,
(A—ADx=0, (1.3)

where A is scalar and I is n X n identity matrix.

The nonzero vector x is called an eigenvector of A corresponding to the eigenvalue A.
By definition, for an eigenvector x, Ax must be a scalar multiple of x. The equation
given by (1.3), has a solution if and only if the characteristic polynomial of A is a

singular matrix, that is, equivalently

ajg —A ann aln
anq azz—;\, a)

p(A) =det(A—Al)=| . . , " l=o0.
any an ceo Qup— A



In other words, the roots of the characteristic polynomial are exactly the eigenvalues

of A.

1.2 Stability Analysis of the Equilibrium Points

We are interested in interpreting the long time behaviour of fixed points of the
dynamical systems. Particularly, the real objective is trying to understand whether
a given equilibrium solution is stable or not. We make the following definitions, see

also [21].

Definition 1.2.1 The equilibrium solution x* of (1.1) is called neutrally stable if for

all € > 0, there exists a 6 > 0 such that if

lxo —x*|| < 6 = ||x(¢t,x0) —x*|| <€, Vt>0.

Definition 1.2.2 The equilibrium solution x* of (1.1) is called unstable if the solution

is not neutrally stable.

Definition 1.2.3 The equilibrium solution x* of (1.1) is locally asymptotically stable
if
1. It is neutrally stable, and
2. There exists a 8(ty) > 0 such that
lxo—x"|| < 6 = tl;me(t) —x*||=0.
As in [22] and [23], the above definitions of stability can be paraphrased as follows.

* An equilibrium point x* is neutrally stable if any solution with an initial condition

close enough to x* will remain close to x* for all future times.

* An equilibrium point x* is called locally asymptotically stable if, in addition to
neutral stability, any solution starting from any nearby initial condition actually

approaches to x* as ¢ goes to infinity.

* An equilibrium point is said to be unstable if it is not neutrally stable.

We note here that the above definitions are local in character. That is if the stability is

determined with respect to small perturbations.



1.2.1 Linear stability analysis

The first step in the determination of stability of an equilibrium point x = x* is by a

linear analysis.

Let f: R” — R" and consider

i=f(x) (1.4)

which is a nonlinear system.
We also consider that A = (a;;) is an n x n matrix which is the Jacobian matrix of f at

the equilibrium point x*. That is

A=Df(x"). (1.5)

Now we consider the linearized system
y=Ay, yeR" (1.6)

of (1.4) around x = x*.

The eigenvalue problem of A is given by
Ay = Ay.
The eigenvalues of A are roots of the characteristic polynomial p(A).

p(L) = det(A—AI) =0

Theorem 1.2.1 Let Df(x*) be the Jacobian matrix at the equilibrium solution x* of

(1.4):

* An equilibrium point x = x* is locally asymptotically stable if

Re(A) <0, forall eigenvalues A of Df(x*)

* An equilibrium point x = x* is unstable, if Re(A) > 0 for at least one eigenvalue.

We particularly demonstrate the case where A is a 2 X 2 matrix.

Let



It can be easily seen that

tr(A)=a+b and det(A)=ad—bc

in the definitions of the trace and determinant A. The eigenvalues of A are roots of the

characteristic polynomial p(A). Let us construct the characteristic polynomial:

p(A) =det(A—Al) =

a—A b

c d—A
=(a—A)(d—A)—bc
=A% —(a+d)A+ad—bc

=A% —tr(A)A +det(A).

If we use the quadratic formula, then the eigenvalues of A matrix can be written as

tr(A) F /tr(A)% — 4det(A)

Moo= >

The classification of the equilibrium points are listed below and shown in Figure (1.1).

The equilibrium point is a stable node if A; and A, are real and A, < A; < 0.
The equilibrium point is an unstable node if A; and A, are real and A, > A; > 0.
The equilibrium point is a saddle if A; and A, are real and A; < 0 < A,.

The equilibrium point is a center if A; = A, = iu with u € R\ {0}.

The equilibrium point is a stable focus if A; and A, are complex-conjugate and

Re(A1,2) <O.

The equilibrium point is a unstable focus if A; and A, are complex-conjugate and

Re(A1,2) > 0.

The stability analysis of the equilibrium points is given in Table (1.1).



2 =46

A Ay A Ay

(A) Stable Node (D) Unstable Node

> T=Tr(A)

M| A2

(E) Saddle
Figure 1.1 : Classification of phase portraits in the (7, d)-plane.

Example 1.2.1 As an example, let us classify the equilibrium points of the following

non-linear system
2

FiR2SRY f(x) = (xl_x%_l).

2)62

Solution 1.2.1 The system has two equilibrium points which are (—1,0) and (1,0). It

can be easily seen below
fx1,x)=(0,0) <= xI—x5—1=0 and 2x,=0.
The Jacobian matrix of f(x) can be calculated as follows:
prt = (% 3%):
Then the Jacobian matrices can be evaluated at the equilibrium points
(=1,0) and (1,0),

respectively

-2 0 20
110~ (T 3) a0 o= (5 5)-

Thus, it can be obviously seen that



* The eigenvalues, which corresponds to J(x) |(_1 o), are Ay = =2 and A, = 2. The

equilibrium point is a saddle.

* The eigenvalues, which corresponds to J(x) |( o), are A2 = 2. The equilibrium

point is a source.

1.2.2 Global stability analysis

In this section we will discuss the global stability of equilibria.

Definition 1.2.4 The equilibrium point x* of (1.1) is called globally asymptotically
stable, if

lim ||x(¢,x9) —x*|| = 0, Vxp € R”
f—3o0

Thus, unlike local stability, a globally asymptotically stable fixed point is a fixed point

which is asymptotically stable with respect to any perturbation ||xo — x*|.

Global stability of an equilibrium point means that the system will achieve the

equilibrium point from any possible beginning point.

We will now discuss a technique about determining the global stability known as
Lyapunov Function Method. Before continuing on to this method, we will firstly

make the definition of Lyapunov Function.
Lyapunov functions are non-negative definite functions that decrease in time along the

orbits of a dynamical system:

Definition 1.2.5 Let a function V (x) be continuously differentiable in an open set U in
R", V :U — R. The function V (x) is called the Lyapunov function for an autonomous

system
x = f(x), (1.7)
if the following conditions are satisfied:
1. V(x) >0 forallx € U\{xo},
2. V(X()) = 0,

3. VS()foralleU.
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Theorem 1.2.2 Let f: U C R" — R" and xy be an equilibrium point of (1.4) and
V :U C U+~ R" be a Lyapunov function. Then,

o x is stable if V(x) <0 forall x € U.

* x is asymptotically stable if V (x) < 0 for all x € U\{xo}. Moreover, U is the basin

of attraction of the equilibrium xq. That is
limx(z,%) = xo, VieU (1.8)

In particular, if U = U then we say that x, is globally asymptotically stable.

Example 1.2.2 As an example, let us determine the stability of

Xl = —x%

(1.9)
b %) :x?

Solution 1.2.2 Firstly, we obtain the equilibrium points of the system (1.9).

f(x0) = 0 implies that

—x% =0 and x? =0.
It is easy to see that x; = 0 and x, = 0. So, we have one equilibrium point as xy = (0,0).
Let us construct the Lyapunov Function which satisfies V (xo) = 0 as follows:

V(x) :x‘l1 +x§

It can be clearly seen that V (x) > 0. We now find the derivative of V (x).
V(x) = 4xix) + 43,
= 4x1(—x3) + 433 (x})
=4(—xix; +2033)
=0
Then V(x) = 0 implies V (x) = c. So, the solution lies on the closed curves

x‘f%—x‘z‘ =2

Thus, the origin is a stable equilibrium point according to Theorem (1.2.2).



1.2.3 Stability of three-dimensional systems

We have mostly discussed about stability of the two dimensional system. However,
we will study on the stability of the three-dimensional system on Chapter 3. For this

reason, we study on the stability of the Jacobian matrix of a three-dimensional system.

The Jacobian matrix of a three-dimensional system has three eigenvalues. One of these
eigenvalues must be a real number and the other two eigenvalues types can change.
The classification of the system depends on the types and signs of the eigenvalues.

(See Table 1.2).

The classification of the equilibrium points are given below:

The equilibrium point is a stable node if all eigenvalues are real and negative.
* The equilibrium point is a unstable node if all eigenvalues are real and positive.

* The equilibrium point is a saddle if all eigenvalues are real and at least one of them

is positive and at least one is negative.

* The equilibrium point is a stable focus-node if it has one real eigenvalue and a pair

of complex-conjugate eigenvalues with all eigenvalues having negative real parts.

* The equilibrium point is a unstable focus-node if it has one real eigenvalue and
a pair of complex-conjugate eigenvalues with all eigenvalues having positive real

parts.

* The equilibrium point is a saddle-focus if it has one real eigenvalue with the sign

opposite to the sign of the real parts of a pair of complex-conjugate eigenvalues.
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Table 1.2 : Stability analysis of hyperbolic (that is those with eigenvalues with
non-zero real part) equilibrium points of the three-dimensional system.

Classification Types of Roots Sign of Roots Behaviour Stability
Real Complex
Root Root
A A2, A3l - AsA, A3 <0 Stable Node Stable
Node
M, A A5 - M, A2, A3 >0 Unstable Node Unstable
3 7L] Re(?tg) < 0,
A A=A ’ Stable-focus node Stable
Focus-node : 277 | Re(A3) <0
Al =23 A,Re(Zp) > 0, Unstable-focus Unstable
Re(/h) >0
node
At least one of
Saddle A1 g, Asl| — them is positive || ¢ 4 Unstable
and at least one of
them is negative
4 A1 has opposite
Saddle-focus || A4 Ay =23 || sign of Re(A,) || Saddle-focus Unstable
and Re(A3)
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2. BASIC EPIDEMIOLOGICAL MODELS

In this section, we summarize the well-known results on several epidemiological
models in increasing complexity. For detailed treatment of the subject matter, see

[5,6,29,34,35]. We will start with the most basic model which is the SI model.

2.1 The SI Model
In this model, we divide the population into two distinct classes:
* Susceptible: S(z), denotes the people who can catch the disease.

* Infective: /(z), denotes the people who have the disease and can transmit it.

In the classical models we consider the size of the population as a constant, N(¢), that

is S(¢) +1(t) =N(r).

The transfer diagram for SI model is as in Figure (2.1).

Susceptible Infective

S(t) I(t)

Figure 2.1 : Flowchart of SI model.

The SI model can be written as the following ordinary differential equation(ODE):

as
dt
d

1
o = BSI=BI(N-1)

where B > 0 is the infection rate. Here, the infected population obey the logistic

= s
(2.1)

equation.

It can be clearly seen that the disease is contagious. Once infected, without treatment
individuals stay infected for the rest of their lives. We can also see from the logistic
equation that this epidemic will always spread and will eventually infect all susceptible

individuals.
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Mathematically, the system has two equilibria.

* The disease-free equilibrium is
Ey=(S,I) = (N,0).
* The endemic equilibrium is
E.=(S,1)=(0,N).
If we view the sign pattern of the (2.1), then we achieve the following results:

. % < 0, which shows that the numbers of susceptible individuals always decrease,

. % > 0, which shows that the numbers of infected individuals always increase,

when S > 0and I > 0.

The corresponding phase plane to the SI model is given by Figure (2.2).

Figure 2.2 : The phase plane of the SI model.

2.2 The SIS Model

Similar to the ST model, we have two distinct classes as S(¢z) and /(7). This model is
convenient for diseases which commonly have repeating infections. The SIS model
does not include recovery. The infective individuals can be susceptible again. The
progress of individuals is shown by the transfer diagram which is given by Figure
(2.3).
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Susceptible Infective

5(1) 1(7)
Figure 2.3 : Flowchart of SIS model.

The SIS model can be written as the following system:

9 _ sy

dt 2.2)
di 2.
& BsI—yr

5 = BSI—v

where f is the infection rate and ¥ is the rate of recovery. (7,3 > 0)

2.2.1 Analysis of the SIS model

Let us note that

Theorem 2.2.1 /5, p. 88]

If Ry < 1, the disease dies out, but if Ry > 1, it remains in the population.

