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Ṁatematik Mühendisliği Anabilim Dalı
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ILGAZ, who shared her knowledge, experience and prosperity generously from my
early undergraduate education till the submission of my doctoral dissertation. I also
would like to sincerely thank Prof. Afife Leyla GÖREN and Prof. Vasfi ELDEM for
their guidance during the thesis progress report. Your guidance and comments were
significant.

I would like to express my acknowledgements to all my teachers who formed the basis
of my academic life. I am grateful to all faculty members as well as the administrative
staff of ITU Department of Mathematics, especially Prof. Kamil ORUÇOĞLU, for
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FINITE-TIME CONTROL OF
SWITCHED LINEAR SYSTEMS WITH TIME-DELAY

SUMMARY

Control theory is a branch of engineering and mathematics that examines the system’s
behavior by adjusting the input of the dynamic system according to its output. The
systems examined can be discrete or continuous according to time, in some cases the
behavior of the dynamical system may consist of a combination of continuous and
discrete events. Such systems are called hybrid systems.

A certain class of hybrid systems is called switched systems. The switched systems
are continuous systems with discrete and instant switching events. At the analysis
stage, switched systems and hybrid systems differ by neglecting the details of the
discrete behavior and instead considering all possible switching patterns from a certain
class. Many works related to the switched systems, asymptotic stability is examined.
However, in most practical applications, finite-time (FT) stability/boundedness is the
main concern, i.e., the behavior of the system is kept at certain boundaries in FT.
Asymptotically stable systems may not be FT stable/bounded and FT stable/bounded
systems may not be asymptotically stable. Another study area for switching systems is
the dwell time (DT) or average-dwell time (ADT). DT is the minimum time difference
between successive switching instants whereas the average time difference between
successive switching instants is called ADT.

Some dynamical systems in engineering may depend on the past status of the system.
Such systems are called time-delayed systems, and a time delay can cause poor
performance or system instability.

In this thesis, switched systems with completely unstable and mixed stable subsystems
are considered. FT stability/boundedness and H∞ FT boundedness of switched
systems with interval time-delay and disturbances are examined. In the beginning,
the difference between FT stability and asymptotic stability are shown on the examples
and a sufficient condition for FT stability of the switched system, which is composed of
linear time invariant subsystems having non-Hurwitz system matrices is derived. New
sufficient conditions on the existence of observer-based controller for FT boundedness
and H∞-control of switched linear systems with time-varying interval delay and
exogenous disturbances are obtained by using Lyapunov-Krasovskii functional. The
observer-based controller is designed without any matrix decomposition and new ADT
bounds are introduced for switched systems with both completely unstable and mixed
stable subsystems, seperately. These bounds contain some unknown constants which
depend on nonlinear terms. These terms are composed of the matrices from the
solution of the sufficient conditions. An algorithm is presented for the calculation of
unknown constants in the ADT bounds in terms of well-known cone complementarity
linearization method. Similar work is achieved for the state feedback design.

In the first chapter, a system with a control process is briefly introduced. The studies
on hybrid systems and switching systems are summarized. On the other hand, studies
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on FT stability and studies on ADT are mentioned. Thereafter, the references on
time-delay systems are given. Latter, literature overview is completed by marking
the open parts of the switched systems with time delay.

In the second chapter, the basic definitions and background used in this thesis are
introduced. First of all, the sufficient conditions for the existence and uniqueness of
the solutions of the systems of differential equations are given. Hybrid systems are
introduced by an example in engineering with vehicle gear dynamics. State dependent
switching and time dependent switching are discussed in detail. Constrained switching
concepts DT and ADT are introduced. FT stability and boundedness definitions
are given by comparing with Lyapunov stability definitions, conceptual differences
between these two stability types are presented and an example is given on switched
systems. In the given example, it is shown that two stable subsystems are observed to
be stable or unstable depending on different periods of switching. The notation used
in the thesis, concepts of vector norm and matrix norm to be used in the third section,
the Schur complement lemma, Grönwall’s lemma and Jensen inequality to be used in
the following sections are presented.

In the third chapter, FT stability of switched linear systems with stable, unstable and
mixed stable subsystems are examined by using vector and matrix norms. FT stability
conditions related to the eigenvalues and the condition numbers composed by the
(generalized) eigenvectors of the subsystem matrices are obtained. Possible activation
numbers of the subsystems are also deduced from these conditions. New ADT bounds
to ensure FT stability of the switching system having negative, positive and mixed
spectral norm bounds are proposed. Finally, several numerical examples are provided
to demonstrate the effectiveness of the theoretical results.

In the fourth chapter, the FT boundedness analysis of switched systems with
interval time-delay using state feedback is considered. ADT is obtained with
sufficient conditions. Since there are non-convex terms in these conditions, a cone
complementarity linearization method and algorithm that converts these terms into
LMI conditions is presented. Finally, a numerical example is given.

In the fifth chapter, observer-based FT boundedness of switched systems with
time-delay is examined. Two theorems are stated in the case that all of the subsystem
matrices of the state vectors are unstable and mixed stable. In both cases, new sufficient
conditions and ADT bounds are found with the presence of the observer. A cone
complementarity linearization method and algorithm for the calculation of unknown
eigenvalues over ADT bound is shown. Finally, a comparative example examining the
unstable and mixed stable cases are given.

In the last chapter, an observer-based controller is designed for H∞ FT boundedness of
switched systems with time-delay. The reason that H∞ FT boundedness is investigated
is the presence of the disturbance. In this section, a numerical example is given to
illustrate the effectiveness and validity of the proposed conditions for the mixed stable
case described in the fifth chapter.

As a future work, it is envisaged to expand the results to mode-dependent stabilization
analysis and robust stability.
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ZAMAN GECİKMELİ VE ANAHTARLAMALI DOĞRUSAL SİSTEMLERİN
SONLU ZAMAN DENETİMİ

ÖZET

Denetim kuramı dinamik sistemin girdisini, çıktısına göre ayarlamak suretiyle sistemin
belirli bir davranışı sergilemesini inceleyen bir mühendislik ve matematik dalıdır.
İncelenen sistemler zamana göre ayrık veya sürekli olabildiği gibi, bazı durumlarda
dinamik sistemin davranışı sürekli ve ayrık olayların birleşiminden de oluşabilir. Bu
tip sistemlere melez (hybrid) sistemler adı verilir. Melez sistemler konusunda sürekli
sistemlerin ayrık ve anlık olaylarla değiştiği sistemler olan anahtarlamalı sistemler
konusu yaygın olarak çalışılmaktadır.

Anahtarlamalı sistemlerle ilgili çalışmalarda genellikle sistemin asimptotik kararlı
olması durumu incelenmiştir. Halbuki bir çok pratik uygulamada sonlu zaman
kararlı/sınırlı olması durumu, yani sistemin davranışının sonlu zamanda belli sınırlarda
tutulması durumu önem arz etmektedir. Asimptotik olarak denge noktasına giden
asimptotik kararlı sistemler, sonlu zaman kararlı/sınırlı olmayabilir; bazı sonlu zaman
kararlı/sınırlı sistemler asimptotik kararlı olmayabilir.

Anahtarlamalı sistemlerle ilgili ana çalışma alanı ise yaşam süresi veya ortalama yaşam
süresidir. Yaşam süresi ardışık anahtarlama zamanlarının farkının belli bir yaşam
süresinden fazla olması; ortalama yaşam süresi ise ardışık anahtarlama zamanlarının
farkının ortalamasının belli bir ortalama yaşam süresinden fazla olmasıdır.

Mühendislikte ve matematikte incelenen bazı dinamik sistemler; sistemin o andaki
durumunun yanında, sistemin geçmişteki durumuna da bağlı olabilir. Bu tip sistemler
zaman gecikmeli sistemler olarak adlandırılır ve zaman gecikmesi kötü performansa
veya sistem kararsızlığına neden olabilir.

Bu çalışmada, anahtarlamalı sistemlerin alt sistemlerinin kararsız ve karışık kararlı
olması durumu ele alınmıştır. Anahtarlamalı ve aralık zaman gecikmeli sistemlerin
bozucu etkisinde sonlu zaman kararlı/sınırlı ve H∞ sınırlı olma durumları incelenmiştir.
Öncelikle, sonlu zaman kararlılığı ile asimptotik kararlılık arasındaki farklar örnekler
üzerinde gösterilmiş, sistem matrisleri Hurwitz kararlı olmayan ve zamana bağlı
olmayan doğrusal sistemlerin sonlu zaman kararlılığı için yeter koşul elde edilmiştir.
Sonlu zaman sınırlılığı ve H∞ denetimi sağlayacak gözlemci tabanlı denetimcinin
varlığı için Lyapunov-Krasovskii fonksiyoneli kullanılarak yeni yeter koşullar elde
edilmiştir. Herhangi bir matris ayrıştırımına ihtiyaç olmadan gözlemci tabanlı
denetimci tasarlanarak, alt sistemlerin kararsız ve karışık kararlı olduğu durumlar için
ortalama yaşam süresi sınırları bulunmuştur. Bu sınırlarda doğrusal olmayan terimlere
bağlı olan bazı sabitler içerdiğinden ve bu terimler de yeter koşullardaki matrislerden
oluştuğundan dolayı; ortalama yaşam süresindeki bu sabitlerin çözümü için koni
tamamlayıcı bir algoritma sunulmuştur. Tüm bu çalışmalar durum geri beslemesi için
de uygulanmıştır.
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Çalışmanın birinci bölümü olan giriş bölümünde kontrol süreci gösterilmiştir. Melez
sistemler ve anahtarlamalı sistemler konusundaki çalışmalar özetlenmiş, sonlu zaman
kararlılığı konusunda yapılan çalışmalar ile ortalama yaşam süresi konusunda yapılan
çalışmalardan bahsedilmiştir. Tezde ele alınan problemlerden anahtarlamalı ve zaman
gecikmeli sistemlerde yapılan çalışmalarda eksik olan kısımlar özetlenerek literatür
özeti tamamlanmıştır.

İkinci bölümde, bu tezde kullanılan temel tanımlar ve bilgiler tanıtılmıştır. Öncelikle
diferansiyel denklem sistemlerinin çözümlerinin varlığı ve tekliği için yeter koşullar
verilmiştir. Melez sistemler, bir mühendislik örneği olan araçların vites dinamiği
ile tanıtılarak, anahtarlamalı sistemlerin ne tarz durumlarda ortaya çıkabileceği
gösterilmiş; duruma bağlı anahtarlama ve zamana bağlı anahtarlama durumları
ayrıntılarıyla ele alınmıştır. Kısıtlamalı anahtarlama altında anahtarlama durumlarına
bağlı yaşam süresi ve ortalama yaşam süresi kavramları tanıtılarak zaman gecikmeli
sistemler ile ilgili temel bilgiler verilmiştir. Sonlu zaman kararlılığı ve sınırlılığı,
Lyapunov kararlılık tanımları verilerek, bu iki kararlılık tanımları arasındaki kavram
farkılıkları ortaya konmuş ve anahtarlamalı sistemler üzerinde örnek verilmiştir.
Verilen örnekte kararlı iki alt sistemin periyodik anahtarlama altında periyoda bağlı
kararlı veya kararsız olma durumlarının gözlemlendiği gösterilmiştir. Daha sonraki
bölümlerde kullanılacak olan; vektör normu ve matris normu kavramları, Schur
yardımcı teoremi, Grönwall yardımcı teoremi ve Jensen eşitsizliği sunulmuş ve tezde
kullanılan notasyonlar belirtilmiştir.

Üçüncü bölümde; kararlı, kararsız ve karışık kararlı alt sistemlere sahip doğrusal
anahtarlamalı sistemlerin vektör ve matris normları kullanılarak sonlu zaman kararlılık
analizi yapılmıştır. Alt sistem matrislerinin özdeğerleri ve koşullandırma sayılarına
bağlı sonlu zaman kararlılık koşulları ve bu alt sistemlerin olası aktivasyon sayıları
elde edilmiştir. Anahtarlamalı sistemin sonlu zaman kararlılığının sağlanması için yeni
ortalama yaşam süresi önerilmiştir. Son olarak da sayısal örneklerle teorik sonuçlar
açıklanmıştır.

Dördüncü bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin durum geri
beslemesi altındaki sonlu zaman sınırlılığı ele alınmıştır. Yeter koşullarla birlikte
ortalama yaşam süresi elde edilmiştir. Bu koşullarda dışbükey olmayan terimler olduğu
için bu terimleri doğrusal matris eşitsizliği koşullarına çeviren bir koni tamamlayıcı
doğrusallaştırma yöntemi ve algoritması kullanılmıştır. Son olarak da sayısal bir örnek
verilmiştir.

Beşinci bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin gözlemci
tabanlı sonlu zaman sınırlılığı durum vektörlerinin başındaki alt sistem matrislerinin
tamamının kararsız ve karışık kararlı (yani bir kısmı kararlı bir kısmı kararsız) olması
durumlarına göre incelenmiştir. Bu iki durumda da gözlemcinin varlığı için yeni
yeter koşullar ve ortalama yaşam süresi tanıtılmıştır. Ortalama yaşam süresindeki
parametrelerin hesabı için koni tamamlayıcı doğrusallaştırma yöntemi ve algoritması
gösterilmiştir. Son olarak da literatürdeki durum vektörlerinin başındaki alt sistem
matrislerinin tamamının kararsız olma durumunu inceleyen karşılaştırmalı bir örnek
ile bu matrislerin karışık kararlı olma durumunu inceleyen sayısal örnekler verilmiştir.

Altıncı bölümde, anahtarlamalı ve aralık zaman gecikmeli sistemlerin H∞ sonlu
zaman sınırlılığı için bir gözlemci tabanlı denetimci tasarlanmıştır. H∞ sonlu zaman
sınırlılığı incelenen sisteme bozucu etki etmesinden dolayı incelenmiştir. Bu bölümde
durum vektörlerinin başındaki alt sistem matrislerinin karışık kararlı olması durumu
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için koşullar elde edilip, önerilen koşulların etkinliği ve geçerliliği sayısal bir örnek
üzerinde gösterilmiştir.

Gelecek çalışmalarda, moda bağımlı kararlılaştırma analizi ve gürbüz kararlılık ele
alınarak şu ana kadar yapılan çalışmaların genişletilmesi düşünülmektedir.
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1. INTRODUCTION

Control theory is a branch of engineering and mathematics which aims to change the

behavior of the dynamical systems by manipulating the system input according to the

system output. A brief demonstration of a system with a control process is shown in

Figure 1.1.

Figure 1.1 : A system with a control process [1].

The state of the system may change in discrete or continuous set of points in time.

In some cases, the behavior of the dynamical system may be a combination of both

continuous and discrete events. Such kind of systems are called the hybrid systems.

The majority of the recent studies in hybrid systems are the continuous systems having

discrete switching events. These type of systems are classified into a special type

of systems called switched systems. Many scholars are interested in the stability

analysis and control design of such kind of systems, because the switched systems

even in general the hybrid systems may behave different even the continuous or discrete

dynamics have solely different characteristics.

Stability is one of the basic research topic for switched systems, which has attracted

most of the attention in recent years, [4–10]. Most of the studies related to

stability of switched systems focus on Lyapunov asymptotic stability, which is defined

over an infinite time interval. However, in many practical applications, finite-time

(FT) stability of a system is the main concern, which means keeping the system

1



behavior/state within specified bounds in a fixed FT interval. FT stability for switched

systems is an emerging concept in recent years, [11–14].

Average-dwell time (ADT) is the major research topic for switched systems. ADT

means that the number of switching instants in a finite interval is bounded and the

average time between consecutive switching instants is not less than a constant. In

literature, there are plenty of works considering suitable Lyapunov functional to obtain

an ADT bound as small as possible for the stability and the stabilization of switched

systems, [15–25].

The behavior of some dynamical systems may depend to the behavior of the system in

the past. Their behavior may also depend even to a distributed interval of a time. Such

kind of systems are called time-delay systems in general and the delay may cause bad

performance or instability of the system.

Time-delay systems have been widely studied in last decades [3, 26–28], and the

references therein. The current methods of stability analysis are divided into two

categories: delay-dependent and delay-independent. Results in delay dependent case

does not include any information on the size of delay but delay dependent solutions

include such information. Many works for time-delay systems consider only the upper

bound for delay. If both upper and lower bounds on time-delay exist, such systems are

called interval time-delay systems, [29–35].

In literature, the vast majority of the recent studies for the stabilization of switched

time-delay systems are dealing with state feedback, [36–39]. Stabilization of

time-delay switched systems by observer-based controller is examined only in [40].

In that study, interval time-delay is not considered and the calculation of the observer

gain matrix depends on the decomposition of one of the solution matrix obtained by

the linear matrix inequalities (LMIs) given in the sufficient condition. There is also no

implicit explanation about the calculations of the constants in ADT which depend on

the inverse matrices. Besides that, the system matrices of the state vector are chosen

Hurwitz stable and switching among unstable and mixed stable subsystems are not

considered. In this dissertation, the FT stability/boundedness and H∞ FT boundedness

of the switched systems with interval time-delay and disturbances are investigated

under state feedback and observer-based controller.
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2. BASIC DEFINITIONS AND BACKGROUND

In this chapter, the notations, basic definitions and background are introduced. The

conditions that guarantee the existence and uniqueness of the solutions of system of

differential equations are introduced. Hybrid and switched systems are presented, [2].

Time-delay systems are summarized, [3]. Vector and matrix norms are recalled, [41,

42]. FT stability and boundedness concepts are defined and lemmas that will be used

in this dissertation are shown.

2.1 Notation

The notation used in this dissertation is fairly standard. “*" in a matrix means to

be the symmetric term of the corresponding upper triangular element and λmax(A)

(respectively λmin(A)) represents the maximum (minimum) eigenvalue of A. Matrices,

if not stated, are assumed to have compatible dimensions for algebraic operations.

Throughout the paper; for vectors x and y with compatible dimensions and a positive

definite symmetric matrix P, xT Py+ yT Px is written in short as 2xT Py or 2yT Px.

