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FINITE-TIME CONTROL OF
SWITCHED LINEAR SYSTEMS WITH TIME-DELAY

SUMMARY

Control theory is a branch of engineering and mathematics that examines the system’s
behavior by adjusting the input of the dynamic system according to its output. The
systems examined can be discrete or continuous according to time, in some cases the
behavior of the dynamical system may consist of a combination of continuous and
discrete events. Such systems are called hybrid systems.

A certain class of hybrid systems is called switched systems. The switched systems
are continuous systems with discrete and instant switching events. At the analysis
stage, switched systems and hybrid systems differ by neglecting the details of the
discrete behavior and instead considering all possible switching patterns from a certain
class. Many works related to the switched systems, asymptotic stability is examined.
However, in most practical applications, finite-time (FT) stability/boundedness is the
main concern, i.e., the behavior of the system is kept at certain boundaries in FT.
Asymptotically stable systems may not be FT stable/bounded and FT stable/bounded
systems may not be asymptotically stable. Another study area for switching systems is
the dwell time (DT) or average-dwell time (ADT). DT is the minimum time difference
between successive switching instants whereas the average time difference between
successive switching instants is called ADT.

Some dynamical systems in engineering may depend on the past status of the system.
Such systems are called time-delayed systems, and a time delay can cause poor
performance or system instability.

In this thesis, switched systems with completely unstable and mixed stable subsystems
are considered. FT stability/boundedness and H., FT boundedness of switched
systems with interval time-delay and disturbances are examined. In the beginning,
the difference between FT stability and asymptotic stability are shown on the examples
and a sufficient condition for FT stability of the switched system, which is composed of
linear time invariant subsystems having non-Hurwitz system matrices is derived. New
sufficient conditions on the existence of observer-based controller for FT boundedness
and He-control of switched linear systems with time-varying interval delay and
exogenous disturbances are obtained by using Lyapunov-Krasovskii functional. The
observer-based controller is designed without any matrix decomposition and new ADT
bounds are introduced for switched systems with both completely unstable and mixed
stable subsystems, seperately. These bounds contain some unknown constants which
depend on nonlinear terms. These terms are composed of the matrices from the
solution of the sufficient conditions. An algorithm is presented for the calculation of
unknown constants in the ADT bounds in terms of well-known cone complementarity
linearization method. Similar work is achieved for the state feedback design.

In the first chapter, a system with a control process is briefly introduced. The studies
on hybrid systems and switching systems are summarized. On the other hand, studies
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on FT stability and studies on ADT are mentioned. Thereafter, the references on
time-delay systems are given. Latter, literature overview is completed by marking
the open parts of the switched systems with time delay.

In the second chapter, the basic definitions and background used in this thesis are
introduced. First of all, the sufficient conditions for the existence and uniqueness of
the solutions of the systems of differential equations are given. Hybrid systems are
introduced by an example in engineering with vehicle gear dynamics. State dependent
switching and time dependent switching are discussed in detail. Constrained switching
concepts DT and ADT are introduced. FT stability and boundedness definitions
are given by comparing with Lyapunov stability definitions, conceptual differences
between these two stability types are presented and an example is given on switched
systems. In the given example, it is shown that two stable subsystems are observed to
be stable or unstable depending on different periods of switching. The notation used
in the thesis, concepts of vector norm and matrix norm to be used in the third section,
the Schur complement lemma, Gronwall’s lemma and Jensen inequality to be used in
the following sections are presented.

In the third chapter, FT stability of switched linear systems with stable, unstable and
mixed stable subsystems are examined by using vector and matrix norms. FT stability
conditions related to the eigenvalues and the condition numbers composed by the
(generalized) eigenvectors of the subsystem matrices are obtained. Possible activation
numbers of the subsystems are also deduced from these conditions. New ADT bounds
to ensure FT stability of the switching system having negative, positive and mixed
spectral norm bounds are proposed. Finally, several numerical examples are provided
to demonstrate the effectiveness of the theoretical results.

In the fourth chapter, the FT boundedness analysis of switched systems with
interval time-delay using state feedback is considered. ADT is obtained with
sufficient conditions. Since there are non-convex terms in these conditions, a cone
complementarity linearization method and algorithm that converts these terms into
LMI conditions is presented. Finally, a numerical example is given.

In the fifth chapter, observer-based FT boundedness of switched systems with
time-delay is examined. Two theorems are stated in the case that all of the subsystem
matrices of the state vectors are unstable and mixed stable. In both cases, new sufficient
conditions and ADT bounds are found with the presence of the observer. A cone
complementarity linearization method and algorithm for the calculation of unknown
eigenvalues over ADT bound is shown. Finally, a comparative example examining the
unstable and mixed stable cases are given.

In the last chapter, an observer-based controller is designed for H., FT boundedness of
switched systems with time-delay. The reason that H., FT boundedness is investigated
is the presence of the disturbance. In this section, a numerical example is given to
illustrate the effectiveness and validity of the proposed conditions for the mixed stable
case described in the fifth chapter.

As a future work, it is envisaged to expand the results to mode-dependent stabilization
analysis and robust stability.
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ZAMAN GECIKMELI VE ANAHTARLAMALI DOGRUSAL SiSTEMLERIN
SONLU ZAMAN DENETIMI

OZET

Denetim kurami dinamik sistemin girdisini, ¢iktisina gore ayarlamak suretiyle sistemin
belirli bir davranig1 sergilemesini inceleyen bir miihendislik ve matematik dalidir.
Incelenen sistemler zamana gére ayrik veya siirekli olabildigi gibi, baz1 durumlarda
dinamik sistemin davranisi siirekli ve ayrik olaylarin birlesiminden de olusabilir. Bu
tip sistemlere melez (hybrid) sistemler adi verilir. Melez sistemler konusunda siirekli
sistemlerin ayrik ve anlik olaylarla degistigi sistemler olan anahtarlamali sistemler
konusu yaygin olarak calisilmaktadir.

Anahtarlamali sistemlerle ilgili calismalarda genellikle sistemin asimptotik kararh
olmast durumu incelenmistir. Halbuki bir ¢cok pratik uygulamada sonlu zaman
kararli/sinirli olmasi durumu, yani sistemin davraniginin sonlu zamanda belli sinirlarda
tutulmast durumu Onem arz etmektedir. Asimptotik olarak denge noktasina giden
asimptotik kararl sistemler, sonlu zaman kararli/sinirli olmayabilir; bazi sonlu zaman
kararli/sinirh sistemler asimptotik kararli olmayabilir.

Anahtarlamali sistemlerle ilgili ana ¢alisma alan1 ise yasam siiresi veya ortalama yagsam
stiresidir.  Yasam siiresi ardisik anahtarlama zamanlarinin farkinin belli bir yasam
stiresinden fazla olmasi; ortalama yasam siiresi ise ardigik anahtarlama zamanlariin
farkinin ortalamasinin belli bir ortalama yasam siiresinden fazla olmasidir.

Miihendislikte ve matematikte incelenen bazi dinamik sistemler; sistemin o andaki
durumunun yaninda, sistemin gecmisteki durumuna da bagli olabilir. Bu tip sistemler
zaman gecikmeli sistemler olarak adlandirilir ve zaman gecikmesi kotii performansa
veya sistem kararsizligina neden olabilir.

Bu calismada, anahtarlamali sistemlerin alt sistemlerinin kararsiz ve karisik kararh
olmasi durumu ele alinmistir. Anahtarlamali ve aralik zaman gecikmeli sistemlerin
bozucu etkisinde sonlu zaman kararli/sinirli ve He, sinirli olma durumlari incelenmistir.
Oncelikle, sonlu zaman kararlilig1 ile asimptotik kararlilik arasindaki farklar drnekler
tizerinde gosterilmig, sistem matrisleri Hurwitz kararli olmayan ve zamana bagh
olmayan dogrusal sistemlerin sonlu zaman kararlilig1 i¢in yeter kosul elde edilmistir.
Sonlu zaman smrliligt ve He, denetimi saglayacak gozlemci tabanli denetimcinin
varlig1 i¢in Lyapunov-Krasovskii fonksiyoneli kullanilarak yeni yeter kosullar elde
edilmistir.  Herhangi bir matris ayrigtirrmina ihtiya¢ olmadan gozlemci tabanh
denetimci tasarlanarak, alt sistemlerin kararsiz ve karisik kararl oldugu durumlar icin
ortalama yasam siiresi sinirlart bulunmustur. Bu sinirlarda dogrusal olmayan terimlere
bagli olan bazi sabitler icerdiginden ve bu terimler de yeter kosullardaki matrislerden
olustugundan dolay1; ortalama yasam siiresindeki bu sabitlerin ¢6ziimii i¢in koni
tamamlayici bir algoritma sunulmugtur. Tiim bu ¢caligmalar durum geri beslemesi i¢in
de uygulanmistir.

xXxi



Calismanin birinci boliimii olan giris boliimiinde kontrol siireci gosterilmistir. Melez
sistemler ve anahtarlamal1 sistemler konusundaki caligmalar 6zetlenmis, sonlu zaman
kararlili§1 konusunda yapilan ¢alismalar ile ortalama yasam siiresi konusunda yapilan
calismalardan bahsedilmistir. Tezde ele alinan problemlerden anahtarlamali ve zaman
gecikmeli sistemlerde yapilan calismalarda eksik olan kisimlar ozetlenerek literatiir
Ozeti tamamlanmistir.

Ikinci boliimde, bu tezde kullanilan temel tanimlar ve bilgiler tanitilmistir. Oncelikle
diferansiyel denklem sistemlerinin ¢oziimlerinin varlig1 ve tekligi icin yeter kosullar
verilmigtir. Melez sistemler, bir miihendislik ornegi olan araglarin vites dinamigi
ile tamtilarak, anahtarlamali sistemlerin ne tarz durumlarda ortaya c¢ikabilecegi
gosterilmis; duruma bagli anahtarlama ve zamana bagl anahtarlama durumlari
ayrintilartyla ele alinmigtir. Kisitlamali anahtarlama altinda anahtarlama durumlarina
baglh yasam siiresi ve ortalama yasam siiresi kavramlar1 tanitilarak zaman gecikmeli
sistemler ile ilgili temel bilgiler verilmigtir. Sonlu zaman kararliligi ve sinirliligs,
Lyapunov kararlilik tanimlar verilerek, bu iki kararlilik tanimlart arasindaki kavram
farkiliklar1 ortaya konmus ve anahtarlamali sistemler iizerinde Ornek verilmistir.
Verilen ornekte kararh iki alt sistemin periyodik anahtarlama altinda periyoda bagh
kararl1 veya kararsiz olma durumlarinin gézlemlendigi gosterilmistir. Daha sonraki
bolimlerde kullanilacak olan; vektor normu ve matris normu kavramlari, Schur
yardimci teoremi, Gronwall yardimci teoremi ve Jensen esitsizligi sunulmusg ve tezde
kullanilan notasyonlar belirtilmistir.

Ugiincii boliimde; kararli, kararsiz ve karisik kararli alt sistemlere sahip dogrusal
anahtarlamali sistemlerin vektor ve matris normlari kullanilarak sonlu zaman kararlilik
analizi yapilmistir. Alt sistem matrislerinin 6zdegerleri ve kosullandirma sayilarina
bagli sonlu zaman kararlilik kosullar1 ve bu alt sistemlerin olas1 aktivasyon sayilari
elde edilmistir. Anahtarlamali sistemin sonlu zaman kararliliginin saglanmasi icin yeni
ortalama yasam siiresi Onerilmistir. Son olarak da sayisal orneklerle teorik sonugclar
aciklanmustir.

Dordiincii boliimde, anahtarlamali ve aralik zaman gecikmeli sistemlerin durum geri
beslemesi altindaki sonlu zaman smirliligi ele alinmistir.  Yeter kosullarla birlikte
ortalama yasam siiresi elde edilmistir. Bu kosullarda digbiikey olmayan terimler oldugu
icin bu terimleri dogrusal matris esitsizligi kosullarina ¢eviren bir koni tamamlayici
dogrusallagtirma yontemi ve algoritmasi kullanilmistir. Son olarak da sayisal bir 6rnek
verilmigtir.

Besinci boliimde, anahtarlamali ve aralik zaman gecikmeli sistemlerin gozlemci
tabanli sonlu zaman sinirliligi durum vektorlerinin basindaki alt sistem matrislerinin
tamaminin kararsiz ve karisik kararli (yani bir kismui kararli bir kismi kararsiz) olmasi
durumlarina gore incelenmistir. Bu iki durumda da gézlemcinin varlig1 icin yeni
yeter kosullar ve ortalama yasam siiresi tanitilmigtir. Ortalama yasam siiresindeki
parametrelerin hesab icin koni tamamlayici dogrusallastirma yontemi ve algoritmasi
gosterilmistir.  Son olarak da literatiirdeki durum vektorlerinin basindaki alt sistem
matrislerinin tamaminin kararsiz olma durumunu inceleyen karsilagtirmali bir 6rnek
ile bu matrislerin karisik kararli olma durumunu inceleyen sayisal 6rnekler verilmistir.

Altinct bolimde, anahtarlamali ve aralik zaman gecikmeli sistemlerin H., sonlu
zaman sinirliligr i¢in bir gdzlemci tabanli denetimci tasarlanmigtir. He, sonlu zaman
sinirlilig incelenen sisteme bozucu etki etmesinden dolay1 incelenmistir. Bu boliimde
durum vektorlerinin bagindaki alt sistem matrislerinin karigik kararli olmasi durumu
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icin kosullar elde edilip, onerilen kosullarin etkinligi ve gecerliligi sayisal bir 6rnek
tizerinde gosterilmisgtir.

Gelecek caligmalarda, moda bagimli kararlilagtirma analizi ve giirbiiz kararlilik ele
alinarak su ana kadar yapilan ¢alismalarin genigletilmesi diisiiniilmektedir.
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1. INTRODUCTION

Control theory is a branch of engineering and mathematics which aims to change the
behavior of the dynamical systems by manipulating the system input according to the
system output. A brief demonstration of a system with a control process is shown in

Figure[I.1]

Space of Feasibly
Attainable State
Variables

x€X";
xb€R"

UEU; u(t) €R" State Transition Mapping Space of Sustainable

Output Variables

Space of Admissible
Input Variables

YEYT yt)ERT

Figure 1.1 : A system with a control process [1].

The state of the system may change in discrete or continuous set of points in time.
In some cases, the behavior of the dynamical system may be a combination of both
continuous and discrete events. Such kind of systems are called the hybrid systems.
The majority of the recent studies in hybrid systems are the continuous systems having
discrete switching events. These type of systems are classified into a special type
of systems called switched systems. Many scholars are interested in the stability
analysis and control design of such kind of systems, because the switched systems
even in general the hybrid systems may behave different even the continuous or discrete

dynamics have solely different characteristics.

Stability is one of the basic research topic for switched systems, which has attracted
most of the attention in recent years, [4H10]. Most of the studies related to
stability of switched systems focus on Lyapunov asymptotic stability, which is defined
over an infinite time interval. However, in many practical applications, finite-time

(FT) stability of a system is the main concern, which means keeping the system



behavior/state within specified bounds in a fixed FT interval. FT stability for switched

systems is an emerging concept in recent years, [11-14].

Average-dwell time (ADT) is the major research topic for switched systems. ADT
means that the number of switching instants in a finite interval is bounded and the
average time between consecutive switching instants is not less than a constant. In
literature, there are plenty of works considering suitable Lyapunov functional to obtain
an ADT bound as small as possible for the stability and the stabilization of switched

systems, [[15-25].