Remark 1 According to the [30, p. 419], Basic Reproduction Number "the average
number of secondary infecteds, produced by one typical primary infected person in a
completely uninfected population". In other words, it shows the measurement of the
transmission potential of a disease. It is denoted by Ry and sometimes termed basic
reproductive rate or basic reproductive ratio. This is the most important parameter of

a disease because it shows that the magnitude of the epidemic.

The proof of the theorem in (2.2.1) is given following steps.

Step 1: As a first step in analysing the SIS model we could simplify the equations by

non-dimensionalisation by defining

15



The system becomes

d

_Lt = — (R()u — I)V

dv '
E :(R()I/l— 1)\/

where Ry = BTN
Step 2: (Invariant of the system)

The new system is to be solved on the one-dimensional simplex
Q={(u)|0<u<1,0<v<lLut+v=1}.

In the non-dimensionalised system,

_ BN
oy

is the basic reproduction number. The interpretation of this number is as follows:

Ro

* BN represents the rate at which an infected individual can infect a susceptible

population of N capacity with random contacts.

represents the expected duration of time in which such an infectivity becomes

<I—

contagious.

Under the interpretations listed above, we can say that Ry is the expected number of

infectious contacts made by such an infective individual.

Step 3: We should find the equilibrium points of the system (2.3).

% =0 = (Rou—1)v=0.
We have seen that
v=0 or u= Rio
from the last equation. Using
ut+v=1

we obtain two equilibrium points such as

Ey=(1,0) and E;= (i, 1— i)

Ro Ry

Ey is called the disease-free equilibrium and E is called the endemic equilibrium.

It can be obviously seen that the endemic equilibrium does not exist when Ry < 1.
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We can now substitute v = 1 — u in the first equation of the system (2.3) and the

equation becomes
du
dt
There are two cases we need to examine here. We criticize the possible sign patterns

=—(Rou—1)(1—u). (2.4)

for the cases Rg < 1 and Ry > 1.

Case 1: Let us assume that Ry < 1.

It can be clearly seen that

d_u>0 for 0<u<1.
dt

The solution trajectories can be sketched in (1,0) as in Figure (2.4).

u (Susceptible Fraction)
1.0

0.8}
0.6 |

0.4

0.2¢

: : : ‘ : t (time)
1 2 3 4 5
Figure 2.4 : SIS Epidemic, Ry < 1.

This figure shows that the infection will die out eventually.

The corresponding phase plane to the SIS model when Ry < 1 is given by Figure (2.5).

1

N

N

Figure 2.5 : The phase plane of the SIS model when Ry < 1.
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Case 2: Let us assume that Ry > 1.
If we view the sign pattern of the (2.4), then we achieve the following results:
d : 1
. ﬁ >0 if 0<u< R
c k<0 if p<u<l

Under the conditions listed above, the solution trajectories can be sketched as seen in

(Figure 2.6).

(Figure 2.6) shows that the infection will reach an equilibrium.

u (Susceptible Fraction)

1.0
0.8+
0.6+

0.4

0.2

L (time)
1 2 3 4 5 6

Figure 2.6 : SIS Epidemic, Ry > 1. Dashed line shows that RLO.

The corresponding phase plane to the SIS model when Ry > 1 is given by Figure (2.7).

1

N

N

Figure 2.7 : The phase plane of the SIS model when Ry > 1.
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2.3 The SIR Model

The pioneer work in epidemiology has been done by Kernack and McKendrick, [31].
Unlike the other models, the SIR model consist of three compartments labeled S,
I and R. As we know, S(¢) and I(¢) represent the susceptibles and the infectives,
respectively. In addition to that, R(¢) represents the number of individuals who have
been infected and then recovered from the disease or who are immune, dead, or

otherwise.

The dynamics of S(t), I(t) and R(t) are shown by the following system:

ds

— = —BSI

dt B

dl

o =BSI—1yI (2.5)
dR

=l

dt ¥

where f3 is the infection rate and 7 is the recovery rate. (7,3 > 0)

We assume here that we can neglect natural birth or death. Therefore, the population

size N is a constant and N (1) = S(¢) + I(t) + R(z).

The structure of the SIR model represented by the transfer diagram as in Figure (2.8).

Susceptible Infectives Recovered

S(t) 1(t) R(1)

Figure 2.8 : Flowchart of the SIR model.

The mathematical formulation of the SIR model is completed with the following initial
conditions

S0)=Sy, 1(0)=1I, R(0)=0.

2.3.1 Analysis of the SIR model

Step 1: Let us non-dimensionalise the system by defining
w=—, T=17.
If we consider the first equation of the system (2.5),

Nydt N Ny diyt)y y NN
19
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then the equation becomes

du R

— = —Rouv

drt 0
BN i the basic reproduction number.

where Ry = 7

As in the first equation we can non-dimensionalise the second and third equations as

follows: e 4
v
—=I1(pS— — =v(Rou—1
5 ~1BS—v) = ——=v(Rou—1)
dR PN dw
—_ = _— = v
a VT dn
Namely, the system becomes
du R
— = —Rouv
dt 0
d
d_; = v(Rou—1) (2.6)
dw
dt

where Ry = ﬁTN
Step 2: (Invariant of the system)
The equations are to be solved on the two-dimensional simplex u+v+w = 1. We can

find the simplex under the conditions listed below:

* Wesimply seethat 0 <u<1,0<v<land0<w<1.

* Adding together the equations in the (2.6) system , we obtain
du n dv n dw 0
dt dt dt
We integrate this equation and find
u(t)+v(t)+w(t) =u(0)+v(0)+w(0) =1

Now, we can simply construct the two-dimensional simplex as

Q={(u,y,w) | 0<u<1,0<v<1,0<w< lu+v+w=1}.

Step 3: Let us find the equilibrium points of the system (2.6).
Equilibria of the system are given by u* = ¢, v =0, w* = 1 — ¢ and ¢ is any number

in [0, 1]. Thus there are infinitely many equilibria given by

E.=(c,0,1—¢), 0<c<l. 2.7)
20



In this model, the endemic equilibrium does not show up and there are infinitely many

disease-free equilibria as given below:
Ey = (u*,O, 1 —u*).

It demonstrates that the u-axis is a nullcline for (2.6), namely, any point on it is a steady

state.
We have two cases now:
Case 1: Let us assume that Ry > 1.

We can easily see that

du

— <0

dt

and

dv 1
— >0 if — 2.8
gy > ifu> Ry (2.8)
dv 1
— <0 if — 2.
I < ifu< Ry (2.9)

since0<u<1,0<v<1.

Without calculation, we can estimate the qualitative behaviour by the solution

trajectories as seen in Figure (2.9).

1.0}

o o o
=~ o~ [eo]

v(Infective Fraction)

o
N
T

00

0.0 0.2 0.4 0.6 U.‘8 1.‘0
u(Susceptible Fraction)
Figure 2.9 : SIR Epidemic, Ry > 1. Dashed line shows that the value of Rio.

We can interpret the case Ry > 1 by the above figure as given below:

e Ifec< Rio then all the equilibria are neutrally stable. Namely, the disease dies out
when ¢ < RLO'
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o Ifc > Rio then all the equilibria are unstable.

Case 2: Let us consider that Ry < 1.

In the similar way, it is clear to see that

du dv
E<0 and E<O'

Under these circumstances, the solution trajectories is sketched as in Figure (2.10).

1.07

081

0.6}

0.47

v(Infective Fraction)

0.2}

0.0r

0.0 0.2 0.4 0.6 0.8 1.0
u(Susceptible Fraction)
Figure 2.10 : SIR Epidemic, Ry < 1.

We see that all the equilibria are neutrally stable when Ry < 1.

2.4 The SIRS Model

In this model, the total population N is classified into three compartments as it is in the
SIR model. Susceptibles are denoted by S, infectives by / and recovereds by R. As in
the SIR model, susceptible individuals infected by infective individiuals gain immunity
after getting infected and recover. Yet, for some infected individuals, this gained
immunity may disappear after some time. In other words, the recovered compartment

will be free of infection and rejoin the susceptible individuals department.

The structure of the SIRS model is shown in Figure (2.11).
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Susceptible Infective Recovered

S(1) 1(z) R(7)
Figure 2.11 : Flowchart of SIRS model.

The dynamics of S(¢), I(¢) and R(r) are written by the following differential equations

ds

@ _ _BSI+uR

o = BSI+u

1

% — BSI—yI (2.10)
aR

=1

where B is the infectious rate, y is the cured rate and p is the transfer rate from

recovered individuals to susceptible individuals. (y, 8,1 > 0)

The total population N is a constant because we ignored the natural birth and death. In

other words, it is represented by N(¢) = S(¢) + I(t) + R(t).

Further, we have initial conditions
S(0)=S8yp, 1(0)=1Iy and R(0)=0

corresponding to the SIRS system.

Let us now review the stability of the SIRS model.

2.4.1 Analysis of the SIRS model

Step 1: In order to simplify, we non-dimensionalise the system (2.10) by defining

S 1 R

M:N, V:N, W:]—V7 T:t(')/—f—‘l,l)

Primarily, we consider the first equation of the system (2.10). Let us divide the system

by N and (y+ u). Then, the equation becomes

d) _ B S, _wm R
d((y+u)) (y+u)N  (y+u)N’

This new equation is still dimensional. This is the reason, why we divide and multiply

the first term in the right hand side of the equation by N, respectively. Now, the last

23



equation becomes

d(§) _ -BN SI _ u R

d((y+u)t)  (y+u)NN  (y+u)N’

We now substitute the u#, v and w terms and we get

du _ —BN uv K w.
o T

v (y+u
In the similar method, we can non-dimensionalise the second and third equations of

the system (2.10) as below:

d(x) _ BN sI vy 1 _  dv_ BN ¥y
d((y+u))  (y+u)NN (y+u)N dt  (y+u) (y+u)
(&) v I p 1 . dw ¥ L

= — — 27— vl
d((y+t)  (v+)N - (y+u)N v (v+u)  (r+u)
Namely, we can indicate the non-dimensionalised system with the following

differential equations:

s PN v+ e w

g "

dt (y+u) (y+u)

dv BN Y

i’ Y v @2.11)
dt  (y+u) (y+u)

dw Y i

— = v— w
v (y+u)  (v+u)
Step 2: We should find an invariant set for the system so that all solutions remain

sensible. As seen before

The constant population size is constructed by the system (2.11), by adding the

equations
du dv dw

dc dr Tdr

We can now clearly show the two-dimensional simplex as

0 = u(r)+v(r)+w(r)=1

Q={(u,v,w) |0 <u,v,w<lLu+v+w=1}

Step 3: We should calculate the equilibrium points.

Since
BN uy — 14 v=0
(y+u) (y+u)
we get
* Y

vi=0 or u"=-"-.
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* If we substitute v* = 0 in the third equation of the system (2.11) then we obtain

w* =0.

Namely, we find
Ey = (u",0,0).

Since

ut+v+w=1,

we see that the first equilibrium point is
Ey = (1,0,0).
And it’s called the disease-free equilibrium.

* If we substitute u* = BLN in the first equation of the system (2.11) then we find

So, we get

Due to the fact we have proved above which is u + v+ w = 1, then the second

equilibrium point becomes

-Gl ) 50-38)

It’s called the endemic equilibrium point. It can be obviously seen that the endemic
equilibrium point exists only if all the terms are positive. This implies that the

following condition must hold:

Ro=PN >
Y
Step 4: Let us reduce the system to two dimensions by substituting w =1 —u —v.
d
o PN uv + a (I—u—v)
dr. (y+u) (Y+H) 2.12)
ﬂ— PN uy — 14 v |
v (y+u) (r+u)

Step S: Let us construct the Jacobian matrix of the system (2.12).

_ BN, w BN, u
J— ( (Y+M%N (r+u) %;u) w+u)>
(r+u)

PN Y
1% K

(y+u (y+u)
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The Jacobian matrix at Eg = (1,0,0) is calculated as seen below:

o u _ BN _ _u
(1’070):< (vy+u) (ﬁv;\;u) (Y+H)>

J

Y

(y+u)  (v+u)

We now calculate the tr(J) and det(J) for the disease-free equilibrium.