2.2 Solutions of System of Differential Equations

Let us consider the system of differential equations

ẋ(t) = f (t,x), x ∈ Rn. (2.1)

The system (2.1) has a unique solution for the initial condition (t0,x0), if the function

f is continuous in t and locally Lipschitz in x. Being Lipschitz means that for every

pair (t0,x0) there exists a positive constant L such that the condition

| f (t,x)− f (t,y)| ≤ L|x− y| (2.2)

holds for all (t,x) and (t,y) in the neighborhood of (t0,x0) in [t0,∞)×R. So, the

solution exists on the maximal interval [t0,Tmax). Unless not stated, the initial time is

taken as t0 = 0 among the thesis.
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2.3 Hybrid&Switched Systems

As it is said in the introduction part, some dynamical systems consists as a combination

of both continuous and discrete events. Let q be a state which takes values from a finite

set Q and x be the continuous state variable. The hybrid system with well-defined

interactions u and v are demonstrated in Figure 2.1.

Figure 2.1 : A hybrid system, [2].

Switched systems arise in many engineering applications. Here, there is a motivational

example for a car transmission system.

Example 1. Let x1 be the position, x2 be the velocity, a ≥ 0 be the acceleration

input and q ∈ {1,2,3,4,5,−1,0} be the gear shift position of an automobile. The

generalized dynamics of a car will be

ẋ1 =x2,

ẋ2 = f (a,q)
(2.3)

where the function f

• is a decreasing function in a and takes negative values when q =−1,

• is an increasing function in a and takes negative values when q = 0,

• is an increasing function in a and takes positive values for sufficiently large a when

q > 0.

Here, x1 and x2 are the continuous states whereas q is the discrete state, [2].

Switching events can be classified into

• state-dependent,

• time-dependent

in context of dependency to the switching events.
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2.3.1 State-dependent switching

In such kind of switching, the state space is divided into subspaces or regions. A

continous-time dynamical system is acting on each of these regions. When the system

trajectory hits the boundary of these regions, the dynamics of the system state is

changed. This is called as reset map. Note that the system trajectory may lose its

differentiability at these switching instants. A simple generalized visualization of

state-dependent switching is shown in Figure 2.2.

Figure 2.2 : State-dependent switching, [2].

2.3.2 Time-dependent switching

For a given family of functions fi, i ∈I = {1,2, ...,N} from Rn to Rn where I is an

index set. The functions fi are all assumed to be locally Lipschitz. So, this corresponds

to a family of systems

ẋ = fi(t,x), i ∈I . (2.4)

To define a switched system generated by the above family, we need to define the

switching signal. The switching signal is a piecewise constant function σ : [0,∞)→

I having finite or denumerably infinite number of discontinuities, called switching

times, and the function σ takes a value from I on every time interval between two

consecutive switching instant which can be seen in Figure 2.3.

The time-dependent switched system is defined as

ẋ(t) = fσ(t)(t,x), x(0) = x0 (2.5)
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Figure 2.3 : A switching signal, [2].

with the switching signal σ defined above. The switched linear system in particular is

defined as follows

ẋ(t) = Aσ(t)x(t), x(0) = x0. (2.6)

Here in this dissertation, the switching signal is defined on a finite time interval as

σ(t) : [0,Tf ]→I with the switching sequence Σ= {(i0, t0 = 0),(i1, t1), ...,(in, tn)}, i.e.

ikth system is activated when t ∈ [tk, tk+1). As a consequence, inth system is activated

when t ∈ [tn,Tf ). The switching signal may be constrained by adjusting the switching

instants. Here are two examples of constrained switching.

2.3.2.1 Dwell-time

If the switching signal is restricted to satisfy tk−tk−1≥ τd for all switching instants, the

number τd > 0 is called the dwell time which means that each subsystem is activated

at least τd units of time. So the constrained set of switching signals are stated as

S = Sdwell[τd] =
{

σ ∈ Σ | tk− tk−1 > τ
}
. (2.7)

2.3.2.2 Average dwell-time

Considering dwell time constraint may be seen as a strict constraint, because the next

switching should wait until τd units of time is passed. However, this context may

be subvented by adjusting the switching instants by average-dwell time so that the

activation time may compensate the emergent switching by adjusting the consecutive

switch instants. The definition is as follows.

6



Definition 1. Let Nσ(t)(t,T ) denotes the switching number of the switching signal σ

for the interval 0≤ t ≤ T . N0 is the chatter bound. Then the following inequality holds

Nσ(t)(t,T )≤ N0 +(T − t)/τa

for so called ADT τa, [15].

2.4 Time-Delay Systems

Time-delay systems are the systems of differential equations, whose behavior depends

on events in the past. This type of systems are also known as a special type of

functional differential equations with deviating arguments of delay or delay differential

equations with retarded type. So, the time-delay system can be represented as

ẋ(t) = f (t,x(t),xt). (2.8)

Here, xt(s) = x(t− s), s ∈ [h1,h2], for h1,h2 > 0 represents the history of the solution

as it may be seen in Figure 2.4.

Figure 2.4 : The history of the solution.

In linear case, (2.8) will be

ẋ(t) = Ax(t)+Adx(t−h(t)). (2.9)

Note that, in order to construct the solution for t > 0, the value of x(t) should be known

in [−h2,0]. So there is a need of an initial condition x(t) = φ(t) where t ∈ [−h2,0]

defined over the function space C ([−h2,0],Rn). Here, C ([−h2,0],Rn) is the set of all

continuous functions equipped with the supremum norm ‖φ‖ := supτ∈[−h2,0] |φ(τ)|.

Note that, C ([−h2,0],Rn) is not a Hilbert space, because it does not satisfy

parallelogram law

‖ f +g‖2 +‖ f −g‖2 = 2(‖ f‖2 +‖g‖2). (2.10)
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for all f ,g ∈ C ([−h2,0],Rn). See the following example.

Example 2. Consider the two functions f (t) = 1 and g(t) = t where f ,g ∈

C ([−1,0],R). Then, from the supremum defined above, we have ‖ f‖2 = ‖g‖2 = 1,

‖ f +g‖2 = 1 and ‖ f −g‖2 = 4. Thus, the parallelogram law is violated.

2.5 Finite-Time Stability and Boundedness

Consider a nonlinear dynamical system

ẋ(t) = f (x(t)), x(0) = x0 (2.11)

where x(t) ∈ D ⊆ Rn is the system state vector and f : D → Rn is the vector field.

If f (xe) = 0, then the point xe ∈D is said to be the equilibrium point of the operating

system. Note that xe = 0 for linear systems. Before the statement of FT stability and

boundedness definitions, let us consider the Lyapunov stability definitions.

Definition 2. The equilibrium point of the system (2.11) is said to be stable in terms of

Lyapunov (SIL), if for every given ε > 0, there exists a δ > 0 such that, if ‖x(0)−xe‖<

δ , then for every t ≥ 0 we have ‖x(t)− xe‖< ε .

Definition 3. The equilibrium point of the system (2.11) is said to be asymptotically

stable in terms of Lyapunov (ASIL), if it is SIL and there exists δ > 0 such that, if

‖x(0)− xe‖< δ , then limt→∞ ‖x(t)− xe‖< ε .

Definition 4. The equilibrium point of the system (2.11) is said to be exponentially

stable in terms of Lyapunov (ESIL), if it is ASIL and there exists α > 0, β , δ > 0 such

that, if ‖x(0)− xe‖< δ , then ‖x(t)− xe‖ ≤ αe−β t‖x(0)− xe‖, ∀t ≥ 0.

In contrast to the above Lyapunov stability definitions, in some engineering

applications finite time stability and/or boundedness is the main concern, which means

that the system state is bounded within specific bounds in FT. Formal definition of FT

stability is as follows.

Definition 5. Consider scalar Tf > 0 and a matrix R > 0 with appropriate dimensions,

the system (2.11) is said to be FT stable with respect to (δ ,ε,Tf ,R), if for every given

ε > 0, there exists a δ > 0 with ε > δ such that, if xT
0 Rx0 < δ , then xT (t)Rx(t) < ε ,

∀t ∈ [0,Tf ].
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In order to demonstrate the distinction between Lyapunov stability and FT stability

definitions, the following example is given.

Example 3. Consider the following system

ẋ(t) = Ax(t), x(0) = x0 (2.12)

where A =

[
1 1
−1 1

]
with initial condition x0 =

[
1 1

]T . The solution of (2.12) is

x(t) = eAtx0. (2.13)

Note that the eigenvalues of the matrix A are λ1,2 = 1± j, where j =
√
−1 which

means that the system (2.12) is unstable in terms of Lyapunov in all sense. However,

the system is FT stable with respect to (ε,δ ,Tf ,R) = (16,4,1, I), since

xT (t)Rx(t) = xT
0 eAT tReAtx0 ≤ xT

0 eAT Tf ReATf x0 ≈ 14.7781 < 16 (2.14)

which can also be seen in Figure 2.5.

-5 0 5
-5

0

5

x

x(T )f

0

Figure 2.5 : Phase portrait of the system (2.12).

The motivating phenomena of switched systems is the dependence of the stability to

the switching law. It is a fact that the switching between subsystems, even if they are

all stable (in sense of Lyapunov), may cause instability of the whole system. Similarly,

the switching law effects the finite-time stability of switched systems, which may be

seen below.
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Example 4. (Motivating Example) [12] A switched linear system (2.6) with subsystems

is given as follows

A1 =

[
0 10
−30 −2

]
, A2 =

[
−2 −30
10 0

]
(2.15)

Choose δ = 8, R = I, T = 10, ε = 25, the initial state x0 =
[
2 −2

]T satisfying the

initial condition xT
0 x0 ≤ 8. Then, the simulation results for each subsystem are given

in Figure 2.6 and 2.7.

Figure 2.6 : State trajectory of subsystem 1.

Figure 2.7 : State trajectory of subsystem 2.

By the simulation results, it is easy to see that the state trajectories are both bounded

in xT (t)x(t)≤ 25.

Then, two periodical switching signals S1 and S2 are defined as follows:

• S1 is a periodical switching signal, where the system switches from one subsystem

to another every 1 s.

• S2 is a periodical switching signal, where the system switches from one subsystem

to another every 0.3 s.
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Both two switching signals are initialized to start operating with the first subsystem and

the initial state is chosen as x0 =
[
2 −2

]T . Then, the simulation results are shown in

Figure 2.8 and 2.9.

Figure 2.8 : State trajectory of switched system S1.

Figure 2.9 : State trajectory of switched system S2.

From Figures 2.8 and 2.9, it is seen that the state trajectory is bounded with respect

to bound ε = 25 under the switching signal S1, as the state trajectory does not satisfy

xT (t)x(t)≤ 25, ∀t ∈ [0,10] under switching signal S2.

Now, let us consider the system

ẋ(t) = f (x(t),w(t)), x(0) = x0 (2.16)

with an exogeneous disturbance w(t). The presence of the disturbance leads us to the

definition of FT boundedness.

Definition 6. Consider scalar Tf > 0 and a matrix R > 0 with appropriate dimensions,

the system (2.16) is said to be FT bounded with respect to (δ ,ε,Tf ,d,R), if for every
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given ε > 0, there exists a δ > 0 with ε > δ such that, if xT
0 Rx0 < δ , then xT (t)Rx(t)<

ε , ∀t ∈ [0,Tf ] and ∀w(t) satisfying
∫ Tf

0 wT (t)w(t)dt < d.

This definition can be revised for the time-delay system with an exogeneous

disturbance

ẋ(t) = f (t,x(t),xt ,w(t)), x(t) = φ(t), t ∈ [−h2,0] (2.17)

for xt = x(t−h(t)), h(t) ∈ [h1,h2] and h1,h2 > 0.

Definition 7. Consider scalar Tf > 0 and a matrix R > 0 with appropriate dimensions,

the system (2.17) is said to be FT bounded with respect to (δ ,ε,Tf ,d,R), if for every

given ε > 0, there exists a δ > 0 with ε > δ such that, if sups∈[−h2,0]
{

xT (s)Rx(s)
}
< δ ,

then xT (t)Rx(t)< ε , ∀t ∈ [0,Tf ] and ∀w(t) satisfying
∫ Tf

0 wT (t)w(t)dt < d.

Now, consider the time-delay system with exogeneous disturbance

ẋ(t) = f1(t,x(t),xt ,w(t)), x(t) = φ(t), t ∈ [−h2,0],

z(t) = f2(x(t))
(2.18)

with output z(t). This leads us to the definition of H∞ FT boundedness.

Definition 8. The system (2.18) is said to be H∞ FT bounded with respect to

(δ ,ε,Tf ,d,R) if the following conditions are satisfied:

1) The system (2.18) is FT bounded.

2)
∫ Tf

0 zT (t)z(t)dt < γ2 ∫ Tf
0 wT (t)w(t)dt under zero-initial condition φ(t) = 0, ∀t ∈

[−h2,0], where γ > 0, 0≤ δ < ε , d ≥ 0 and R > 0.

2.6 Norm

In this section, vector and matrix norms are defined.

2.6.1 Vector norms

A vector norm is a function ‖ · ‖ : Fn → R defined over a field of real or complex

numbers F satisfying the following properties ∀α ∈ F, u,v ∈ Fm×n:

• ‖αv‖= |α|‖v‖ (absolute homogeneity),

• ‖u+ v‖ ≤ ‖u‖+‖v‖ (subadditivity or triangle inequality)
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• ‖v‖> 0 if x 6= 0 and ‖v‖= 0 only if v = 0 (positive definite property).

Here are some vector norm definitions in the literature.

Let x1 =
[
x1,1 x1,2 ... x1,n

]T
,x2 =

[
x2,1 x2,2 ... x2,n

]T ∈ Rn and z1 =[
z1,1 z1,2 ... z1,n

]T
,z2 =

[
z2,1 z2,2 ... z2,n

]T ∈ Cn. For both Euclidean space

and complex space the L2-norm can be expressed in a compact way by using inner

products.

< x1,x2 >=xT
2 · x1 = x2,1x1,1 + x2,2x1,2 + ...+ x2,nx1,n

< z1,z2 >=z∗2 · z1 = z2,1z1,1 + z2,2z1,2 + ...+ z2,nz1,n

(2.19)

are the standard inner products for Euclidean space and complex space, respectively.

xT denotes the transpose of x. z and z∗ denote the conjugation operation and conjugate

transpose of z, respectively. So, the L2-norms on these spaces are defined as follows

‖x‖2 =
√
< x,x >Rn and ‖z‖2 =

√
< z,z >Cn (2.20)

L2-norm can be generalized as Lp-norm as

‖x‖p =
( n

∑
i=1
|xi|p

)1/p
(2.21)

where 1≤ p < ∞. As p→ ∞, Lp-norm approaches to L∞-norm or so called maximum

norm

‖x‖∞ = max
i=1,2,...,n

|xi|. (2.22)

2.6.2 Matrix norms

Matrix norm is a vector norm in a vector space whose domain is the vector space of

matrices. The matrix norm is a function ‖ · ‖ : Fm×n → R satisfying the following

properties ∀α ∈ F, A,B ∈ Fm×n:

• ‖αA‖= |α|‖A‖ (absolute homogeneity),

• ‖A+B‖ ≤ ‖A‖+‖B‖ (subadditivity or triangle inequality)

• ‖A‖> 0 and ‖A‖= 0 only if A = 0 (positive definite property).

Additionally, if m = n some matrix norms satisfy

• ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicativity).
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In some literature submultiplicativity is sometimes extended to non-square matrices

using different norms.

There are plenty of matrix norm definitions in the literature. Here, the matrix norm

definitions used in this study are defined as follows.

The matrix norm induced by vector norm is defined as

‖A‖=sup{‖Ax‖ : x ∈ Fn with ‖x‖= 1}

=sup

{
‖Ax‖
‖x‖

: x ∈ Fn with ‖x‖ 6= 0

}
(2.23)

If the p-norm for vectors (1 ≤ p ≤ ∞) is used for both spaces Fn and Fm, then the

corresponding induced operator norm will be

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p
. (2.24)

If the vector norms of Fn and Fm are different, the matrix norm is defined as

‖A‖p,q = sup
x 6=0

‖Ax‖q

‖x‖p
. (2.25)

where ‖ ·‖p is defined on Fn whereas ‖ ·‖q is defined on Fm. The matrix norm ‖A‖α,β

is called a subordinate norm. Subordinate norms are consistent with the norms that

induce them.

‖Ax‖q ≤ ‖A‖p,q‖x‖p. (2.26)

Any induced operator norm is a submultiplicative matrix norm; this follows from

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖|x| (2.27)

and sup‖x‖=1 ‖ABx‖= ‖AB‖. Moreover, any induced norm satisfies the inequality

‖Ar‖1/r ≥ ρ(A) (2.28)

where ρ(A) is the spectral radius of A, i.e. largest absolute value of its eigenvalues.

The induced matrix norms can be expressed as

‖A‖1 = max
1≤ j≤n

m

∑
i=1
|ai j|,

‖A‖2 =σmax(A) =
√

λmax(A∗A)

‖A‖∞ = max
1≤i≤m

n

∑
j=1
|ai j|.

(2.29)

14



Here A∗ denotes the conjugate transpose of A, σmax(A) represents the largest singular

value of matrix A. Frobenius norm can be defined in various ways:

‖A‖F =

(
m

∑
i=1

n

∑
j=1
|ai j|2

)1/2

=
√

trace(A∗A) =

√√√√min{m,n}

∑
i=1

σ2
i (A) (2.30)

where σi(A) are the singular values of A and the trace function returns the sum of

diagonal entries of a square matrix. The following inequality holds for every A∈ Fm×n

‖A‖2 ≤ ‖A‖F (2.31)

The p-norms for p = 1,2, ...,∞ can be expressed as

‖A‖p =

(
m

∑
i=1

n

∑
j=1
|ai j|p

)1/p

(2.32)

for A ∈ Fm×n.

2.7 Other Lemmas

In this section, some lemmas which will be used in this dissertation are presented.

Lemma 1. (Schur complement) Given constant matrices S11, S12, S22 with

appropriate dimensions satisfying S11 = ST
11 and S22 = ST

22 and S22 < 0, the LMI

S =

[
S11 S12
∗ S22

]
< 0 is equivalent to S11 +S12S−1

22 ST
12 < 0, [43].

Lemma 2. (Grönwall’s lemma) If a differentiable function ψ(t) > 0 on the open

interval U = (a,b) (as well as U = [a,b] or U = [a,b)) and

u̇(t)≤ φ(t)+ψ(t)u(t)

then

u(t)≤ u(a)eΨ(t)+
∫ t

a
φ(s)eΨ(t)−Ψ(s)ds

for t < b where

Ψ(t) =
∫ t

a
ψ(s)ds,

[44].