The behavior of some dynamical systems may depend to the behavior of the system in
the past. Their behavior may also depend even to a distributed interval of a time. Such
kind of systems are called time-delay systems in general and the delay may cause bad

performance or instability of the system.

Time-delay systems have been widely studied in last decades [3,26-28]], and the
references therein. The current methods of stability analysis are divided into two
categories: delay-dependent and delay-independent. Results in delay dependent case
does not include any information on the size of delay but delay dependent solutions
include such information. Many works for time-delay systems consider only the upper
bound for delay. If both upper and lower bounds on time-delay exist, such systems are

called interval time-delay systems, [29-33].

In literature, the vast majority of the recent studies for the stabilization of switched
time-delay systems are dealing with state feedback, [36H39]]. Stabilization of
time-delay switched systems by observer-based controller is examined only in [40].
In that study, interval time-delay is not considered and the calculation of the observer
gain matrix depends on the decomposition of one of the solution matrix obtained by
the linear matrix inequalities (LMIs) given in the sufficient condition. There is also no
implicit explanation about the calculations of the constants in ADT which depend on
the inverse matrices. Besides that, the system matrices of the state vector are chosen
Hurwitz stable and switching among unstable and mixed stable subsystems are not
considered. In this dissertation, the FT stability/boundedness and H., FT boundedness
of the switched systems with interval time-delay and disturbances are investigated

under state feedback and observer-based controller.



2. BASIC DEFINITIONS AND BACKGROUND

In this chapter, the notations, basic definitions and background are introduced. The
conditions that guarantee the existence and uniqueness of the solutions of system of
differential equations are introduced. Hybrid and switched systems are presented, [2].
Time-delay systems are summarized, [3]. Vector and matrix norms are recalled, [41,
42]]. FT stability and boundedness concepts are defined and lemmas that will be used

in this dissertation are shown.

2.1 Notation

The notation used in this dissertation is fairly standard. “*" in a matrix means to
be the symmetric term of the corresponding upper triangular element and A4, (A)
(respectively A, (A)) represents the maximum (minimum) eigenvalue of A. Matrices,
if not stated, are assumed to have compatible dimensions for algebraic operations.
Throughout the paper; for vectors x and y with compatible dimensions and a positive

definite symmetric matrix P, x” Py +y” Px is written in short as 2x” Py or 2y Px.

2.2 Solutions of System of Differential Equations
Let us consider the system of differential equations
x(t) = f(t,x), xeR". (2.1)

The system (2.1)) has a unique solution for the initial condition (9, xp), if the function
f 1s continuous in ¢ and locally Lipschitz in x. Being Lipschitz means that for every

pair (fp,xo) there exists a positive constant L such that the condition

|f(t,x) = f(t,y)] < Llx—y (2.2)

holds for all (¢z,x) and (¢,y) in the neighborhood of (zp,xp) in [fg,o°) X R. So, the
solution exists on the maximal interval [y, T4y ). Unless not stated, the initial time is

taken as 7y = 0 among the thesis.



2.3 Hybrid&Switched Systems

As it is said in the introduction part, some dynamical systems consists as a combination
of both continuous and discrete events. Let g be a state which takes values from a finite
set Q and x be the continuous state variable. The hybrid system with well-defined

interactions u and v are demonstrated in Figure

I v q
U
Continuous Interaction Discrete
trajectory transitions

Figure 2.1 : A hybrid system, [2].

Switched systems arise in many engineering applications. Here, there is a motivational

example for a car transmission system.
Example 1. Let x| be the position, x; be the velocity, a > 0 be the acceleration
input and q € {1,2,3,4,5,—1,0} be the gear shift position of an automobile. The

generalized dynamics of a car will be

X =x2,
(2.3)
X2 :f (a7 CI)
where the function f
e is a decreasing function in a and takes negative values when g = —1,

e is an increasing function in a and takes negative values when q = 0,

e is an increasing function in a and takes positive values for sufficiently large a when

q > 0.
Here, x| and x; are the continuous states whereas q is the discrete state, [2].
Switching events can be classified into

e state-dependent,

e time-dependent

in context of dependency to the switching events.



2.3.1 State-dependent switching

In such kind of switching, the state space is divided into subspaces or regions. A
continous-time dynamical system is acting on each of these regions. When the system
trajectory hits the boundary of these regions, the dynamics of the system state is
changed. This is called as reset map. Note that the system trajectory may lose its
differentiability at these switching instants. A simple generalized visualization of

state-dependent switching is shown in Figure [2.2]

Figure 2.2 : State-dependent switching, [2].

2.3.2 Time-dependent switching

For a given family of functions f;, i € .# = {1,2,...,N} from R" to R” where .# is an
index set. The functions f; are all assumed to be locally Lipschitz. So, this corresponds

to a family of systems
x=fi(t,x), ieS. (2.4)

To define a switched system generated by the above family, we need to define the
switching signal. The switching signal is a piecewise constant function ¢ : [0,c0) —
# having finite or denumerably infinite number of discontinuities, called switching
times, and the function o takes a value from .# on every time interval between two
consecutive switching instant which can be seen in Figure [2.3]

The time-dependent switched system is defined as

x(t) = fc(t)(tax)a X(O) = X0 (2.5)



A a(t)

t

-

Figure 2.3 : A switching signal, [2].

with the switching signal ¢ defined above. The switched linear system in particular is

defined as follows
X(t) = Ag(pyx(t), x(0) = xo. (2.6)

Here in this dissertation, the switching signal is defined on a finite time interval as
o(t):[0,Tf] — . with the switching sequence X = {(io,t0 = 0), (i1,11), ..., (in,t2) }, i.€.
i system is activated when 7 € [f, ;1 1). As a consequence, i system is activated
when t € [t,,Ty). The switching signal may be constrained by adjusting the switching

instants. Here are two examples of constrained switching.

2.3.2.1 Dwell-time

If the switching signal is restricted to satisfy 7, — ;1 > 7, for all switching instants, the
number 7; > 0 is called the dwell time which means that each subsystem is activated

at least 7, units of time. So the constrained set of switching signals are stated as
y:ydwell[fd]:{G€Z|tk_tk—l>T}- 2.7)

2.3.2.2 Average dwell-time

Considering dwell time constraint may be seen as a strict constraint, because the next
switching should wait until 7; units of time is passed. However, this context may
be subvented by adjusting the switching instants by average-dwell time so that the
activation time may compensate the emergent switching by adjusting the consecutive

switch instants. The definition is as follows.



Definition 1. Let NG(,)(t, T) denotes the switching number of the switching signal ¢

for the interval O <t < T. Ny is the chatter bound. Then the following inequality holds
No(t)(l‘,T) <No+ (T —1t)/1,4

for so called ADT t,, [15]].

2.4 Time-Delay Systems

Time-delay systems are the systems of differential equations, whose behavior depends
on events in the past. This type of systems are also known as a special type of
functional differential equations with deviating arguments of delay or delay differential

equations with retarded type. So, the time-delay system can be represented as
x(t) = f(t,x(t),x). (2.8)

Here, x;(s) = x(t — s), s € [hy,ha], for hy,hy > 0 represents the history of the solution

as it may be seen in Figure [2.4]

X

F Xt I{f }

t—h t—h r'

2 1

Figure 2.4 : The history of the solution.
In linear case, (2.8]) will be
x(t) = Ax(t) + Agx(t — h(1)). (2.9)

Note that, in order to construct the solution for ¢ > 0, the value of x(¢) should be known
in [—hy,0]. So there is a need of an initial condition x(¢) = ¢(¢) where t € [—hy,0]
defined over the function space € ([—h2,0],R"). Here, €' (|—h2,0],R") is the set of all

continuous functions equipped with the supremum norm ||| := sup ¢y, o [¢(7)].

Note that, & ([—h,,0],R") is not a Hilbert space, because it does not satisfy

parallelogram law

1 +&ll*+ 17— gl = 201F17 + llgl)- (2.10)

7



for all f,g € €(|—h2,0],R"). See the following example.

Example 2. Consider the two functions f(t) = 1 and g(t) =t where f,g €
€ ([~1,0],R). Then, from the supremum defined above, we have || f||*> = ||g||* = 1,
If+el*>=1and|f—gl|*> =4 Thus, the parallelogram law is violated.

2.5 Finite-Time Stability and Boundedness

Consider a nonlinear dynamical system

%(1) = F(x(1)),  x(0) = xo @.11)

where x(1) € 2 C R" is the system state vector and f : ¥ — R” is the vector field.
If f(x.) =0, then the point x, € & is said to be the equilibrium point of the operating
system. Note that x, = O for linear systems. Before the statement of FT stability and

boundedness definitions, let us consider the Lyapunov stability definitions.

Definition 2. The equilibrium point of the system (2.11)) is said to be stable in terms of
Lyapunov (SIL), if for every given € > 0, there exists a & > 0 such that, if ||x(0) — x.|| <

0, then for every t > 0 we have ||x(t) —x.|| < €.

Definition 3. The equilibrium point of the system (2.11) is said to be asymptotically
stable in terms of Lyapunov (ASIL), if it is SIL and there exists 8§ > 0 such that, if

[|x(0) — x.|| < &, then lim;_e ||x(t) — x.|| < €.

Definition 4. The equilibrium point of the system (2.11)) is said to be exponentially
stable in terms of Lyapunov (ESIL), if it is ASIL and there exists & >0, 3, 6 > 0 such
that, if |x(0) —x.|| < 8, then ||x(t) — x.|| < ae P*||x(0) — x.||, V¢ > 0.

In contrast to the above Lyapunov stability definitions, in some engineering
applications finite time stability and/or boundedness is the main concern, which means
that the system state is bounded within specific bounds in FT. Formal definition of FT

stability is as follows.

Definition 5. Consider scalar Ty > 0 and a matrix R > 0 with appropriate dimensions,
the system (2.11) is said to be FT stable with respect to (8,€,Ty,R), if for every given
€ > 0, there exists a § > 0 with € > 8 such that, if x{Rxo < 8, then xT (t)Rx(t) < &,
vt € [0,Ty].



In order to demonstrate the distinction between Lyapunov stability and FT stability

definitions, the following example is given.
Example 3. Consider the following system
x(t) =Ax(t), x(0)=xp (2.12)

where A = {_11 ﬂ with initial condition xo = [1 1] "' The solution of 2.12)) is

x(t) = e xg. (2.13)

Note that the eigenvalues of the matrix A are Ay = 1 £ j, where j =+/—1 which
means that the system (2.12) is unstable in terms of Lyapunov in all sense. However,

the system is FT stable with respect to (€,8,Ty,R) = (16,4,1,I), since
XL (O)Rx(t) = x5 et ' Ret'xy < xL e TTReAT I xg ~ 14.7781 < 16 (2.14)

which can also be seen in Figure 2.3

5 _
0 | 0 \":
S 14 P AN
_5 ! I I:\
-5 0 5

Figure 2.5 : Phase portrait of the system (2.12)).

The motivating phenomena of switched systems is the dependence of the stability to
the switching law. It is a fact that the switching between subsystems, even if they are
all stable (in sense of Lyapunov), may cause instability of the whole system. Similarly,
the switching law effects the finite-time stability of switched systems, which may be

seen below.



Example 4. (Motivating Example) A switched linear system (2.6) with subsystems

0 10 —2 -30
A= {—30 —2}”‘2: {10 0 } (2.15)

Choose 6 =8, R=1, T = 10, € = 25, the initial state xo = [2 —2}T satisfying the

is given as follows

initial condition xg xo < 8. Then, the simulation results for each subsystem are given

in Figure[2.6land 2.7

-5 L SR NODPOP: P S N S D

| |
-5 | |
6 5 4 3 -2-10 1 2

whk -
Ny -
o -
(o]

Figure 2.7 : State traje(;tory of subsystem 2.

By the simulation results, it is easy to see that the state trajectories are both bounded
in xT (t)x(t) < 25.

Then, two periodical switching signals S| and S, are defined as follows:

e S| is a periodical switching signal, where the system switches from one subsystem

to another every 1 s.

e Sy is a periodical switching signal, where the system switches from one subsystem

to another every 0.3 s.

10



Both two switching signals are initialized to start operating with the first subsystem and

the initial state is chosen as xo = [2 —2] . Then, the simulation results are shown in

Figure2.8and 2.9

N w0

1500

1200
900

600

300
S0
~300
~600
-900

-1200

-1500
-1500-1200-900 -600 —-300 O 300 600 900 1200 1500

X;

Figure 2.9 : State trajectory10f switched system S.

From Figures 2.8 and it is seen that the state trajectory is bounded with respect
to bound € = 25 under the switching signal Sy, as the state trajectory does not satisfy

xT (¢)x(t) <25, Vt € [0,10] under switching signal S».

Now, let us consider the system

() = f(x(t),w(r),  x(0) =xo (2.16)

with an exogeneous disturbance w(z). The presence of the disturbance leads us to the

definition of FT boundedness.

Definition 6. Consider scalar Ty > 0 and a matrix R > 0 with appropriate dimensions,

the system (2.16) is said to be FT bounded with respect to (8,€,Tf,d,R), if for every
11



given € > 0, there exists a 8 > 0 with € > & such that, if x5 Rxg < 8, then xT (t)Rx(t) <

g, Vt € [0,Tf| and Vw(t) satisfying fOTf wl (t)w(t)dt < d.

This definition can be revised for the time-delay system with an exogeneous

disturbance
x(t) = f(t,x(t),x,w(t)), x(t)=9¢(t),1 € [~h,0] (2.17)

for x; :x(t —h(l‘)), h(t) € [/’l],hz] and hl,h2 > 0.

Definition 7. Consider scalar Ty > 0 and a matrix R > 0 with appropriate dimensions,
the system (2.17) is said to be FT bounded with respect to (8,€,T¢,d,R), if for every
given € >0, there exists a 6 > O with € > & such that, if Supsc(_y, o) {x"(s)Rx(s)} <6,
then xT (t)Rx(t) < €, Vt € [0,T¢] and Vw(t) satisfying fOTf wl ()w(t)dt < d.

Now, consider the time-delay system with exogeneous disturbance
x(t) :fl(tvx(t)axlaw(t))a x(t) = ¢(t)v re [—hz,()],
2(r) =f2(x(1))

with output z(z). This leads us to the definition of H.. FT boundedness.

(2.18)

Definition 8. The system (2.18) is said to be H. FT bounded with respect to
(6,€,Ty,d,R) if the following conditions are satisfied:

1) The system (2.18)) is FT bounded.

2) fOTf L (t)z(t)dt < v fOTf wl (t)w(t)dt under zero-initial condition ¢(t) = 0, Vt €

[—hy,0], where y>0,0< 0 <¢& d>0andR > 0.

2.6 Norm

In this section, vector and matrix norms are defined.

2.6.1 Vector norms

A vector norm is a function || - || : F" — R defined over a field of real or complex

numbers F satisfying the following properties Vo € F, u,v € F"™*":

e ||av|| = |o|||v| (absolute homogeneity),

o |lu+v| < |ul|+ ||v|| (subadditivity or triangle inequality)

12



e ||v]| > 0ifx+# 0and ||v|| =0 only if v = 0 (positive definite property).

Here are some vector norm definitions in the literature.

Let x; = [xu X172 .. )Cl’n}T,xz = [)C2’1 X272 .. x27n]T € R" and 7z =
211 zi2 - ZM]T 22 = |21 22 .- ZZJJT € C". For both Euclidean space
and complex space the L?-norm can be expressed in a compact way by using inner

products.