_ 1 _ H
tr('])_ (y+u)<BN_Y_N)7 det(])——(y+“)2([3N—}/)

Thus,

 if Ry < 1, namely y > BN, then
tr(J) <0 and det(J) >0
and the disease-free equilibrium is stable.
 if Ry > 1, namely BN > 7, then
det(J) <0

and the disease-free equilibrium is unstable.

In a similar way, we can construct the Jacobian matrix at (u*,v*,w*) as follows:

4 _ BN YA _
J |(u* ) = (y+u) ( (v+u) + (ry+u) 1) 1
" Thm(BN =) 0

The trace and determinant of the Jacobian for the endemic equilibrium point is as

follows:

- K e S —7).
) =~ BN ). daln) = B (BN =)

* if Ry < 1, then the endemic equilibrium point does not exist.

e if Ryg > 1, then
tr(J) <0 and det(J) >0

which shows that the endemic equilibrium is stable.
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2.5 The SEIR Model

Unlike previous models, this model has a different compartment which is the so called
exposed class represented by E (). In other words, the SEIR model consists of four

compartments:

1. Susceptible class S(¢), which refers to the people who can catch the virus and

become infectious if exposed.

2. Exposed class E(t), which shows the number of people who are exposed to the
virus or infected but not yet infectious. Namely, although the people are infected,

the symptoms of the virus are not still visible [33].

3. Infectious class /(¢), which refers to the number of infective individuals who are

able to transmit the disease by contacting with susceptible individuals.

4. Recovered class R(z), which denotes the people who gain immunity from the

disease.

We can easily understand the process of this model. Ebola virus transmission process
can be given as an example for this model [32, 36]. After transmission of the
virus, susceptible individuals go into the exposed compartment before they become
infectious and then they either recover or die. Yet, we ignore new births and deaths
because of the fact that we only study on the simplest SEIR model. Moreover, we
assume here that the total size of the population is a constant and this assumption is

written by N(1) = S(t) +E(t) +1(t) +R(z).

The basic SEIR model’s progress can be shown with the transfer diagram as seen in

Figure (2.12).

Susceptible Exposed Infective Recovered

S(t) E(t) I(t) R(1)

Figure 2.12 : Flowchart of SEIR model.
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In this transfer diagram,

* The transmission rate, > 0, shows the rate of spread which denotes the

probability of carrying disease among a group of susceptible and infectious people.
* The incubation rate, it > 0, is the rate of latent people becoming infectious.

* The recovery rate, y > 0, is the rate of recovery by infectious people.

Therefore, the dynamics of the SEIR model are defined by the following differential

equations:
ds
— =—pSI
dt P
dE
o & (2.13)
i H Y
dR
Y 4
dt ¥

with initial conditions

S(0)=S0>0, E(0)=Ey>0, I1(0)=1I, R(0)=0. (2.14)

2.5.1 Analysis of the SEIR model
Step 1: For simplicity reasons, we non-dimensionalise the system by

S E I R

y:_7 Z: W:]T[,

X=—, ’NE)
N N N

T=t(y+u).

Firstly, let us study on the first equation of (2.13). If we divide that equation by N and

(7+u), we get S
d(y) _ B S,
d((y+u))  (y+u)N-

We can easily see that the new form is still dimensional. For this reason, we firstly

divide and then multiply with N in the right hand side of the last equation. So, we have

d(x) _ B SI,

d((y+u)t) (y+u)NN

Now substituting x, z and 7 into the last equation yields

dx _ —BN
dt (y+nu)

XZ.
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Similarly, we obtain the non-dimensionalised form of the second, third and fourth

equations of the system (2.13).

d(y) _ BN SI . w E  _  dy_ BN p ,
d((y+u)t) (y+u)NN (y+u)N dt  (y+u) (r+u)
d(z) __w E__y 1 B S R 2
d((y+u)r) (y+u)N (y+u)N dt  (y+u)” (y+u)
dly) v I dw

A+ G+ N — ar )’

We can now demonstrate the non-dimensionalised form of the (2.13) by the following

differential equations:

dx —ﬁNx

ax _ —PN

dt  (y+u)

d N

GV PN U y

dt  (y+u) (y+u)
(2.15)

L N 2

dt  (y+u)” (y+u)

dw Y

P = i L

dt  (y+u)

Step 2: Let us determine the feasible region for (2.15).

From (2.15), we easily see that

L 1(1) +3(2) +2(0) +w(2)] = 0.

Namely, the population size N is always constant:
x(7)+y(7)+z(r)+w(r) =1

for any 7 > 0.

We obtain the three-dimensional simplex as
Q={(x,y2,w)|0<x,yzw<1,x(7)+y(1) +2(7) + w(r) = 1}.

The positive invariant set shows us that any solution starting in Q does not leave this

region. We can also write the simplex as
Q={(xy2)|0<xyz<1,x(7)+y(7) +2(7) < 1}

using the relationw=1—x—y—z.

Step 3: Let us find the equilibrium points of the system (2.15).
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Since

dz
dt
we get
* '}/ *
y =—Z
u
If we substitute y* = %z* in the second equation of the system (2.15), we obtain
Y
*—~0 or L
Z x BN
 If z* = 0 then it is easy to see that the y* = 0.
Since
x+y+z=1
we obtain

x=1.
Namely, the disease-free equilibrium point is

Eo = (1,0,0).

o Ifx* = ﬁ_jll\/ and y* = %z* then the endemic equilibrium is

Y ¥ «
Ei=(—,—72.,72).
1 (ﬁN'u )

Since x +y+z = 1, the endemic equilibrium becomes

(o -8 55 )

It is easy to see that the endemic equilibrium point exists only if all the terms are

positive. This implies that the following condition must hold:

Ro=PN >
Y
Step 4: Let us reduce the system to three dimensions by substitutingw =1—x—y—z.
dx —BN .
— = Z
dt  (y+u)
dy BN u
A Xz — y (2.16)
v (y+u)  (r+u)
dz H Y

dr (y+u)” (r+u)
Step 5: Let us construct the Jacobian matrix of the system (2.16).
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|
E
A\l
)
|
=)
=

(15#) s (ﬁ$yfx

T=1 o o mw*
0 n Y

(y+u)  (v+u)

The Jacobian matrix at the E is calculated as seen below:

_ _ 0
Jlg= |0 (r+u)  (r+u)
0 U -7

(y+u)  (y+u)

The characteristic polynomial is det(J |g,) = 0. Solving this polynomial, the

eigenvalues become:

2(y+u)

We now investigate whether the real parts of A; 3 are negative or not. For simplicity,

=0, Xz= <Y+H:F\/Y2+2W(2Ro—1)+#2)-

let us assume:

D=y +2yu(2Ro—1)+u°.

* If D < 0 the eigenvalues A; 3 are complex with

1 (y+u) -1
= — _ = < .
Re(A23) 5 <}/—|—,u> 5 < 0

So, all the eigenvalues are zero or negative. Thus, the stability of the endemic

equilibrium can not be determined since at least one eigenvalue is zero.

e If D> 0, since Ry > 1, it is easy to see that

(y+u) < VD

by using

\/?’2+2W(2Ro— 1) +p?> \/(7'+u)2 =[y+ul.
For simplicity, we can write the A; 3 as follows:

w(?’JrlijF\/B)

M=

Then it is obviously seen that the A, and A3 have different signs and it implies that

the endemic equilibrium is saddle.

The Jacobian matrix at the E; is calculated as follows:
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(1=Ro)yu 0 -y

(y+u)? (1)
J g = (Ro—Dyn _—u Y
! (y+u)?  (rtwp)  (r+uw)
0 H _—Y_
(r+u)  (r+u)

In this analysis, we use a different method which is mentioned-below as

Routh-Hurtwitz stability criterion. The third-order polynomial
P(s) = 5> + azs* + a1s + ag
has only roots in the open left half plane if and only if
ap,ap are positive and  ara; > ap.
The criterion provides a way to determine if the behaviour of a physical system has

only a stable solution, without solving the system directly.

The characteristic polynomial of J |g, matrix is constructed by det(J |g, —AI) = 0.

Solving this polynomial, the coefficients are determined to be as follows:

~ (Ro—1)y*u? (Ro—1)yu _ P+ (Ro+)yn+p?

ap = , A1l =———"5—, a
T T () T2 7 (7+ 1)

In here, it is easy to see that a; and ag are positive for Ry > 1. And after some algebraic

s a3:1.

computations we see that

wmar _ P+ Ro+ Dyu+p?
ap TH

Since a, and ag are positive and ara; > ag the conditions of Routh-Hurtwitz criterion

— azap > aop.

are satisfied. Hence, the endemic equilibrium point is stable when Ry > 1.

2.6 SIR Endemics

In the simple SIR model our objective is to study on the endemic disease’s short-term
behaviour. In this section, we study on an endemic disease’s long-term behaviour
according to [5,37,38]. And for this reason ignoring birth and death rate is no longer
meaningful. Namely, we take into consideration the birth and death rate from now on.
And we also examine the death rate in two different models: No disease-related death

and including disease-related death.

We will insert birth and death rates into the SIR model from now on. Namely, the total

population is no longer closed, and the total population size N will only be constant
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under additional assumptions on the birth and death rates. In line with the information

given here, we can investigate the models.

2.6.1 No disease-related death

The diagrammatic representation of the disease is shown in Figure (2.13).

bN Susceptible B Infective Recovered
S(1) 1(z) R(1)
d d d

Figure 2.13 : SIR endemic with no-disease related death.

In this model, we assume that there is no vertical-transmission. Namely, there is
no direct transmission from parent to an embriyo, fetus or baby during pregnancy.
Therefore, all births, which are denoted by B, are assumed to enter the susceptible
compartment. We consider B = bN, because B is not per capita birth rate. We assume
that b = d in here and d is a constant which denotes the disease-unrelated death rate.

So, the population size N is constant.

The transfer diagram leads to the following system of ordinary differential equations:

ds

— =bN—BSI—dS

dt B

dl

— = BSI—yI —dI (2.17)
dt

R

— =vyI—dR

a7

Substituting b = d into the (2.17) gives

ds

— =bN—-[SI—-b

7 BS S

1

U psi—yi—bi (2.18)
dt

dR

— =7vI—bR

dt 4

Let us analyze the system now:

Step 1: We non-dimensionalise the system by defining

v=—, w=—, T=t(y+b).



Firstly, we examine the first equation of the system (2.18). Let us divide the equation

by N and (y+ b). We obtain

d(y) _ b B 1, bS
d((y+b)t)  (y+b) (y+b)N~ y+bN’

It can clearly be seen that the equation still dimensional. We firstly divide and then

multiply the second term in the right hand side of the last equation by N. Then we get

d(z) b B IS b S

d((y+b)t)  (y+b) (y+b)NN  y+bN’

Substituting u,v and w into the last equation gives

du b BN b

v~ (y+b) (y+b)" y+b"

By using the same technique, we can find the non-dimensionalized form of the second

and third equations of the system (2.18).

d (L I
(N) — [Sﬁ A b il — ﬂ:v(—ﬁN M—l)
d((y+b)t)  (y+b)EaN— TN (y+b)N dt (y+0b)
d(R
(N) — Y i_ b 5 — d—w — 14 V— b w
d((y+b)t) (y+b)N (y+b)N dt . (y+b) (v+b)
Thus, the non-dimensionalized form of the system (2.18) is as follows:
du b
— = l1—u)—R
2~ (rrp) W T Rowy
dv
& = v(Rou—1) (2.19)
dw vy b

dt ~ (y+b)  (y+b)"

B ]\; is the basic reproduction number.

where Ry = Yrb

Step 2: Here, we find a suitable boundary region for (2.19).

du dv d
u % Yo

—1 I Tt
u(t)+v(r)+w(r)+ dr+d1'+d’c

Then, the positive invariant set is
Q={(u,v,w) |0 <u,v,w<lLu+v+w=1}

Step 3: Let us find the equilibrium points of the system.

We obtain u* = RLO and v* = 0 since v(Rou — 1) = 0. The system has two equilibrium

points. The first equilibrium point is the disease-free equilibrium:
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* If we substitute v* = 0 in the third equation of the system (2.19) we get

w* =0
Additional, since
ut+tv+w=1
we find
u =1.

Namely, the disease-free equilibrium point is
Eyp = (1,0,0).