Lemma 3. (Jensen’s inequality) For any symmetric positive definite matrix M > 0,

scalars a,b > 0 with b > a and an integrable vector function x : [a,b] → Rn, the

following inequality holds, [27].(∫ b

a
x(s)ds

)T

M

(∫ b

a
x(s)ds

)
≤ (b−a)

(∫ b

a
xT (s)Mx(s)ds

)
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3. FINITE-TIME STABILITY ANALYSIS FOR SWITCHED LINEAR
SYSTEMS BY USING JORDAN DECOMPOSITION

In order to investigate the effects of the eigenvalues to FT stability let us consider the

system (2.6). Let σi+1 := σ(ti) ∈ I , i = 0,1,2, ...,n. Therefore, by definition σ th
i+1

subsystem is activated on the time interval [ti, ti+1). For t ∈ [ti, ti+1), let us define the

number of activation of the σ th
i+1 subsystem and the number of activated subsystems

on [0, t] by ησi+1(t) and N(t), respectively. For a given initial condition x(0) = x0, the

solution of (2.6) in t ∈ [tn,Tf ] can be written as

x(t) = eAσn+1(t−tn)eAσn(tn−tn−1).....eAσ1 t1x0. (3.1)

In the following theorems, FT stability of switched linear systems is analyzed by using

Jordan decomposition of the subsystem matrices and the vector and the matrix norms.

In order to make that analysis, the definition of FT stability is revised as follows.

Definition 9. Consider a constant scalar Tf > 0 and a positive definite matrix R, the

system (2.6) is said to be FT stable with respect to (δ ,ε,Tf ,R) if for every ε > 0, there

exists a δ > 0 such that ‖R1/2x(t)‖<
√

ε , whenever ‖R1/2‖ · ‖x0‖<
√

δ , ∀t ∈ [0,Tf ].

In literature the system (2.6) is said to be FT stable with respect to (δ ,ε,Tf ,R) if

for every ε > 0, there exists a δ > 0 such that xT
0 Rx0 < δ ⇒ x(t)T Rx(t) < ε. Since

xT
0 Rx0 = ‖R1/2x0‖2 ≤ ‖R1/2‖2 · ‖x0‖2, the Definition 9 still satisfies the FT stability.

It is a well-known fact that for any n× n matrix A (even non-diagonalizable), there

exists a nonsingular matrix V such that

A =V JV−1 (3.2)

where J is the Jordan canonical form of A.

Before we go further, we will give a following lemma to be used to state the main

results.

Lemma 4. [16] Let J = diag(J1, ...,Jk) be a matrix in Jordan form where each Ji is a

Jordan block of size ni with eigenvalue λi. Then the following inequality holds for the
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spectral norm of J

‖eJt‖ ≤ eλ ∗(J)t , (3.3)

where

λ
∗(J) = max

i=1,...,k

(
Re{λi}+ cos

(
π

ni +1

))
.

3.1 Finite-Time Stability Analysis in Terms of the Eigenvalues of the Subsystems

One of the major goal of this chapter is to state a stability condition in terms of

the eigenvalues of the switching subsystems. Before we state our results, consider

the subintervals [tp, tp+1) where p = 0,1,2, ...,n formed by the switching sequence

Σ. For any t ∈ [tp, tp+1), define the maximum of the spectral norm bounds,

matrix condition number and the maximum norm of the matrix exponential function

as λ (tp) = max{λ ∗(Jσ1),λ
∗(Jσ2), ...,λ

∗(Jσp)}, κσp = ‖Vσp‖ · ‖V−1
σp
‖ and m(a,b) =

supt∈[a,b) ‖e
Jσ(a)(t−a)‖. Now, we are ready to present our first result.

Theorem 1. Assume that λ ∗(Jσi) > 0, for all σi ∈ I . The system (2.6) is FT stable

with respect to (ε,δ ,Tf ,R) if there exist some positive integers q1,q2, ...,qm satisfying

the following condition

lnδ +2 ·

(
m

∑
i=1

qi lnκi +λ
∗
maxTf

)
≤ lnε (3.4)

where λ ∗max := max{λ ∗(J1),λ
∗(J2), ...,λ

∗(Jm)} and m is the number of subsystems to

be activated in [0,Tf ].

Proof. Assume that λ ∗(Jσi) > 0, for all σi ∈ I . Let δ > 0 such that ‖R1/2x0‖ ≤

‖R1/2‖·‖x0‖ ≤
√

δ and consider the solution x(t) given in (3.1). For any t ∈ [0, t1), the

following inequality is obtained by using the properties of the norm.

‖R1/2x(t)‖=‖R1/2Vσ1eJσ1 tV−1
σ1

x0‖

≤‖R1/2‖ · ‖Vσ1‖ · ‖e
Jσ1 t‖ · ‖V−1

σ1
‖ · ‖x0‖

≤‖R1/2‖ · ‖Vσ1‖ ·m(0, t1) · ‖V−1
σ1
‖ · ‖x0‖

≤
√

δ · ‖Vσ1‖ ·m(0, t1) · ‖V−1
σ1
‖

=
√

δ ·κσ1 ·m(0, t1).

(3.5)
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Let T1 := t1 and consider the interval [t1, t2). For any t ∈ [t1, t2), the norm of R1/2x(t)

is written as follows:

‖R1/2x(t)‖=‖R1/2Vσ2eJσ2(t−t1)V−1
σ2

Vσ1eJσ1 t1V−1
σ1

x0‖

≤‖R1/2‖ · ‖Vσ2‖ · ‖e
Jσ2(t−t1)‖ · ‖V−1

σ2
‖

· ‖Vσ1‖ · ‖e
Jσ1T1‖ · ‖V−1

σ1
‖ · ‖x0‖

≤
√

δ ·κσ2 ·κσ1 ·m(t1, t2) · ‖eJσ1T1‖

≤
√

δ ·

(
N(t1)

∏
i=1

κ
ησi(t1)
σi

)
·m(t1, t2) · ‖eJσ1T1‖

(3.6)

Note that ‖eJσ1 T1‖ ≤ eλ ∗(Jσ1)T1 and two subsystems σ1 and σ2 are activated in this

interval. So, N(t1) = 2, ησ1(t1) = ησ2(t1) = 1 and λ (t1) = λ ∗(Jσ1). Now, let Tp :=

tp− tp−1 and consider each interval [tp, tp+1), for p = 2, ...,n. In each interval, same

subsystems could be activated several times. Thus, we have

‖R1/2x(t)‖=‖R1/2Vσp+1eJσp+1(t−tp)V−1
σp+1

VσpeJσpTpV−1
σp
· · ·Vσ1eJσ1 T1V−1

σ1
x0‖

≤‖R1/2‖ · ‖Vσp+1‖ · ‖e
Jσp+1(t−tp)‖ · ‖V−1

σp+1
‖ · ‖Vσp‖ · ‖e

JσpTp‖

· ‖V−1
σp
‖· · ·‖Vσ1‖ · ‖e

Jσ1T1‖ · ‖V−1
σ1
‖ · ‖x0‖

≤
√

δ ·

(
N(tp)

∏
i=1

κ
ησi(tp)
σi

)
·m(tp, tp+1) ·

(
p

∏
k=1
‖eJσk Tk‖

)
.

(3.7)

From Lemma 4, it is possible to write

‖eJσk Tk‖ ≤ eλ ∗(Jσk )·Tk . (3.8)

and
p

∏
k=1
‖eJσk Tk‖ ≤

p

∏
k=1

eλ ∗(Jσk )·Tk = e∑
p
k=1 λ ∗(Jσk )·Tk (3.9)

Then, from (3.7) and (3.9), we obtain

‖R1/2x(t)‖ ≤
√

δ ·

(
N(tp)

∏
i=1

κ
ησi(tp)
σi

)
·m(tp, tp+1) · e∑

p
k=1 λ ∗(Jσk )·Tk . (3.10)

Since ∑
p
k=1 Tk = tp then, e∑

p
k=1 λ ∗(Jσk )·Tk ≤ eλ (tp)·tp and

‖R1/2x(t)‖ ≤
√

δ ·

(
N(tp)

∏
i=1

κ
ησi(tp)
σi

)
·m(tp, tp+1) · eλ (tp)·tp. (3.11)
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Now, let us recall the inequality (3.5). Since λ ∗(Jσ1)> 0, then

m(0, t1) = sup
t∈[0,t1)

‖eJσ1 t‖

≤eλ ∗(Jσ1)supt∈[0,t1) t

=e
λ ∗(Jσ1) limt→t−1

t

≤eλ ∗(Jσ1)t1 .

(3.12)

In [0, t1) only the subsystem σ1 is activated and λ ∗(Jσ1) = λ (t1). Then, by the

inequalities (3.5) and (3.12), we have

‖R1/2x(t)‖ ≤
√

δ ·κσ1 · e
λ (t1)·t1. (3.13)

Similar to (3.12), m(tp, tp+1) ≤ eλ ∗(Jσp+1)(tp+1−tp), for all p = 1,2, ...,n. By defining

λ̂ (tp) := max{λ ∗(Jσp+1),λ (tp)}, for all p = 1,2, ...,n, we write

m(tp, tp+1) · eλ (tp)·tp ≤ eλ ∗(Jσ(tp+1)
)(tp+1−tp) · eλ (tp)·tp

≤ eλ̂ (tp)·tp+1 (3.14)

Thus, by (3.11) and (3.14), we obtain

‖R1/2x(t)‖ ≤
√

δ ·

(
N(tp)

∏
i=1

κ
ησi(tp)
σi

)
· eλ̂ (tp)·tp+1. (3.15)

Since λ ∗(Jσi) > 0 and κσi ≥ 1, for all σi ∈ I and (3.13) is included in (3.15) for

p = 1,2, ...,n, the exponential in (3.15) is increasing. So, the upper bound of (3.15) is

given for p = n. Thus, if

‖R1/2x(t)‖ ≤
√

δ ·

(
N(tn)

∏
i=1

κ
ησi(tn)
σi

)
· eλ̂ (tn)·Tf ≤

√
ε (3.16)

then the system (2.6) is FT stable with respect to (ε,δ ,Tf ,R). Note that λ̂ (tn) =

max{λ ∗(Jσ1),λ
∗(Jσ2), ...,λ

∗(Jσn+1)} = max{λ ∗(J1),λ
∗(J2), ...,λ

∗(Jm)} = λ ∗max and

{κσ1 , ...,κσn+1} = {κ1,κ2, ...,κm}. Thus, define qi := ησi , for i = 1,2, ...,m. By using

these notations the inequality (3.16) is written as follows:

√
δ ·

(
m

∏
i=1

κ
qi
i

)
· eλ ∗max·Tf ≤

√
ε (3.17)

The unknown variables in this inequality are the numbers of the activations qi of the

subsystems. By taking the natural logarithm of both sides of (3.17), we obtain the

result given in (3.4).
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Theorem 2. Assume that λ ∗(Jσi) ≤ 0, for all σi ∈ I . The system (2.6) is FT stable

with respect to (ε,δ ,Tf ,R) if there exist some positive integers q1,q2, ...,qm and a real

number tn, 0 < tn ≤ Tf satisfying the following conditions

ε−δκ
2
σi
≥ 0, f or all σi ∈I (3.18a)

lnδ +2 ·

(
m

∑
i=1

qi · lnκi +λ
∗
max · tn

)
≤ lnε. (3.18b)

Here λ ∗max and m are as defined in Theorem 1.

Proof. Assume that λ ∗(Jσi) ≤ 0, for all σi ∈ I and let δ > 0 such that ‖R1/2x0‖ ≤

‖R1/2‖·‖x0‖≤
√

δ . Consider the inequality (3.5). Since λ ∗(Jσ1)≤ 0 then for t ∈ [0, t1)

m(0, t1) = sup
t∈[0,t1)

‖eJσ1 t‖

≤eλ ∗(Jσ1) inft∈[0,t1) t

≤1.

(3.19)

By the inequalities (3.5) and (3.19), we obtain

‖R1/2x(t)‖ ≤
√

δ ·κσ1. (3.20)

If ‖R1/2x(t)‖ ≤
√

δ · κσ1 ≤
√

ε , then the system (2.6) is FT stable with respect to

(ε,δ ,Tf ,R) in [0, t1). Since σ1 could be any number in I then, the inequality (3.18a)

is obtained.

Now, consider the inequality in (3.11). For any t ∈ [tp, tp+1), the subsystem σp+1 is

activated. Since λ ∗(Jσi) ≤ 0, for all σi ∈ I , we have m(tp, tp+1) ≤ 1 similarly as

(3.19). Then, (3.11) can be written as follows:

‖R1/2x(t)‖ ≤
√

δ ·

(
N(tp)

∏
i=1

κ
ησi(tp)
σi

)
· eλ (tp)·tp (3.21)

Note that eλ (tp) ≥ eλ (tp−1) ≥ 1, for p = 2, ...,n and κσi ≥ 1, for all σi ∈ I . So, the

exponential in (3.21) is increasing in terms of tp and its upper bound is attained at p= n.

In [0,Tf ] all the subsystems including σn+1 had been activated. Thus, ∏
N(tn)
i=1 κ

ησi(tn)
σi =

∏
m
i=1 κ

qi
i and λ (tn) ≤ max{λ ∗(J1),λ

∗(J2), ...,λ
∗(Jm)}= λ ∗max. Consequently, for any

t ∈ [tn,Tf ] if

‖R1/2x(t)‖ ≤
√

δ ·

(
m

∏
i=1

κ
qi
i

)
· eλ ∗max·tn ≤

√
ε (3.22)

then the system (2.6) is FT stable with respect to (ε,δ ,Tf ,R) when the condition

(3.18b) is satisfied.
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Remark 1. Theorem 1 and 2 depend on the solution of the integers q1,q2, ...,qn on

[0,Tf ] and [0, tn], respectively. These “subsystem activation configurations" can be

chosen from the feasible set defined as

FI :=
{
(q1,q2, ...,qm)

∣∣∣ qi ∈ Z+ f or all i = 1,2, ...,m satis f ying
m

∑
i=1

qi lnκi ≤
lnε− lnδ

2
−λ

∗
max · `(I)

} (3.23)

where `(I) is the length of the closed interval I and λ ∗max is as defined in Theorem 1

and 2 by using the appropriate closed interval.

Remark 2. Note that, Theorems 1 and 2 are conservative because they have the

constraints λ ∗(Jσ(ti))> 0 and λ ∗(Jσ(ti))≤ 0, for all σ(ti) ∈I , respectively. However,

this conservativeness can be relaxed by seperating the subsystems having λ ∗(Ji) ≤ 0

and λ ∗(Ji)> 0 as in the following Theorem.

Let I − and I + be the subsets of I , for which λ ∗(Jσi) ≤ 0 and λ ∗(Jσi) > 0 ,

respectively. Note that, I = I −∪I +. Let us also define

λ
−
min := min

σi∈I −
{|λ ∗(Jσi)|}

λ
+
max := max

σi∈I +
{λ ∗(Jσi)}

Let T+ and T− be the activation times of the systems belonging to the subsets I + and

I −, respectively and T++T− ≤ Tf . Now, we have the following Theorem.

Theorem 3. Assume that I − 6= /0, I + 6= /0. The system (2.6) is FT stable with respect

to (ε,δ ,Tf ,R) if there exist positive integers q1,q2, ...,qm satisfying the following

condition:

lnδ +2 ·

(
m

∑
i=1

qi · lnκi +λ
+
maxT+−λ

−
minT−

)
≤ lnε (3.24)

Proof. By (3.12) and (3.19), it is clear that

m(tp, tp+1)≤
{

1 , if σp+1 ∈I −

eλ ∗(Jσp+1)·tp+1 , if σp+1 ∈I + (3.25)

Consider the inequality in (3.11). Since eλ ∗(Jσp+1)·tp+1 > 1, by (3.25) we have

m(tp, tp+1) · eλ (tp)·tp ≤ eλ+
maxT+

p+1−λ
−
minT−p+1 (3.26)
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where T+
p+1 and T−p+1 are the activation times of the systems belonging to the subsets

I + and I −, respectively in the time interval [0, tp+1). If (3.26) is substituted into

(3.11) at p = n and the result is bounded above by
√

ε then, ‖R1/2x(t)‖ ≤
√

ε is

obtained. Thus, the system (2.6) is FT stable with respect to (ε,δ ,Tf ,R) in [0,Tf ]

under the condition in (3.24).

3.2 Average Dwell-Time Condition for the Switching Systems

Consider the constrained set of all switching signals as follows:

S = Savg. dwell[τa,N0] =

{
σ ∈ Σ

∣∣∣ Nσ (t)≤ N0 +
Tf − t

τa

}
. (3.27)

The infimum τa for which the switched system is FT stable is called

the average dwell time (ADT) and it is denoted by τ∗a . Let κmax :=

max{κσ1,κσ2, ...,κσn+1}. Now, we are ready to present the following.

Theorem 4. The switched system (2.6) is FT stable with respect to (ε,δ ,Tf ,R), if the

switching signal satisfies the ADT τ∗a for the following cases:

(i) Assume that I − = I . Then,

τa ≥ τ
∗
a =

2Tf lnκmax

lnε−
(

lnδ +2N0 lnκmax−2λ
−
mintn

) . (3.28)

(ii) Assume that I + = I . Then,

τa ≥ τ
∗
a =

2Tf lnκmax

lnε−
(

lnδ +2N0 lnκmax +2λ
+
maxTf

) . (3.29)

(iii) Assume that I − 6= /0 and I + 6= /0. Then,

τa ≥ τ
∗
a =

2Tf lnκmax

lnε−
(

lnδ +2N0 lnκmax +2(λ+
maxT+−λ

−
minT−)

) . (3.30)

Here T+ and T− are the activation times of the systems belonging to the subsets I +

and I −, respectively.