T
< X1,X2 >=X *X] = X2,1X],] +X22X12+ ... +X2 X1
(2.19)
* — — —
<2Z1,22 >=2°21 = 22,121,1 t 222212+ .- + 22421
are the standard inner products for Euclidean space and complex space, respectively.

xT denotes the transpose of x. 7 and z* denote the conjugation operation and conjugate

transpose of z, respectively. So, the L2-norms on these spaces are defined as follows

xl2 =< X, x>re and ||z]l, =<2,z >cn (2.20)

L?-norm can be generalized as LP-norm as

4 1/p
[l = (Z Ixill’) 2.21)
i=1
where 1 < p < oco. As p — oo, LP-norm approaches to L™-norm or so called maximum
norm

|X]|le = max |x. (2.22)
i=1,2

2.6.2 Matrix norms

Matrix norm is a vector norm in a vector space whose domain is the vector space of
matrices. The matrix norm is a function || -|| : F™*" — R satisfying the following

properties Voo € F, A,B € F"™*":

e ||aA| = |al||A|| (absolute homogeneity),
e ||[A+B| < ||A||+ ||B|| (subadditivity or triangle inequality)

e ||A]| > 0and ||A|| = 0 only if A = O (positive definite property).
Additionally, if m = n some matrix norms satisfy

e ||AB|| <||A||||B|| (submultiplicativity).
13



In some literature submultiplicativity is sometimes extended to non-square matrices
using different norms.
There are plenty of matrix norm definitions in the literature. Here, the matrix norm
definitions used in this study are defined as follows.
The matrix norm induced by vector norm is defined as

|Al| =sup{||Ax]|| : x € F" with ||x|| =1}

[|Ax]|

_ (2.23)
=supg —— : x € F"with ||x| #0

[l

If the p-norm for vectors (1 < p < o) is used for both spaces F”" and F™, then the

corresponding induced operator norm will be

S5
|Al|p = sup : (2.24)
x#0 HxHP
If the vector norms of F” and F™ are different, the matrix norm is defined as
| Ax]|
|A]p.g = sup 2. (2.25)
x#0 HxHP

where | - ||, is defined on F" whereas || - ||, is defined on F'. The matrix norm ||Al|4 g
is called a subordinate norm. Subordinate norms are consistent with the norms that

induce them.
[Ax][q < [|All p,qllx]lp- (2.26)

Any induced operator norm is a submultiplicative matrix norm; this follows from

|ABx]| < [[A[[l|Bxl| < [|Al[|B]]x] (2.27)
and sup,_; [|[ABx| = ||AB||. Moreover, any induced norm satisfies the inequality
|ATM > p(a) (2.28)

where p(A) is the spectral radius of A, i.e. largest absolute value of its eigenvalues.

The induced matrix norms can be expressed as

m
Ally = Ny
Al = max 3 lai
||A||2 :Gmax(A) = )Lmax(A*A) (2.29)

n
”A””:l‘%l,%’ing'“”"

14



Here A* denotes the conjugate transpose of A, ;4. (A) represents the largest singular

value of matrix A. Frobenius norm can be defined in various ways:

min{m,n}

m n 1/2
AllF = <Z Y ya,-jlz) = Vitrace(A*A) = | Y c*(A) (2.30)

i=1j=1 i=1
where 0;(A) are the singular values of A and the trace function returns the sum of

diagonal entries of a square matrix. The following inequality holds for every A € F"™*"
1All2 < [|AllF (2.31)

The p-norms for p = 1,2,..., 00 can be expressed as

m n 1/p
1Allp = (Z )y Iaij!”> (2.32)

i=1j=1
for A € F™=",

2.7 Other Lemmas
In this section, some lemmas which will be used in this dissertation are presented.

Lemma 1. (Schur complement) Given constant matrices Si1, Si2, Sy with

appropriate dimensions satisfying Sj1 = SlT1 and Sy, = ng and Sy, < 0, the LMI

g— {511 S12

. S ] < 0 is equivalent to Sy —|—S1252_2] SlTZ <0, [43].
22

Lemma 2. (Gronwall’s lemma) If a differentiable function y(t) > 0 on the open

interval U = (a,b) (as well as U = [a,b] or U = [a,b)) and

(1) < @(t) + w(t)u(r)

then
fort < bwhere

[44]].

Lemma 3. (Jensen’s inequality) For any symmetric positive definite matrix M > 0,
scalars a,b > 0 with b > a and an integrable vector function x : [a,b] — R", the

following inequality holds, [27)].

b T b ,
</a x(s)ds) M(/a x(s)ds> <(b—a) </a XT(S)Mx(s)ds>
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3. FINITE-TIME STABILITY ANALYSIS FOR SWITCHED LINEAR
SYSTEMS BY USING JORDAN DECOMPOSITION

In order to investigate the effects of the eigenvalues to FT stability let us consider the
system (2:6). Let 01 == 0(f;) € .#, i =0,1,2,...,n. Therefore, by definition /7,
subsystem is activated on the time interval [t;,#;11). For ¢t € [t;,2;11), let us define the

number of activation of the Gl-’fl subsystem and the number of activated subsystems
on [0,7] by N, (¢) and N(t), respectively. For a given initial condition x(0) = xo, the

solution of (2.6)) in ¢ € [t,,, Tf| can be written as

x(r) — eA6n+l ([_t")eA"" (tn—ta1) eAcl tle. (3.1)

In the following theorems, FT stability of switched linear systems is analyzed by using
Jordan decomposition of the subsystem matrices and the vector and the matrix norms.

In order to make that analysis, the definition of FT stability is revised as follows.

Definition 9. Consider a constant scalar Ty > 0 and a positive definite matrix R, the
system (2.6) is said to be FT stable with respect to (6,€,T¢,R) if for every € > 0, there
exists a § > 0 such that |R"/?x(t)|| < /€, whenever |[R'/?| - ||xo|| < V/8, Vt € [0, Ty

In literature the system is said to be FT stable with respect to (0,€,Ty,R) if
for every € > 0, there exists a 8 > 0 such that x) Rxg < § = x(t)T Rx(t) < €. Since

x) Rxo = ||R" x> < ||[RV2||? - || x0]|, the Deﬁnition@still satisfies the FT stability.

It is a well-known fact that for any n x n matrix A (even non-diagonalizable), there

exists a nonsingular matrix V' such that
A=vyv! (3.2)
where J is the Jordan canonical form of A.

Before we go further, we will give a following lemma to be used to state the main

results.

Lemmad. [16|] Let J = diag(Jy,...,Ji) be a matrix in Jordan form where each J; is a

Jordan block of size n; with eigenvalue A;. Then the following inequality holds for the
17



spectral norm of J

le’t|) < et (3.3)

A*(J) = max, (Re{?t,-} +cos(ni7j_ 1)) :

where

3.1 Finite-Time Stability Analysis in Terms of the Eigenvalues of the Subsystems

One of the major goal of this chapter is to state a stability condition in terms of
the eigenvalues of the switching subsystems. Before we state our results, consider
the subintervals [f,,7,+1) where p = 0,1,2,...,n formed by the switching sequence
Y. For any t € [tp,tp+1), define the maximum of the spectral norm bounds,
matrix condition number and the maximum norm of the matrix exponential function
as I(tp) = max{1*(Jo,),A*(Us,),--,A*(Us,) }» Ko, = [|Vo,|| - HVG_le and m(a,b) =

SUPse|a,b) |e’o@ (=) || Now, we are ready to present our first result.

Theorem 1. Assume that A*(Js,) > 0, for all c; € .Z. The system is FT stable
with respect to (€,6,T¢,R) if there exist some positive integers q1,qa, ...,qn satisfying

the following condition

m
In§+2- ( giln Ki+/1,;;afo> <Ine (3.4)
=1

1=

where A\, .= max{A*(J1),A*(J2),...,A*(Jm)} and m is the number of subsystems to

be activated in [0,Ty].

Proof. Assume that A*(Jg,) > 0, for all 6; € .#. Let § > 0 such that |[R"/%xy| <
IRY2||- ||lxo]| < +/8 and consider the solution x(¢) given in (3.1). For any 7 € [0,1,), the
following inequality is obtained by using the properties of the norm.
IR 2x(r)l] =||RY2Vo, €11V, ol
<R[V, |-l |- 1V - 1ol
1/2 ~1

<[IR'2|- IVey | -m(0,11) - Vs | - [} (3.5

V8- Ve, || -m(0,11) - ||V, |

:\/3 KGI m(O,tl).

18



Let 7} := t; and consider the interval [t;,7,). For any ¢ € [t,1,), the norm of R'/%x(r)

is written as follows:
IRV2x(t)|| =[|RY*Vg,e’o U=V W otV g |
1/2
<[IRV2|| - |[Vay || - e’ = |- [V,

Jo, T —1
Vel [V ) - ol 56

< 5'K62 “ Koy -m (tl t2) ’ “eJGlTlH

(t
Ve (H ) m(1,0) - [[e"n ™|

Note that ||e’1Ti|| < ¢*"a)Ti and two subsystems o and o, are activated in this
interval. So, N(t1) =2, N, (t1) = Ny (1) = 1 and A(#1) = 1*(Js,). Now, let T}, :=
tp, —tp—1 and consider each interval [t,,7,1), for p = 2,...,n. In each interval, same
subsystems could be activated several times. Thus, we have
|R'x(0)]| =[[R/?Va,, et v | vo,,e’%Tpv-l Vo1V bl
1/2 (t—t J
IRV Ve, I - et O Vit 11 Ve I - e ™|

y ; - 3.7
AVl Ve I e - Ve - ol 3.7)

M) o) o, T,
V- H Ko; ' ! tp7tp+1 HHe R E
i=1

From Lemma] it is possible to write

le’Tk|| < * Vo) Tk, (3.8)
and
p )4
[/ < [T+ M = bt o (3.9)
k=1 k=1

Then, from (3.7) and (3.9), we obtain

N(t

Ip)
IR 2x(0)]| V5 ( nol(tp)) mltptyir)-Ha VT (3.10)
1

=

. P () T
Since Zle Ty =t then, X1 A" Uo ) T < pA(1p) 1 and

IR'2x(r)]| < V8- (H ) Mty tpir) -0, (.11

19



Now, let us recall the inequality (3.5)). Since A*(Jg,) > 0, then
m(0,11) = sup [’
t€l0,1)
Sel*(-lol ) SUPrefo,r)

A*(Jo ) lim,_ (3.12)

_ ~>t1

< Vol

In [0,7;) only the subsystem o; is activated and A*(Jg,) = I(tl). Then, by the
inequalities (3.3) and (3.12), we have

IRV 2x(t)]| < V8 - kg, - €H )11 (3.13)

Similar to (3.12), m(t,tp+1) < e A Uap ) pe1=00) gor a1 p =1,2,...,n. By defining
i(tp) = max{l*(]opﬂ),z(tp)}, forall p=1,2,...,n, we write

Atp)-1p A Vot )tpr1=1p) | (1) 1

IN

m(tp,tpt1)-e e

i) 1pin (3.14)

IA

Thus, by (3.11)) and (3.14), we obtain
IR x(1)]| < V5 ( [] i > Mo, (3.15)

Since A*(J5,) > 0 and kg, > 1, for all 0; € .# and (3.13) is included in (3.13) for
p=1,2,...,n, the exponential in (3.13) is increasing. So, the upper bound of (3.13) is
given for p = n. Thus, if

N(tn)

i=1

IR x(t)]| < V5 < "0<f">>-ei<fn>7fg¢z (3.16)

then the system (2.6) is FT stable with respect to (£,6,77,R). Note that Aty) =
max{A*(Js,),A*(Js,), .., A" (Js,,,)} = max{A*(J1),A"(2),...; A" (Jm)} = Ay and
{65, %5, } = {x1,%0,..., K, }. Thus, define g; := ng,, for i =1,2,...,m. By using
these notations the inequality (3.16)) is written as follows:
m
Vs (H Kl-q’) cetnely < (/e (3.17)
i=1
The unknown variables in this inequality are the numbers of the activations ¢g; of the
subsystems. By taking the natural logarithm of both sides of (3.17), we obtain the
result given in (3.4). O
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Theorem 2. Assume that 1*(Js,) <0, for all 6; € 9. The system (2.0)) is FT stable
with respect to (&,0,Ty,R) if there exist some positive integers q1,qa, ...,qm and a real

number ty, 0 < t, < Ty satisfying the following conditions
e— 08Kz >0, forall 6, € I (3.18a)
m
ln5+2-<2qi-ln1<i—|—7t,’,‘lax-tn> <Ine. (3.18b)

i=1
Here L*

max

and m are as defined in Theorem

Proof. Assume that A*(J5.) <0, for all 6; € . and let § > 0 such that ||R'/2x|| <
IR'/2|| - ||xo]| < v/8. Consider the inequality (3.5). Since A*(J5,) < 0 then fort € [0,1)

m(0,11) = sup [le’|

t€[0,t1)
Sel*(-’csl Jinf, o) (3.19)
<l.
By the inequalities (3.3)) and (3.19)), we obtain

IR'2x(1)|| < V38 - %o, (3.20)

If |R'2x(t)|| < V8 - k5, < V/E, then the system is FT stable with respect to
(€,6,T¢,R) in [0,11). Since o7 could be any number in .# then, the inequality (3.18a)

is obtained.

Now, consider the inequality in (3.I1)). For any ¢ € [t,,7,+1), the subsystem 0,1 is
activated. Since A*(J5,) < 0, for all o; € .7, we have m(tp,t,41) < 1 similarly as
(3.19). Then, (3.T1)) can be written as follows:

N(tp) _
IR 2x(r)|| < V8- ( KQ,.""“”)> M)ty (3.21)

i=1
Note that e*(») > eAip-1) > 1, for p=2,...,n and x5, > 1, for all 0; € .#. So, the
exponential in (3.21) is increasing in terms of 7, and its upper bound is attained at p = n.
In [0, T¢| all the subsystems including 0,41 had been activated. Thus, Hf.\[:(tl”) Kgf" ) _

™l and A(t,) < max{A*(J1),1*(2), ..., A*(Jn) } = A;5r- Consequently, for any

i=1

t € [ty, Ty if
m
R0 < V- (HK?‘) e < e 62
i=1
then the system (2.6) is FT stable with respect to (€,6,77,R) when the condition
(3-18D) is satisfied. =
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Remark 1. Theorem [I| and [2| depend on the solution of the integers q1,q2,-..,qn on
0,T¢] and [0,t,], respectively. These “subsystem activation configurations" can be
chosen from the feasible set defined as

F1= (@102, am) | @ €2 for alli=1,2,....m satisfing

Ine—1Ind (3.23)

Y ainr < M0 o)
i=1

where ((I) is the length of the closed interval I and A, is as defined in Theorem

and 2| by using the appropriate closed interval.

Remark 2. Note that, Theorems [I| and 2] are conservative because they have the
constraints A*(Js(;,)) > 0 and 1*(J5(,,y) <0, for all 6(t;) € 7, respectively. However,
this conservativeness can be relaxed by seperating the subsystems having A*(J;) <0

and A*(J;) > 0 as in the following Theorem.

Let .#~ and .4t be the subsets of ., for which A*(J5,) < 0 and A*(Jg5) > 0,
respectively. Note that, . = .~ U.# . Let us also define

)'min = 62217{’1 (JO'i)|}

+ *
A’max T n;i;&{ﬂ‘ (‘]Gi)}

1

Let T and T~ be the activation times of the systems belonging to the subsets .# * and

&, respectively and T+ + T~ < Ty. Now, we have the following Theorem.