The second equilibrium point is the endemic equilibrium:

1

o If we substitute u*™ = X
0

in the first equation of the system (2.19) we obtain

= (w)

T
BN

from the third equation of the system (2.19). Then the endemic equilibrium point

N (R )

Clearly, the endemic equilibrium exists only if v* > 0 which means that, the basic

And it is easy to calculate

w (Rop—1)

1S

reproduction number must be greater than 1:

BN
Ry= 4 S
RV A

Step 4: Let us reduce the system two dimensions by substituting w =1 —u —v.

du_ b

— = 1—u)—R

Z‘L‘ (y+ b)( ) o (2.20)
v

% = V(R()I/t - 1)

Step S: Let us find the Jacobian matrix of (2.20).

b
P oy —Rov  —Rou
R()V R()u— 1

35



The Jacobian matrix which is evaluated at the disease-free equilibrium point (1,0,0)

18

b _ _p
I l(100)= ( ((y)+b) R, _01 (2.21)
It is clearly seen
b b
l‘l’(]) =Ry—1— (7-1—[))7 det(]) = (1 —R()) (Y-l—b)'

for the Jacobian matrix which is represented by (2.21). Thus,

e if Ry < 1, then
trace(J) <0 and det(J) >0

which shows that the disease-free equilibrium is stable.

e if Ry > 1, then
det(J) >0

which shows that the disease-free equilibrium point is a saddle.

The Jacobian matrix evaluated at the endemic equilibrium point (u*,v*,w*) is

__Rob -1
J| u*,v*,w* = b (Y+b) ) .
e (W%_ N o

It is clearly seen from

1) == fi”b), det(J) = (yi (R0

* if Ry < 1, then the endemic equilibrium point does not exists.

* if Ry > 1, thentrace(J) <0, det(J) > 0 and the endemic equilibrium point is stable.

2.6.2 Including disease-related death

Let us illustrate the dynamics of this epidemic model by the diagram as in Figure

(2.14).

Similar to the previous epidemic model, we assume that there is no
vertical-transmission. In other words, all births, which is B, are assumed to

enter the susceptible class. B is taken constant birth rate instead of constant per capita
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Susceptible Infective Recovered

1(z) R(7)

Figure 2.14 : SIR endemic including disease related death.

birth rate here. This is another way to say that the birth rate is not proportional with
the population size. We take ¢ as a constant and ¢ denotes the disease-related death

rate. Then the model is shown by the following ODE:

ds

— =B—BSI—dS

dt P

dl

2 BSI —yI —cl —dI (2.22)
dR

— =9yI—dR

i "

Adding these three equations, we obtain

dN
— =B—cl—dN 2.23
dt ¢ ( )

We analyze the system using any three of the equations which are shown by (2.22) and
(2.23) with N = S+1+ R. We shall choose the (N, S,I) equations. We can not reduce
the system to two equations as we have done before, since the population size is not

constant.

We now find the equilibrium points. From % =0, we obtain

I"=0 or S*:W.

* In the first case, if we substitute /* = 0 in the first equation of the system (2.22) we

get
B
St =—.
d
Finally, we obtain N* = £ from (2.23) by using I* = 0. So, the first equilibrium

B B
EO = <N7Sa1) = <27570> .

point

is the disease-free equilibrium.
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* In the second case, we examine the endemic equilibrium point. Substituting S$* into

the first equation of (2.22) and the last equation which is labeled (2.23) gives us

B—S*d B c
r="""% 4md M="_-_% (B_sa).
sp " 4~ aps )

It is easy to see that the endemic equilibrium point exists only if all the terms are

positive. This implies that the following condition must hold:

B-Sd>0 = B>Sd = S > 1
Substituting S* into the condition gives us the basic reproduction number as follows:
Bp
Ry=———F>1
07 d(y+c+d)
Then the endemic equilibrium point can be written as
1 B d(Ry— 1)>
N*, 8" I") = | =[(y+d)Ry+c], , .
)= (glir+are+ i A

Let us construct the Jacobian matrix for the (N, S,I) system which is given below:

dN

YN _B_cl—aN
dt ¢

ds

4 B_BSI—ds
dt B

dl
— =BSI—yl —cl—dI
dt P e

The Jacobian matrix which corresponds to the last ODE system is
—d 0

J=|0 —pI—d —_[ss
0 Bl BS—(y+c+d)

The Jacobian matrix at the disease-free equilibrium is constructed as follows:

—d 0 —c
Jlg=| 0 —d 0
0 0 BB _(yteta

The eigenvalues of an upper triangular matrix are the entries on its main diagonal as
seen before. Then the eigenvalues are

M=M=-d and A= [iTB—(Y—FC—i-d).

Let us substitute Ry = inA3 = (y+c+d)(Ro—1). Thus,

Bp
Y+c+d)
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* if Ry < 1 then all the eigenvalues are negative and the disease-free equilibrium point

is stable.

 if Ry > 1 then A3 > 0 and the disease-free equilibrium point is a saddle.

The Jacobian matrix at the endemic equilibrium is calculated as follows:

—d 0 —c
J ’(N*,S*,I*): 0 _dRO ;{_]goB

Then the eigenvalues are

—dR3 1
——1/(dR2)2 —4BB(Ro — 1)Ro.
S, F 3\ (AR3)? 4B (R~ 1Ry

M=—d, ljz=
We examine whether the real parts of A, 3 are negative or not. Let us take

D = (dR3)* —4BB(Ry— 1)Ry.

* If D < 0 then the eigenvalues A, 3 are complex with

2
—dR}

<0.
2R,

Re(ﬂ,273) =

Since the real parts of all the eigenvalues are negative the endemic equilibrium is

damped oscillation.

* If D > 0, we investigate only when Ry > 1. Because we know that the endemic

equilibrium exists only if Ry > 1. Thus, if D > 0 then since Ry > 1, we get
VD < dR}.

If we rewrite A5 3 as

A (dR3 T VD)

-1
3 2R
we can easily see that both A, and A3 are negative. Thus, the endemic equilibrium is

stable since all the eigenvalues are negative.
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2.7 Eradication and Control

In today’s world, diseases are one of the major problems of the society. Urbanization

and other factors, which are making our lives easier, are causing diseases. They bring

about epidemic and cause big loss of population. Thus, the modelling of infectious

diseases 1s crucial in controlling and diminishing the effects of epidemics [39, 40].

The forecasting of diseases makes it possible to eradicate or at least control it. Such

control methods might aim to reduce the effect of the basic reproduction number Ry.
BN

In the simplest models which we studied before Ry = 5 there are three convenient

strategies according to [5, p. 101]:

1. Increase 7, the rate of recovery
2. Decrease 3, the rate of transmission of disease from an infected person

3. Decrease the effective value of N, which should be interpreted as decreasing the

initial susceptible population

2.7.1 Vaccination against an SIR epidemic

In this model, assume that we have a perfect vaccine against the disease, [5]. We
focus on vaccinating new borns and p denotes the fraction of vaccinated new borns.
We now study a population which is categorised into three group of individuals:
the susceptibles (S), the infectous (7), and the recovered (R), whose dynamics are

modelled under the following assumptions.

The natural birth and death rates are included.
» Age, sex, social status, and race do not affect the probability of being infected.

e There is no disease-related death. In other words, members of the infective class

leave either by recovery or due to natural death from their compartment.

* Recovered individuals keep their immunity. Namely, the vaccine gives long-term

immunity against the infection which averts both transmission and disease.
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In addition to above all, the aim is to find the proportion of the population we have to
vaccinate in order to eradicate the disease. Putting all these assumptions together with
the corresponding notations, the model can be shown by the schematic diagram which

is given in Figure (2.15).

Susceptible Infective Recovered
S(1) 1(z) R(1)

Figure 2.15 : Vaccination Against an SIR Epidemic Model.

Then the model can be written mathematically by the following system:

ds

% — BSI— bl — I (2.24)
dR

A N+ —bR

i PN + 7.

where f3 is the transmission rate, ¥ is the recovery rate and b is the natural death
or birth rate (,7,b > 0). And the mathematical formulation is completed with the

non-negativity requirements of the initial conditions:

As in [41], we do the following analysis:

Step 1: We modify the sytem (2.24) using a simple change of variables:

S={1-p)S1, I=(1-p);, R=(1-p)Ri+pN.
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Substituting the above-mentioned variables into the (2.24) gives us a new set of

differential equations as follows:

ds
(1=p)—+ =b(1=pIN=B(1-p*Sili ~b(1 - p)S;
dl
(1=p) 75 =B(L—p)*Sili— (1= p)l = b(1 - p)Iy (2.25)
dR
(1—19)61—t1 =Y(1 — p)ly —b(1 — p)Ry —bpN +bpN

If we divide the system (2.25) by (1 — p) then the system takes the following form:

ds

—r =bN—B(1-p)Sil; Sy

dl

d—;:ﬁ(l—p)slll—’}d] —b[] (226)
dR,

—— =vyl{ — bR

i Y 1

Step 2: Let us study on the invariant set.

Adding the equations (2.24) together, we obtain ‘%’ = b(1 —N). It shows that there is

no invariant set because the total population size is open.
Step 3: Let us find the equilibrium points.

There are two equilibrium points that exists for (2.26) as follows:

* If I = 0, the second equation in (2.26) holds. Substituting /; = 0 into the first and
third equation in (2.26) gives us S7 = N and R} = 0, respectively. Thus, we have
the equilibrium point

Eo = (81,11, R1) = (N,0,0).
This is the first equilibrium point which is called the disease-free equilibrium

point.

The second equilibrium point which is called the endemic equilibrium point can be

found easily.

 If I =0, then from the second equation in (2.26), we get S] = Rﬂo. Substituting this

value of S7 into the first equation in (2.26) gives

=55 gy

Before finding the value of R} we define the basic reproduction number for

simplicity. As we have seen before, the endemic equilibrium point exists only if
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all the terms are positive which means that /{ must be greater than zero here. So,

Ro="PU=D) gy (YN S )>0.

we get

Y+b

Then the value of Iik becomes

b
B(1-p)

If we substitute /] in the third equation of the system (2.26) then we obtain

I = (Ro—1).

v
B(1—p)

Then the endemic equilibrium point is

(N b n Y
Ee_(Ro’B(l—p)(RO D pi—py®o ”)‘

R = (Ro—1).

Step 4: Let us determine the Jacobian matrix of the system (2.26).

—B(1—p)h—b  —B(1—-p)S, 0
J=| BU-ph  B(-p)Si—y-b O
0 Y —b

The Jacobian matrix which is evaluated at the disease-free equilibrium point is

b —B(I-pN 0
‘]’E(): 0 ﬁ(l—p)Nl—Y—b 0
0 Y —b

If we compute the eigenvalues of this matrix we find
M=-b, A=-b, and A3z= ﬁN(l —p) — (’}/—l—b).

We can easily see that A; and A, are negative. So, we investigate the sign of A3. Thus,

¢ if A3 > 0 which means that the basic reproduction number Ry > 1, the disease-free

equilibrium is a saddle.

* if A3 < 0 which means that the basic reproduction number Ry < 1, the disease-free

equilibrium is a stable node.

We now investigate the stability of the endemic equilibrium point. If we evaluate the

Jacobian matrix at the endemic equilibrium we obtain
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—bRy  —(y+p) 0
Jlg,= | b(Ro—1) 0 0
0 Y —b
After some algebraic computations, we find the eigenvalues of this Jacobian matrix.

These eigenvalues are

Rob - VDR —2)2 —4by(Ry— 1)

M=-b, A3=-—
1 ’ 2.3 D) D)

We now examine whether the real parts of A, 3 are negative or not. Let us
D =b*(Ry—2)> —4by(Ry—1).

o If D <0 then the eigenvalues A; 3 are complex with

—bR
Re(lo3) = — 9,

Thus, the endemic equilibrium is damped oscillation because the real parts of all

the eigenvalues are negative.

* If D > 0, we study only when Ry > 1 since the endemic equilibrium point exists

only if Ry > 1. For simplicity, we can write the value of A; 3 as follows:
—1
12’3 = 7 (bRO + \/5)
There are two cases in here:

— If 0 < (Rob)? < D then A, and A3 have different signs. Thus, the endemic

equilibrium is saddle.