Proof. Consider the inequality (3.11) for p = n. Since κmax > 1, for any t ∈ [tn,Tf ],

we have

‖R1/2x(t)‖ ≤
√

δ ·
(

κ
Nσ (t)
max

)
·m(tn,Tf ) · eλ (tn)·tn. (3.31)
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Since κmax > 1, by the definition Nσ (t) it is clear that κ
Nσ (t)
max ≤ κ

N0+
Tf−t

τa
max ≤ κ

N0+
Tf
τa

max . By

considering (3.25) for p = n, we get

m(tn,Tf )≤
{

1 if σn+1 ∈I −

eλ ∗(Jσn+1)·Tf if σn+1 ∈I + (3.32)

If σn+1 ∈ I − then, by (3.31) and (3.32) we obtain m(tn,Tf ) · eλ (tn)·tn ≤ eλ (tn)·tn . In

order to obtain ‖R1/2x(t)‖ ≤ ε , we should have

√
δ ·
(

κ
N0+

Tf
τa

max

)
· eλ (tn)·tn ≤

√
ε. (3.33)

By taking the natural logarithm of both sides of (3.33) and rearranging the result we

get

τa ≥
2Tf lnκmax

lnε−
(

lnδ +2N0 lnκmax +2λ (tn) · tn
) . (3.34)

In the case that I − = I , then λ (tn) · tn ≤ 0. Since λ̂ (tn) = max{λ (tn),λ ∗(Jσn+1)}, it

is clear that λ (tn)≤ λ̂ (tn)≤ 0 and 1
−λ̂ (tn)

≥ 1
−λ (tn)

. All subsystems are activated at this

stage so that we have−λ̂ (tn) = λ
−
min. Thus, by substituting λ̂ (tn) with−λ

−
min in (3.34),

we conclude that the switched system (2.6) is FT stable with respect to (ε,δ ,Tf ,R) if

the condition (3.28) holds true.

In the other case that I + =I , then λ (tn) ·tn > 0 and σn+1 ∈I +. Thus, λ̂ (tn) = λ+
max.

By using again the fact Tf > tn, the switched system (2.6) is FT stable with respect to

(ε,δ ,Tf ,R) if the condition (3.29) holds true.

Let us consider the last case that I − 6= /0 and I + 6= /0. Since eλ ∗(Jσn+1)·Tf ≥ 1 in (3.32)

the following inequality can be written:

m(tn,Tf ) · eλ (tn)·tn ≤ eλ+
maxT+−λ

−
minT− (3.35)

Thus, the switched system (2.6) is FT stable with respect to (ε,δ ,Tf ,R) if the condition

(3.30) holds true for the last case, which concludes the proof.

In the existing literature, the ADT is obtained by the analysis of Lyapunov functionals.

See the following theorem.

Theorem 5. [45] For any i ∈ {1,2, ...,m}, let Q̃i = R−1/2 and suppose there exist

matrices Qi > 0 and a constant α ≥ 0 such that

AiQ̃i + Q̃iAT
i −2αQ̃i < 0, (3.36a)

µ <
ε

δ
e−2αTf (3.36b)
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then, the system (2.6) is FT stable with respect to (ε,δ ,Tf ,R) with ADT satisfying

τa > τ
∗
a =

Tf ln µ

ln(ε/δ )− ln µ−2αTf
, (3.36c)

where λ1 = min∀i∈I (λmin(Qi)), λ2 = max∀i∈I (λmax(Qi)), µ = λ2
λ1

.

The ADT constraints obtained in Theorem 4 are quite similar to the ADT constraints

in Theorem 5 by formulation. However, these constraints differ in calculation. The

comparison and differences are given in the following remark.

Remark 3. There are two major differences in calculation of the ADT bounds in

Theorem 4 and 5. Firstly, λ1 and λ2 (as well as µ) depend on the solutions of the LMIs

(3.36b) in Theorem 5. Thus, µ has a freedom of choice. However, κmax is directly

calculated by the matrix condition numbers of the subsystems in Theorem 4. Secondly,

α is a parameter which is dependent on the solution of the LMIs (3.36b). In other

words, α can be freely chosen to shift the eigenvalues of the subsystem matrices Ai

by α to make (Ai−αI) < 0. On the other hand, the eigenvalues of the subsystem

matrices are directly used to calculate λ+
max and λ−max in Theorem 4. The restriction of

the freedom of choice gives an opportunity to have a better estimation for the ADT as

it can be seen in Example 9 of the next section.

3.3 Numerical Examples

Now, the following examples are presented to demonstrate the FT stabilizability of

switching systems by using Theorem 1 and 4.

Example 5. Consider the switched linear system (2.6) with following three subsystems

A1 =

0.06 0.13 0.04
0.06 0.02 −0.06
0.04 −0.13 0.06

 , A2 =

 0 0.2 −0.4
0.21 0.2 0.2
−0.21 0.1 0.1

 , A3 =

0.2 0 0
0 0.36 −0.02
0 0 0.3

 .
Calculating the Jordan forms, we have

J1 =V1A1V−1
1 =

0.1 0 0
0 −0.105 0
0 0 0.15

 , V1 =

1 −1 −1
0 0.96 −0.96
1 1 1

 ,
J2 =V2A2V−1

2 =

0.3 0 0
0 0.355 0
0 0 −0.355

 , V2 =

0 −1.69 1.69
2 −1 −1
1 1 1

 ,
J3 =V3A3V−1

3 =

0.3 0 0
0 0.2 0
0 0 0.36

 , V3 =

 0 1 0
0.33 0 1

1 0 0

 .
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λ ∗(Ji)’s are calculated as 0.15, 0.355 and 0.36, respectively. Note that all λ ∗(Ji)’s are

positive so that we can apply Theorem 1. By choosing δ = 1, ε = 100, Tf = 2 and from

(3.4), we have

0.3866 ·q1 +0.3466 ·q2 +0.3318 ·q3 ≤ 1.5826.

So, this allows us to determine the feasible set of the following subsystem activation

configurations: F[0,2] = {(1,1,1),(2,1,1),(1,2,1),(1,1,2)}. Let us see this with a

simulation experiment.

Take the initial state x0 = [−0.1 5 0.5]T and R =

4 0 3
0 0.01 0
3 0 4

 satisfying the initial

condition xT
0 Rx0 ≤ 1. Let us also consider the switching signal

σ(t) =


2, t ∈ [0,0.6)∪ [1.6,2)
3, t ∈ [0.6,1.2)
1, t ∈ [1.2,1.6)

which satisfies the subsystem activation configuration (1,2,1)∈F[0,2]. The simulation

results in Figure 3.1 verify that the system is FT stable with respect to the chosen

parameters.

0 0.5 1 1.5 2
0

20

40

60

80

100
Subsystem 1
Subsystem 2
Subsystem 3

Figure 3.1 : Simulation of x(t)T Rx(t) Under Non-Periodic Switching σ(t).

Example 6. Consider again the switched linear system given as the motivating

example in Chapter 2 (Example 4 of Chapter 2). This motivating example shows us the

existence of an ADT which makes the switched system FT stable with respect to given

parameters. When periodic switching is concerned, the existence of such an ADT is

equivalent to the existence of a critical period for the systems to ensure FT stability.
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Figure 3.2 : Periodic Switching of A1 and A2 with Various Periods and Tf = 10.

In order to see this phenomenon, the simulations of the given switched system with

various periods are depicted in Figure 3.2.

As it can be seen in Figure 3.2, there is a critical period between the periods 0.3 and

0.4 that the system satisfies xT (t)x(t)≤ 25, ∀t ∈ [0,10].

Now, let us apply Theorem 4. Calculating the Jordan forms, we have

J1 =V1A1V−1
1 = J2 =V2A2V−1

2 =

[
−1−17.2916 j 0

0 −1−17.2916 j

]
,

V1 =

[
−0.0333+0.5764 j −0.0333−0.5764 j

1 1

]
,

V2 =

[
−0.1−1.7292 j −0.1+1.7292 j

1 1

]
.

Thus, λ ∗(J1) = λ ∗(J2) = −1 and λ
−
min = 1. Now, in order to apply Theorem 4, we

should determine the last switching instant tn. In order to represent the cases presented

in Figure 3.2, we choose different tn’s, calculate different ADT bounds for each tn and

present the results in Table 3.1.

These results are consistent with the simulation results presented in Figure 3.2.

Example 7. A switched linear system (2.6) with two subsystems is given as follows

A1 =

[
2 2
1 3

]
, A2 =

[
−2 1
1 −2

]
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Table 3.1 : ADT Bounds for Different Switching Periods and Corresponding tn’s

Period tn τ∗a
0.1 9.9 0.5278
0.2 9.8 0.5329
0.3 9.9 0.5278
0.4 9.6 0.5434
0.5 9.5 0.5488
0.6 9.6 0.5434
0.7 9.8 0.5329
0.8 9.6 0.5434
0.9 9.9 0.5278
1 9 0.5775

where A1 is unstable while A2 is Hurwitz stable and both of them are diagonalizable

matrices.

J1 =V−1
1 A1V1 =

[
1 0
0 4

]
, V1 =

[
2 1
−1 1

]
⇒ λ

+
max = 4

J2 =V−1
2 A2V2 =

[
−1 0
0 −3

]
, V2 =

[
2 −1
1 1

]
⇒ λ

−
min = 1

Choose

δ = 500, R = I, T+ = 2.4, T− = 21.6, Tf = 24,N0 = 0,ε = 900

the initial state x0 = [10 − 20]T satisfying the initial condition xT
0 x0 ≤ 500. By

applying (3.30) of Theorem 4, the ADT is found as τ∗a = 0.5560 which demonstrates

the validity of the proposed theorem.

Note that, in [46] the ADT is obtained as τ∗a = 2.4. The major reason for such a

difference in ADT is that exponential stability is analyzed in [46]. However, in our

example FT stability is analyzed which is much more relaxed stability notion than

exponential stability that allows more frequent switching. The simulation results in

Figure 3.3 verify that the system is FT stable with respect to the chosen parameters

and with a periodic activation of A1 and A2 over time periods 0.12 and 1.08 (i.e.

τa = 0.6), respectively.

Let us give another example with three subsystems.

Example 8. A switched linear system (2.6) with three subsystems is given as follows

A1 =

−1.35 0 0
−0.5 −1.35 0
−0.5 0 −1.35

 , A2 =

0.35 0 0
0 0.35 0
1 1 0.35

 , A3 =

−0.85 1 −1
0.67 −0.85 0
0.67 0 −0.85
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Figure 3.3 : Periodic Activation of A1 and A2 over time periods 0.12 and 1.08,
respectively.

where A1 and A3 are Hurwitz stable while A2 is unstable matrices. Calculating the

Jordan forms, we have

J1 =V1A1V−1
1 =

−1.35 1 0
0 −1.35 0
0 0 −1.35

 , V1 =

 0 −1 0
0.5 0 0.5
0.5 0 −0.5

 ,
J2 =V2A2V−1

2 =

0.35 1 0
0 0.35 0
0 0 0.35

 , V2 =

0 0.5 0.5
0 0.5 −0.5
1 0 0

 ,
J3 =V3A3V−1

3 =

−0.85 1 0
0 −0.85 1
0 0 −0.85

 , V3 =

 0 1 0
0.67 0 0.33
0.67 0 −0.67

 .
λ ∗(Ji)’s are calculated as−0.85, 0.85 and−0.14, respectively. According to λ ∗(Ji)’s,

we get λ+
max = λ

−
min = 0.85. Choose

δ = 16, R =

3 1 2
1 6 1
2 1 2

 , T+ = 7, T− = 9, Tf = 16,N0 = 0,ε = 25

the initial state x0 =
[
−1 1 2

]T satisfying the initial condition xT
0 Rx0 ≤ 16. By

applying (3.30) of Theorem 4, the ADT is found as τ∗a = 1.7157.

To verify this result, let us consider the switching signal

σ(t) =


1, t ∈ [0,2)∪ [12,14)
2, t ∈ [2,5)∪ [7,9)∪ [10,12)
3, t ∈ [5,7)∪ [9,10)∪ [14,16)

The simulation results in Figure 3.4 verify that the system is FT stable with respect

to the chosen parameters and with a switching signal satisfying the calculated ADT

bound.
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Figure 3.4 : Simulation of x(t)T Rx(t) Under Non-Periodic Switching σ(t).

Example 9. Let us consider the switched system (2.6) with the same subsystem

matrices in [45] as

A1 =

[
0 −1
2 0

]
, A2 =

[
0 −2
1 0

]
.

By Jordan decomposition, we have

J1 =V−1
1 A1V1 = J2 =V−1

2 A2V2 =

[
−1.4142 j 0

0 1.4142 j

]
,

V1 =

[
−0.7071 j 0.7071 j

1 1

]
, V2 =

[
−1.4142 j 1.4142 j

1 1

]
.

Thus, we have λ
−
min = 0. Note that, the term 2λ

−
mintn vanishes in (3.28), since λ

−
min = 0.

Therefore, there is no need to determine tn to apply Theorem 4 for this example. For

given δ = 1, ε = 20, Tf = 10, R = I, let us apply Theorem 4, we have the ADT bound

τ∗a = 2.3138 which is a better estimation than τ∗a = 3.1539 found in [45]. On the other

hand, we obtain the same ADT bound τ∗a = 3.1539 as in [45] by taking ε = 9.005,

which is a better estimation for ε as it is depicted in Figure 3.5.

Figure 3.5 : Simulation of x(t)T Rx(t) Under Periodic Switching with Period 3.16.
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4. STATE FEEDBACK DESIGN FOR FINITE-TIME BOUNDEDNESS

In this part, finite-time control of switched linear systems with interval time-delay is

considered. State feedback is applied in order to ensure finite-time boundedness of the

system. Sufficient conditions and average dwell-time bounds are obtained. Because

of non-convex terms in the average dwell-time constraint, a technique which converts

the nonlinear terms into linear matrix inequality conditions is expressed in terms of the

cone-complementarity linearization method. Finally, numerical examples are given for

the effectiveness and validity of the proposed solutions.

4.1 Problem Statement

Consider a switched linear system with an interval time-varying delay in the state

vector, where

ẋ(t) =Aσ(t)x(t)+Adσ(t)x(t−h(t))+Bσ(t)u(t)+Bwσ(t)w(t), (4.1)

with the initial conditon function

x(t) = φ(t), t ∈ [−h2,0]. (4.2)

Here x(t) ∈ Rn is the state vector and u(t) ∈ Rm the control input, respectively.

Aσ(t), Adσ(t), Bσ(t) and Bwσ(t) are real constant matrices of appropriate dimensions,

φ ∈ C ([−h2,0],Rn) is the initial function and h is the delay function satisfying

0≤ h1 ≤ h(t)≤ h2, ḣ(t)≤ hd < ∞. (4.3)

Unless otherwise stated, the expression “Switched Systems with Stable Subsystems"

means that A1,A2, ...,AN are all Hurwitz stable. w(t) is the exogenous disturbance

satisfying ∫
∞

0
wT (t)w(t)dt < d, d ≥ 0 (4.4)

Consider the control law

u(t) =−Kσ(t)x(t). (4.5)
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The closed-loop system is given as follows

ẋ(t) =AKσ(t)x(t)+Adσ(t)x(t−h(t))+Bwσ(t)w(t), (4.6)

where AKσ(t) = Aσ(t)−Bσ(t)Kσ(t).

4.2 FT Boundedness Analysis

In this section, we suppose that A1, A2,..., Ar, (1≤ r < N) in system (4.1) are Hurwitz

stable and the remaining matrices are unstable. Let us define

ψi =

{
−αi i ∈Ist

αi i ∈Iun

where Ist and Iun are the index set of all Hurwitz stable and unstable subsystems,

respectively. Note that I = Ist ∪Iun. For a given switching sequence Σ, the

total activation times of stable and unstable subsystems are defined as T− and T+,

respectively in a finite interval [0,Tf ]. Thus, Tf = T++T−.

Theorem 6. Consider the switched system (4.1) with r Hurwitz stable and N − r

unstable subsystems. The system (4.1) is FT bounded with respect to (δ ,ε,Tf ,d,R),

for given constants αi ≥ 0, µ ≥ 1, T+ > 0 and T− > 0 such that Tf = T++ T−, if

there exist a set of symmetric matrices for every ith system Pi > 0, Q1i > 0, Q2i > 0,

S1i > 0, S2i > 0, Ti > 0, Wi > 0, Yi, M1i, M2i, N1i, N2i satisfying

ϒi =


Ωi −Mi −Ni Zi
∗ −e2ψih2S2i 0 0
∗ ∗ −e2ψih2S2i 0
∗ ∗ ∗ −I

< 0 (4.7a)

e2α+
maxT+

η
′
+ ≤ λ1e2α

−
minT−

ε (4.7b)

Pj ≤ µPi, Qk j ≤ µQki,Sk j ≤ µSki,Tj ≤ µTi, (4.7c)

for i, j ∈I and k = 1,2, where

Ωi =


Ω11,i Ω12,i Ω13,i −N1i Bwi Ω16,i
∗ Ω22,i M2i −N2i 0 PiAT

di
∗ ∗ Ω33,i 0 0 0
∗ ∗ ∗ Ω44,i 0 0
∗ ∗ ∗ ∗ −Wi BT

wi
∗ ∗ ∗ ∗ ∗ Ω66,i

 (4.8)
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with entries

Ω11,i =AiPi +PiAT
i −BiYi−Y T

i BT
i +Q1i +Q2i− e2ψih1S1i−2ψiPi +Ti,

Ω12,i =AdiPi−M1i +N1i, Ω13,i = e2ψih1S1i +M1i, Ω16,i = PiAT
i −Y T

i BT
i ,

Ω22,i =N2i +NT
2i−M2i−MT

2i− (1−hd)e2ψih2Ti

Ω33,i =− e2ψih1(Q1i +S1i), Ω44,i =−e2ψih2Q2i, Ω66,i = h2
1S1i +h2

12S2i−2Pi.