Theorem 3. Assume that 9~ # 0, I+ # 0. The system (2.6) is FT stable with respect
to (€,0,T¢,R) if there exist positive integers q1,qa,...,qm satisfying the following

condition:

m
Ing+2- ( gi-In xi+7tn+1axT+—;Ln;inT—> <Ine (3.24)
i=1

Proof. By (3.12) and (3.19), it is clear that

(l‘ ¢ ) < 1 s if Op+1 S (3.25)
A B L N L AT A '
Consider the inequality in (3.11]). Since ¢ Uopn) o > 1, by (3.25) we have
m(tp,tpi1) L)t < Mmax Tt min T (3.26)
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where TPJ;I and T, are the activation times of the systems belonging to the subsets
# T and ., respectively in the time interval [0,7,,). If (3.26) is substituted into
(3.11) at p = n and the result is bounded above by /€ then, ||R'/2x(t)| < /€ is
obtained. Thus, the system (2.6) is FT stable with respect to (¢,6,7y,R) in [0, 7]
under the condition in (3.24). O

3.2 Average Dwell-Time Condition for the Switching Systems

Consider the constrained set of all switching signals as follows:

Ta

Tr—t
S = Zavg. dwell[Ta,No| = {G eX ‘ No(t) < No+ ! } (3.27)

The infimum 7, for which the switched system 1is FT stable is called
the average dwell time (ADT) and it is denoted by 7. Let Kmax =

max{Ks, , Ko, ---; Ko, }- Now, we are ready to present the following.

Theorem 4. The switched system (2.6)) is FT stable with respect to (&,8,T¢,R), if the

switching signal satisfies the ADT T, for the following cases:

(i) Assume that ¥~ = &. Then,

* 2Tf hl Kmax
Ty > T, = — . (3.28)
Ing — (In6 4 2NpIn Kinax — 24, 1)
(ii) Assume that ¥ = Z. Then,
2Tf h’l Kmax
T, > T = ) 3.29
“=a Ine — (11’15 +2Npln Kmax+2)v[j{afo) ( )
(iii) Assume that .9~ # O and .9 # 0. Then,
2T¢In K
0> T S Bmax (3.30)

T, = .
~ Y Ine— (Ind+2Noln Kimax + 2(Aniax T+ — An 7))

Here T™ and T~ are the activation times of the systems belonging to the subsets %

and .9 ~, respectively.

Proof. Consider the inequality (3.11) for p = n. Since Kmax > 1, for any ¢ € [t,, T¢],
we have

IR 2x(1)]| < V8- (anfgy)) m(t, Ty) - 20, (3.31)
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T
, . No+ L No+=L
Since Kmax > 1, by the definition N (¢) it is clear that meg ) < Koy @ < Koy @ . By

considering (3.23) for p = n, we get
1 if Gpyt € I~
m(tn, Ty) < { MU Tr if g, € 7t (3.32)
If 6,41 € "~ then, by (3.31) and (3.32) we obtain m(t,,Ty) - e Ain)tn < QAl)tn

order to obtain ||[R"/2x(r)|| < &, we should have

Tr _
NER (szf )-e“fnm < Ve (3.33)

By taking the natural logarithm of both sides of (3.33) and rearranging the result we

get
2Tf In Kmax

lnS— (1n5+2N01nKmax+2A(tn) )
In the case that .# ~ = .7, then A (f,) £, < 0. Since A(t,) = max{A(t),A*(J,,, ) }. it

is clear that A (t,) < A(f,) < 0 and

(3.34)

A 7110 ) >4 ;L W All subsystems are activated at this
stage so that we have —A(,) = A_. . Thus, by substituting A (t,) with —A_. in (3.34),
we conclude that the switched system (2.6) is FT stable with respect to (€,0,7,R) if
the condition (3.28) holds true.

In the other case that .7+ = .7, then A(z,) -1, > 0 and 6, € #*. Thus, A (t,) = AL
By using again the fact 77 > 1,,, the switched system is FT stable with respect to
(€,6,Ty,R) if the condition (3.29) holds true.

Let us consider the last case that .# ~ # @ and .7+ £ 0. Since ¢* Vo1 T > 1 in (332

the following inequality can be written:
m(tn, Ty) - Altn) tn < Hovax T —AoginT ™ (3.35)

Thus, the switched system (2.6) is FT stable with respect to (€, 8, T, R) if the condition
(3.30) holds true for the last case, which concludes the proof. O

In the existing literature, the ADT is obtained by the analysis of Lyapunov functionals.

See the following theorem.
Theorem 5. [45] For any i € {1,2,...,m}, let 0i = R'/2 and suppose there exist
matrices Q; > 0 and a constant o0 > 0 such that
A:0i+ QAT —200; <0, (3.36a)
u< ge*Mf (3.36b)
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then, the system (2.6) is FT stable with respect to (€,8,Ty,R) with ADT satisfying

Tfln[,L
In(e/8) —Inp — 20Ty’

Ta> T, = (3.36¢)

where A1 = minyie g (Anin(Qi)), A2 = maxvie.s (Anax(Qi)), 4 = %

The ADT constraints obtained in Theorem {4 are quite similar to the ADT constraints
in Theorem [5] by formulation. However, these constraints differ in calculation. The

comparison and differences are given in the following remark.

Remark 3. There are two major differences in calculation of the ADT bounds in
TheoremMand[3] Firstly, Ay and A (as well as [t) depend on the solutions of the LMIs
in Theorem 5| Thus, W has a freedom of choice. However, Ky, is directly
calculated by the matrix condition numbers of the subsystems in Theoremd} Secondly,
o is a parameter which is dependent on the solution of the LMIs (3.36b). In other
words, o can be freely chosen to shift the eigenvalues of the subsystem matrices A;
by o to make (A — al) < 0. On the other hand, the eigenvalues of the subsystem
matrices are directly used to calculate A7, . and A, in Theorem The restriction of
the freedom of choice gives an opportunity to have a better estimation for the ADT as

it can be seen in Example [9) of the next section.

3.3 Numerical Examples

Now, the following examples are presented to demonstrate the FT stabilizability of

switching systems by using Theorem [I]and 4]

Example 5. Consider the switched linear system (2.0) with following three subsystems

0.06 0.13 0.04 0 02 —04 02 0 0
A= (006 002 —-0.06],4,=|021 02 02 |,A3=|0 036 —0.02
0.04 —0.13 0.06 -0.21 0.1 0.1 0O 0 03
Calculating the Jordan forms, we have
0.1 0 0 1 -1 -1
h=viavy'=]10 -0105 0 |,Vy=[0 096 —0.96],
| 0 0 0.5 1 1 1
03 0 0 0 —1.69 1.69
h=WAV,'=10 0355 0 |,V,=|2 -1 —1],
|0 0 —0355 11 1
(03 0 0 0 10
J=VsA3V;'={0 02 0 |,V3=[033 0 I
|0 0 036 1 00




A*(J;)’s are calculated as 0.15, 0.355 and 0.36, respectively. Note that all L*(J;)’s are

positive so that we can apply Theorem By choosing 6 = 1, € = 100, Ty = 2 and from

(3-4), we have

0.3866- g1 +0.3466 - qo +0.3318 - g3 < 1.5826.

So, this allows us to determine the feasible set of the following subsystem activation
configurations: Fjg, = {(1,1,1),(2,1,1),(1,2,1),(1,1,2)}. Let us see this with a

simulation experiment.

4 0 3
Take the initial state xo = [~0.1 5 0.5]" and R= |0 0.01 0| satisfying the initial
3 0 4

condition xg Rxy < 1. Let us also consider the switching signal

2, 1€10,0.6)U[1.6,2)
o(t)=<3, 1€]0.6,1.2)
1, re[l1.2,1.6)

which satisfies the subsystem activation configuration (1,2,1) € %, 0,2)- The simulation

results in Figure [3.1| verify that the system is FT stable with respect to the chosen

parameters.

100 prmmmmmmmm e
—Subsystem 1

80 —Subsystem 2
Subsystem 3

60 -

40 |

20 |

0 --------------------------- [ [ |
1 1.5 2

Figure 3.1 : Simulation of x(¢)” Rx(t) Under Non-Periodic Switching o (t).

Example 6. Consider again the switched linear system given as the motivating
example in Chapter[2|(Example[d] of Chapter[2)). This motivating example shows us the
existence of an ADT which makes the switched system FT stable with respect to given
parameters. When periodic switching is concerned, the existence of such an ADT is

equivalent to the existence of a critical period for the systems to ensure FT stability.
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10Period=0.1 10Period=0.2 10Pe’ri¢?ﬂ=0.3 10Period=0.4 10Period=0.5
5. 50 -~ 5 .-
o i PRI 1 0
5 ﬁ 5 ’ -5

-10 -

| 10 10 /1 .10 -10
-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10
Period=0.6 _ Period=0.7 _ Period=0.8 . Period=0.9 Period=1
0 10 10 10 10,

5 5 5 5 oo~ 5 -
0 0 0 0 0:

-5 5 - -5 - -5 -5

10 10 -10

- - -10 -10
-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10

Figure 3.2 : Periodic Switching of A; and A, with Various Periods and 77 = 10.
In order to see this phenomenon, the simulations of the given switched system with

various periods are depicted in Figure[3.2]

As it can be seen in Figure [3.2] there is a critical period between the periods 0.3 and

0.4 that the system satisfies x7 (¢)x(¢) < 25, Vt € [0,10].

Now, let us apply Theorem @] Calculating the Jordan forms, we have

B 0, 1 [-1-17.2916) 0
=NV =nh =V, _{ 0 —1-17.2916/°
y, — [003334+0.5764j —0.0333—0.5764;

]_ 1 1 9
[—0.1 —1.7292j —0.1+1.7292 j]
Vy = | . .

Thus, A*(J1) = A*(J) = —1 and A, = 1. Now, in order to apply Theorem {4, we
should determine the last switching instant #,,. In order to represent the cases presented
in Figure we choose different 7,,’s, calculate different ADT bounds for each ¢, and
present the results in Table [3.1]

These results are consistent with the simulation results presented in Figure [3.2]

Example 7. A switched linear system (2.6) with two subsystems is given as follows

22 -2 1
e[ )
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Table 3.1 : ADT Bounds for Different Switching Periods and Corresponding #,,’s

Period 1, T

0.1 99 0.5278
02 98 0.5329
0.3 99 0.5278
04 9.6 0.5434
0.5 95 0.5488
06 9.6 0.5434
0.7 9.8 0.5329
0.8 9.6 0.5434
09 99 0.5278
1 9 0.5775

where A is unstable while A, is Hurwitz stable and both of them are diagonalizable

matrices.
_ 1 0 2 1
J] :Vl 1Al‘/l — |:0 4‘| y Vl = |:_1 11 = lgax =4
_ -1 0 2 —1 _
J2:V2 1A2V2: |:0 _3‘|7V2: |:1 1 1 :>A’min:1
Choose

§=500, R=1, Tt =2.4, T~ =21.6, Ty = 24,Ny = 0,& = 900

the initial state xo = [10 —20]7 satisfying the initial condition x§xo < 500. By
applying (3.30) of Theorem | the ADT is found as t; = 0.5560 which demonstrates

the validity of the proposed theorem.

Note that, in [46|]] the ADT is obtained as T, = 2.4. The major reason for such a
difference in ADT is that exponential stability is analyzed in [46]. However, in our
example FT stability is analyzed which is much more relaxed stability notion than
exponential stability that allows more frequent switching. The simulation results in
Figure [3.3] verify that the system is FT stable with respect to the chosen parameters
and with a periodic activation of Ay and A, over time periods 0.12 and 1.08 (i.e.

T, = 0.6), respectively.

Let us give another example with three subsystems.

Example 8. A switched linear system (2.6) with three subsystems is given as follows

—1.35 0 0 035 O 0 —0.85 1 -1
Ai=|—-05 -135 0 ,A o= 0 035 0 |,A3=] 067 —0.85 0
-0.5 0 —1.35 1 I 035 0.67 0 —0.85
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40 ¢

__________ —Subsystem 1
""-+—Subsystem 2
20+
o0 |
8 ,"
20+
'40 ! I .
I (t)
Figure 3.3 : Periodic Activation of A; and A, over time periods 0.12 and 1.08,
respectively.

where Ay and Az are Hurwitz stable while A is unstable matrices. Calculating the

Jordan forms, we have

(135 1 0 0 -1 0
Ji=viaivy'=| 0 135 0 |,v=]05 0 05/,

f 0 —135 0.5 0 —05

(035 1 0 0 05 05
J=VAV;l=| 0 035 0 |,%=|0 05 —05],

p 0 035 1 0 0

[—0.85 1 0 0 1 0
=V, '=| 0 -08 1 |,V3=[067 0 0.33

|0 0 —0.85 0.67 0 —0.67

A*(J;)’s are calculated as —0.85, 0.85 and —0.14, respectively. According to A*(J;)’s,
we get A=A = 0.85. Choose

§=16, R=

N = W

1 2
6 1|, 7T"=7,T =9, Tf=16,Ny=0,6 =25
1 2

the initial state xo = [—1 1 2]T satisfying the initial condition xg Rxyp < 16. By

applying (3.30) of Theoremd| the ADT is found as T, = 1.7157.

To verify this result, let us consider the switching signal

1, r€]0,2)U[12,14)
o(t)=42, t€[2,5U[7,9)U[10,12)
3, t€[5,7)U[9,10)U[14,16)
The simulation results in Figure verify that the system is FT stable with respect
to the chosen parameters and with a switching signal satisfying the calculated ADT

bound.
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5

0 ! L
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Figure 3.4 : Simulation of x(¢)” Rx(t) Under Non-Periodic Switching o (t).

Example 9. Let us consider the switched system (2.6) with the same subsystem

0 —1 0 —2
Al:[z o}’AF[l 0]'

By Jordan decomposition, we have

matrices in [45|] as

0 1.4142j
—0.7071j 0.7071; —1.4142 1.4142;
Vi= 1 1 » V2= 1 1 '

Thus, we have A, = 0. Note that, the term 22

infn vanishes in (3.28), since A,,;, = 0.
Therefore, there is no need to determine t,, to apply Theorem | for this example. For
given 6 =1, € =20, Ty = 10, R =1, let us apply Theorem 4} we have the ADT bound
Ty = 2.3138 which is a better estimation than T, = 3.1539 found in [45)]. On the other
hand, we obtain the same ADT bound 7T, = 3.1539 as in [45|] by taking € = 9.005,

which is a better estimation for € as it is depicted in Figure

25 —Subsystem 1
g0 ] —Subsystem 2.
15
10
5
0
0 2 4 6 8 10

Figure 3.5 : Simulation of x(¢)” Rx(t) Under Periodic Switching with Period 3.16.

30



4. STATE FEEDBACK DESIGN FOR FINITE-TIME BOUNDEDNESS

In this part, finite-time control of switched linear systems with interval time-delay is
considered. State feedback is applied in order to ensure finite-time boundedness of the
system. Sufficient conditions and average dwell-time bounds are obtained. Because
of non-convex terms in the average dwell-time constraint, a technique which converts
the nonlinear terms into linear matrix inequality conditions is expressed in terms of the
cone-complementarity linearization method. Finally, numerical examples are given for

the effectiveness and validity of the proposed solutions.