— If 0 < D < (Rob)? then all the eigenvalues are negative. Thus, the endemic

equilibrium 1s stable.
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3. ADYNAMICAL SYSTEMS APPROACH TO THE INTERPLAY
BETWEEN TOBACCO SMOKERS, ELECTRONIC-CIGARETTE SMOKERS
AND SMOKING QUITTERS

3.1 Introduction

The natural behaviour of physical systems modelled by linear models is quite
predictable [1,2]. Contrary to that, many natural phenomena such as alcohol, heroin,
drug transmission, epidemiological models, climate-vegetation, prey-predator and
smoking cessation models are governed by non-linear systems and their behaviour

is often unpredictable. For details see, [8—15].

In today’s world, smoking is one of the most critical public-health issues. As well
known, smoking damages nearly every organ of the body and causes diseases. In
addition, smoking is an addiction, this means that quitting smoking is not very easy.
Many smokers need support for quitting. In fact, there are some ways to help smokers
quit smoking. Some of them are smoking cessation programs, nicotine gums or using
electronic cigarettes for that matter. For this reason, some smokers are inclined to
use e-cigarettes instead of tobacco cigarettes as using e-cigarettes is a method to quit
smoking. According to [16], e-cigarettes are less harmful than tobacco cigarettes
because e-cigarettes involve only nicotine contrary to tobacco cigarettes which involve
more than 7000 chemicals such as arsenic(poison) and carbon monoxide (gas from
car exhaust) [42]. Indeed, there are different views on whether using e-cigarette
is beneficial or not from the medical point of view. We aim here to investigate
the addictive behaviour of tobacco smoking and the effect of e-cigarettes as an aid
in quitting smoking by taking into consideration the peer pressure and by using

mathematical modelling.

In this study, we first propose the model in line with the articles [7] and [43].
These articles examined the effect of e-cigarette on smoking cessation using different
mathematical models. In [43], Straughan concentrated on the efficiency of peer

pressure term, which is non-linear term, in the transition from smoking to e-cigarette
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smoking and studied a three compartmental model. This model consists of potential
smokers, tobacco smokers and e-cigarette smokers. In addition to these compartments,
Jung et al. considered another compartment which is the quitters’ class [7]. The
transition from smoking to e-cigarette smoking does not based on the peer pressure
term as in [7]. Considering these two articles, we offer a model which consist of four
compartments and considered the transition from smoking to e-cigarette smoking by

incorporating a peer pressure term.

3.2 The Model

Based on the traditional epidemiological models, we propose a mathematical model
to see the dynamics of the effectiveness of using e-cigarette on quitting smoking. The
dynamics of smoking is similar to the traditional epidemiological models: a potential
smoker makes contact with a smoker and starts smoking under the influence of the

smokers.

3.2.1 The model description and its parameters

In this model, we classified the total population N into four distinct classes:

1. Potential smoker class P(t), which represents the people who never smoke or

smoke in some degree but might become smokers in the future.

2. Smoker class S(¢), which represents the people who smoke "everyday" or "some

days".

3. E-cigarette smoker class E(¢),which represents the people who now use electronic

cigarettes.

4. Quitter class Q(r), which represents the people who quit smoking altogether.

In addition to above all, we have some assumptions in order to propose the dynamical
system. The dynamics among P(¢), S(¢), E(t) and Q(¢) are modelled under the

following assumptions:

* P(t)+S(t)+E(t)+ Q(t) = N(z); the total population size N is always constant.

e The natural rates of birth and death are included.
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* All of the natural death rates are equal to the natural birth rates.
* There is no mortality rate related to certain diseases caused by smoking.

* We take into account the effective contact rate, that is the probability of becoming a

smoker because of influential contact with smokers, which is called peer pressure.
» The effective contact rates are constants.

* We indicate the effect of the peer pressure with a non-linear term in dynamics of

smoking.

* Individuals in the quitter class may relapse after some time by making contact with

smokers.

Putting all these assumptions together with the corresponding notations, the flow
among those classes, which are mentioned-above, can be shown by the transfer

diagram as seen in Figure (3.1).

Potential
Smokers

P(1)

Smokers Quitters

E-Cigarette
Smokers
E(t)

Figure 3.1 : Flowchart of the proposed model.

All the non-negative parameters in the transfer diagram are defined as follows:

e : The natural birth and death rates of the population.

* Bi: An effective contact rate that represents the probability of a potential smoker

becoming a smoker by peer pressure.
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* B: An effective contact rate that represents the probability of a quitter relapsing to

become a smoker due to the peer influence.
* 1: The transformation rate from a smoker to an e-cigarette smoker by peer pressure.
* ¥1: The transformation rate from a smoker to a quitter by their own will.
* 7: The rate of quitting smoking by using e-cigarette, per unit time.

* ¢: The return rate to smoker class, after using e-cigarettes, by their own will.

In line with the information given above, the proposed model can be written

mathematically by a set of four non-linear differential equations as follows:

dp

S UN — P — B PS

ds

i BiPS—uS— 1S+ BSQ—NSE +cE

JE 3.1)
' =NSE —cE - UE —pE

% = NS~ 2SO0 —uQ+nE

Further, we have initial conditions
P0)=PR >0, S(0)=S>0, E(0)=Ey>0, Q(0)=Q>0.

corresponding to the proposed system.

3.2.2 Invariant region

In this section, we will construct an invariant set for the system (3.1) so that all
solutions remain sensible. Because the system (3.1) indicates the dynamics among
human population, it is logical to consider that the parameters are non-negative for all

t > 0. To put it in a mathematical notation:

0<P<N, 0<S<N, O0<E<N, and 0<Q<N.

Adding together all of the equations in system (3.1) gives us

£+d_s_|_d_E+d_Q—()
dt dr dr  dt

And the last equation yields

1P +S()+ E )+ 0(0)] =0
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It can be clearly seen that ‘%’ =0 from the last equation. And this conclusion infers that
the total population is constant. Thus, we can simply construct the positively invariant

region as
Q={(P,S,E,Q)|0<PS,E,Q<N,P(t)+S(t)+E(t)+Q(t) = N}.

Before moving on to finding the equilibrium points of the system (3.1), we first obtain

the reduced form of the system (3.1). We can reduce the system (3.1) by defining

P S E J
_— = — =9 — = an —_ = .
NP NTY NTO N1

Substituting p,s,e and ¢ into the system (3.1) gives us

dp
dt
ds

e = Bi{Nps— us — 15+ BoNsq — NNse + ce

@— Nse —ce— e — Ye
dq

prinlChe BoNsq — g+ pe

We can rearrange the system by defining

=W —pup—PiNps

(3.2)

BIN=¢&1, BN=&, nN=6

which yields:
dp

o M HP=Gips

d
d—: =& ps—us— s+ Esq— Ose+ce

de_6 o

i se —ce— lle —pe
d
d_?:?’IS—‘stq—IJQ+'J’2€

Since the p =1 — s — e — g, we can reduce the system (3.3) as seen below:

(3.3)

= =&is(1—s—e—q) —us—ys+&sq— Ose+ce

d
d_f = 0Ose—ce— lle—Pe (3.4)

dq

a Vs —Easq— g+ e

We note that the individuals, who have never smoked yet, are more curious about

smoking than the individuals who quit smoking at least once. Mathematically,

& >&. (3.5)
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To put it in other words, the starting rate of smoking is higher than the rate of

relapse.

3.3 Existence of Steady-states

We can now observe the equilibrium points for the system (3.4). Based on the
definition of the equilibrium point, which satisfies § = é = ¢ = 0, we can indicate
the corresponding equations in the system (3.4) as follows:
Eis(1—s—e—q)—us—ys+&Esq—0se+ce=0
Ose —ce — e —he =0 (3.6)
%S —&25q — Ug + e =0

From the second equation of (3.6), we get e* =0 or

S*_C+H+’y2

0 3.7

3.3.1 Smoking-free equilibrium point

Firstly, we will investigate e* = 0 case. If we substitute e = 0 into the third equation

of (3.6), then we have

* S*}/l
= — . 3.8
LTS ©G:8)
From the first equation of (3.6), and together with (3.8), we obtain
S (5" E) (e (5 = D& (1 ts°8) 59

u+s*&

Simplifying and factorizing (3.9) leads to

s* (ﬂz +un —p +s U +5 NG+ UG — 57816 + (S*)251§2> =0 (3.10)

Here, we have an explicit solution for (3.10) and that is s; = 0. Now, it can be clearly
seen that g = 0 from the third equation of (3.6) by using e; = 0 and s;; = 0. We have

shown that there is a smoking-free equilibrium which is represented by

Eo = (0,0,0).
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3.3.2 e-Cigarette smoking-free equilibrium

We know that there is another equilibrium point since we have the following quadratic

equation in (3.10):

A(s*)*+Bs*+C =0, (3.11)
where the coefficients list is
A =65,
B =& (n+n—5&)+us, (3.12)

C =p(p+rn-a1).
For simplicity, we divide the right hand side of B and C by (i + ;) and we rearrange

the system by using the following notations:

y uil% 5 2 u%%'
Then the coefficients list (3.12) takes the following form:
A =66,
B =& (u+n)(1—Ri)+ud, (3.13)

C =u(u+n)(l—Ro).

It is easy to determine that the roots of (3.11) as follows:

—B++/B>—4AC

s} =
2A (3.14)
. —B-VB?_4AC
27 2A

We can observe that A is always positive from (3.13). We should examine three cases

which are Rg < 1, Rg = 1 and Ry > 1.

Before continuing to examine these cases, we recall that & > & from (3.5). This

assumption in our model, yields that

We now examine the three cases:

* If Ry < 1 then C > 0 and B > 0. In this case, since s; < 0 and 53 < 0 there is no

positive root. Thus, these roots are not biologically significant.
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e If Ry = 1, which satisfies C = 0, it is clear that

from (3.13). Since B > 0 when R; < 1 then s3 is negative. So, we can say that s is

not sensible.

On the other hand, if we consider
s] =0 together with e] =0

then we get

q1 =0
which yields the smoking-free equilibrium Ey = (0,0,0).
e If Ryp > 1, then C < 0, and there are two distinct real roots since

B? —4AC > 0.

And these roots have always opposite signs.

Now, we will analyze the sign of s} and s3. Considering

VB2 —4AC > VB2 =| B| (3.15)

as C < 0. Taking (3.15) into consideration, we can easily see that

~B+VB _4AC B+t |B|

5] = >

2A 2A (3.16)
* —B—VB?2 —4AC —B—|B|
52 = < S O

2A 2A

Consequently, s7 > 0 and s5 < 0 when Ry > 1. Here, we do not need to calculate s

because s3 is not biologically meaningful.

Additionally, we require that

— 2 _
< B++VvB 4AC§1.

0
2A

since

0<si<1.
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If we arrange this inequality as given below

“B+\/B2—4AC<24
VB2 —4AC <2A+B
B? —4AC < 4A” + 4AB + B*
—C<A+B

then we get a relation between A, B, and C as follows:
0<A+B+C

Namely, if this relation satisfied between A, B, and C then s7 satisfies 0 < s7 < 1.
Putting all the values together in the coefficients list (3.13), we find that

A+BHC=E6 T Eu+En —Ei&+ub&+u?+upn —ué
=&m+u&+ut+un
>0

So, the sum of the values of A, B, and C are always positive. Then ST always exists when
Ry > 1. Existence of s} guarantees that the positivity of g} from (3.8). In addition, the
following condition must hold:

sitq1 < 1.

Under the conditions mentioned above, we conclude that the e-cigarette smoking-free

equilibrium always exists when Ry > 1.

Lastly, after some algebraic computations we get

51

Gt &) nEt A (- E) Gt (6 (- &) + )
B 2816 '

For simplicity, we use the following notations:

u+n—-=&=d

and
pt+yn—-&=d
Then we take

—4pdéi e+ (Gd+p&)’ = A
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Therefore, s7 can be written as

g o 48 —pb VA (3.17)
2816
By substituting (3.17) in (3.8), we obtain
4l (6551 +ué — \/Z>
q) = (3.18)

& (82w +ue—VA)

Hence, the e-cigarette smoking-free equilibrium is represented by

Er = (57,0,97).

3.3.3 Endemic equilibrium point

In addition to the equilibrium points, which are represented above by Ey and E1, there

is another equilibrium point, which is the last one, since we have (3.7).