Then the ADT of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− lnη ′+−2α
+
maxT++2α

−
minT−−N0 ln µ

(4.9)

where α+
max = maxi∈Iun{αi}, α

−
min = mini∈Ist{αi} and

η
′
+ =λ2δ +λ

′
3h1e2α+

maxh1δ +λ
′
4h2e2α+

maxh2δ +λ
′
5h3

1e2α+
maxh1δ

′

+λ
′
6h2

12(h1e2α+
maxh1 +h12e2α+

maxh2)δ ′+λ
′
7h2e2α+

maxh2δ +λ8d.
(4.10)

with matrix transformations

Q̂1i =R1/2Q1iR1/2, Q̂2i = R1/2Q2iR1/2,

Ŝ1i =R1/2S1iR1/2, Ŝ2i = R1/2S2iR1/2,

Q1i =PiQ1iPi, Q2i = PiQ2iPi, S1i = PiS1iPi, S2i = PiS2iPi,

T̂i =R1/2TiR1/2, Ti = PiT iPi,

M1i =PiM1iPi, M2i = PiM2iPi, N1i = PiN1iPi, N2i = PiN2iPi

(4.11)

and

λ1 = inf
i∈I
{λmin(P̃−1

i )}, λ2 = sup
i∈I
{λmax

(
P̃−1

i
)
},

λ
′
3 = sup

i∈I
{λmax

(
P̃−1

i Q̂1iP̃−1
i
)
}, λ

′
4 = sup

i∈I
{λmax

(
P̃−1

i Q̂2iP̃−1
i
)
},

λ
′
5 = sup

i∈I
{λmax

(
P̃−1

i Ŝ1iP̃−1
i
)
}, λ

′
6 = sup

i∈I
{λmax

(
P̃−1

i Ŝ2iP̃−1
i
)
},

λ
′
7 = sup

i∈I
{λmax

(
P̃−1

i T̂iP̃−1
i
)
}, λ8 = sup

i∈I
{λmax(Wi)},

δ
′ = sup

s∈[−h2,0]

{
ẋT (s)Rẋ(s)

}
, h12 = h2−h1,

Zi =[0 0 0 0 CiPi 0 0]T Mi = [M1i M2i 0 0 0 0 0]T , Ni = [N1i N2i 0 0 0 0 0]T .

The gain matrices Ki of controller are perceived as

Ki = YiP−1
i . (4.12)
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Proof. Consider the following Lyapunov-Krasovskii candidate functional as

Vi(x(t)) =
6

∑
j=1

Vji(x(t)) (4.13)

where

V1i(x(t)) =xT (t)P−1
i x(t)

V2i(x(t)) =
∫ t

t−h1

e2ψi(t−s)xT (s)Q1ix(s)ds

V3i(x(t)) =
∫ t

t−h2

e2ψi(t−s)xT (s)Q2ix(s)ds

V4i(x(t)) =
∫ 0

−h1

∫ t

t+θ

h1e2ψi(t−s)ẋT (s)S1iẋ(s)dsdθ

V5i(x(t)) =
∫ −h1

−h2

∫ t

t+θ

h12e2ψi(t−s)ẋT (s)S2iẋ(s)dsdθ

V6i(x(t)) =
∫ t

t−h(t)
e2ψi(t−s)xT (s)T ix(s)ds

(4.14)

The derivatives are obtained as follows

V̇1i(x(t)) =xT (t)[P−1
i AKi +AT

KiP
−1
i ]x(t)

+2xT (t)P−1
i Adix(t−h(t))+2xT (t)P−1

i Bwiw(t)

V̇2i(x(t)) =2ψiV2i + xT (t)Q1ix(t)− e2ψih1xT (t−h1)Q1ix(t−h1)

V̇3i(x(t)) =2ψiV3i + xT (t)Q2ix(t)− e2ψih2xT (t−h2)Q2ix(t−h2)

V̇4i(x(t)) =2ψiV4i +h2
1ẋT (t)S1iẋ(t)− e2ψih1

∫ t

t−h1

h1ẋT (s)S1iẋ(s)ds

V̇5i(x(t))≤2ψiV5i +h2
12ẋT (t)S2iẋ(t)− e2ψih2

∫ t−h1

t−h2

h12ẋT (s)S2iẋ(s)ds

V̇6i(x(t))≤2ψiV6i + xT (t)T ix(t)− (1−hd)e2ψih2xT (t−h(t))T ix(t−h(t))

(4.15)

By Jensen’s Inequality, V̇4i(x(t)) can be written as

V̇4i(x(t))≤2ψiV4i(x(t))+h2
1ẋT (t)S1iẋ(t)− e2ψih1xT (t)S1ix(t)

+2e2ψih1xT (t)S1ix(t−h1)− e2ψih1xT (t−h1)S1ix(t−h1)
(4.16)

From (4.3), it is clear that −(h2−h1)≤−(h2−h(t)) and −(h2−h1)≤−(h(t)−h1).

Thus

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds≤− (h2−h(t))
∫ t−h(t)

t−h2

ẋT (s)S2iẋ(s)ds

− (h(t)−h1)
∫ t−h1

t−h(t)
ẋT (s)S2iẋ(s)ds

(4.17)

Let
∫ t−h1

t−h(t) ẋ(s)ds =: ih1(t) and
∫ t−h(t)

t−h2
ẋ(s)ds =: ih2(t). Then, by Jensen’s Inequality,

(4.17) is written as follows

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds≤−iTh2
(t)S2iih2(t)− iTh1

(t)S2iih1(t) (4.18)
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Now, define

ξ (t) =
[
xT (t) xT (t−h(t)) xT (t−h1) xT (t−h2) wT (t) ẋT (t) iTh1

(t) iTh2
(t)
]T
. (4.19)

By Leibniz’s formula, we have

2ξ
T (t)Mi

[
x(t−h1)− x(t−h(t))− ih1(t)

]
= 0

2ξ
T (t)Ni

[
x(t−h(t))− x(t−h2)− ih2(t)

]
= 0

(4.20)

Also from (4.6), it can be written

2ẋT (t)P−1
i

[
AKix(t)+Adix(t−h(t))+Bwiw(t)− ẋ(t)

]
= 0 (4.21)

On the other hand, for a positive definite matrix Wi the following holds

[
wT (t)Wiw(t)−wT (t)Wiw(t)

]
= 0 (4.22)

Then, by the equations (4.13)-(4.22), we obtain

V̇i(x(t))−2ψiVi(x(t))≤ξ
T (t)Σiξ (t)+wT (t)Wiw(t). (4.23)

Here

Σi =

Ξi −Mi −Ni
∗ −e2ψih2S2i 0
∗ ∗ −e2ψih2S2i

 (4.24)

for i, j ∈I and k = 1,2, where

Ξi =


Ξ11,i Ξ12,i Ξ13,i −N1i P−1

i Bwi AT
KiP
−1
i

∗ Ξ22,i M2i −N2i 0 AT
diP
−1
i

∗ ∗ Ξ33,i 0 0 0
∗ ∗ ∗ Ξ44,i 0 0
∗ ∗ ∗ ∗ −Wi BT

wiP
−1
i

∗ ∗ ∗ ∗ ∗ Ξ66,i

 (4.25)

with entries

Ξ11,i =P−1
i AKi +AT

KiP
−1
i +Q1i +Q2i− e2ψih1S1i−2ψiP−1

i +T i,

Ξ12,i =P−1
i Adi−M1i +N1i, Ξ13,i = e2ψih1S1i +M1i,

Ξ22,i =N2i +NT
2i−M2i−MT

2i− (1−hd)e2ψih2T i,

Ξ33,i =− e2ψih1(Q1i +S1i), Ξ44,i =−e2ψih2Q2i, Ξ66,i = h2
1S1i +h2

12S2i−2P−1
i

Mi =[MT
1i MT

2i 0 0 0 0 0]T , Ni = [NT
1i NT

2i 0 0 0 0 0]T
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By pre- and post-multiplying both sides of the Inequalities in (4.24) with (4.25) by

Di = diag{Pi,Pi,Pi,Pi, I,Pi,Pi,Pi}, ϒi of (4.7a) are obtained. From (4.7a)

V̇i(x(t))−2ψiVi(x(t))≤ wT (t)Wiw(t) (4.26)

is obtained.

On the other hand, by applying Grönwall’s Lemma on t ∈ [tk, tk+1) we have

Vσ(t)(x(t))≤e2ψσ(tk)
(t−tk)Vσ(tk)(x(tk))+

∫ t

tk
e2ψσ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds. (4.27)

Consider (4.7c) and assume σ(tk) = i and σ(t−k ) = j, we have

Vσ(tk)(x(tk))≤ µV
σ(t−k )(x(t

−
k )) (4.28)

If Grönwall’s Lemma and (4.28) is applied to (4.26) until [0, t1) iteratively, we get

Vσ(t)(x(t))≤e2ψσ(tk)
(t−tk)+...+2ψσ(0)(t1−0)

µ
NVσ(0)(x(0))

+µ
N
∫ t1

0
e2ψσ(tk)

(t−tk)+...+2ψσ(0)(t1−s)wT (s)Wσ(0)w(s)ds

+ ...

+
∫ t

tk
e2ψσ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds

(4.29)

By considering the activation times T− and T+ for stable and unstable subsystems,

respectively, the inequality (4.29) can be written as follows:

Vσ(t)(x(t))≤e2α+
maxT+−2α

−
minT−

µ
N(Vσ(0)(x(0))+λ8d

)
. (4.30)

where N denotes the switching number of σ(t) over (0,Tf ). Moreover,

Vσ(t)(x(0)) =xT (0)P−1
σ(0)x(0)

+
∫ 0

−h1

e−2ψσ(0)sxT (s)Q1σ(0)x(s)ds

+
∫ 0

−h2

e−2ψσ(0)sxT (s)Q2σ(0)x(s)ds

+
∫ 0

−h1

∫ 0

θ

h1e−2ψσ(0)sẋT (s)S1σ(0)ẋ(s)dsdθ

+
∫ −h1

−h2

∫ 0

θ

h12e−2ψσ(0)sẋT (s)S2σ(0)ẋ(s)dsdθ

+
∫ 0

−h(0)
e−2ψσ(0)sxT (s)T σ(0)x(s)ds.

(4.31)
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When the orders of the double integrals are changed and the matrices in (4.11) are

substituted, we have

Vσ(0)(x(0)) =xT (0)P−1
σ(0)x(0)

+
∫ 0

−h1

e−2ψσ(0)sxT (s)P−1
σ(0)Q1σ(0)P

−1
σ(0)x(s)ds

+
∫ 0

−h2

e−2ψσ(0)sxT (s)P−1
σ(0)Q2σ(0)P

−1
σ(0)x(s)ds

+
∫ 0

−h1

∫ s

−h1

h1e−2ψσ(0)sẋT (s)P−1
σ(0)S1σ(0)P

−1
σ(0)ẋ(s)dθds

+
∫ −h1

−h2

∫ s

−h2

h12e−2ψσ(0)sẋT (s)P−1
σ(0)S2σ(0)P

−1
σ(0)ẋ(s)dθds

+
∫ 0

−h1

∫ −h1

−h2

h12e−2ψσ(0)sẋT (s)P−1
σ(0)S2σ(0)P

−1
σ(0)ẋ(s)dθds

+
∫ 0

−h(0)
e−2ψσ(0)sxT (s)P−1

σ(0)Tσ(0)P
−1
σ(0)x(s)ds.

From (4.11), each matrix can be bounded as

P−1
σ(0)Q1σ(0)P

−1
σ(0) = R1/2P̃−1

σ(0)Q̂1σ(0)P̃
−1
σ(0)R

1/2 ≤ λmax
(
P̃−1

σ(0)Q̂1σ(0)P̃
−1
σ(0)

)
R≤ λ

′
3R.

Also, note that

sup
s∈[−h(0),0]

{e−2ψσ(0)s} ≤ sup
s∈[−h1,0]

{e−2ψσ(0)s}= e2α+
maxh1 ,

sup
s∈[−h2,0]

{e−2ψσ(0)s}=e2α+
maxh2

(4.32)

Here, an upper bound for Vσ(0)(0) can be written as follows

Vσ(0)(x(0))≤λ2δ +λ
′
3h1e2α+

maxh1δ +λ
′
4h2e2α+

maxh2δ +λ
′
5h3

1e2α+
maxh1δ

′

+λ
′
6h2

12(h1e2α+
maxh1 +h12e2α+

maxh2)δ ′+λ
′
7h2e2α+

maxh2δ .
(4.33)

Since,

Vσ(t)(x(t))≥ xT (t)P−1
i x(t) = xT (t)R1/2P̃−1

i R1/2x(t)

≥ inf
i∈I

(
λmin(P̃−1

i )

)
xT (t)Rx(t)

= λ1xT (t)Rx(t).

(4.34)

By the equations (4.30), (4.33) and (4.34) the inequality xT (t)Rx(t) < ε is obtained,

which tells that the switched system (4.1) is FT bounded. Then, for µ = 1 the inequality

in (4.7b) and for µ > 1 the ADT bound in (4.9) are calculated.

Remark 4. Note that, Theorem 6 has AiPi + PiAT
i − 2ψiPi− BiYi−Y T

i BT
i in (4.7a)

with (4.8). By adjusting (Ai − ψiI) by ψi each pair of (Ai,Bi) do not have to
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be controllable on each mode. For example, consider the simple system ẋ(t) =

Ax(t) + bu(t), take A =

[
−1 0
0 1

]
, b =

[
1
0

]
and use the state feedback controller

u(t) = kx(t) =
[
k1 k2

][
x1(t) x2(t)

]T . When the state feedback controller is applied

the A+bk =
[
−1+ k1 k2

0 1

]
, the unstable mode remains unstable. However ψ enables

us to stabilize A−ψI +bk =
[
−1−ψ + k1 k2

0 1−ψ

]
.

Remark 5. Note also that the condition (4.7b) contains the constants λ1, λ2, λ ′3, λ ′4,

λ ′5,λ ′6, λ ′7 and λ8. The existance of these constants depends on the solutions of the

following inequalities

λ1I < P̃−1
i < λ2I

0 < P̃−1
i Q̂1iP̃−1

i < λ
′
3I, 0 < P̃−1

i Q̂2iP̃−1
i < λ

′
4I

0 < P̃−1
i Ŝ1iP̃−1

i < λ
′
5I, 0 < P̃−1

i Ŝ2iP̃−1
i < λ

′
6I,

0 < P̃−1
i T̂iP̃−1

i < λ
′
7I, 0 <Wi < λ8I.

(4.35)

For more details see [47].

To solve the inequalities in (4.35), it is necessary to put them into LMIs form. Thus,

consider 0 < P̃−1
i Q̂1iP̃−1

i < λ ′3I, write it as −λ ′3I + P̃−1
i Q̂1iP̃−1

i < 0 and use Schur

Complement [
−λ ′3I P̃−1

i
∗ −Q̂−1

1i

]
≤ 0 ⇐⇒

[
−λ ′3I Ji
∗ −E1i

]
≤ 0 (4.36)

where Ji := P̃−1
i and E1i := Q̂−1

1i (or equivalently JiP̃i = I and E1iQ̂1i = I). By

applying same procedure to the other nonlinear inequalities from (4.35) and defining

the matrices E2i, F1i, F2i and Gi for the matrix inverse approximates of Q̂2i, Ŝ1i, Ŝ2i and

T̂i, the following inequalities can be stated in terms of cone-complementarity algorithm

given in [48].

λ1I < Ji < λ2I, 0≤
[

P̃i I
∗ Ji

]
,[

−λ ′3I Ji
∗ −E1i

]
≤ 0,0≤

[
Q̂1i I
∗ E1i

]
,

[
−λ ′4I Ji
∗ −E2i

]
≤ 0,0≤

[
Q̂2i I
∗ E2i

]
,[

−λ ′5I Ji
∗ −F1i

]
≤ 0,0≤

[
Ŝ1i I
∗ F1i

]
,

[
−λ ′6I Ji
∗ −F2i

]
≤ 0,0≤

[
Ŝ2i I
∗ F2i

]
,[

−λ ′7I Ji
∗ −Gi

]
≤ 0,0≤

[
T̂i I
∗ Gi

]
,0 <Wi < λ8I,

(4.37)
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Algorithm 1. This algorithm is derived for Theorem 6.

• Step 1: Find a feasible set

(P0
i ,Q

0
1i,Q

0
2i,S

0
1i,S

0
2i,T

0
i ,J

0
i ,E

0
1i,E

0
2i,F

0
1i,F

0
2i,G

0
i ,W

0
i ,T

0
i ,M

0
1i,M

0
2i,N

0
1i,N

0
2i)

satisfying the inequalities in (4.7a), (4.7b), (4.7c) and (4.37). Set k = 0.

• Step 2: Solve the following LMI problem for the variables

(Pi,Q1i,Q2i,S1i,S2i,Ti,Ji,E1i,E2i,F1i,F2i,Gi,Wi,Ti,M1i,M2i,N1i,N2i)

according to the following minimization problem

minimize tr
(

∑
i∈I

Jk
i P̃i + JiP̃k

i +Ek
1iQ̂1i +E1iQ̂k

1i +Ek
2iQ̂2i +E2iQ̂k

2i

+Fk
1iŜ1i +F1iŜk

1i +Fk
2iŜ2i +F2iŜk

2i +Gk
i T̂i +GiT̂ k

i

)
sub ject to (4.7a), (4.7b), (4.7c) and (4.37)

• Step 3: If a stopping criteria is satisfied, then exit. Otherwise, set

P̃k
i = P̃i, Q̂k

1i = Q̂1i, Q̂k
2i = Q̂2i, Ŝk

1i = Ŝ1i, Ŝk
2i = Ŝ2i,

T̂ k
i = T̂i,Jk

i = Ji,Ek
1i = E1i,Ek

2i = E2i,Fk
1i = F1i,Fk

2i = F2i,Gk
i = Gi

and set k = k+1 and go to Step 2.

4.3 Numerical Example

A numerical example is presented in order to show the effect of the Algorithm 1.

Example 10. Consider the switched system with time delay (4.1) with two subsystems

A1 =

[
0.4 0
0 −0.34

]
, A2 =

[
−1.6 0

0 −0.14

]
,

Ad1 =

[
−0.06 0
0.06 −0.03

]
, Ad2 =

[
−0.03 0
−0.69 −0.12

]
,

B1 =

[
0.4
0.1

]
, B2 =

[
0.3

0.15

]
, Bw1 =

[
0.1
0.4

]
, Bw2 =

[
0.15
0.3

]
.