4.1 Problem Statement

Consider a switched linear system with an interval time-varying delay in the state

vector, where
X(t) =Ag()X(t) +Ago(X(t — h(t)) + Bgyu(t) + By nyw(t), 4.1)
with the initial conditon function
x(t)=¢(t), t € [—hy,0]. 4.2)

Here x(t) € R" is the state vector and u(z) € R™ the control input, respectively.
As(1)> Ado(t)> Bo(r) and B,,q(;) are real constant matrices of appropriate dimensions,

¢ € €([—hy,0],R") is the initial function and 4 is the delay function satisfying

0<hi <h(t) <hy, h(t) < hg <oo. 4.3)
Unless otherwise stated, the expression “Switched Systems with Stable Subsystems"
means that Aj,A»,...,Ay are all Hurwitz stable. w(¢) is the exogenous disturbance
satisfying
/ wl (t)w(t)dt <d, d >0 (4.4)
0

Consider the control law
u(t) = —Kg(nx(t). 4.5)
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The closed-loop system is given as follows

(1) :AKc(t)x(t) “"Adc(z)x(t —h(t)) +Bw6(t)w(t)7 (4.6)

where AKO‘(t) = Ac(t) — BG(t)KG(t)-

4.2 FT Boundedness Analysis

In this section, we suppose that Ay, As,..., A, (1 <r < N) in system (.1]) are Hurwitz
stable and the remaining matrices are unstable. Let us define

= -0 i€ Iy

where % and .7, are the index set of all Hurwitz stable and unstable subsystems,
respectively. Note that . = ¥, U .%,,. For a given switching sequence X, the
total activation times of stable and unstable subsystems are defined as 7~ and T,

respectively in a finite interval [0, 7f]. Thus, T =T +T".

Theorem 6. Consider the switched system (4.1) with r Hurwitz stable and N — r
unstable subsystems. The system is FT bounded with respect to (6,¢€,T¢,d,R),
for given constants o >0, u > 1, T* >0 and T~ > 0 such that Tr =T+ T, if
there exist a set of symmetric matrices for every i'" system P; > 0, Q1; > 0, Q»; > 0,

S$1i>0,82>0,T, >0 W, >0,Y;, My;, Maj, Ny, Ny; satisfying

Q; 2—1\211 —N; Z
o —e2‘2h282i 0| <o (4.7a)
* * * —1I
% ! < Ay e?%min® g (4.7b)
P; < ubi, Okj < WOki,Skj < WSki, Tj < uT;, 4.7¢)

fori,je % and k= 1,2, where

Qi1 Qi Qi3 —Nii Buwi Qe ]
x*  Qp; My —Ny 0 PAL
* Q33 0 0 0

*
L= Qu;, 0 0 (4.8)
* * * * —W; BVTW-
* * * * * Q66,i_
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with entries

Quui =AiP+ PAT = BiY; =Y/ Bl +Q1i+ Qoi — V™ S1; = 2yiP + T,

Qo =AgiP,— My + Ny, Qi3 = e*V ™S+ My, Qi = PA] — Y] B!,

Qi =Noi + Nj; — Mo — My; — (1 — hg)e*V™T;

Q33 =— V" (Q1i+517), Quai = =Y 0si, Qe = hiS1i+ 11y Sni — 2P

Then the ADT of the switching signal satisfies

Trln
Ty > T, = Sk

In(Ai€) —Inn!. — 20T +20,. T~ —Nolnpt
where o), = max;e 4, {0}, o, = mine g {0} and
Ny =28 + Ay % § 4 Jihye?%nasl> § 4 ALpd > %nast §

AR (hy @%maslt 4 pyp2%mad2) § 4 A8y a2 § 4 dgd.
with matrix transformations

01: =R'20\;R'?, 0r; = R'?QyR'2,

S1i =R'*S1;R'?, 85, = R'2SyR'/?,

Q1i =P.01;P;, Q2i = P.OyPi, S1i = PS1iPi, S = P.SyP,

T, =R'*T,R'?, T, = PT:P,

My; =P.M\;P;, My; = PMy;P;, Ny; = PN1;P,, Ny = PNy,

and
A= inf{Min(E_])}v = Sup{lmax (ﬁi_l)};
i€y ic.s
23 = sup{ Amax (B Q1P ")}, Mg = sup{ Amax (B 02iP ")},
ic s i€t

/15/ = Sup{lmax (Piilﬁlipiil)}v )vé = Sup{/lmax (P;ISZipfl)},
ied i€y

)V; = Sup{)'max(ﬁi_lﬁpi_l)}» Ay = Sup{lmax(vvi)}a
ics ics

8= sup {xT(s)Ri(s)}, hia =ha—hy,
sG[—hz,O]

Z;=[0000C;P.00)]" M;=[M;; M>;00000]", N;=[N;; N,y 00000].

The gain matrices K; of controller are perceived as

K =Yv.P .
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Proof. Consider the following Lyapunov-Krasovskii candidate functional as
6
x(1)) =Y Vii(x(t)) (4.13)
j=1

where

Vai(x :/, V=T (5)0x(s)ds

hy
4.14
Vii(x(2)) = / hlezv”(’ V%7 (5)S1:%(s)dsd 6 (“+-19)
+9
—h
Vo) = [ [ eI ()85(5)dsae
—h2 t+0
t
Ve (x(1)) = / Y3 T (VT x(s)ds
t—h(t)
The derivatives are obtained as follows
Vii(x(t)) =x" () [P Axi + Ay ()
+2xT ()P A gix (2 — (2)) 4 2xT (£) P Byiw (1)
Vai(x(t)) =2yVai +x" (1) Qix(t) — e2¥™MxT (t — hy) Qyx(t — hy)
Vai(x(t)) =2V +x7 (1) Qgix(t) — e?V"2x (t — h) Qpix(t — ) 4.15)
t
V4,-(x(t)) =2V + h%XT (l‘)gll')é(t) — Vil h])'CT (S)EUX(s)ds
t—h
i _ l—lhl _
Vsi(x(t)) <2uiVsi + I2aiT (1) sk (r) — e2ViMe / hiaiT (5)Sak(s)ds
t—hy
Vei(x(1)) <2yiVii +xT ()T ix(t) — (1 — hg)e*Y2xT (1 — h(£))Tix(t — (1))
By Jensen’s Inequality, V4;(x(t)) can be written as
V4i(x(t)) SZ!//,'V4,‘(X(Z‘)) + h%XT(t)Sli)'C(I) — Vil T (t)gl,-x(t)
(4.16)

+ 262Vl ()8 (t — hy) — VM xT (1 — 1) Syx(r — hy)
From (4.3), it is clear that —(hy — hy) < —(hp —h(t)) and —(hy —hy) < —(h(t) — hy).
Thus

l‘*hl T - . tfh(t) .T - .
_h /th ()52t (s)ds < — (ha — h(1)) / AT (Si(s)ds
2 = 4.17)
t—h _
— (h(t) = hy) /t i i (5)Sauk(s)ds

Let ft @ ( )ds =:ip, (t) and j;[:,f;(t)x(s)ds =:iy,(t). Then, by Jensen’s Inequality,
is written as follows

t—hy _ — —
—hys /t . i1 (5)S(s)ds < —i,{z(r)sziihz(r)—i,fl (t)Saiin, (t) (4.18)
—ny
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Now, define
E(t) = [x"(t) X" (t = h(e)) x"(t — hy) x" (t = ha) w' (1) £ (1) i (1) igz(t)}T. (4.19)
By Leibniz’s formula, we have

26T (1), {x(t —hy) —x(t —h(t)) —ip, (t)} =0

(4.20)
26T ()N {x(t —h(t)) —x(t — ha) — ip, (I)} =0
Also from (4.6), it can be written
2:7 (1) P! [AK,-x(t) +Agix(t —h(t)) 4 Byiw(t) — x(r)} =0 (4.21)
On the other hand, for a positive definite matrix W; the following holds
(W (£)Wiw(t) —wT () Wiw(t)] =0 (4.22)
Then, by the equations (#.13)-#.22)), we obtain
Vi(x(1)) = 2yiVi(x(1)) <ET (& (1) +w! (1)Wiw(1). (4.23)
Here
B - -
* * —e2Vim g,
fori,j€ % and k = 1,2, where
B B Eii Ny F7'Bui AfP]
*  Epi My —Ny 0 ATp!
- * * 3337,' 0 0 0
Zi=| . - 0 0 (4.25)
* * * * —W; Bz;l-Pl._l
| * * * * E66,i

with entries
B =P Aki+ AP 4 01+ 0y — VM Sy —2uiF 4+ T,
B0 =P 'Agi— M+ Ny, E13; = VS + My,
B0 =Nai+ Ny — Moi — My, — (1 — hg) VT,
B3 =— o2Vl (01; +S1), Eg4i= —€2Wih2§2i7 E66,i = h%gn +h%2§2i — 2Pi_l

M =[My; M3;00000]7, 4 =[Ny; N3;00000]"
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By pre- and post-multiplying both sides of the Inequalities in (4.24)) with (4.25)) by
9; = diag{P;,P;,,P,,P;,1,P,, P;, P;}, Y; of (4.7a)) are obtained. From (4.7a))

Vi(x(1)) = 2yVi(x(r)) < w' (1) Wiw (1) (4.26)

is obtained.
On the other hand, by applying Gronwall’s Lemma on ¢ € [t;, ;.4 1) we have

t

Voo (x(t)) <V v (e(t)) + [ Vom0 ()W gw(s)ds.  (4.27)

Tk

Consider and assume o (#;) =i and o(f, ) = j, we have

Vo) (x()) < 'uvo(t,:)(x(t]:)) (4.28)
If Gronwall’s Lemma and (@.28) is applied to (@.26)) until [0, ;) iteratively, we get

V(o) (x()) e2¥otn U=+ 42e0 =00y Ny o (x(0))

N i 2 E—tk) . A2V 0 (1 —S) . T
+u /0 e~ ol (0 w ()W oyw(s)ds

(4.29)
P g

t
+ ez%(’k)(tfs)wT(s)WG(,k)w(s)ds
Ik
By considering the activation times 7~ and T for stable and unstable subsystems,

respectively, the inequality (4.29) can be written as follows:
Vot (x(1)) el 26l u (V) (x(0)) + Asd). (4.30)
where N denotes the switching number of o (r) over (0,7y). Moreover,
Vo) (x(0)) =" ()P x(0)
0 —
+/ e 2Vo0)sxT (5)Q16(0)x(s)ds
—h
0 —_—
+/ e~ 2VooSxT (5)Q26(0)x(s)ds
7/12
0 /0 . (4.31)
+/ / hle_z%(o)sxT(s)SlG(O)X(s)dsdB
—hy Jo
—hy 0 —
b [ e 0T (5)85001(5)dsd®
—hy Je

0
+ / e~ 2Vo0SxT ()T g(0)x(s)ds.
(o)
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When the orders of the double integrals are changed and the matrices in {@.1T]) are

substituted, we have
Vo(0)(x(0)) ZXT(O)P;(]O)X(O)
0
+/h eiZV’c(O)SxT(S)P;(B)Qlo-(O)POT({))x(S)dS
—ni

0
+/h2 e*2W6<o>SxT(s)P;(B)Qza(O)Pg&))x(s)ds

From (@.11]), each matrix can be bounded as

Qlc P 1)—R1/2P QIGOP()

Also, note that

Sup {8_2'//0(0)3} S Sup {6_2‘!’6(0)5} zamaxhl

s€[—h(0),0] s€[—hy,0]
s€[—h,0]

Here, an upper bound for Vs (0) (0) can be written as follows
Vi (0) (X(0)) <28 + Ashy 2%l § 4 phpe? etz § 4 )L 2 Omartt &
o+ ALKy (hy @ %malt 4 by @2 Onaa) 8 4 )8y %2 §.
Since,
Vot (x(1)) 2 o (0B 'x(0) = 27 (0)RY2B RV 2 (1)
> inf (Rl )" (0OR(0)
= LixT (£)Rx(z).

R1/2 < Afmax( Gl QIG(O)P a(0 ))R < 2‘3R

(4.32)

(4.33)

(4.34)

By the equations (#.30), (#.33) and ([#34) the inequality x” (£)Rx(¢) < € is obtained,
which tells that the switched system (4.1)) is FT bounded. Then, for u = 1 the inequality

in and for u > 1 the ADT bound in (4.9) are calculated.

O

Remark 4. Note that, Theorem |6] has A;P; + PAT —2y;P; — BY; — Y BT in (@.Td)

with @.8). By adjusting (A; — y;I) by y; each pair of (A;,B;) do not have to
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be controllable on each mode. For example, consider the simple system X(t) =

Ax(t) + bu(t), take A = {_01 (1)}, b= {(l)} and use the state feedback controller

u(t) =kx(t) = [k ko] [x1(r) x2(1)] " When the state feedback controller is applied

the Avbk— |1 TR K

0 L the unstable mode remains unstable. However W enables

. | =l=v+k ko
us to stabilize A — Yyl + bk = { 0 -yl
Remark 5. Note also that the condition (4.77b) contains the constants Ay, Ay, 13', M,
AL, A¢, Ay and Ag. The existance of these constants depends on the solutions of the

following inequalities
Ml < Bl < Aol
0<P'0uP <M1, 0< P 0P < 141
P A (4.35)
0< P 18P <20, 0< P 1SyP < A,
0<PYEP Y <A1, 0<W; <Xl

For more details see [47)].

To solve the inequalities in (d.33)), it is necessary to put them into LMIs form. Thus,
consider 0 < 1’51-_1QA11'15,-_1 < M1, write it as —13’I+15l~_1QA1iF’,-_1 < 0 and use Schur
Complement

Y

M1 P!
T *  —Ey

<o — |

* -0y

} <0 (4.36)

where J; = f’i_l and E; = QAl_l1 (or equivalently J;P. = I and Elini =1). By
applying same procedure to the other nonlinear inequalities from and defining
the matrices Ey;, Fi;, Fp; and G; for the matrix inverse approximates of in, S Lis S'zl- and
T;, the following inequalities can be stated in terms of cone-complementarity algorithm

given in [45].

MI<Ji<2l0< | f :

RS EIE A i} EUCH by @37
:_igz —Jlf"l,-] <0.0< “ FII] ’ {_iél _@y} <0,0< [S: Flz] .
_—17'1 _Jé,] <0,0< [Z GIJ 0 < Wi < A,
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Algorithm 1. This algorithm is derived for Theorem |6}

e Step 1: Find a feasible set
0 A0 0 0 0 0 ;0 0 0 0 0 ~0 0 40 0 0 0 0
(Pz anbQZiaSlivSZiﬂTi 7Ji 7E E2i7F1i>F2i7Gi>vVi 7Ti 7M1i7M2i7N N2i)

li> li>

satisfying the inequalities in (4. 7d), (4.70), @.7c) and @.37). Set k = 0.

e Step 2: Solve the following LMI problem for the variables
(P, Q1iy ©2ixS1i5 821, Tiy Jiy Evis Eniy Friy Faiy Giy, Wiy Tiy My, Maj, Ny, Noj)
according to the following minimization problem

minimize tr ( Y JEB 4 TP+ ENO i+ EiOk .+ EX.O0i + Eni 05,
i€y

+ FES i+ FiiSK, + FE.Syi + Foi8K. + GF T + G,T,.")
sub ject to @.7d), (@.70), @.7¢) and @.37)
e Step 3: If a stopping criteria is satisfied, then exit. Otherwise, set
Pt =P, 0; = 011,05 = 02,81 = 811,85 = Sai,

TF =T, J5 = Ji,EY, = Evi, ES, = B Fl = iy B, = By GY = G,

and set k = k+1 and go to Step 2.

4.3 Numerical Example
A numerical example is presented in order to show the effect of the Algorithm 1]

Example 10. Consider the switched system with time delay (@.1)) with two subsystems
0.4 0 —1.6 0
=1 —0.34} Az = { 0 —0.14}’

A _[006 0 ] [-003 0
471006 —0.03]" 77 |-0.69 —0.12]°

0.4 0.3 0.1 0.15
B = 0.1}  B2= {0.15} » B = [0.4} » Bz = {0.3]'

Note that, A is Hurwitz unstable and A, is Hurwitz stable. The activation times of the

unstable and unstable subsystems are chosen as TT = 0.6 and T~ = 1.4,, respectively.