If we substitute (3.7) into the third equation of (3.6) and solve it together with the first

equation of (3.6) then we have

a(nOu+ad) —pOu+(a—0)&))

G (ot ag)(B(u ) k)
and
o ON(Ou+ag)+(0u+(a—0)G)(0u+as))
2 0(0u+ak)(0(u+n)+ad)
where

a=c+U+r.

Then the endemic equilibrium is represented by

a * *
E; = (57627612> .
3.4 Local Stability of the Equilibrium Points

3.4.1 Stability of the smoking-free equilibrium

Let us note that

_ &
p+n

Ry

Lemma 3.4.1 The system (3.6) always has the smoking-free equilibrium Ey = (0,0,0).
It is locally asymptotically stable if Ry < 1. The equilibrium bifurcates at Ry = 1. When

Ro > 1, the smoking-free equilibrium is a saddle.
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Proof From the system (3.4), the smoking-free equilibrium can be indicated by
Ep = (0,0,0).

The Jacobian matrix corresponding to this system is as follows:

Ei(l—s—e—q)—Cis—u—n+&g—0e —&Es—0s+c —Es+&Es

J = Oe Os—c—u—"m 0
v —&q v —&s—p
(3.19)
The Jacobian matrix at Ey is calculated as given below:
Si—1u—n ¢ 0
J = 0 —c—u—7n 0 (3.20)
N |2 —u

We get the eigenvalues from characteristic polynomial, which is equivalent to
det(J |g, —AI) =0,

yields
AM=—-U, M=—c—u—9p and M3=—-u—n+E&

It can be easily seen that A; and A, are always negative since U, ¢ and 9, are always
positive. If t +; > & then A3 is negative.

In other words,

» if Ry < 1 then all eigenvalues become negative real numbers and it shows that the

smoking-free equilibrium is stable.

* if Rp =1 then the system (3.6) has a non-hyperbolic equilibrium. Thus, there is a

bifurcation for the system (3.6).

* if Ry > 1, the smoking-free equilibrium is a saddle since A3 becomes positive real

number as A; and A, are negative real numbers.

Next generation matrix method

The corresponding basic reproduction number of the smoking-free equilibrium can be
found in another way which is called next generation matrix method [44]. In this
method, the aim is to determine the spectral radius of the next generation matrix

mentioned in [45]. The dynamics are composed by a system of non-linear ordinary
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differential equations that represents the change with time for all sub-population
[44,46] . To get Ry, we only take into consideration the cases that apply to infected
people. For this reason, we will construct a linearized infected subsystem and
we already know that any linear system of ordinary differential equations can be
represented by a matrix [47,48]. Let x = (s,e,q)T, and then the system (3.4) can

be broken down as follows:
dx B
dt

where .Z (x) is the transmission part and 7 (x) is the transition part [45]. In other

F(x) =7 (x), (3.21)

words, .7 (x) denotes the new infection rates and ¥(x) denotes all the other rates.

Thus, we construct (3.21) by .% (x) and ¥ (x), which are given below:

Z1(x) Si(1-s—e—q)s+casq
Fx)=| FHAkx) | = 0
F: 0
() (3.22)
Y1 (x) Us + 15+ Ose —ce
V(x)=|%kx) | = —0se+ce+ e+ pe
73(x) s+ 8sq+ g — pe
The related Jacobian matrices of .% (x) and #'(x) are easily calculated,
—Ci(—1+e+q+2s)+q5 —sq1 s(=C1+&)
DF(x) = 0 0 0
0 0 0
(3.23)
e0+u+mn —c+s0 0
DYV (x) = —ef c+uU+7y—s6 0
—h+q& — 1+ sS

Thus, the Jacobian matrices evaluated at the smoking-free equilibrium point Ey =

(0,0,0) can be shown by .% (x) and ¥ (x), respectively

& 00
F=|10 00
0O 0O
(3.24)
K+ —c 0
V= 0 c+u+y O
—"h - u

To construct the next generation matrix FV ~!, we firstly find the inverse of V. Then
V=1 can be easily calculated as

1 c
TR (u+%)(i‘+u+7/z)
vi=|[ © T : (3.25)
% up+v(c+p) 1
plp+n)  pp+n)lctpt+pr) u
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We easily get the next generation matrix by some computations, which is

&1
—1 H+n O 0
FV—' = O 0 0]- (3.26)
0O 00

Last step is determining the spectral radius (p) of the next generation matrix [49].

More clearly, we calculate the maximum eigenvalue of FV 1. Tt can be clearly seen

that the maximum eigenvalue equals to le% from (3.26). Thus, we have
Ro— oy — &

3.4.2 Stability of the e-cigarette smoking-free equilibrium

In Section (3.3.2), we defined the following parameters:

R(): él )
H+nN

M :GST—C—,U—’}Q,

(L +s78) (N (1 +57181) + (U +578) (2p + (257 — 1)E1 +5162))

B=
C = (H+578&) (1 + (257 = &) (1 +578)> + 1 (K + 516121 +5162)))-

Lemma 3.4.2 If Ry > 1 and s] +q] < 1 then the e-cigarette smoking free equilibrium
E1 = (s1,0,q}) exists. Moreover, E\ is stable if and only if A; < 0 together with B > 0

and C > 0.

Proof We do not substitute the values of s7 and g7 explicitly to simplify the notations.

For that reason, we use e] = 0 and get the Jacobian matrix as

Si(1=s1—q}) —&isT—pu—n+&q; —&isi—0s7+c —&is7+ &)
J= 0 Os]—c—U—"7P 0
" — &4 42 —&st— 1
(3.28)
We have constructed the characteristic polynomial using the relationship between ¢*

and s*, which is obtained in (3.8), as follows:
(—c+0s]—A—pu—p)AA2+BA+C)=0 (3.29)
where the coefficients list is
A= (u+si&)?
(1 +5782) (v (1 +57161) + (1 +5162) 21 + (257 — 1)&1 +5182)) (3.30)

(1 +578) (1 + (25T = DEN (1 +5182)* + 1 (W +5781 (21 +5782)))
57

B=
C=



It can be clearly seen that the first eigenvalue of J |g, is found as
M=(—c+0si—p—"n).
Since we have a quadratic equation as

AV 4+ BAL+C=0

in (3.29), it is easily seen that we have two other eigenvalues as stated below:

_B4 /B —4AC

I =
2 24
_B— /B —4AC
A= _
2A
Further, we already know
B
2 3 A
C
A A{ = =
2/\3 A

(3.31)

(3.32)

(3.33)

To interpret the signs of the eigenvalues, we should examine the signs of A, B and C.

We take notice that A is always positive since u > 0, & > 0 and s7. Thus, we should

study the signs of B and C. We have two cases here as given below:

« If C < 0, it is clearly seen that
B*—4AC>0

and it yields
VB2 —4AC > 0.

It shows that A, and A3 are real roots. And we also obtain

Az <0

(3.34)

(3.35)

in (3.33). It can be clearly seen that A, and A3 always have opposite signs. Thus, if

C < 0 then the quadratic equation always has two real roots and these roots always

have opposite signs.

Consequently, the e-cigarette smoking free equilibrium is saddle, irrespective of

the sign of A;.

58



» If C > 0, the information we have is inadequate to say
VB2 —4AC >0
or
VB2 —4AC < 0.

For this reason, we can not determine whether these eigenvalues are real or not.

However, we can analyze the signs of the real parts of the eigenvalues.

In this case, we always have

AAz >0 (3.36)

since € > 0. So, we should examine the sign of B as follows:

— If B < 0, we observe
A+ 23> 0. (3.37)

Putting (3.36) and (3.37) together yields
Re(lz) >0 and Re()tg,) > 0.

Thus, the e-cigarette smoking-free equilibrium is unstable. More specifically,

x If A1 < 0 then the e-cigarette smoking free equilibrium is saddle.

s If A1 > 0O then the e-cigarette smoking free equilibrium is unstable focus

or unstable node.

- If B > 0, we easily observe

A+ A3 <0. (3.38)

If we consider (3.36) with (3.38), then we have
Re(A;) <0 and Re(A3) <O.

Moreover,

« If A; > 0, then the e-cigarette smoking free equilibrium is saddle.

« If A1 < 0, then the e-cigarette smoking free equilibrium is stable focus

or stable node.
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3.4.3 Stability of the endemic equilibrium

Let us note that

B=y+u—& +2&s5+e5(0+&)).

In the next Lemma, we assume that &; = &, since otherwise we do not get analytical
expressions. We will construct the Jacobian matrix at E; = (§,e3,43) and then we will

assume that & = &,. In (3.45), we will rearrange the Jacobian matrix using &; = &;.

Lemma 3.4.3 Suppose that & = &,. If

081(0u + ab) o1 g 2SI TNOLtAl)
(Ou+0a&)(0r+0u+ad) — nOu+as)
with
s5+e5+q5 <1
then the endemic equilibrium E, = (55, €5,q5) exists. Moreover, E, is stable if and only

if B> 0.

Proof We have proved that the system (3.6) has the endemic equilibrium, yet this
equilibrium is not always biologically meaningful. Before continuing to stability
analysis we firstly find some restrictions to have admissible equilibrium solutions. To

get meaningful results, e5 and g5 must respectively satisfy

—a0y (Ou+ 1) — abu(Ou+ o) — a’E1(0u+ ady) + o0& (0u+ad) >0

(3.39)
and
oy (Bu+ac) —andu—ap(a—0)8 >0 (3.40)
These conditions are respectively equivalent to
631 (0u+ as,)
>1 341
(01 + a0) (07 + 64+ aBs) R
and
01& +n(0u+ad) > (3.42)

»Ou+ad)
in (3.39) and (3.40).
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Besides, we take into account
s;+es+qs5 < 1. (3.43)

We can now study on stability analysis of the endemic equilibrium. The Jacobian

matrix at E; = (§,e3,43) is found as follows:

Si(l-g—e—q)—Sig—Uu—n+&g—0e; —§ig—a+tc —&ig+&hy

J= o¢; 0 0
n—&4q; %) —&G—Hu
(3.44)

Under the assumption &; = &, the Jacobian matrix becomes

Si(l=s;—e;—q5) = S1s5 —u—n+81g5—0e; —Cis5—a+c 0

o 0e} 0 0
v —&14; » —&is5— 1
(3.45)

For simplicity, if we consider
A=1,
B=yi+u—E& +28is5+e3(0+&1), (3.46)
C=e30(a—c+Es3)

we obtain the eigenvalues of (3.45) as listed below:

M=—u—Es;
12:%(—1@— EZ—4ACA) (3.47)
7L3=%<—B+ B2_4AA>

If we consider (3.47) with s5 >0, & > 0 and u > 0 we can clearly see that A; < 0.

To interpret the stability of the endemic equilibrium point, we firstly construct the
quadratic equation whose roots correspond to A, and A3. Then we have the following
quadratic equation:

AV +BA+C=0 (3.48)
the coefficients of which are given in (3.46). We should examine the sign of C.

We have an observation which indicates that € is always positive since the equilibrium
is always positive. We can easily see that C can not be negative in the following

equation:
a—c=(c+ptp)—c
(3.49)
=H+7.
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If we combine (3.49) with € = es0(a—c+E&sy), we get
C=e0(u+p+ésy) = C>0 (3.50)

since all the parameters are positive. So, we should examine the sign of B since C is

always positive. Now, we have two cases which are given below:

e If B > 0, then we have

N+u+2855+e3(0+81)>8 = e(0+81)>8 2855 —u—n
ois St =255) -7

2 0+ &
(3.51)
If we consider (3.48), we always achieve
B
Mh+A3=——
22 (3.52)
Az =—
23 0
Putting (3.50) and (3.52) together yields
Re(A2) <0 and Re(A3) <0 (3.53)

since

AM+A3<0 and A3 >0.

Thus, the endemic equilibrium is stable focus or stable node since 4, A,, A3 < 0.

 If B < 0, we obtain
1—28%)—u—
e§<§1( $)—H—"
0+ &

In the same technique where B > 0, we get

Re(A) >0 and Re(A3) > 0. (3.54)

Consequently, the endemic equilibrium is saddle since A; < 0 while A, and A3 are

positive.