Note that, A1 is Hurwitz unstable and A2 is Hurwitz stable. The activation times of the

unstable and unstable subsystems are chosen as T+ = 0.6 and T− = 1.4,, respectively.

The constants
ψ1 = 0.5, ψ2 =−0.05, h1 = 0, h2 = 0.1, hd = 0.01,

R = I, δ = 4, δ
′ = 4, ε = 25, µ = 1.01, d = 0.01,

Tf = 2, N0 = 0.
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are chosen and by Algorithm 1, we get a feasible solution with controller gains

K1 =
[
1850.6 388.3

]
, K2 =

[
−662.5 1760.7

]
with the ADT τ∗a = 0.2180.
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5. OBSERVER-BASED CONTROL FOR FINITE-TIME BOUNDEDNESS

In this part, interval time-delay switched systems having completely unstable and

mixed stable matrices of the state vector are considered. Observer-based controller

is designed for finite-time boundedness of these systems. New sufficient conditions on

the existence of desired observer are developed and new average dwell-time bounds are

introduced seperately in case of unstable and mixed stable subsystems. An algorithm is

presented for the calculation of unknown constants in the average dwell-time bounds

which depend on nonlinear matrices in terms of cone complementarity linearization

method. Finally, numerical examples are given for the effectiveness and validity of the

proposed solutions.

5.1 Problem Statement

Consider a switched linear system with an interval time-varying delay in the state

vector, where

ẋ(t) =Aσ(t)x(t)+Adσ(t)x(t−h(t))+Bσ(t)u(t)+Bwσ(t)w(t),

y(t) =Cσ(t)x(t)
(5.1)

with the initial conditon function

x(t) = φ(t), t ∈ [−h2,0]. (5.2)

Here x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control input and y(t) ∈ Rq the

measurement output. Aσ(t), Adσ(t), Bσ(t), Bwσ(t) and Cσ(t) are real constant matrices

of appropriate dimensions, φ ∈ C ([−h2,0],R) is the initial function, h is the delay

function satisfying (4.3) and w(t) is the exogenous disturbance satisfying (4.4).

Consider the observer based feedback controller
˙̂x(t) = Aσ(t)x̂(t)+Bσ(t)u(t)+Lσ(t)(y(t)− ŷ(t)),

ŷ(t) =Cσ(t)x̂(t),

x̂(t) = 0, ∀t ∈ [−h2,0],

(5.3)

and the control law

u(t) =−Kσ(t)x̂(t). (5.4)

41



Here, Kσ(t) and Lσ(t) are controller and observer gains, respectively. Define an error

vector e(t) = x(t)− x̂(t). The closed-loop system will be

ẋ(t) =AKσ(t)x(t)+Adσ(t)x(t−h(t))+Bσ(t)Kσ(t)e(t)+Bwσ(t)w(t),

ė(t) =ALσ(t)e(t)+Adσ(t)x(t−h(t))+Bwσ(t)w(t)
(5.5)

where

AKσ(t) = Aσ(t)−Bσ(t)Kσ(t),

ALσ(t) = Aσ(t)−Lσ(t)Cσ(t).

5.2 FT Boundedness Analysis

In this section, first FT boundedness of the closed-loop switched interval time-delay

system is analysed. ADT is calculated for switched system with completely unstable

and also mixed stable subsystems. Full-order observer is designed that to guarantee

the FT boundedness of these systems.

Lemma 5. The closed-loop switched system (5.5) is FT bounded with respect to

(δ ,ε,Tf ,d,R), if there exist a set of symmetric matrices for every ith subsystem P−1
i > 0,

Q1i > 0, Q2i > 0, S1i > 0, S2i > 0, T i > 0, Wi > 0, M1i, M2i, N1i, N2i and scalars αi ≥ 0

and µ ≥ 1 satisfying

Σi =

Ξi −Mi −Ni
∗ −e2αih2S2i 0
∗ ∗ −e2αih2S2i

< 0, (5.6a)

µ
Ne2αmaxTf η < λ1ε (5.6b)

P−1
i ≤ µP−1

j , Qki ≤ µQk j, Ski ≤ µSk j, T i ≤ µT j, (5.6c)

for i, j ∈I and k = 1,2, where

Ξi =



Ξ11,i Ξ12,i Ξ13,i −N1i Ξ15,i P−1
i Bwi AT

KiP
−1
i

∗ Ξ22,i M2i −N2i AT
diP
−1
i 0 AT

diP
−1
i

∗ ∗ Ξ33,i 0 0 0 0
∗ ∗ ∗ Ξ44,i 0 0 0
∗ ∗ ∗ ∗ Ξ55,i P−1

i Bwi Ξ57,i
∗ ∗ ∗ ∗ ∗ −Wi BT

wiP
−1
i

∗ ∗ ∗ ∗ ∗ ∗ Ξ77,i


(5.7)

with entries

Ξ11,i =P−1
i AKi +AT

KiP
−1
i +Q1i +Q2i− e2αih1S1i−2αiP−1

i +T i,

Ξ12,i =P−1
i Adi−M1i +N1i, Ξ13,i = e2αih1S1i +M1i, Ξ15,i = P−1

i BiKi,
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Ξ22,i =N2i +NT
2i−M2i−MT

2i− (1−hd)e2αih2T i,

Ξ33,i =− e2αih1(Q1i +S1i), Ξ44,i =−e2αih2Q2i,

Ξ55,i =P−1
i ALi +AT

LiP
−1
i −2αiP−1

i , Ξ57,i = KT
i BT

i P−1
i ,

Ξ77,i =h2
1S1i +h2

12S2i−2P−1
i , Mi = [MT

1i MT
2i 0 0 0 0 0]T ,

Ni =[NT
1i NT

2i 0 0 0 0 0]T , h12 = h2−h1, αmax = max{αi, i ∈I }
and

η =2λ2δ +λ3h1e2αmaxh1δ +λ4h2e2αmaxh2δ +λ5h3
1e2αmaxh1δ

′

+λ6h2
12(h1e2αmaxh1 +h12e2αmaxh2)δ ′+λ7h2e2αmaxh2δ +λ8d.

with the matrix transformations

P−1
i =R1/2P̃−1

i R1/2, Q1i = R1/2Q̃1iR1/2, Q2i = R1/2Q̃2iR1/2,

S1i =R1/2S̃1iR1/2, S2i = R1/2S̃2iR1/2, T i = R1/2T̃iR1/2,

while

λ1 = inf
i∈I
{λmin(P̃−1

i )}, λ2 = sup
i∈I
{λmax

(
P̃−1

i
)
}, λ3 = sup

i∈I
{λmax

(
Q̃1i
)
},

λ4 = sup
i∈I
{λmax

(
Q̃2i
)
}, λ5 = sup

i∈I
{λmax

(
S̃1i
)
}, λ6 = sup

i∈I
{λmax

(
S̃2i
)
},

λ7 = sup
i∈I
{λmax

(
T̃i
)
}, λ8 = sup

i∈I
{λmax(Wi)}, δ

′ = sup
s∈[−h2,0]

{
ẋT (s)Rẋ(s)

}
Then the average dwell-time of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− lnη−2αmaxTf −N0 ln µ
(5.8)

Proof. Consider the Lyapunov-Krasovskii candidate functional as

Vi(x(t)) =
6

∑
j=1

Vji(x(t)) (5.9)

where

V1i(x(t)) =xT (t)P−1
i x(t)+ eT (t)P−1

i e(t)

V2i(x(t)) =
∫ t

t−h1

e2αi(t−s)xT (s)Q1ix(s)ds

V3i(x(t)) =
∫ t

t−h2

e2αi(t−s)xT (s)Q2ix(s)ds

V4i(x(t)) =
∫ 0

−h1

∫ t

t+θ

h1e2αi(t−s)ẋT (s)S1iẋ(s)dsdθ

V5i(x(t)) =
∫ −h1

−h2

∫ t

t+θ

h12e2αi(t−s)ẋT (s)S2iẋ(s)dsdθ

V6i(x(t)) =
∫ t

t−h(t)
e2αi(t−s)xT (s)T ix(s)ds

(5.10)
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The derivatives are obtained as follows

V̇1i(x(t)) =xT (t)[P−1
i AKi +AT

KiP
−1
i ]x(t)+2xT (t)P−1

i Adix(t−h(t))

+2xT (t)P−1
i BiKie(t)+2xT (t)P−1

i Bwiw(t)

+ eT (t)[P−1
i ALi +AT

LiP
−1
i ]e(t)+2eT (t)P−1

i Adix(t−h(t))

+2eT (t)P−1
i Bwiw(t)

V̇2i(x(t)) =2αiV2i + xT (t)Q1ix(t)− e2αih1xT (t−h1)Q1ix(t−h1)

V̇3i(x(t)) =2αiV3i + xT (t)Q2ix(t)− e2αih2xT (t−h2)Q2ix(t−h2)

V̇4i(x(t)) =2αiV4i +h2
1ẋT (t)S1iẋ(t)− e2αih1

∫ t

t−h1

h1ẋT (s)S1iẋ(s)ds

V̇5i(x(t))≤2αiV5i +h2
12ẋT (t)S2iẋ(t)− e2αih2

∫ t−h1

t−h2

h12ẋT (s)S2iẋ(s)ds

V̇6i(x(t))≤2αiV6i + xT (t)T ix(t)− (1−hd)e2αih2xT (t−h(t))T ix(t−h(t))

(5.11)

By Jensen’s inequality, V̇4i(x(t)) can be written as

V̇4i(x(t))≤2αiV4i(x(t))+h2
1ẋT (t)S1iẋ(t)− e2αih1xT (t)S1ix(t)

+2e2αih1xT (t)S1ix(t−h1)− e2αih1xT (t−h1)S1ix(t−h1)
(5.12)

From (4.3), it is clear that −(h2−h1)≤−(h2−h(t)) and −(h2−h1)≤−(h(t)−h1).

Thus

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds≤− (h2−h(t))
∫ t−h(t)

t−h2

ẋT (s)S2iẋ(s)ds

− (h(t)−h1)
∫ t−h1

t−h(t)
ẋT (s)S2iẋ(s)ds

(5.13)

Let
∫ t−h1

t−h(t) ẋ(s)ds =: ih1(t) and
∫ t−h(t)

t−h2
ẋ(s)ds =: ih2(t). Then, by Jensen’s inequality,

(5.13) is written as follows

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds≤−iTh2
(t)S2iih2(t)− iTh1

(t)S2iih1(t) (5.14)

Now, define

ξ (t) =
[
xT (t) xT (t−h(t)) xT (t−h1) xT (t−h2)

eT (t) wT (t) ẋT (t) iTh1
(t) iTh2

(t)
]T
.

(5.15)

It is clear that, by Leibniz’s formula ih1(t) = x(t−h1)− x(t−h(t)) and ih2(t) = x(t−

h(t))− x(t−h2). In order to fill the upper triangular elements of (5.6a), we have

2ξ
T (t)Mi

[
x(t−h1)− x(t−h(t))− ih1(t)

]
= 0

2ξ
T (t)Ni

[
x(t−h(t))− x(t−h2)− ih2(t)

]
= 0

(5.16)
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Also from (5.5), it can be written in similar consideration

2ẋT (t)P−1
i

[
AKix(t)+Adix(t−h(t))+BiKie(t)+Bwiw(t)− ẋ(t)

]
= 0 (5.17)

In order to fill Ξ66,i element of (5.7), the quadratic form of the positive definite matrix

Wi can be added and subtracted to (5.7) as follows

[
wT (t)Wiw(t)−wT (t)Wiw(t)

]
= 0 (5.18)

Then, by the equations (5.9)-(5.18), we obtain

V̇i(x(t))−2αiVi(x(t))≤ξ
T (t)Σiξ (t)+wT (t)Wiw(t) (5.19)

From (5.6a)

V̇i(x(t))−2αiVi(x(t))≤ wT (t)Wiw(t) (5.20)

is obtained.

On the other hand, by applying Grönwall’s lemma on t ∈ [tk, tk+1), we get

Vσ(t)(x(t))≤e2ασ(tk)
(t−tk)Vσ(tk)(x(tk))

+
∫ t

tk
e2ασ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds.
(5.21)

Consider (5.6c) and assume σ(tk) = i and σ(t−k ) = j, we have

Vσ(tk)(x(tk))≤ µV
σ(t−k )(x(t

−
k )) (5.22)

So by (5.21) and (5.22),

Vσ(t)(x(t))≤e2ασ(tk)
(t−tk)µV

σ(t−k )(x(t
−
k ))+

∫ t

tk
e2ασ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds.

is obtained. When we apply Grönwall’s lemma to (5.20) on tk ∈ [tk−1, t), we have

V
σ(t−k )(x(t

−
k ))≤Vσ(tk)(tk)≤e2ασ(tk−1)

(tk−tk−1)Vσ(tk−1)(x(tk−1))

+
∫ tk

tk−1

e2ασ(tk−1)
(tk−s)wT (s)Wσ(tk−1)w(s)ds.

So,

Vσ(t)(x(t))≤e2ασ(tk)
(t−tk)e2ασ(tk−1)

(tk−tk−1)
µVσ(tk−1)(x(tk−1))

+µ

∫ tk

tk−1

e2ασ(tk−1)
(tk−s)wT (s)Wσ(tk−1)w(s)ds

+
∫ t

tk
e2ασ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds.
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If Grönwall’s lemma and (5.22) is applied to (5.20) until [0, t1) recursively, we get

Vσ(t)(x(t))≤e2ασ(tk)
(t−tk)+2ασ(tk−1)

(tk−tk−1)+...+2ασ(0)(t1−0)
µ

NVσ(0)(x(0))

+µ
N
∫ t1

0
e2ασ(tk)

(t−tk)+2ασ(tk−1)
(tk−tk−1)+...+2ασ(0)(t1−s)

×wT (s)Wσ(0)w(s)ds

+ ...

+
∫ t

tk
e2ασ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds

≤e2αmaxTf µ
N
(

Vσ(0)(x(0))+
∫ Tf

0
wT (s)Wσ(s)w(s)ds

)
≤e2αmaxTf µ

N(Vσ(0)(x(0))+λ8d
)

(5.23)

where N denotes the switching number of σ(t) over (0,Tf ). By Definition 1, it is

possible to write

Vσ(t)(x(t))≤ e2αmaxTf µ
N0+Tf /τa

(
Vσ(0)(x(0))+λ8d

)
(5.24)

Moreover,
Vσ(0)(x(0)) =xT (0)P−1

σ(0)x(0)+ eT (0)P−1
σ(0)e(0)

+
∫ 0

−h1

e−2ασ(0)sxT (s)Q1σ(0)x(s)ds

+
∫ 0

−h2

e−2ασ(0)sxT (s)Q2σ(0)x(s)ds

+
∫ 0

−h1

∫ 0

θ

h1e−2ασ(0)sẋT (s)S1σ(0)ẋ(s)dsdθ

+
∫ −h1

−h2

∫ 0

θ

h12e−2ασ(0)sẋT (s)S2σ(0)ẋ(s)dsdθ

+
∫ 0

−h(0)
e−2ασ(0)sxT (s)T σ(0)x(s)ds.

(5.25)

When the orders of the double integrals are changed, we have

Vσ(0)(x(0)) =xT (0)P−1
σ(0)x(0)+ eT (0)P−1

σ(0)e(0)

+
∫ 0

−h1

e−2ασ(0)sxT (s)Q1σ(0)x(s)ds

+
∫ 0

−h2

e−2ασ(0)sxT (s)Q2σ(0)x(s)ds

+
∫ 0

−h1

∫ s

−h1

h1e−2ασ(0)sẋT (s)S1σ(0)ẋ(s)dθds

+
∫ −h1

−h2

∫ s

−h2

h12e−2ασ(0)sẋT (s)S2σ(0)ẋ(s)dθds

+
∫ 0

−h1

∫ −h1

−h2

h12e−2ασ(0)sẋT (s)S2σ(0)ẋ(s)dθds

+
∫ 0

−h(0)
e−2ασ(0)sxT (s)T σ(0)x(s)ds.
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Note that e(0) = x(0). Then, if the upper bounds of definite integrals are written, we

can write

Vσ(0)(x(0))≤2λmax

(
P̃−1

σ(0)

)
xT (0)Rx(0)

+λmax

(
Q̃1σ(0)

)
h1e2αmaxh1 sup

s∈[−h1,0]

{
xT (s)Rx(s)

}
+λmax

(
Q̃2σ(0)

)
h2e2αmaxh2 sup

s∈[−h2,0]

{
xT (s)Rx(s)

}
+λmax

(
S̃1σ(0)

)
h3

1e2αmaxh1 sup
s∈[−h1,0]

{
ẋT (s)Rẋ(s)

}
+λmax

(
S̃2σ(0)

)
h3

12e2αmaxh2 sup
s∈[−h2,−h1]

{
ẋT (s)Rẋ(s)

}
+λmax

(
S̃2σ(0)

)
h2

12h1e2αmaxh1 sup
s∈[−h1,0]

{
ẋT (s)Rẋ(s)

}
+λmax

(
T̃σ(0)

)
h2e2αmaxh2 sup

s∈[−h2,0]

{
xT (s)Rx(s)

}
.

Here, an upper bound for Vσ(0)(x(0)) can be written as follows

Vσ(0)(x(0))≤2λ2δ +λ3h1e2αmaxh1δ +λ4h2e2αmaxh2δ +λ5h3
1e2αmaxh1δ

′

+λ6h2
12(h1e2αmaxh1 +h12e2αmaxh2)δ ′+λ7h2e2αmaxh2δ

(5.26)

Since,

Vσ(t)(x(t))≥ xT (t)P−1
i x(t) = xT (t)R1/2P̃−1

i R1/2x(t)

≥ inf
i∈I

(
λmin(P̃−1

i )

)
xT (t)Rx(t)

= λ1xT (t)Rx(t).

(5.27)

By (5.6b), (5.8), (5.24), (5.26) and (5.27) the following inequality holds

xT (t)Rx(t)< ε (5.28)

which tells that the closed-loop switched system (5.5) is FT bounded.