The constants
y; =0.5, y» =—-0.05, hy =0, hp, =0.1, hy = 0.01,

R=1,6=4,8=4,¢=25 u=101,d=00l,
Ty =2, No=0.
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are chosen and by Algorithm([I} we get a feasible solution with controller gains
K= [1850.6 388.3} , Kb = [—662.5 1760.7]

with the ADT t; = 0.2180.
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5. OBSERVER-BASED CONTROL FOR FINITE-TIME BOUNDEDNESS

In this part, interval time-delay switched systems having completely unstable and
mixed stable matrices of the state vector are considered. Observer-based controller
is designed for finite-time boundedness of these systems. New sufficient conditions on
the existence of desired observer are developed and new average dwell-time bounds are
introduced seperately in case of unstable and mixed stable subsystems. An algorithm is
presented for the calculation of unknown constants in the average dwell-time bounds
which depend on nonlinear matrices in terms of cone complementarity linearization
method. Finally, numerical examples are given for the effectiveness and validity of the

proposed solutions.

5.1 Problem Statement

Consider a switched linear system with an interval time-varying delay in the state
vector, where

X(t) =Ag (X (t) +Ago()x(t = h(t)) + Bou(t) + Byonyw(t),

y(t) =Cq)x(2)

with the initial conditon function

(5.1)

x(t)=¢(t), t € [—h,0]. (5.2)

Here x(t) € R” is the state vector, u(r) € R™ the control input and y(z) € R? the
measurement output. Ay, Agg(r)s Bo(r)» Bwo(r) and Cg(;) are real constant matrices
of appropriate dimensions, ¢ € €' (|—hy,0],R) is the initial function, % is the delay
function satisfying (4.3) and w(¢) is the exogenous disturbance satisfying (4.4).
Consider the observer based feedback controller

x(t) = Ag(0)2(1) + Bo(nyu(t) + Lo (v(t) — 9(1)),

(1) = Co()£(1), (5.3)

£(t) =0, ¥Vt € [~hy,0],
and the control law

u(t) = —Kg(nx(t). (5.4)
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Here, K(;) and Lg(;) are controller and observer gains, respectively. Define an error

vector e(t) = x(¢) — £(¢). The closed-loop system will be
X(t) =Ago()X(t) +Ado(nX(t — h(t)) + B Ko e(t) + Byo@yw(t),

é(1) =Apo(r)e(t) +Ado () x(t = h(1)) + Byo () W(t)

(5.5

where
Ago() =As(t) — Bo() Ko (1)

Ars() =As() — Lo()Co(r)-

5.2 FT Boundedness Analysis

In this section, first FT boundedness of the closed-loop switched interval time-delay
system is analysed. ADT is calculated for switched system with completely unstable
and also mixed stable subsystems. Full-order observer is designed that to guarantee

the FT boundedness of these systems.

Lemma 5. The closed-loop switched system (5.5)) is FT bounded with respect to
(6,€,Tf,d,R), if there exist a set of symmetric matrices for every i’  subsystem Pfl >0,
01;>0,05,>0,8;>0,8,;>0,T; >0, W, >0, My;, Mo;, N1;, No; and scalars o;; > 0
and | > 1 satisfying

B - -
Y= | % —e2%ng,, 0 <0, (5.6a)
* * _eZa,-hzgzi
uNe?®nalin < e (5.6b)
P <uP!, Oy < Q) S < Sk, Ti < T, (5.60)

fori,je I and k= 1,2, where

(E1; Z12i Z130 —Ni E1s;  PO'B ALPTN
x  Eyp; My —Ny ALP! 0 ALP!
* *  E33 0 0 0 0
Ei= x * * E44.i 0 0 0 (5.7
* * * * Ess; P 'Bui  Zsyy
* * * * * —W; BVTW-P;1
| X * * * * * =770

with entries
- —1 Tol,7A "~ 204 1, 7
Eni =P Agi+AgiP + 01+ 0y — e S —204F; " + T,
T =P A — M+ Nyi.  Bqns—= 2%MS LMy B =P IB.K
212, =; Agi 1i+Ni, Zi3i=e 1i+Myi, Zi5;=1; Dik,
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_ — =T — =T -
E,i =Nai+ Noj — Maj — My; — (1 — hg)e**"T;,
B =— M0 +8)), Eaa;=—e2%"2Q,,
Ess; =P 'Api+ALP —20,P7 ', sy, =K/ Bl P!,
Ey7; =381+ 180 — 2P~ ;= [M); Ma;00000],
N =[N1. N3 00000)7, hip=hr—hy, Oax=max{oyic .7}
and
N =24,0 + A3h e20maL § 4 ) )y @O § 4 7L5h?ezo""“xh1 5
_|_ Mh%z (hl ezamaxhl _|_ hlzezamwchZ ) 8/ + 2'7],126205171(”]12 5 _|_ lgd
with the matrix transformations
P =R'2PIRY2 01, = RV204R"?, 0y = RV 0uR'?,
S1; =R'28,;RV?, Sy; = R'28,,R"? T; = R'V*T:R/?,
while
afl = .inf{lmin(é‘il)}a l2 = Sup{)tmax (Pl'il)}a A3 = Sup{)tmax(Qli)}a
i€y ic s S84
Aa =sup{ Anax (02i) }, As = sup{Amax (S1i) }» A6 = sup{Amax (S2) },
i€d i€y i€d

A7 =sup{Amax(T}) }, As = sup{Amax(Wi)}, ' = sup  {&” (s)Ri(s)}
i€y i€s s€[—hy,0]

Then the average dwell-time of the switching signal satisfies

Tfln[.L

= % T n(Are) —InN — 200 T; — Nolnit ©-8)
Proof. Consider the Lyapunov-Krasovskii candidate functional as
6
Vix(1)) = ) Vjilx(t)) (5.9)
j=1
where
Vii(x(e)) =x" ()P x(t) + €T (1) P e(r)
t
Valx(0) = [ 40T (5)0y5x(s)ds
t—h
t —
Valx(0) = [ 50 (5)0yux(s)ds
t—hy
0 _ 5.10
Vai(x(1)) = / hi %957 (5)S):%(s)dsd O ©.10)
—hy Jt+6

—hy t _
Vsi(x(t)) = / [ e (5)Sk()dsdo
—n2

S
.
=
—
~
S—
N—
I

t
/ 24T ()T ix(s)ds
t—h(r)
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The derivatives are obtained as follows
Vii(x(t)) =x" () [P Ak + APy 'e(e) + 257 (6) P Agie(t — (1))
+2x7 ()P BiKe(t) 4+ 2x (t) P Byiw(t)
e ()P A+ ALP e(t) + 27 (1) Agex(t — A1)
+2¢" ()P Biw(t)
Vai(x(t)) =204Vai +x7 (£)Qyx(t) — %M xT (t — hy ) Qyx(t — hy) 5.11)
Vai(x(t)) =203+ x" (1) Qpix(t) — 2%72x" (t — hy) Qpyx(t — h2)
p— t —
Vai (x(t)) =206V + 1247 (1)S1:(1) — 2% / i (9 1i(s)ds
I—n
. _ l‘*h] _
Vsi(x(2)) SZ(XI’V&'—{—/?%ZXT(Z‘)S%X(I) _6205[/’12/ . hlsz(S)SziX(S)dS
t—hny
Vei(x(2)) <204Ve; +xT(t)T,-x(t) —(1- hd)ezaihsz(t —h(t))Tx(t — h(t))
By Jensen’s inequality, V4;(x(¢)) can be written as
V4l~(x(t)) S2OC,'V4,'(X(I)) —I—/’l%fCT (l‘)gll‘fc(l‘) — eZOC,-hle (t)glix(t)
d - (5.12)
—+ Zezaihle (t)SUx(t = h]) — eZaihle (t —hy )S],'x(t —hy )
From (4.3), it is clear that —(hy — h1) < —(hy —h(t)) and —(hy —hy) < —(h(t) — hy).
Thus

t—hy T — . t_h([) T - .
iy /t A (5)S20(5)ds < = (ha = h(1)) /t AT (95t ()ds
~h o (5.13)
— (W) —h) / hf)xT@)Sz,-x(s)ds

Let j;t:}f’(lt)x(s)ds =:ip, (t) and j}’__}flz(l)x(s)ds =:ip,(t). Then, by Jensen’s inequality,

(5.13)) is written as follows

—hio /ti;hl b (s)gzp'c(s)ds < —ig;z (t)§2iih2 (t) — i,{l (Z‘)gzl’ihl (t) (5.14)
Now, define
E(t) = [x"(t) x" (t —h(t)) x" (t =) x" (t — )

e (t) W' () " (¢) if, (1) if, ()]

It is clear that, by Leibniz’s formula i, (1) = x(t — h) —x(t — h(t)) and iy, (1) = x(t —

(5.15)

h(t)) — x(t — hy). In order to fill the upper triangular elements of (5.6a)), we have

26T (1) [x(t — ) —x(t — h(t)) —ip, (t)] =0
(5.16)

2§T(t)%[x(t —h(t)) —x(t — ha) — ip, (Z)] =0
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Also from (5.5), it can be written in similar consideration

257 ()P | Agix(t) +Agix(t — h(t)) + BiKie(t) + Byiw(t) —x(¢)| =0

(5.17)

In order to fill Z¢¢; element of (5.7)), the quadratic form of the positive definite matrix

W; can be added and subtracted to as follows
[ (6)Waw(6) —w! ()Y Wow(1)] =0
Then, by the equations (5.9)-(5-18), we obtain
Vi(x(r)) — 20Vi(x(1)) <ET(1)EE (1) +w () Wow(1)
From (5:6a)
Vi(x(t)) — 204Vi(x(6)) < w (1)Wow (o)

is obtained.

On the other hand, by applying Gronwall’s lemma on ¢ € [f, ;1 1), we get
Voo (x(1)) <%0V 0 (x(1))
t

* t ezao(lk)(t_S)WT(s)Wo(
k

yw(s)ds.

Tk

Consider and assume o (#) = i and o(f, ) = j, we have
Va(tk)(x<tk)) < NVG(z;)(x(t]:))
So by (5.21) and (5.22),

Vo) (x(7)) Sez%(fk)(t—fk)uv

Ik

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

t
o) ) + [ %I (5) Wi, w(s)ds.

is obtained. When we apply Gronwall’s lemma to (5.20) on #; € [fx_1,¢), we have

Vo) (1)) < Vo (1) <2000y (1))
N Ik eza"(’k—”(tk_s)wT(s)WG(

Tk—1
k-1

So,

Vot (x(1)) e ) STy (a(a))
n ‘u 143 eZ(XO.([k_] ) (lk—S)wT (S)WO-(

Tk—1

yw(s)ds

Tk—1

1
+ eza"(’k)(tfs)wT(s)WG(,k)w(s)ds.

Tk
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If Gronwall’s lemma and (5.22) is applied to (5.20) until [0,7,) recursively, we get
VG(,)(x(t)) Sema(rk)(f—fk)+2aa(zk,1)(lk 1)+ 2060y (11 — )[.LNV 50 )( x(0))

t
+,UN/1€2ac(zk)(f—fk)+2a6(fk—1)(tk_tk1)+“'+2a"<0)(t1_s)

X wT(s)WG(O)w(s)ds
t
+ [ 2%~ S)WT(S)W s W(s)ds
T
20Ty N s T(s
<e“"maliy +/ s(syW(s)ds

§€205maxrf"uN( G(O)(x( )) +A’8d)
where N denotes the switching number of o(r) over (0,7f). By Definition |1} it is

possible to write
V() (x(2)) < ezamafoNNo+T‘f/T“ (Va(()) (x(0)) + lgd) (5.24)

Moreover,

VO‘(O) (x(0)) = (O)P(;(}))

0
+/ efza"(o)sxT(s)@m(o)x(s)ds
—hy

x(0) + e’ (O)P;&))e(O)
0 —
+/ e_z%(o)sxT(s)ch(o)x(s)ds
—h
0 0 3
+/ / hle_za"(o)sxT(S)SlG(O)X(S)deO
hl

/ / hige 2% 0% (5)860)k(s)dsd O

(5.25)

+ / 205037 (5)F o 0x(5)ds.
When the orders of the double 1ntegrals are changed, we have
Vs(0) (x(0)) :xT(O)P_(i))x(O) + eT(O)PG_(}))e(O)

(o3
0 —
—I—/ e_za"(())SxT(s)QlG(O)x(s)ds
—hy
0 —
—i—/ eiMﬁ(O)SxT(s)QZG(O)x(s)ds
—hy
0 N _
—l—/ hle_z%(o)‘vxT(s)SlG(O))'C(s)des
—hy J—hy
7]1] N _
+/ h12672a"(°>3xT(s)SzG(O)X(s)des

/h,/ hype~ 2000 (S)EZG(O)X(S)deS
+/h( 2% ()T() x(s)ds.
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Note that ¢(0) = x(0). Then, if the upper bounds of definite integrals are written, we

can write

Vo(0)(x(0) <2mar (P )27 (0)Rx(0)

hie*®me sup  {xT(s)Rx(s) }

—~

10(0)> SE[—hl,O}

+ Aunar Q2o (0) ) e sup {x" (s)Ra(s)}
SG[*hz,O}

+A‘max ~10'(0) h?ezamax}ll sup {XT<S)R)€(S)}
SG[—hl,O]

20(0)
SE[—hz,—hl]

+ Amax ~26(0))h%zhwzo"”“”hl sup {xT(s)Rx(s)}

SG[*/’[] 70]

(
(
(S1e0)
(S2e00)
(
(

~0-(0)>h2€2a'"’”h2 sup  {x" (s)Rx(s)}.
SG[—hz,O]

Here, an upper bound for V() (x(0)) can be written as follows

VG(O) (X(O)) <240 + )L3/’l1e2am"xhl o+ )\,4h2€2am“xh2 0+ Afsh:l;ezam‘”‘h] &

+ %h%z (hlezamaxhl + hlzezamaxhz)s/ + A7h262amaxh25

Since,

> inf (AP )7 (R0
= Aix (1)Rx(¢).

By (5.6b)), (5.8), (5.24)), (5.26) and (5.27) the following inequality holds

Vo(o (x(1)) = & (6) P x(e) = (1)RVB 'R (1)

xT (1)Rx(1) < €

which tells that the closed-loop switched system (5.5)) is FT bounded.

5.2.1 Switched systems with unstable subsystems

ez sup LT (s)Ri(s) }

(5.26)

(5.27)

(5.28)

Based on Lemma [5| a FT boundedness criterion for the switched system with

time-delay is introduced.