To achieve better interpretations, this analysis will be done with numerical solutions in

the next chapters.
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3.5 Global Stability

3.5.1 Global Stability of the smoking-free equilibrium point

Let us recall

&
u+n

Ry =

Lemma 3.5.1 If Ry < 1 and % < U+ aTél + % are satisfied then the smoking-free

equilibrium is globally asymptotically stable.
Remark 2 When }’2 < 1oru < & is satisfied, we obtain ”7’2 <u+=3t aé, + 5”/2.

Proof We construct a Lyapunov function to examine the global stability of Ey. We

consider the following Lyapunov function:
V(s,e,q) = s+ he+kq. (3.55)

with i,k > 0. Itis easy to see that V (Ep) =0 and V(s,e,q) > Ofor all (s,e,q) # (0,0,0).
Then we need to find the derivative of the Lyapunov function and we will choose / and

k accordingly. Let us define 4 and k as

&1

ptn—& =1+ (3.56)

i

Then we find the derivative of the Lyapunov function:

V=—&s"—kug+s(E —pu—n+kn)+

k=

(3.57)
e(c—hc—hp —hy, + k) +sq(—&1 + & — k&) + se(—S1 — 6 + h0)
Ey is locally asymptotically stable if and only if Ry < 1. This yields
S <p+mn (3.58)

and this also guarantees that k > 0. However, this is not enough to obtain V < 0.
We now clearly require V < 0. It is easy to see that & is always positive. Using the

positiveness of & together with ¢ — hc —hu — hy, +ky, < 0 we get

B % oh (3.59)
% 0 N

where o0 = ¢+ 1L + . By (3.56), it is easy to see that V < 0 since & > &,. We proved
that when (3.58) and (3.59) are satisfied together then Ej is globally asymptotically
stable in line with Theorem (1.2.2).
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3.5.2 The unsuccessful search for a Lyapunov function for the global stability of

the e-cigarette smoking-free and endemic equilibrium points

To examine the stability of the e-cigarette smoking-free and endemic equilibrium
points we studied on different forms of Lyapunov function [50, 51]. For instance,

we considered the functions

V=xi(s—s5) +x(e—e")?+x3(q—q*)* (3.60)
and
V =x; (s—s* —s"In <si*>> +x (e—e* —e*In (é)) + (q—q*—q*ln (%)) :
(3.61)

However, we could not find conditions on x;, x» and x3 for which the above choices of
V are Lyapunov Functions. Then we considered another Lyapunov function candidate

for e-cigarette smoking-free equilibrium which is given below:

V=x (s—s*—s*ln (%)) +x7 (e—e*—e*ln (%)) +x3 (q—q*—q*ln (%))
S e q

(3.62)
Using (3.62) gives us more useful calculations to use Theorem (1.2.2). Firstly, let us

find the derivative of (3.62):
V =x (1 - S—) + 56 <1 - e—> + 134 (1 - q—)
s e q
ce .
=X [61(1—s—e—q)—u—%%m—ewﬂ (s—s") (3.63)

* S ¢ *
+x[0s—c—u—p|(e—e")+x3 {}’1&—52S—N+Y25} (a—9q")

If we substitute

0s* =c+u+n,
* * * * * ce’
Ht1 =6l =s" =" —q") +&g" = 0"+ —, (3.64)

s « e
u=7——8&s"+p—
q q

into (3.63), we obtain

Vo [+ e+ (0] g =)~ 0 —e) +elC - ) ()
F08(s—5")(e — ) [n (5 - q—) G-+ (;] - } (-4

= —x1&i(s—5" )+ (s—5)(e—e) [-x16 =10 +:20] + (¢ — ¢*) (s — ) 1 &2 — 11 &1 — 1382
+cx (f - i—*) (s —5%) + P23 (2 - 2—*) (¢—4q")+1x3 (51 - :F (¢—q").

S
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We can not still yet show that V < 0. Thus, the above V does not satisfy the condition
of the theorem (1.2.2), either. As a result, the existence of Lyapunov functions for the
model or not is still an open problem. Future research could be focused on finding

appropriate Lyapunov function(s) for the problem.

3.6 Numerical Results

In this section, we present some numerical simulations using the parameters given in
Table (3.1), which was used in [7], for the system (3.4). In line with the information
obtained from [7], we assumed that the mortality rate, u, is estimated by the inverse
of life expectancy at birth for the total population in the United States [52]. The data
used in this study were obtained from people who smoked for 50 years according to
National Health Interview Survey(NHIS) [53]. Taking this data into consideration, we

changed our parameters to some extent in order to get more meaningful result for our

model.
Table 3.1 : Description and estimation of parameters.
o Value
Parameter Description (year") Reference
H Birth and death rates 1/79.8 Estimated in

[52]

Transmission rate from potential
&1 smoker compartment to smoker | 0.1961
compartment due to peer pressure

Estimated in
[54]

Estimated in

& Rate of relapse due to peer pressure 0.0101 [54]
" Treatment rate of people who quit 0.0772 Estimated in
smoking by their own will [54]

%) The cessation rate by using e-cigarette |  0.1008 ][E7s,]t1mated m
c The return rate to smoker class, after 0.0822 Estimated in
using e-cigarettes, by their own will [7]

The transformation rate from smokers Estimated in
0 to e-cigarettes smokers due to peer | 0.1245

[7]

pressure
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3.6.1 Numerical verification of stability of the smoking-free equilibrium

The parameters are selected in compliance with the Table (3.1). We investigate the

simulations of the smoking-free equilibrium in four cases.

In the first case, we choose

" =0.35 (3.66)

instead of the one given in Table (3.1). The corresponding Ry value is

Rp =0.5409 < 1.

If we consider the condition which is mentioned in (3.59) and rearrange it as

ad, n i up

R=u+
T il N

where @ =c+ U+ p.

Then we find
MR =0.3733 > 0.

We give the simulations where Ry < 1 as 98 > 0 with different initial conditions in

Figures (3.2) and (3.3). The figures verify that the smoking-free equilibrium
Ep= (Séaeéa%) = (07070)

is globally asymptotically stable.

0.8

T

q(t)

0.5 1 5 10 50 100 500
t (time)
Figure 3.2 : Graph of s(¢), e(¢) and g(r) with the initial conditions s(0) = 0.4,
¢(0) = 0.3 and g(0) = 0.2. Ry = 0.5409 and R = 0.3733.
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0.8/ q(t)
0.6
g I
> 0.4
‘ e(t)
0.2 i s(t)
0.0 ==========mm- ——m oS -
05 1 5 10 50 100 500

t (time)
Figure 3.3 : Graph of 5(7), e(¢) and ¢(¢) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and ¢(0) = 0.25. Ry = 0.5409 and & = 0.3733.

In the second case, we investigate the case which satisfies Ry < 1 with SR < 0.

Choosing
uw=0.14, £ =0.1, y1=0.015 and 6=1

yields
Ry =0.6451 and R = —0.0965.

Figures (3.4) and (3.5) are given for different initial conditions which are

and

respectively.
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0.4f ’
s(t)

0.3 &0

go_z,q(t)

by

0.1}

0.0[========mmmmmmmm oo oo S ‘
0.1 05 1 5 10 50

t (time)
Figure 3.4 : Graph of s(¢), e(¢) and g(¢) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values u = 0.14, & = 0.1,
" =0.015and 8 = 1. Ry = 0.6451 and R = —0.0965.

0.5 — e(t)’
0.4}
0.3

q(t)
0.2} S(t)

s,e,q

0.1}

L] i ‘
0.1 05 1 5 10 50
t (time)
Figure 3.5 : Graph of s(¢), e(¢) and g(¢) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and ¢(0) = 0.25. Parameter values Parameter values
u=0.14,& =0.1,7,=0.015and 6 = 1. Ry = 0.6451 and
R = —0.0965.

The figures suggest that E is globally asymptotically stable for Ry < 1 and R <
0. If we compare the first case with the second case, we see that the positiveness
of R is insignificant when Ry < 1. Thus, the smoking-free equilibrium is globally
asymptotically stable when Ry < 1. Consequently, we see that YR > 0 is necessary for
Lemma (3.5.1) but actually it is not necessary to interpret the stability of the system

when Ry < 1.
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3.6.1.1 Bifurcation at Ry =1

In the third case, we examine the dynamics of system (3.4) which satisfies Ry = 1.
The first observation of this case shows that R is always positive when Ry = 1. It is

easy to see this from the following notation:
R=p+— & %@—M- (3.67)

since

Ry=1 = & =u+n (3.68)
Substituting (3.68) in (3.67) yields

= u+ié+yw+% )

ag)
= U+ 0 +%.

(3.69)

It is obvious that the value of R is always positive when Ry = 1. It is also easy to

observe that R is always positive when Ry > 1.

To get the illustrations of this case, we choose
@ =0.0125 and & =0.0897

and we get

Ro=1 and R =0.2541.

Then we obtain the following graphics for different initial values and these graphics
suggest that the smoking-free equilibrium E is globally asymptotically stable when
Rop = 1. In other words, the number of smokers, e-cigarette smokers and quitters
eventually goes down to zero when Ry = 1. However, this convergence occurs in a

very long time as seen in Figures (3.6) and (3.7).
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0.0 éf---f -------- ——————== ‘ ‘ *
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Figure 3.6 : Graph of s(t), e(¢) and ¢(r) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values u = 0.0125 and
&1 =0.0897. Ry =1 and R = 0.2541.

q(t)

05 1 5 10 50 100 500
t (time)
Figure 3.7 : Graph of s(¢), e(¢) and g(¢) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and ¢(0) = 0.25. Parameter values pt = 0.0125 and
£ =0.0897. Ry = 1 and R = 0.2541.

As discussed before, there is a bifurcation at Ry = 1. That is for Ry > 1 the

smoking-free equilibrium loses stability. To see the bifurcation, we take
uw=0.0125 and & =0.098

and we obtain

Rp=1.0925 and R =0.2780. (3.70)
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The corresponding figure is shown by Figure (3.8) with the initial conditions

5(0)=0.4, €(0)=0.3 and ¢(0)=0.2. (3.71)

0.6}

0.5}

04} 1
A e < A — st =0.0130
g. 0.3} 1

e;=0
0.2} ]
f q(®) q: =0.0798
0.1¢ —Ur-s(t)
0.0[======== e I - )
1 5 10 50 100 5001000
t (time)

Figure 3.8 : Graph of s(¢), e(¢) and ¢(¢) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values u = 0.0125 and &; = 0.098.
Rp =1.0925 and R = 0.2780.

We also obtain

Ry=1.1148 and R =0.2837 (3.72)
and
Ro=1.2151 and R =0.3096 (3.73)
by taking
©w=0.0125 and & =0.1
and

1 =0.0125 and & =0.109

respectively. Figures (3.9) and (3.10) are given with the same initial conditions

mentioned in (3.71).

71
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0.1F ~Trs(t)
\/I s
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t (time)
Figure 3.9 : Graph of s(¢), e(¢) and g(r) with the initial conditions s(0) = 0.4,
e(0) =0.3 and ¢(0) = 0.2. Parameter values gt = 0.0125 and &; = 0.1.
Ro =1.1148 and R = 0.2837.

0.6/
0.5/
0.4} ]
g E | memem—— s7=0.0273
¢ 0.3 ]
X ] e: =0
0.2 ]
[ -+—q(t) *
: ! g} =0.1650
0.1F \/ 1~ s(t)
S NG i
0.0 - - ‘ - : ‘ "1 e(t)
05 1 5 10 50 100 500

t (time)
Figure 3.10 : Graph of 5(¢), e(¢) and ¢(¢) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values y = 0.0125 and
&1 =0.109. Rp = 1.2151 and R = 0.3096.

The Figures (3.8), (3.9) and (3.10) show that the smoking-free equilibrium exhibits a
transition, which is called a bifurcation, when we increase the value of Ry with a very
small perturbation from the value of 1. Then the smoking-free equilibrium becomes

unstable.

In the fourth case, to see the solution behaviour of the system (3.4) we consider a case

where Ry > 1. From now on, we fix the value of the basic reproduction number as
Ryp=2.1854>1
by parameters given in Table (3.1). Furthermore, we assume the initial conditions as

5(0)=0.4, €(0)=03 and ¢(0)=0.2
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for all the simulations in the second case. Additionally, let us recall that R is always

positive when Ry > 1 from (3.67), (3.68) and (3.69).