5.2.1 Switched systems with unstable subsystems

Based on Lemma 5, a FT boundedness criterion for the switched system with

time-delay is introduced.

Theorem 7. The switched system (5.1) is FT bounded with respect to (δ ,ε,Tf ,d,R), if

there exist a set of symmetric matrices for every ith subsystem Pi > 0, Q1i > 0, Q2i > 0,

S1i > 0, S2i > 0, Ti > 0, Wi > 0, Yi, M1i, M2i, N1i, N2i and scalars αi ≥ 0 and µ ≥ 1
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satisfying

ϒi =


Ωi −Mi −Ni Zi
∗ −e2αih2S2i 0 0
∗ ∗ −e2αih2S2i 0
∗ ∗ ∗ −I

< 0 (5.29a)

e2αmaxTf η
′ ≤ λ1ε (5.29b)

Pj ≤ µPi, Qk j ≤ µQki, Sk j ≤ µSki, Tj ≤ µTi, (5.29c)

for i, j ∈I and k = 1,2, where

Ωi =



Ω11,i Ω12,i Ω13,i −N1i BiYi Bwi Ω17,i
∗ Ω22,i M2i −N2i PiAT

di 0 PiAT
di

∗ ∗ Ω33,i 0 0 0 0
∗ ∗ ∗ Ω44,i 0 0 0
∗ ∗ ∗ ∗ Ω55,i Bwi Y T

i BT
i

∗ ∗ ∗ ∗ ∗ −Wi BT
wi

∗ ∗ ∗ ∗ ∗ ∗ Ω77,i


(5.30)

with entries

Ω11,i =AiPi +PiAT
i −BiYi−Y T

i BT
i +Q1i +Q2i− e2αih1S1i−2αiPi +Ti,

Ω12,i =AdiPi−M1i +N1i, Ω13,i = e2αih1S1i +M1i, Ω17,i = PiAT
i −Y T

i BT
i ,

Ω22,i =N2i +NT
2i−M2i−MT

2i− (1−hd)e2αih2Ti, Ω33,i =−e2αih1(Q1i +S1i),

Ω44,i =− e2αih2Q2i, Ω55,i = AiPi +PiAT
i −2αiPi, Ω77,i = h2

1S1i +h2
12S2i−2Pi,

Mi =[M1i M2i 0 0 0 0 0]T , Ni = [N1i N2i 0 0 0 0 0]T , Zi = [0 0 0 0 CiPi 0 0]T

and

η
′ =2λ2δ +λ

′
3h1e2αmaxh1δ +λ

′
4h2e2αmaxh2δ +λ

′
5h3

1e2αmaxh1δ
′

+λ
′
6h2

12(h1e2αmaxh1 +h12e2αmaxh2)δ ′+λ
′
7h2e2αmaxh2δ +λ8d.

(5.31)

with matrix transformations

Q̂1i =R1/2Q1iR1/2, Q̂2i = R1/2Q2iR1/2,

Ŝ1i =R1/2S1iR1/2, Ŝ2i = R1/2S2iR1/2, T̂i = R1/2TiR1/2.
(5.32)

and

λ
′
3 = sup

i∈I
{λmax

(
P̃−1

i Q̂1iP̃−1
i
)
}, λ

′
4 = sup

i∈I
{λmax

(
P̃−1

i Q̂2iP̃−1
i
)
},

λ
′
5 = sup

i∈I
{λmax

(
P̃−1

i Ŝ1iP̃−1
i
)
}, λ

′
6 = sup

i∈I
{λmax

(
P̃−1

i Ŝ2iP̃−1
i
)
},

λ
′
7 = sup

i∈I
{λmax

(
P̃−1

i T̂iP̃−1
i
)
}.
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Then the ADT of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− lnη ′−2αmaxTf −N0 ln µ
(5.33)

The gain matrices Ki and Li of controller and observer are perceived as

Ki = YiP−1
i , Li =−

1
2

PiCT
i (5.34)

Proof. Let us consider the inequalities (5.6a) in Lemma 5 and define

Q1i =PiQ1iPi, Q2i = PiQ2iPi, S1i = PiS1iPi, S2i = PiS2iPi,

M1i =PiM1iPi, M2i = PiM2iPi, N1i = PiN1iPi, N2i = PiN2iPi

Ti =PiT iPi.

(5.35)

By pre- and post-multiplying both sides of the inequalities in (5.6a) by Di =

diag{Pi,Pi,Pi,Pi,Pi, I,Pi,Pi,Pi} and using Schur complement lemma the LMIs in

(5.29a) are obtained.

Now, substitute the matrices in (5.35) into Vσ(0)(x(0)) in (5.25) as follows

Vσ(0)(x(0)) = 2xT (0)P−1
σ(0)x(0)

+
∫ 0

−h1

e−2ασ(0)sxT (s)P−1
σ(0)Q1σ(0)P

−1
σ(0)x(s)ds

+
∫ 0

−h2

e−2ασ(0)sxT (s)P−1
σ(0)Q2σ(0)P

−1
σ(0)x(s)ds

+
∫ 0

−h1

∫ 0

θ

h1e−2ασ(0)sẋT (s)P−1
σ(0)S1σ(0)P

−1
σ(0)ẋ(s)dsdθ

+
∫ −h1

−h2

∫ 0

θ

h12e−2ασ(0)sẋT (s)P−1
σ(0)S2σ(0)P

−1
σ(0)ẋ(s)dsdθ

+
∫ 0

−h(0)
e−2ασ(0)sxT (s)P−1

σ(0)Tσ(0)P
−1
σ(0)x(s)ds

(5.36)

From (5.32), each matrix in the equation (5.36) can be written as,

P−1
σ(0)Q1σ(0)P

−1
σ(0) = R1/2P̃−1

σ(0)Q̂1σ(0)P̃
−1
σ(0)R

1/2 ≤ λmax
(
P̃−1

σ(0)Q̂1σ(0)P̃
−1
σ(0)

)
R≤ λ

′
3R

The upper bound for Vσ(0)(x(0)) is obtained as follows

Vσ(0)(x(0))≤2λ2δ +λ
′
3h1e2αmaxh1δ +λ

′
4h2e2αmaxh2δ +λ

′
5h3

1e2αmaxh1δ
′

+λ
′
6h2

12(h1e2αmaxh1 +h12e2αmaxh2)δ ′+λ
′
7h2e2αmaxh2δ .

(5.37)

By the equations (5.24), (5.26) and (5.37) the inequality xT (t)Rx(t) < ε is obtained,

which tells that the switched system (5.1) is FT bounded. Then, for µ = 1 the inequality

in (5.29b) and for µ > 1 the ADT bound in (5.33) are calculated.
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In the following corollary, lower bound for time-delay is not considered and the similar

Lyapunov-Krasovskii functional as in [40] is used to compare the results given in

Theorem 7.

Corollary 1. The switched system (5.1)) is FT bounded with respect to (δ ,ε,Tf ,d,R),

if there exist a set of symmetric matrices for every ith subsystem Pi > 0, Ti > 0, Wi > 0,

Yi and scalars αi ≥ 0 and µ ≥ 1 satisfying

Ω
′
i =


Ω′11,i AdiPi BiYi Bwi 0
∗ Ω′22,i PiAT

di 0 0
∗ ∗ Ω′33,i Bwi PiCT

i
∗ ∗ ∗ −Wi 0
∗ ∗ ∗ ∗ −I

< 0, (5.38a)

e2αmaxTf η
′′ ≤ λ1ε (5.38b)

Pj ≤ µPi,Tj ≤ µTi (5.38c)

for arbitrary i, j ∈I , where

Ω
′
11,i =AiPi +PiAT

i −BiYi−Y T
i BT

i −2αiPi +Ti,

Ω
′
22,i =− (1−hd)e2αih2Ti, Ω

′
33,i = AiPi +PiAT

i −2αiPi,

and

η
′′ =2λ2δ +λ

′
7h2e2αmaxh2δ +λ8d. (5.39)

Then the ADT of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− lnη ′′−2αmaxTf −N0 ln µ
(5.40)

The gain matrices Ki and Li of controller and observer are perceived as in (5.34)

Proof. The proof is similar to Lemma 5 and Theorem 7 by taking the

Lyapunov-Krasovskii functional in (5.9) and (5.10) as Vi =V1i +V6i.

5.2.2 Switched systems with mixed stable subsystems

In this section, we suppose that A1, A2,..., Ar, (1≤ r < N) in system (5.1) are Hurwitz

stable and the remaining matrices are unstable. Let us define

ψi =

{
−αi i ∈Ist

αi i ∈Iun
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where Ist and Iun are the index set of all Hurwitz stable and unstable subsystems,

respectively. Note that I = Ist ∪Iun. For a given switching sequence Σ, the

total activation times of stable and unstable subsystems are defined as T− and T+,

respectively in a finite interval [0,Tf ]. Thus, Tf = T++T−.

Theorem 8. Consider the switched system (5.1) with r Hurwitz stable and N − r

unstable subsystems. The system (5.1) is FT bounded with respect to (δ ,ε,Tf ,d,R),

for given constants αi ≥ 0, µ ≥ 1, T+ > 0 and T− > 0 such that Tf = T++ T−, if

there exist a set of symmetric matrices for every ith subsystem Pi > 0, Q1i > 0, Q2i > 0,

S1i > 0, S2i > 0, Ti > 0, Wi > 0, Yi, M1i, M2i, N1i, N2i satisfying

ϒi =


Ωi −Mi −Ni Zi
∗ −e2ψih2S2i 0 0
∗ ∗ −e2ψih2S2i 0
∗ ∗ ∗ −I

< 0 (5.41a)

e2α+
maxT+

η
′
+ ≤ λ1e2α

−
minT−

ε (5.41b)

Pj ≤ µPi, Qk j ≤ µQki,Sk j ≤ µSki,Tj ≤ µTi, (5.41c)

for i, j ∈I and k = 1,2, where

Ω11,i =AiPi +PiAT
i −BiYi−Y T

i BT
i +Q1i +Q2i− e2ψih1S1i−2ψiPi +Ti,

Ω13,i =e2ψih1S1i +M1i,

Ω22,i =N2i +NT
2i−M2i−MT

2i− (1−hd)e2ψih2Ti,

Ω33,i =− e2ψih1(Q1i +S1i), Ω44,i =−e2ψih2Q2i, Ω55,i = AiPi +PiAT
i −2ψiPi

and the remaining entries of Ωi are of Ω jk,i = Ω jk,i.

Then the ADT of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− lnη ′+−2α
+
maxT++2α

−
minT−−N0 ln µ

(5.42)

where α+
max = maxi∈Iun{αi}, α

−
min = mini∈Ist{αi} and

η
′
+ =2λ2δ +λ

′
3h1e2α+

maxh1δ +λ
′
4h2e2α+

maxh2δ +λ
′
5h3

1e2α+
maxh1δ

′

+λ
′
6h2

12(h1e2α+
maxh1 +h12e2α+

maxh2)δ ′+λ
′
7h2e2α+

maxh2δ +λ8d.
(5.43)

The gain matrices Ki and Li of controller and observer can be obtained as it is in

(5.34).
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Proof. The inequality in (5.41a) is obtained by taking the Lyapunov-Krasovskii

functional (5.9) and (5.10) in Lemma 5 by replacing αi with ψi.

In order to obtain upper bound for Vσ(t)(x(t)) substitute ψi for αi in (5.23). So, the

following inequality holds.

Vσ(t)(x(t))≤e2ψσ(tk)
(t−tk)+2ψσ(tk−1)

(tk−tk−1)+...+2ψσ(0)(t1−0)
µ

NVσ(0)(x(0))

+µ
N
∫ t1

0
e2ψσ(tk)

(t−tk)+2ψσ(tk−1)
(tk−tk−1)+...+2ψσ(0)(t1−s)

×wT (s)Wσ(0)w(s)ds

+ ...

+
∫ t

tk
e2ψσ(tk)

(t−s)wT (s)Wσ(tk)w(s)ds

(5.44)

By considering the activation times T− and T+ for stable and unstable subsystems,

respectively, the inequality (5.44) can be written as follows:

Vσ(t)(x(t))≤e2α+
maxT+−2α

−
minT−

µ
N(Vσ(0)(x(0))+λ8d

)
. (5.45)

Vσ(0)(x(0)) in (5.45) is obtained by substituting ψi for αi in (5.25). Then, from (5.25)

and the facts

sup
s∈[−h1,0]

{e−2ψσ(0)s}= sup
s∈[−h1,0]

{max{e−2ασ(0)s,e2ασ(0)s}}= e2α+
maxh1,

sup
s∈[−h2,0]

{e−2ψσ(0)s}= sup
s∈[−h2,0]

{max{e−2ασ(0)s,e2ασ(0)s}}= e2α+
maxh2,

sup
s∈[−h(0),0]

{e−2ψσ(0)s} ≤ sup
s∈[−h2,0]

{e−2ψσ(0)s}= e2α+
maxh2

(5.46)

Vσ(0)(x(0)) is obtained as follows

Vσ(0)(x(0))≤2λ2δ +λ
′
3h1e2α+

maxh1δ +λ
′
4h2e2α+

maxh2δ +λ
′
5h3

1e2α+
maxh1δ

′

+λ
′
6h2

12(h1e2α+
maxh1 +h12e2α+

maxh2)δ ′+λ
′
7h2e2α+

maxh2δ .
(5.47)

By the equations (5.27), (5.45) and (5.47) the inequality xT (t)Rx(t) < ε is obtained,

which tells that the switched system (5.1) is FT bounded. Then, for µ = 1 the inequality

in (5.41b) and for µ > 1 the ADT bound in (5.42) are calculated.

Remark 6. Note that the condition (5.29b) contains the constants λ1, λ2, λ ′3, λ ′4, λ ′5,λ ′6,

λ ′7 and λ8. The existance of these constants depends on the solutions of the following
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inequalities

λ1I < P̃−1
i < λ2I,

0 < P̃−1
i Q̂1iP̃−1

i < λ
′
3I, 0 < P̃−1

i Q̂2iP̃−1
i < λ

′
4I,

0 < P̃−1
i Ŝ1iP̃−1

i < λ
′
5I, 0 < P̃−1

i Ŝ2iP̃−1
i < λ

′
6I,

0 < P̃−1
i T̂iP̃−1

i < λ
′
7I, 0 <Wi < λ8I.

(5.48)

For more details see [47].

To solve the inequalities in (5.48), it is necessary to put them into LMIs form. Thus,

consider 0 < P̃−1
i Q̂1iP̃−1

i < λ ′3I, write it as −λ ′3I + P̃−1
i Q̂1iP̃−1

i < 0 and use Schur

Complement [
−λ ′3I P̃−1

i
∗ −Q̂−1

1i

]
≤ 0 ⇐⇒

[
−λ ′3I Ji
∗ −E1i

]
≤ 0 (5.49)

where Ji := P̃−1
i and E1i := Q̂−1

1i (or equivalently JiP̃i = I and E1iQ̂1i = I). By

applying same procedure to the other nonlinear inequalities from (5.48) and defining

the matrices E2i, F1i, F2i and Gi for the matrix inverse approximates of Q̂2i, Ŝ1i, Ŝ2i and

T̂i, the following inequalities can be stated in terms of cone-complementarity algorithm

given in [48].

λ1I < Ji < λ2I, 0≤
[

P̃i I
∗ Ji

]
,[

−λ ′3I Ji
∗ −E1i

]
≤ 0, 0≤

[
Q̂1i I
∗ E1i

]
,

[
−λ ′4I Ji
∗ −E2i

]
≤ 0, 0≤

[
Q̂2i I
∗ E2i

]
,[

−λ ′5I Ji
∗ −F1i

]
≤ 0, 0≤

[
Ŝ1i I
∗ F1i

]
,

[
−λ ′6I Ji
∗ −F2i

]
≤ 0, 0≤

[
Ŝ2i I
∗ F2i

]
,[

−λ ′7I Ji
∗ −Gi

]
≤ 0, 0≤

[
T̂i I
∗ Gi

]
, 0 <Wi < λ8I.

(5.50)

Remark 7. In the following, a general algorithm is defined for solving the sufficient

conditions given in Theorem 7, 8 and Corollary 1. Note that, Ω55,i of Theorem 7,

Ω′33,i of Corollary 1, Ω55,i of Theorem 8 contains the terms AiPi + PiAT
i − 2αiPi or

AiPi +PiAT
i − 2ψiPi. It should be stressed out that, positive definite solutions for Pi

satisfying the corresponding LMIs can only be found, if (Ai−αiI) or (Ai−ψiI) are

Hurwitz stable, respectively. In other words, it is not possible to find positive definite

Pi satisfying the corresponding LMIs, unless (Ai−αiI) or (Ai−ψiI) are Hurwitz stable,

respectively. So, the following algorithm should be considered in that way.
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Algorithm 2. This algorithm is derived for Theorem 8.

• Step 1: Define constants ψi, for each i ∈ I such that all (Ai−ψiI) are Hurwitz

stable.

• Step 2: Find a feasible set

(P0
i ,Q

0
1i,Q

0
2i,S

0
1i,S

0
2i,T

0
i ,J

0
i ,E

0
1i,E

0
2i,F

0
1i,F

0
2i,G

0
i ,W

0
i ,T

0
i ,M

0
1i,M

0
2i,N

0
1i,N

0
2i)

satisfying the inequalities in (5.41a), (5.41b), (5.41c) and (5.50). Set k = 0.

• Step 3: Solve the following LMI problem for the variables

(Pi,Q1i,Q2i,S1i,S2i,Ti,Ji,E1i,E2i,F1i,F2i,Gi,Wi,Ti,M1i,M2i,N1i,N2i)

according to the following minimization problem

minimize tr
(

∑
i∈I

Jk
i P̃i + JiP̃k

i +Ek
1iQ̂1i +E1iQ̂k

1i +Ek
2iQ̂2i +E2iQ̂k

2i

+Fk
1iŜ1i +F1iŜk

1i +Fk
2iŜ2i +F2iŜk

2i +Gk
i T̂i +GiT̂ k

i

)
sub ject to (5.41a), (5.41b), (5.41c) and (5.50)

• Step 4: If a stopping criteria is satisfied, then exit. Otherwise, set

P̃k
i = P̃i, Q̂k

1i = Q̂1i, Q̂k
2i = Q̂2i, Ŝk

1i = Ŝ1i, Ŝk
2i = Ŝ2i, T̂ k

i = T̂i,

Jk
i = Ji,Ek

1i = E1i,Ek
2i = E2i,Fk

1i = F1i,Fk
2i = F2i,Gk

i = Gi

and set k = k+1 and go to Step 3.