Theorem 7. The switched system (5.1)) is FT bounded with respect to (8,€,Ty,d,R), if

there exist a set of symmetric matrices for every i'" subsystem P; > 0, Q1; > 0, Qa; > 0,
$1i>0,8;>0T7,>0 W, >0,Y;, My, My;, N1j, Naj and scalars o; > 0 and u > 1
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satisfying

Q; 2—1‘}/111 —N; Z;
o —eZOShZSQi 0| <o (5.292)
* * —1I
e?nalipn’ < )ie (5.29b)
P; < ub, Orj < UQui, Skj < USki, Tj < uTi, (5.29¢)

fori,je Z and k= 1,2, where

[Qi1; Qi Q3 —Ni; BY: By Qu7; ]
x  Qp; My —Ny PAL 0 PAL

* * .Q.33’l' 0 0 0 0
Q,‘ = * * * Q44,i 0 0 0 (530)
% * * x Qss; By YIBT
* * * * * —W; BVTW-
* * * * * * Q77 |

with entries
Qi1 =AP+PAl —BY;, — Y Bl +01i + 0y — 2%MSy; —204P + T,
Qo =AgiPi — My + Nij, Q3 = %M+ My, Qi7;, = PAT — Y B!,
Q2 =Npi+ Nj; — Mai — M3, — (1= hy)e* %™ T, Qs3; = —*%™ (0,4 Syy),
Quq;=— %m0y, Qs5; = AP, + PA!l —204P;, Q77 = hiS1; +h1ySo; — 2P,
M; =[M; M; 00000]", N; = [N1; N,;00000]", Z=[0000C;P,00]"
and

N =2208 + Ayhy % § 4 A pye? Otz § 4 31>t &

(5.31)
+ léh%z (/’L] eza’”‘”‘hl -+ hlzeza’"‘”hz)sl —+ Mhzezam‘”hz 0+ Agd.
with matrix transformations
01i =R'*QuiR'%, 05 = R'*QyR'?,
(5.32)

$1i =R'?SR'?, §5; = R'?SyR'?, T; = R'PT,R'/?.
and

13/ :Sup{lmax (pl'ilQAliP‘,'il)}a }Q{ = Sup{lmax (F),'71Q2ipiil)},

i€y i€y

)'51 = Sup{lmax (ﬁ;ISUPFI)}» 246/ = Sup{ﬂvmax (P;lSZiPiil)},
i€s i€s

M = Sup{kmax (F)i—l Tiﬁi_l) }
i€y
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Then the ADT of the switching signal satisfies

> il (5.33)
Ty > 1T, = :
¢ ~ In(A1€) —Inn’ — 204nax Ty — Nolnpt
The gain matrices K; and L; of controller and observer are perceived as
1
Ki=YiP,~_1, L= _EPiCiT (5.34)

Proof. Let us consider the inequalities (5.6a)) in Lemma [5]and define

Q1i =Pi01:Pi, Q2i = P.OyP;, S1i = PiS1iPi, S2i = PSP,

M; =P;M\;P;, Mp; = PM;P;, Nij = PN 1;P;, Ny = P;N2;P; (5.35)

T; =PTP:.
By pre- and post-multiplying both sides of the inequalities in (5.6a) by Z; =
diag{P,,P;,P;,P,,P;,1,P,P;,P;} and using Schur complement lemma the LMIs in

(5.294)) are obtained.
Now, substitute the matrices in (5.35)) into V() (x(0)) in (5.23) as follows

Vo) (x(0)) = 26 (0)7; 4, 3(0)
0
+/ €O (5)Py ) Q16(0)Po(oy*(5)ds
—ni

+/O e 2% T (s)P 0)220(0) Py (0)X(5)ds

B L (5.36)
+/h1/ hie 2% 05T (5 )Po(lo)SlG(O)Pa(h)x(s)dsdG
g —20510)5 T ( \p—1 -1
+/h2 /6 hipe” =“c©°% (s)PG(O)SZG(O)PG(O))’C(S)dsdG
0
2 O'
+/h( %0)5xT ()P} (0)16(0) Py (O)x(s)ds
From (5.32)), each matrix in the equation (5.36) can be written as,
Qla ) RI/ZP Qlcr 0) P (0 )R1/2 < Amax( Qla ( ))R < )‘3R
The upper bound for V) (x(0)) is obtained as follows
VO'(O) (X(O)) <240 + lé/’lleza’””xhl o+ /uhzezam‘”‘th + lslh?ezam“xhl &
(5.37)

+ Aghi (@™t 4 hppe?®nal2)§! 4 Ay §.

By the equations (5.24), and (5.37) the inequality x7 (t)Rx(t) < € is obtained,
which tells that the switched system (5.1]) is FT bounded. Then, for u = 1 the inequality
in (5.29b) and for u > 1 the ADT bound in (5.33)) are calculated. O
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In the following corollary, lower bound for time-delay is not considered and the similar
Lyapunov-Krasovskii functional as in [40] is used to compare the results given in

Theorem

Corollary 1. The switched system (5.1))) is FT bounded with respect to (6,€,T¢,d,R),
if there exist a set of symmetric matrices for every i'" subsystem P, > 0, T; > 0, W; > 0,

Y; and scalars o; > 0 and u > 1 satisfying

Q\; AaP BYi By 0
* /2271' PiAgi 0 0

Q=1 = x Q. By PCI| <0, (5.38a)
* * * W, 0
* * * * —1I
?maTin’ < ) e (5.38b)
Py <ub,Tj < uT; (5.38¢)

for arbitrary i, j € .Z, where
lll,i =A;P; +PlAlT —B)Y, — YITBIT —20;P,+T;,
Qby i = — (1= hg)e*"2T;, Oy, = AP+ PAT —204P,

and
n" =21,8 + Arhye*®m2§ 4 Jgd. (5.39)

Then the ADT of the switching signal satisfies

Tfln/.t
ln(ll 8) —1In T[” — ZOCmafo — Ny lnu

T, > T, = (5.40)

The gain matrices K; and L; of controller and observer are perceived as in (5.34))

Proof. The proof is similar to Lemma [5| and Theorem by taking the
Lyapunov-Krasovskii functional in and (3.10) as V; = Vy; + V. O

5.2.2 Switched systems with mixed stable subsystems

In this section, we suppose that Ay, As,..., A, (1 <r < N) in system (5.1)) are Hurwitz

stable and the remaining matrices are unstable. Let us define
W = —o; €Iy
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where % and .7, are the index set of all Hurwitz stable and unstable subsystems,
respectively. Note that . = Z; U .%,. For a given switching sequence X, the
total activation times of stable and unstable subsystems are defined as 7~ and T,

respectively in a finite interval [0, Tf]. Thus, Ty =T+ +T".

Theorem 8. Consider the switched system (5.1) with r Hurwitz stable and N — r
unstable subsystems. The system (5.1)) is FT bounded with respect to (8,€,Ty,d,R),
for given constants o; > 0, w > 1, T™ > 0 and T~ > 0 such that Ty = TY+T, if
there exist a set of symmetric matrices for every i'" subsystem P; > 0, Q1; > 0, Qa; > 0,

S$1i>0,8;>0,T;, >0, W, >0,Y;, My;, Mo, Ny;, Noj satisfying

Q; z—f\gz —Ni Z;
T — I —e ": 28); —e2‘2hzsz,- 8 <0 (5.41a)
* * * —1I
2% ! < )y eP%in! g (5.41b)
Pj < uPBi, Okj < WOki,Skj < UWSki, Tj < UT;, (5.41¢)

fori,je Z and k = 1,2, where

Qu1i =AiP,+ PA] = BiY; Y[ B] +Q1i+ Qo — V" S1; — 2yiP + T,

Qi3 =e>VM Sy + My,

Qo i =Noi + NI — My — M3, — (1 — hg)e*¥™ T,

Qs3:=—2VM(Q1+51), Qua;=—e2V"2Qy;, Qss; = AP+ PAT —2yP
and the remaining entries of Q; are of Q ki = Qg e

Then the ADT of the switching signal satisfies

T, > T = Iylnp (5.42)
T In(Me) —Inn — 20T + 20, T~ —Nolnp '
where o), = max;e 4, {0}, o, . = mine g {0} and
N, =228 + Ayl 2% § 4 Jihye?%nasl> § 4 AL > %nast §
(5.43)

+ léh%z (h1 eza’;"xhl + hlzeza't”xhz ) &' + Mhzeza't”xhz o+ lgd.

The gain matrices K; and L; of controller and observer can be obtained as it is in

(5.34).
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Proof. The inequality in (5.41a) is obtained by taking the Lyapunov-Krasovskii
functional (5.9) and (5.10) in Lemma 5| by replacing o; with ;.

In order to obtain upper bound for Vg ;) (x(t)) substitute y; for ¢; in (5.23). So, the

following inequality holds.

Vo) (x()) éeZWG(zk)(t_tk)+2‘l/a(tk71)(tk_lk71)+-~-+2‘lfc(0) (tl_O)IJ'NVG(O) (x(0))

t
-I—,LLN/ ! 62W6(zk)(t_tk)+2Wc(tk_l)(tk_tk—l)+~-~+2W5(0)(tl_5)
0

X w! () W0 w(s)ds (5.44)
+ ...

L 2y (1—s)
+ [ e Vo I (5) W
Ik

yw(s)ds

Tk

By considering the activation times 7~ and T for stable and unstable subsystems,

respectively, the inequality (5.44) can be written as follows:
Ve () (x(1)) <2 20T N (v ) (x(0)) + Asd). (5.45)

Vo(0)(x(0)) in (5.45) is obtained by substituting y; for ¢ in (5.25)). Then, from (5.25)
and the facts

sup {e” o) 0} = sup {max{e 205(0) eZWG(O)S}}:eZO%XhI,
SE[ hy, } [ hy 0]

sup {e Yo} = sup {max{e 2% 0% ?%0)5}} = 2%marh2, 5.46)
s€[=h2,0] s€[~hy.0]

sup  {e Yo'} < sup {e 2o} = 2%l
SE[—}Z(O),O} Se[—h27O]

Vs(0)(x(0)) is obtained as follows

Vo(0)(x(0)) <2426 + Ayhy@2%nalt § 4 AL hye?mal § 4 QLR e20mat 8
(5.47)
+A«6/h1 (hlezamaxhl —|—h1262amaxh2)6/ —I-)nqhzez maxh26.

By the equations (5.27), (5.45) and the inequality x” (t)Rx(t) < & is obtained,
which tells that the switched system (5.1)) is FT bounded. Then, for u = 1 the inequality
in (5.41b) and for u > 1 the ADT bound in (5.42)) are calculated. O

Remark 6. Note that the condition (5.29b) contains the constants A1, A, A3, Ay, A, AL,

As and Ag. The existance of these constants depends on the solutions of the following
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inequalities
M < Isi_l < 121,

0<P10uP ! <1, 0< B 0nuP ! < M1,

S o (5.48)
0<P18,P 7 < 2l 0< P18y < A
0<P TP <AL, 0<W; < Xl.

For more details see [47)].

To solve the inequalities in (5.48), it is necessary to put them into LMIs form. Thus,
consider 0 < Pleuﬁfl < M1, write it as —7L3'I—|-15,~71Q1i16fl < 0 and use Schur

Complement

/ - ' .
[_13’ F I Ji ]<o (5.49)

L | <0 = | 3
* _Qli] [ A —Ey

where J; := P! and Ey; = inl (or equivalently J;P. = I and Elini =1). By

1
applying same procedure to the other nonlinear inequalities from (5.48)) and defining
the matrices Ey;, Fy;, F>; and G; for the matrix inverse approximates of in, S lis 52,- and

T}, the following inequalities can be stated in terms of cone-complementarity algorithm

given in [48].
P 1

MI < J; <ﬂ,21 0< N J]

[\l J,~ 0<|Qu 1 —41 i <o 0< Oy I
AU S —MI U S 1 '

<0, 0< 6 < < |7
Y 1] - F1l * P =0.0= 1, |’
- ' .
1“71 _J&} 0,0< K } 0 < W, < Agl.

Remark 7. In the following, a general algorithm is defined for solving the sufficient
conditions given in Theorem [/} [§ and Corollary[I| Note that, Qss; of Theorem [7}
9’3371- of Corollary §55J~ of Theorem (8| contains the terms A;P; + PiAiT —204P; or
AP —l—P,-Al-T —2y;P,. It should be stressed out that, positive definite solutions for P;
satisfying the corresponding LMIs can only be found, if (A; — oyl) or (A; — y;l) are
Hurwitz stable, respectively. In other words, it is not possible to find positive definite
P, satisfying the corresponding LMIs, unless (A;— o4I) or (A; — Wil ) are Hurwitz stable,

respectively. So, the following algorithm should be considered in that way.
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Algorithm 2. This algorithm is derived for Theorem

e Step 1: Define constants ;, for each i € % such that all (A; — W;I) are Hurwitz

stable.
e Step 2: Find a feasible set
0 A0 0 0 0 0 0 0 0 0 0 A0 0 70 0 0 0 0
(Pl >Q1i>Q2i7S1i7SZi7Ti 7‘]1' 7E1i7E2iaF1iaF2i>GiﬂVVi 7Ti 7M1iaM2i7Nli7N2i)

satisfying the inequalities in (5.41a)), (5.41b)), (5.41c) and (5.50). Set k = 0.

e Step 3: Solve the following LMI problem for the variables
(P, Q1iy 020,511,821, Ty Jiy Evis Eniy Fiiy Faiy Giy, Wiy Ty, My, Moy, Ny, Noj)
according to the following minimization problem

minimize tr( )3 J{Bi+ JiPf + Ef 01+ EiQ); + E5i00i + Exi 05,
ics
+FiS 1+ FuiShi+ FyiSai + FuSy; + Gi i + Gif}")
sub ject to (5.41a), (5.41b), (5.41¢) and (5.50)

e Step 4: If a stopping criteria is satisfied, then exit. Otherwise, set

A

Pi :Bani:Q1i7Q2i:Q2i751i:S1i7S2i:SZivTi :’I},
k k k k k k
Ji =Ji, EY; = Evi, By = Eoi By = Ry, By = B, Gy = G

and set k = k+ 1 and go to Step 3.

Remark 8. The previous algorithm can be stated for Theorem|7|as well as Corollary|]|
by defining constants o, for each i € % such that all (A; — o4I) are Hurwitz stable
in Step 1. Note that, Q1i,Q2i,S1i,52i,E1i,Ezi, Fri,Fai do not exist in Corollary [I}
the feasible sets and objective functions of the minimization problems are going to

be altered in that manner. Also, inequality constraints of the LMI problem and the

minimization problem will be (5.29a), (5.29b), (5.29¢) and (5.48)) for Theorem [/ and
(5.384), (5.38b), (5.38c) and (5.48) for Corollary|l}

5.3 Numerical Examples

Some numerical examples are presented in order to show the effects of the Algorithm

2] for Theorem [7)and Corollary [1]
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Example 11. Consider the time-delay switched system (5.1) with matrices as in [40]

—1.9 —1.5 —1.2 2 —12 -15
Ar=107 —16 05|,A=|02 -15 04|,
-13 05 1.1 —07 11 -12
02 0 0.1 02 0 0
Agp =101 03 0.1|,Ap=[01 02 0.1},
03 0.1 0.2 0.1 0.1 0.3
(1 0.5 0.3 0.4
B = |05|,B,=107|,B.,=|05|,B.n=02],
2 1.5 0.2 0.3

Ci=[-12 05 09],C=[-1 12 05].

In order to apply Algorithm[2] following constants are given
o =0=0.01,h =0,hy=02, h;=001,R=1,06=1,
8 =1,e=30, u=1.001, d =0.01, Ty =10 and No = 0.

By solving the minimization problem described in Algorithm 2] for Theorem[7]in LMI
Toolbox of MATLAB, we get the controller and observer gains

K = [3.2191 —3.6818 4.1374} , Ky = [2.3492 —0.4347 3.3150] ,

Ly =[0.0126 —0.0007 —0.0077]", L, = [0.0103 —0.0047 —0.0028]"

and ADT is obtained as T, = 0.0481. Also by solving the minimization problem in

Algorithm |2\ for Corollary|l| we get the controller and observer gains
K = [90.5968 6.9892 98.5752} , Kb = [57.6511 31.5745 65.3609} ,
Ly =[0.0002 0 —0.0001]", L, = [0.0002 —0.0001 0]".

with the ADT 1 = 0.2851. Comparison table is given in Table|5.]]