The parameters as
£,=02, =001 and 6=0.0124

and we find

R =1.6925.

and the corresponding figure is given in Figure (3.11).

. —s(1)
05/ :
0.4} ]
i —q(t)
T 0.3F ]
Q [
") :
0.2]
01!
0.0 e(t)
0.1 05 1 5 10 50
t (time)

(3.74)

— 57 =0.5493
— e;1=0

q; = 0.3464

Figure 3.11 : Graph of s(¢), e(r) and ¢(¢) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values & = 0.2, » = 0.01 and
0 =0.0124. Ry = 2.1854 and R = 1.6925.

We give the second figure by using all the parameters as given in Table (3.1). Then we

find
R =0.5601

(3.75)

and we obtain the corresponding simulation as seen in Figure (3.12).
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0.5 1 5 10 50 100
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— s7=0.0837
— e1=0

q; = 0.4835

Figure 3.12 : Graph of s(z), e(¢) and g(¢) with the initial conditions s(0) = 0.4,
¢(0) = 0.3 and g(0) = 0.2. Ry = 2.1854 and R = 0.5601.

For the fifth and sixth figures in the second case we obtain

R = 0.0469
and
R =0.0433
by choosing
Y. =0.0108, ¢=0.008, 6=0.7
and
Y =0.0108, ¢=0.0001, 6=09
respectively.
05/
0.4; ]
0.3} —q(t)
o | \/"
n [ ]
0.2 ]
01} el
i _—
) S-S 1)
05 1 5 10 50 100
t (time)

(3.76)

(3.77)

— s =0.0447
— e} =0.0551
q; =0.3120

Figure 3.13 : Graph of s(7), e(#) and ¢(r) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values y» = 0.0108, ¢ = 0.008
and 6 = 0.7. Ry = 2.1854 and R = 0.0469.
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Figure 3.14 : Graph of 5(¢), e(7) and ¢(¢) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and ¢(0) = 0.2. Parameter values % = 0.0108, ¢ = 0.0001
and 0 = 0.9. Ry = 2.1854 and R = 0.0433.

As seen in Figures (3.11) and (3.12), the e-cigarette smoking-free equilibrium is stable
while the smoking-free equilibrium is unstable. Observing Figures (3.13) and (3.14)
shows that the smoking-free equilibrium is unstable while the endemic equilibrium is
stable. In addition to above all, putting (3.74), (3.75), (3.76) together with (3.77) shows
that if we decrease the value of R the solutions switch from e-cigarette smoking-free
equilibrium and then approach the endemic equilibrium when Ry is sufficiently larger

than unity.

3.6.2 Numerical verification of stability of the e-cigarette smoking-free

equilibrium

To show the solution behaviour of the e-cigarette smoking-free E;, we conduct some

simulations.

In the first case, we choose all the parameters as given in Table (3.1). For these values

of the parameters we obtain the following steady states:
51 =0.0837, ¢j=0 and g¢]=0.4835.

Clearly, the e-cigarette smoking-free equilibrium is meaningful, biologically. We
remark here that

Ro =2.1854.

We also get
A <0, B>0 and C>0
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from subsection (3.4.2). We conduct two simulations for this case with different initial

conditions:

0.7¢
0.6
0.5
o 0.4
§ 0.3}
0.2}
01¢
0.0

—q(t)
] s} =0.0837

0.5 1 5 10 50 100
t (time)
Figure 3.15 : Graph of s(z), e(¢) and g(¢) with the initial conditions s(0) = 0.6,
e(0) = 0.15 and ¢(0) = 0.2. Ry = 2.1854.

—q(t)

s7 =0.0837
————— e =0
----- q; =0.4835
-/—S(t)
S S — —e(t)
05 1 5 10 50 100
t (time)

Figure 3.16 : Graph of 5(¢), e(¢) and ¢(¢) with the initial conditions s(0) = 0.2,
e(0) =0.4 and ¢(0) = 0.3. Ry = 2.1854.

As in figures (3.15) and (3.16), the e-cigarette smoking-free equilibrium is stable.

In the second case, we change some parameters in compliance with Table (3.1). Taking
Y =0.008, ¢=0.0002 and 6 =0.5.

yields
Rp=2.1854, A, >0, B>0 and C>0.

We also have the steady states
51 =0.0837, ¢]=0 and g¢j=0.4835.
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Using the same initial conditions as in figures (3.15) and (3.16) respectively, we obtain

the figures which are given below for the second case.

0.5 N . ]

o A |
S} 03 C - A A [ B *
2 \ 1 — q(f) — s%5=0.0414
- v :
0.2¢ . — €5 =0.0648

q5 = 0.2872

1/ e(1)
N1 vﬁn—/_e
0_0__________________________\l__ _______ _\—S(t)

t (time)
Figure 3.17 : Graph of s(z), e(r) and ¢(¢) with the initial conditions s(0) = 0.6,
e(0) =0.15 and ¢(0) = 0.2. Parameter values ¥, = 0.008, ¢ = 0.0002
and 0 = 0.5. Ry = 2.1854.

] — s5=0.0206
ol A An 3 — % =0.0604

[ 11— t)

; vV V" a g5 = 0.1629
0-1¢ \\II\ A‘M'fe(t)
o.o;-‘-------7---‘———————--————--------j\s(t)
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t (time)
Figure 3.18 : Graph of 5(¢), e(r) and ¢(¢) with the initial conditions s(0) = 0.2,
e(0) = 0.4 and ¢(0) = 0.3. Parameter values ¥ = 0.008, ¢ = 0.0002
and 6 = 0.5. Ry = 2.1854.

We clearly see that the e-cigarette smoking-free equilibrium is unstable as the endemic
equilibrium

E} = (0.0414,0.0648,0.2872)

is stable in Figure (3.17). Additionally, if we observe Figure (3.18), we realize that the

solution curves approach

= (0.0206,0.0604,0.1629).
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Consequently, the e-cigarette smoking-free equilibrium is unstable if A; > 0 when B is
positive. It is clear to see that the systems oscillates to the endemic equilibrium point.
We note that the e-cigarette smoking-free equilibrium exists when Ry > 1 as seen in

all the figures which are given in e-cigarette smoking-free equilibrium simulations.
3.6.3 Numerical verification of stability of the endemic equilibrium
We use all the parameters given in Table (3.1) and the steady states as

55 =1.5705, e5=—-1.0724 and g5 =0.4628.

As we know, these steady states are not biologically meaningful. For this reason, we

select some parameters as given below:
n=0.05 =002, ¢=0.01 and 6 =0.39. (3.78)

In the first case, we have two figures for different initial values:

—aq(t)

s3 =0.1090
————— e; =0.0492
-s(ty  —-—-- q; =0.4722
~—e(t)
0:5 1 5 1‘0 5‘0 160
t (time)

Figure 3.19 : Graph of s(¢), e() and g(r) with the initial conditions s(0) = 0.3,
e(0) = 0.45 and ¢(0) = 0.15. Parameter values y; = 0.05, y» = 0.02,
¢=0.01 and 6 = 0.39.
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Figure 3.20 : Graph of s(¢), e(t) and ¢(¢) with the initial conditions s(0) = 0.35,
e(0) = 0.4 and ¢(0) = 0.2. Parameter values y; = 0.05, 1 =0.02,
¢=0.01 and 6 = 0.39.

As seen in Figures (3.19) and (3.20), the endemic equilibrium is stable.

In the second case, to see the stability of the endemic equilibrium point, we have

& = &, as chosen in (3.4.3).

We use the parameters as mentioned in (3.78) together with
& =& =0.1961.
Then we have the steady states
55 =0.1090, €5 =0.2269 and ¢;=0.2945.

We observe

from subsection (3.4.3).

If we use the same initial conditions for Figures (3.19) and (3.20) respectively, then we

get the Figures (3.21) and (3.22).
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Figure 3.21 : Graph of s(z), e(¢) and g(¢) with the initial conditions s(0) = 0.3,
e(0) = 0.45 and ¢(0) = 0.15. Parameter values &; = &, = 0.1961.

s5=0.1090
————— e; =0.2269
————— q5 = 0.2945
05 1 5 10 50 100
t (time)

Figure 3.22 : Graph of s(¢), e(r) and ¢(¢) with the initial conditions s(0) = 0.35,
¢(0) = 0.4 and ¢(0) = 0.2. Parameter values &; = &, = 0.1961.

We clearly see that the endemic equilibrium is stable for §; = &;.

3.7 Conclusions

In this study, our main objective was to investigate the effect of e-cigarettes on smoking
cessation. We have constructed a differential equation model to examine the impact of
using e-cigarettes on smoking cessation by peer pressure and analyzed their dynamical

behaviours.

The model exhibits three equilibrium solutions which are the smoking-free
equilibrium, e-cigarette smoking-free equilibrium and endemic equilibrium. We

established necessary conditions for the existence of these equilibrium solutions.
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We also obtained necessary and sufficient conditions for the local stability of these
equilibria.

By the next generation matrix method, we defined the basic reproduction number for
the local stability of the smoking-free equilibrium and by constructing a Lyapunov
function we assigned the condition for the global stability of the smoking-free
equilibrium. To complete the analysis and illustrate the theoretical results achieved
in the sections before, we performed numerical simulations using Mathematica. The
numerical simulations were performed using the data obtained from people who
smoked for 50 years according to National Health Interview Survey(NHIS) [53].
Taking this data into consideration, we changed our parameters to some extent in order

to get more meaningful results for our model.

As we already know, the basic reproduction number has great importance in
epidemiological models. In this model, we have obtained the basic reproduction
number for the smoking-free equilibrium and e-cigarette smoking-free equilibrium.
In the numerical figures plotted for smoking-free equilibrium, we observed that when
Ry < 1, the smoking-free equilibrium Ej is globally asymptotically stable. We noticed
that the case where Ry < 1 is a sufficient condition to achieve the global asymptotically
stable results for the smoking-free equilibrium. In other words, the value of R is not

necessary to interpret the stability of the system when Ry < 1.

We noted that when Ry > 1, the smoking-free equilibrium Ej is unstable while the
e-cigarette equilibrium or the endemic equilibrium is stable. We have questioned the
importance of R in this situation. Our results indicate that another non-dimensional
parameter R controls whether the endemic or the e-cigarette smoking-free equilibrium

becomes stable for Ry > 1.

When Ry = 1, the smoking-free equilibrium is globally asymptotically stable. Yet,
this convergency is effective in too long time. We also considered the situation which
provides a transition when we increased the value of Ry with very small perturbation
from unity. This transition is called a bifurcation. In other words, the equilibrium point

changes its behaviour from stable to unstable with very small perturbation of Ry.

The observation of the numerical simulations of the e-cigarette smoking-free

equilibrium verifies our theoretical results. = We observed that the e-cigarette
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smoking-free equilibrium exists when Ry > 1. Additionally, the figures show that if
A1 becomes positive then the system oscillates to the endemic equilibrium point as the

other stability conditions are satisfied.

Moreover, we examined the illustrations related with the endemic equilibrium and we
found that the endemic equilibrium does not exist with the data given in the table in [7].
We changed these parameters in a nominal way to get a result where the endemic
equilibrium is stable. However, we could not find any condition for the endemic
equilibrium is stable when &; # &,. But on the other hand, we confirmed the stability
conditions when &; = &;. This means that, the endemic equilibrium is stable. We
obviously see the importance of e-cigarettes since the number of smokers decrease and

the number of quitters increase as the number of e-cigarette smokers increase.

In conclusion, by the established dynamical model we verified the efficacy of
e-cigarettes for different situations. In other words using e-cigarettes can properly
suppress the desire for tobacco cigarettes and may be a successful way in preventing
tobacco smoking. Yet, we should always consider the possibility of relapse for smokers
and e-cigarette smokers. Using e-cigarettes is quite effective to decrease the number
of tobacco smokers, but our analysis indicates that it does not have a remarkable effect
on the number of quitters. We conclude that e-cigarette is not a tool to quit tobacco
smoking. We therefore recommend that, the society should be made conscious about
the correct methods of quitting smoking and create awareness about the right methods

of smoking cessation.
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