Table 5.1 : 7, Comparison

T
In [40] 1.8219
Algorithm |2| for Theorem 0.0481

Algorithm 2| for Corollary (1| 0.2851

For various |, & and hy, T values are presented in Table 5.4 and 5.5 for the
problem in Algorithm 2| for Theorem[7} As it can be seen in Table as U decreases,

T, also decreases.
From Table it is seen that for small values of o; of i = 1,2 smaller ADTs are

obtained.
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Table 5.2 : 7 Comparison for Various (.

L=11 pu=105 u=101 p=1.005 u=1.001
75 45908 23501 04793 02402  0.0481

Table 5.3 : 7; Comparison for Various ¢;’s.

o;=0.001 o,=001 o=0.1 o;=1
T, 0.0445 0.0481 0.3059 Infeas.

If the lower bound h) of delay is fixed, the system (5.1)) can adapt to frequent switchings
among the subsystems which is presented in Table |5.4|and

On the other hand, if the upper bound of delay h; is fixed, an increase in the lower
bound h; forces the system to stay more in the subsystems, which can be seen in
Table

Remark 9. We should note that all of the subsystems in Example 1 are Hurwitz
stable. Corresponding study in [40], switching among unstable subsystems and among
mixed stable subsystems are not considered, although there is a solid restriction on the
choice of o, which takes part in the exponential coefficient of the Lyapunov-Krasovskii

functional’s integral term.

In the following examples, all the possible cases are proposed to demonstrate the

validity of the theorems/algorithms.

Example 12. Consider the switched system with time delay (5.1) with Hurwitz unstable

subsystems
0.0l 0 0.02 0.3
Ar= { 0 —0.05}”‘2: {—0.1 0 }
A [7006 0 A 7003 0
d=1006 —0.03]’79?~1-0.09 —0.12]"

Bi=[-1 03]",B,=[-07 1]", B =1[0.1 02]", B,n=[0.15 03],
Ci=[-05 1.3],C=[0.6 0.7].
with constants
a1 =0.72, 0p = 0.90, hy = 0.1, iy =03, hy =0.01, R=1, § = 1

8 =1,e=16, u=1.001,d=0.01, Ty =1and Ny = 0.
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Table 5.4 : For Fixed #; = 0 and Various A;.

hy=0 mh=0 mh=0 h=0 h=0
h =02 h,=04 hy=06 hy=08 hy=1.0
7, 0.0481 0.0578 0.0701  0.0866  0.1087

Table 5.5 : For Fixed #; = 0.1 and Various A;.

hi1=01 h; =01 h; =01 h =01 h =0.1
hy=03 hy=05 hy=07 h=09 h=1.1
7, 0.0545 0.0648 0.0780  0.0958  0.1194

a

satisfying (A; — oyI) < 0. By Algorithm 2| for Theorem @ we get a feasible solution
with controller and observer gains

Ky =[—0.0991 0.0926], K> = [—0.3813 0.1678],

Ly =[0.0346 —0.0898]", L, = [~0.0416 —0.0484]"
with the ADT 1, = 0.1842.
The initial condition function is taken as ¢ (t) = xo = [0.6 0.5]" for all t € [—h;,0] and
%0 = [0.55 0.55]7, the time varying delay is taken as h(t) = h + hypsin ((hd/hlz)t)
to satisfy (4.3) and the disturbance is taken as w(t) = 0.04sin(z) to satisfy (4.4).

Simulation is made under a periodic switching shown in Figure

o(t)

2.5

2, |

1.5 ¢ 1

O | | I
0 0.2 0.4 0.6 0.8 1
Figure 5.1 : Switching Signal o ().

The phase portraits of the switched system and the observer are presented in Figure

5.2
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Table 5.6 : T, Comparison for Fixed h; = 1 and Various A;.

hi=0 h =02 h =04 h1 =06 h =038
hhy =10 hy=10 h =10 hy =10 hy=1.0
5 0.1087 0.1054 Infeas. Infeas. 0.1197

a

X X
0.5 ‘ 0.56
0.48 |
0.54 -
0.46 |
0.52 |
0.44 |
0.42 : 0.5 :
0.55 0.6 0.65 0.5 0.6 0.7

Figure 5.2 : Phase Portraits of the Switched System and the Observer.

It is seen that for supsc(_y, o) {x"(s)Rx(s)} =0.61 <8 =1, SUP;c(o,7;] {xT(t)Rx(1)} =
0.61 < € =16, so FT boundedness is satisfied.

Example 13. Consider the switched system with time delay (5.1)) with two subsystems

04 0 16 0
Al_{o —0.34}”‘2_{ 0 —0.14}’

A [F006 0 A [003 0
a=1006 —0.03]"7%?7 0690 —0.12]"

Bi=1[04 0.1]",B,=[03 0.15]", B, =[0.1 04]", B,,=[0.15 0.3]",
Ci=[-12 09],C=[-1 05].
Note that, A\ is Hurwitz unstable and A, is Hurwitz stable. The activation times of the
unstable and unstable subsystems are chosen as T* = 0.6 and T~ = 1.4, respectively.
The constants
v =0.5, v, =—-0.05, hy =0, b, =0.1, h; =0.01, R=1, 6 =4
8'=4,€=25 u=101,d=0.01, Ty =2, Ny=0.
are chosen to satisfy (A; — y;I) < 0. So, by Algorithm or Theorem@ we get a feasible
solution with controller and observer gains
K, = [2.8156 3.1708], K, = [-21.3321 6.0683],
Ly =[0.0035 —0.0050]", L, = [0.0029 —0.0028]"
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with the ADT 1, = 0.4526.

The initial condition function is taken as ¢(t) = xo = [1.0 1.0]" for all t € [—hy,0]
and %o = [0.1 0.1)7, the time varying delay is taken as h(t) = hy + hj2 sin ((hd/hlz)t)
to satisfy @3) and the disturbance is taken as w(t) = 0.04sin(¢) to satisfy @.4).
Simulation is made under a non-periodic switching shown in Figure[5.3]

25 7

2

1.5 ¢ 1

0 0.5 1 1.5 2
Figure 5.3 : Switching Signal o ().

The state responses of the switched system and the observer are presented in Figure

5.4

.
O | | |
0 0.5 1 1.5 2

Figure 5.4 : State Responses of the Switched System and the Observer.

It is seen that for supsc(_y, o) {xT(s)Rx(s)} =2 < 6 =4, SUP;c(o,7;] {xT(t)Rx(1)} =
9.5105 < € =25, so FT boundedness is satisfied.
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6. OBSERVER-BASED CONTROL FOR H.. FINITE-TIME BOUNDEDNESS

In this part, observer-based controller is designed for H. finite-time boundedness
of interval time-delay switched systems having mixed stable matrices of the state
vector. A numerical example is given for the effectiveness and validity of the proposed

solutions.

6.1 Problem Statement
Consider a switched linear system with an interval time-varying delay in the state
vector, where
X(t) =Ag(n)X(t) +Agonyx(t — h(t)) + Bo(yu(t) + Byonyw(t),
y(t) =Co(1)x(t) (6.1)
2(t) =D 1)x(t)

with the initial conditon function

x(t)=0¢(t), t € [—h,0]. (6.2)

Here x(¢) € R" is the state vector, u(f) € R™ the control input, y(f) € R? and z(r) € R”
the measurement output and the controlled output respectively. Ag (), Ags(r): Bo(),
B,6(1)» Co(r) and Dg(;) are real constant matrices of appropriate dimensions, ¢ €
% (|—h2,0],R) is the initial function, % is the delay function satisfying (.3]) and w(r)
is the exogenous disturbance satisfying (4.4). Consider the observer based feedback

controller
X(1) = Ag(n) (1) + Bonyu(t) + Lo (y(1) — 5(1)),
(1) = Cop (1) (63)
%(t) =0, Vt € [—hy,0],
and the control law
u(t) = —Kg(nx(t). (6.4)
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Here, K(;) and Lg(;) are controller and observer gains, respectively. Define an error

vector e(t) = x(¢) — £(¢). The closed-loop system will be

X(t) =Agon)X(t) +Agonyx(t — h(t)) + Bsi Ko ye(t) + Byoyw(t),

(6.5)
é(t) =Ars(ye(t) +Agonyx(t —h(t)) + By (nyw(t)
where
Ako(r) =As() — Bo(t) Ko (1)
(6.6)
Ars() =As() — Lo)Co(r)-
For a prescribed scalar y > 0, the following performance index is defined
Tr o T
Jr, = /0 (2 z—Pwliw)dr. (6.7)

6.2 H.. FT Stabilization

In this section, He FT stabilization of time-delay switched system with observer-based

control is considered.

Theorem 9. The switched system (6.1) is Hew FT bounded with respect to
(8,€,T7,d,R), if there exist a set of symmetric matrices for every i'" subsystem P; > 0,

01;>0, 072>0,85;>0, S; >0, T, >0, My;, My;, N\; and N»; and scalars o; > 0

satisfying
Ch —M; —N; zl 7L
* —ezwihZSzi 0 0 0
A= | * —e?Wih2g, 0 0| <0 (6.8a)
* * -1 0
* * * =1
Yd < Aje 2%maTrg (6.8b)
Pi < uP;, Okj < UWOkiySkj < WSk, Tj < UT;, (6.8¢)

fori,je Z and k= 1,2, where

* * Q.33 i 0 0 0 0
@,‘ = * * * 94471' 0 0 0 (69)
* * * * Qss5,; By, YlTBlT
* * * * * —2I BVTW-
* * * * * * Q77
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with
Z1;=[DiP;000000]", Z,;=[0000CP,00]"

and the ADT of the switching signal satisfies

Tfln[,L
In(A;€) —In(y?d) — 20maxTr — Noln

T > T, = (6.10)

The gain matrices K; and L; of controller and observer are same as (5.34)).

Proof. From Lemma [5] the conditions (5.6a) and (5.6b) provides that the switched
system (6.I) is FT bounded with respect to (8,€,7r,d,R). We choose the
Lyapunov-Krasovskii functional as it is in and (5.10) and define

L(t) = —z' (t)z(t) + Vw! (£)w(r). (6.11)
By derivation, we get
Vi(x(1)) —204Vi(x(t)) <&"(1)TL& (1) +T(2) (6.12)
where
My, Mo Iz =Ny I P 'B,; AgiP '
x  Ip; My —Ny ALP! 0  ALP!
* * a3, 0 0 0 0
II,=| = * *  Ilaa 0 0 0 (6.13)
* * * * Mss; P 'B, Tlsy;
* * * * * —y2] BvTviPi_]
B * * * * * I177; |
with

Hll,i :PiilAKi —|—A17;vipiil +§li +@2i — ezaihl§1i — ZOcinl +Tl +DlTDl

and the remaining entries of I1; are of I1; ; = = j; ;. By pre- and post-multiplying both
sides with &;, using Schur Complement and applying A; < 0 conditions in the

following inequality is obtained.
Vi(x(r)) — 204Vi(x(2)) < T(0). (6.14)

By applying Gronwall’s lemma on ¢ € [ty t;11),

t
Vo (x(1)) <2%w 0y (x(n)) + | %0 ™I(s)ds.  (6.15)

Tk

63



From the inequality constraints in (6.8c) and by assuming o (%) =i and o(t, ) = j,

(5.22) is obtained. If Gronwall’s lemma and (5.22)) is applied until [0,#;) iteratively,

we get
t
VG(t) (x(t)) < e2amafo‘uN <V6(0) (x(O)) —|—/0 F(S)dS) (6.16)
where N denotes the switching number of o(¢) over (0,7y). By zero initial condition
t
0< / ['(s)ds (6.17)
0
and setting r = Ty
Tr Tr
/ 2 (5)z(s)ds < 72/ w (s)w(s)ds (6.18)
0 0
which tells that the switched system (6.1)) is H.. FT bounded. O

Remark 10. Algorithm@can also be stated for Theorem Note that, Qss ; of Theorem
@conmins the term A;P; —|—P,~AiT —2y;P, so that, in order to get positive definite solutions
for P; satisfying the corresponding LMIs, (A; — W;I) should be Hurwitz stable. Also,
inequality constraints of the LMI problem and the minimization problem will be (6.84)),
(6.8b), (6.8¢c) and (5.48) for Theorem[9) Notice also, W; does not exist in Theorem [

the feasible sets, constraints and objective functions of the minimization problem will

be altered in that manner.

6.3 Numerical Example

Example 14. Consider the H.-control problem for the time-delay switched system

(6.1) with matrices
oo [r7s o2, 152 144
P -278 344|072 T 235 -334)°

Ao _[044 0497 (034 —038
a4 1-038 056" 727 (029 042 |

[ 0.82 —0.11 0.56 0.30
B = :|7B2:|: :|7BW1:|: :|;BW2:|i :|;

126 0.55 0.79 ~030
r T T T T
057 0.62 031 043

“@=| 1.33] 2= [0.73] DL= [—1.30}  D2= [0.34} '

In order to solve this system with the constants
o =042, =034, hy =0.1, h, =03, hy, =0.01, R=1, 6 =1,
6'=1,e=25 u=11,d=001, y=1.6, Tr=5and Ny=0
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Algorithm 2| for Theorem[9is applied. The following controller and observer gains are

obtained.

Ky = [4.0529 4.2057], K, = [10.0924 —5.7680],

Ly =[0.1104 —0.2539]", 1, = [-0.1304 —0.1370]" .
The ADT is obtained as T, = 0.0744.
Note that, even for large 1, small T, can be obtained for H. case. The reason stands
in the denominator of the ADT formula in (6.10). Since the conditions and

are relaxed to choose 'y and d, smaller T, can be obtained depending on these

constants.
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7. CONCLUSIONS

This dissertation investigates the FT stability of switched systems, FT boundedness
and H., FT boundedness of the switched systems with and without interval time-delay

and disturbances.

First, FT stability of switched systems were analyzed by using vector and matrix norms
and the results were presented in the third chapter. Sufficient conditions for FT stability
were obtained. These conditions include the spectral properties of the subsystems,
which were obtained by using Jordan decomposition. Possible activation numbers of
the subsystems were deduced from these conditions. ADT conditions were presented
by considering that all the subsystems have negative, positive and mixed spectral norm
bounds. Numerical examples presented at the end of the third chapter showed that
the number of activations of the subsystems can be adjusted to ensure FT stability and
the proposed ADT bounds for different types of systems ensure FT stability of the

switched system.

Second, the FT boundedness of the switched systems with interval time-delay and
disturbances were analyzed based on a state-feedback controller. Sufficient conditions
were obtained for system vector. Due to the nonconvex elements on these conditions,
a cone-complementarity linearization was made. A numerical example was presented

at the end of the fourth chapter.

Third, observer-based controller was proposed to ensure FT boundedness of switched
linear systems having interval time-delay. Sufficient conditions and ADT bounds
were presented in case of unstable and mixed stable subsystems in the fifth chapter.
Cone-complementarity linearization method and algorithm were proposed for the
calculation of the variables in ADT bound having nonconvex elements. Given
numerical example demonstrated that applied controller enables the system to switch
more frequently among the subsystems. On the other hand, the controller was extended
to be applied to unstable and mixed stable subsystems and all the possible cases were

presented with a numerical example.
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Finally, observer based H., controller was designed for the H., FT boundedness of
switched linear systems with interval time delay in the presence of disturbance. In
this chapter, sufficient conditions were again obtained for the subsystem matrices to be
mixed stable and the effectiveness and validity of the proposed conditions were shown

on a numerical example.

Extending proposed conditions by relaxing the subconditions via mode-dependent
stabilization analysis can create new directions in the future. Concerning the matrix
condition number minimization results in the literature, the estimations in the ADT
bounds can be improved further. Last but not least, FT input-to-state (FTISS) stability

notions can be investigated to propose new frameworks to analyze nonlinear systems.
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