Remark 8. The previous algorithm can be stated for Theorem 7 as well as Corollary 1

by defining constants αi, for each i ∈ I such that all (Ai−αiI) are Hurwitz stable

in Step 1. Note that, Q1i,Q2i,S1i,S2i,E1i,E2i,F1i,F2i do not exist in Corollary 1;

the feasible sets and objective functions of the minimization problems are going to

be altered in that manner. Also, inequality constraints of the LMI problem and the

minimization problem will be (5.29a), (5.29b), (5.29c) and (5.48) for Theorem 7 and

(5.38a), (5.38b), (5.38c) and (5.48) for Corollary 1.

5.3 Numerical Examples

Some numerical examples are presented in order to show the effects of the Algorithm

2 for Theorem 7 and Corollary 1.
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Example 11. Consider the time-delay switched system (5.1) with matrices as in [40]

A1 =

−1.9 −1.5 −1.2
0.7 −1.6 0.5
−1.3 0.5 −1.1

 , A2 =

 −2 −1.2 −1.5
0.2 −1.5 0.4
−0.7 1.1 −1.2

 ,
Ad1 =

0.2 0 0.1
0.1 0.3 0.1
0.3 0.1 0.2

 , Ad2 =

0.2 0 0
0.1 0.2 0.1
0.1 0.1 0.3

 ,
B1 =

 1
0.5
2

 , B2 =

0.5
0.7
1.5

 , Bw1 =

0.3
0.5
0.2

 , Bw2 =

0.4
0.2
0.3

 ,
C1 =

[
−1.2 0.5 0.9

]
, C2 =

[
−1 1.2 0.5

]
.

In order to apply Algorithm 2, following constants are given

α1 = α2 = 0.01, h1 = 0, h2 = 0.2, hd = 0.01, R = I, δ = 1,

δ
′ = 1, ε = 30, µ = 1.001, d = 0.01, Tf = 10 and N0 = 0.

By solving the minimization problem described in Algorithm 2 for Theorem 7 in LMI

Toolbox of MATLAB, we get the controller and observer gains

K1 =
[
3.2191 −3.6818 4.1374

]
, K2 =

[
2.3492 −0.4347 3.3150

]
,

L1 =
[
0.0126 −0.0007 −0.0077

]T
, L2 =

[
0.0103 −0.0047 −0.0028

]T
and ADT is obtained as τ∗a = 0.0481. Also by solving the minimization problem in

Algorithm 2 for Corollary 1, we get the controller and observer gains

K1 =
[
90.5968 6.9892 98.5752

]
, K2 =

[
57.6511 31.5745 65.3609

]
,

L1 =
[
0.0002 0 −0.0001

]T
, L2 =

[
0.0002 −0.0001 0

]T
.

with the ADT τ∗a = 0.2851. Comparison table is given in Table 5.1.

Table 5.1 : τ∗a Comparison

τ∗a
In [40] 1.8219

Algorithm 2 for Theorem 7 0.0481
Algorithm 2 for Corollary 1 0.2851

For various µ , α and h2, τ∗a values are presented in Table 5.2, 5.3, 5.4 and 5.5 for the

problem in Algorithm 2 for Theorem 7. As it can be seen in Table 5.2, as µ decreases,

τ∗a also decreases.

From Table 5.3, it is seen that for small values of αi of i = 1,2 smaller ADTs are

obtained.
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Table 5.2 : τ∗a Comparison for Various µ .

µ = 1.1 µ = 1.05 µ = 1.01 µ = 1.005 µ = 1.001
τ∗a 4.5908 2.3501 0.4793 0.2402 0.0481

Table 5.3 : τ∗a Comparison for Various αi’s.

αi = 0.001 αi = 0.01 αi = 0.1 αi = 1
τ∗a 0.0445 0.0481 0.3059 Infeas.

If the lower bound h1 of delay is fixed, the system (5.1) can adapt to frequent switchings

among the subsystems which is presented in Table 5.4 and 5.5.

On the other hand, if the upper bound of delay h2 is fixed, an increase in the lower

bound h1 forces the system (5.1) to stay more in the subsystems, which can be seen in

Table 5.6.

Remark 9. We should note that all of the subsystems in Example 1 are Hurwitz

stable. Corresponding study in [40], switching among unstable subsystems and among

mixed stable subsystems are not considered, although there is a solid restriction on the

choice of αi, which takes part in the exponential coefficient of the Lyapunov-Krasovskii

functional’s integral term.

In the following examples, all the possible cases are proposed to demonstrate the

validity of the theorems/algorithms.

Example 12. Consider the switched system with time delay (5.1) with Hurwitz unstable

subsystems

A1 =

[
0.01 0

0 −0.05

]
, A2 =

[
0.02 0.3
−0.1 0

]
,

Ad1 =

[
−0.06 0
0.06 −0.03

]
, Ad2 =

[
−0.03 0
−0.09 −0.12

]
,

B1 =
[
−1 0.3

]T
, B2 =

[
−0.7 1

]T
, Bw1 =

[
0.1 0.2

]T
, Bw2 =

[
0.15 0.3

]T
,

C1 =
[
−0.5 1.3

]
, C2 =

[
0.6 0.7

]
.

with constants

α1 = 0.72, α2 = 0.90, h1 = 0.1, h2 = 0.3, hd = 0.01, R = I, δ = 1

δ
′ = 1, ε = 16, µ = 1.001, d = 0.01, Tf = 1 and N0 = 0.

56



Table 5.4 : For Fixed h1 = 0 and Various h2.

h1 = 0
h2 = 0.2

h1 = 0
h2 = 0.4

h1 = 0
h2 = 0.6

h1 = 0
h2 = 0.8

h1 = 0
h2 = 1.0

τ∗a 0.0481 0.0578 0.0701 0.0866 0.1087

Table 5.5 : For Fixed h1 = 0.1 and Various h2.

h1 = 0.1
h2 = 0.3

h1 = 0.1
h2 = 0.5

h1 = 0.1
h2 = 0.7

h1 = 0.1
h2 = 0.9

h1 = 0.1
h2 = 1.1

τ∗a 0.0545 0.0648 0.0780 0.0958 0.1194

satisfying (Ai−αiI) < 0. By Algorithm 2 for Theorem 7, we get a feasible solution

with controller and observer gains

K1 =
[
−0.0991 0.0926

]
, K2 =

[
−0.3813 0.1678

]
,

L1 =
[
0.0346 −0.0898

]T
, L2 =

[
−0.0416 −0.0484

]T
with the ADT τ∗a = 0.1842.

The initial condition function is taken as φ(t) = x0 = [0.6 0.5]T for all t ∈ [−h2,0] and

x̂0 = [0.55 0.55]T , the time varying delay is taken as h(t) = h1 + h12 sin
(
(hd/h12)t

)
to satisfy (4.3) and the disturbance is taken as w(t) = 0.04sin(t) to satisfy (4.4).

Simulation is made under a periodic switching shown in Figure 5.1.
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Figure 5.1 : Switching Signal σ(t).

The phase portraits of the switched system and the observer are presented in Figure

5.2.
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Table 5.6 : τ∗a Comparison for Fixed h2 = 1 and Various h1.

h1 = 0
h2 = 1.0

h1 = 0.2
h2 = 1.0

h1 = 0.4
h2 = 1.0

h1 = 0.6
h2 = 1.0

h1 = 0.8
h2 = 1.0

τ∗a 0.1087 0.1054 Infeas. Infeas. 0.1197

0.55 0.6 0.65
0.42

0.44

0.46

0.48

0.5

0.5 0.6 0.7
0.5

0.52

0.54

0.56

Figure 5.2 : Phase Portraits of the Switched System and the Observer.

It is seen that for sups∈[−h2,0]
{

xT (s)Rx(s)
}
= 0.61 < δ = 1, supt∈[0,Tf ]

{
xT (t)Rx(t)

}
=

0.61 < ε = 16, so FT boundedness is satisfied.

Example 13. Consider the switched system with time delay (5.1) with two subsystems

A1 =

[
0.4 0
0 −0.34

]
, A2 =

[
−1.6 0

0 −0.14

]
,

Ad1 =

[
−0.06 0
0.06 −0.03

]
, Ad2 =

[
−0.03 0
−0.69 −0.12

]
,

B1 =
[
0.4 0.1

]T
, B2 =

[
0.3 0.15

]T
, Bw1 =

[
0.1 0.4

]T
, Bw2 =

[
0.15 0.3

]T
,

C1 =
[
−1.2 0.9

]
, C2 =

[
−1 0.5

]
.

Note that, A1 is Hurwitz unstable and A2 is Hurwitz stable. The activation times of the

unstable and unstable subsystems are chosen as T+ = 0.6 and T− = 1.4, respectively.

The constants

ψ1 = 0.5, ψ2 =−0.05, h1 = 0, h2 = 0.1, hd = 0.01, R = I, δ = 4

δ
′ = 4, ε = 25, µ = 1.01, d = 0.01, Tf = 2, N0 = 0.

are chosen to satisfy (Ai−ψiI)< 0. So, by Algorithm 2 for Theorem 8, we get a feasible

solution with controller and observer gains

K1 =
[
2.8156 3.1708

]
, K2 =

[
−21.3321 6.0683

]
,

L1 =
[
0.0035 −0.0050

]T
, L2 =

[
0.0029 −0.0028

]T
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with the ADT τ∗a = 0.4526.

The initial condition function is taken as φ(t) = x0 = [1.0 1.0]T for all t ∈ [−h2,0]

and x̂0 = [0.1 0.1]T , the time varying delay is taken as h(t) = h1 +h12 sin
(
(hd/h12)t

)
to satisfy (4.3) and the disturbance is taken as w(t) = 0.04sin(t) to satisfy (4.4).

Simulation is made under a non-periodic switching shown in Figure 5.3.
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Figure 5.3 : Switching Signal σ(t).

The state responses of the switched system and the observer are presented in Figure

5.4.
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Figure 5.4 : State Responses of the Switched System and the Observer.

It is seen that for sups∈[−h2,0]
{

xT (s)Rx(s)
}
= 2 < δ = 4, supt∈[0,Tf ]

{
xT (t)Rx(t)

}
=

9.5105 < ε = 25, so FT boundedness is satisfied.
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6. OBSERVER-BASED CONTROL FOR H∞ FINITE-TIME BOUNDEDNESS

In this part, observer-based controller is designed for H∞ finite-time boundedness

of interval time-delay switched systems having mixed stable matrices of the state

vector. A numerical example is given for the effectiveness and validity of the proposed

solutions.

6.1 Problem Statement

Consider a switched linear system with an interval time-varying delay in the state

vector, where

ẋ(t) =Aσ(t)x(t)+Adσ(t)x(t−h(t))+Bσ(t)u(t)+Bwσ(t)w(t),

y(t) =Cσ(t)x(t)

z(t) =Dσ(t)x(t)

(6.1)

with the initial conditon function

x(t) = φ(t), t ∈ [−h2,0]. (6.2)

Here x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control input, y(t) ∈ Rq and z(t) ∈ Rr

the measurement output and the controlled output respectively. Aσ(t), Adσ(t), Bσ(t),

Bwσ(t), Cσ(t) and Dσ(t) are real constant matrices of appropriate dimensions, φ ∈

C ([−h2,0],R) is the initial function, h is the delay function satisfying (4.3) and w(t)

is the exogenous disturbance satisfying (4.4). Consider the observer based feedback

controller

˙̂x(t) = Aσ(t)x̂(t)+Bσ(t)u(t)+Lσ(t)(y(t)− ŷ(t)),

ŷ(t) =Cσ(t)x̂(t),

x̂(t) = 0, ∀t ∈ [−h2,0],

(6.3)

and the control law

u(t) =−Kσ(t)x̂(t). (6.4)
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Here, Kσ(t) and Lσ(t) are controller and observer gains, respectively. Define an error

vector e(t) = x(t)− x̂(t). The closed-loop system will be

ẋ(t) =AKσ(t)x(t)+Adσ(t)x(t−h(t))+Bσ(t)Kσ(t)e(t)+Bwσ(t)w(t),

ė(t) =ALσ(t)e(t)+Adσ(t)x(t−h(t))+Bwσ(t)w(t)
(6.5)

where

AKσ(t) = Aσ(t)−Bσ(t)Kσ(t),

ALσ(t) = Aσ(t)−Lσ(t)Cσ(t).
(6.6)

For a prescribed scalar γ > 0, the following performance index is defined

JTf =
∫ Tf

0
(zT z− γ

2wT w)dτ. (6.7)

6.2 H∞ FT Stabilization

In this section, H∞ FT stabilization of time-delay switched system with observer-based

control is considered.

Theorem 9. The switched system (6.1) is H∞ FT bounded with respect to

(δ ,ε,Tf ,d,R), if there exist a set of symmetric matrices for every ith subsystem Pi > 0,

Q1i > 0, Q2i > 0, S1i > 0, S2i > 0, Ti > 0, M1i, M2i, N1i and N2i and scalars αi ≥ 0

satisfying

Λi =


Θi −Mi −Ni ZT

1i ZT
2i

∗ −e2ψih2S2i 0 0 0
∗ ∗ −e2ψih2S2i 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0 (6.8a)

γ
2d ≤ λ1e−2αmaxTf ε (6.8b)

Pj ≤ µPi, Qk j ≤ µQki,Sk j ≤ µSki,Tj ≤ µTi, (6.8c)

for i, j ∈I and k = 1,2, where

Θi =



Ω11,i Ω12,i Ω13,i −N1i BiYi Bwi Ω17,i
∗ Ω22,i M2i −N2i PiAT

di 0 PiAT
di

∗ ∗ Ω33,i 0 0 0 0
∗ ∗ ∗ Ω44,i 0 0 0
∗ ∗ ∗ ∗ Ω55,i Bwi Y T

i BT
i

∗ ∗ ∗ ∗ ∗ −γ2I BT
wi

∗ ∗ ∗ ∗ ∗ ∗ Ω77,i


(6.9)
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with

Z1i =[DiPi 0 0 0 0 0 0]T , Z2i = [0 0 0 0 CiPi 0 0]T

and the ADT of the switching signal satisfies

τa > τ
∗
a =

Tf ln µ

ln(λ1ε)− ln(γ2d)−2αmaxTf −N0 ln µ
(6.10)

The gain matrices Ki and Li of controller and observer are same as (5.34).

Proof. From Lemma 5, the conditions (5.6a) and (5.6b) provides that the switched

system (6.1) is FT bounded with respect to (δ ,ε,Tf ,d,R). We choose the

Lyapunov-Krasovskii functional as it is in (5.9) and (5.10) and define

Γ(t) =−zT (t)z(t)+ γ
2wT (t)w(t). (6.11)

By derivation, we get

V̇i(x(t))−2αiVi(x(t))≤ξ
T (t)Πiξ (t)+Γ(t) (6.12)

where

Πi =



Π11,i Π12,i Π13,i −N1i Π15,i P−1
i Bwi AKiP−1

i
∗ Π22,i M2i −N2i AT

diP
−1
i 0 AT

diP
−1
i

∗ ∗ Π33,i 0 0 0 0
∗ ∗ ∗ Π44,i 0 0 0
∗ ∗ ∗ ∗ Π55,i P−1

i Bwi Π57,i
∗ ∗ ∗ ∗ ∗ −γ2I BT

wiP
−1
i

∗ ∗ ∗ ∗ ∗ ∗ Π77,i


(6.13)

with

Π11,i =P−1
i AKi +AT

KiP
−1
i +Q1i +Q2i− e2αih1S1i−2αiP−1

i +T i +DT
i Di

and the remaining entries of Πi are of Π jk,i = Ξ jk,i. By pre- and post-multiplying both

sides with Di, using Schur Complement and applying Λi < 0 conditions in (6.8a) the

following inequality is obtained.

V̇i(x(t))−2αiVi(x(t))≤ Γ(t). (6.14)

By applying Grönwall’s lemma on t ∈ [tk, tk+1),

Vσ(t)(x(t))≤e2ασ(tk)
(t−tk)Vσ(tk)(x(tk))+

∫ t

tk
e2ασ(tk)

(t−s)
Γ(s)ds. (6.15)

63



From the inequality constraints in (6.8c) and by assuming σ(tk) = i and σ(t−k ) = j,

(5.22) is obtained. If Grönwall’s lemma and (5.22) is applied until [0, t1) iteratively,

we get

Vσ(t)(x(t))≤ e2αmaxTf µ
N

(
Vσ(0)(x(0))+

∫ t

0
Γ(s)ds

)
(6.16)

where N denotes the switching number of σ(t) over (0,Tf ). By zero initial condition

0≤
∫ t

0
Γ(s)ds (6.17)

and setting t = Tf ∫ Tf

0
zT (s)z(s)ds < γ

2
∫ Tf

0
wT (s)w(s)ds (6.18)

which tells that the switched system (6.1) is H∞ FT bounded.

Remark 10. Algorithm 2 can also be stated for Theorem 9. Note that, Ω55,i of Theorem

9 contains the term AiPi+PiAT
i −2ψiPi so that, in order to get positive definite solutions

for Pi satisfying the corresponding LMIs, (Ai−ψiI) should be Hurwitz stable. Also,

inequality constraints of the LMI problem and the minimization problem will be (6.8a),

(6.8b), (6.8c) and (5.48) for Theorem 9. Notice also, Wi does not exist in Theorem 9;

the feasible sets, constraints and objective functions of the minimization problem will

be altered in that manner.

6.3 Numerical Example

Example 14. Consider the H∞-control problem for the time-delay switched system

(6.1) with matrices

A1 =

[
−1.75 1.32
−2.78 −3.44

]
, A2 =

[
−1.52 −1.44
2.35 −3.34

]
,

Ad1 =

[
0.44 0.49
−0.38 −0.56

]
, Ad2 =

[
0.34 −0.38
0.29 0.42

]
,

B1 =

[
0.82
−1.26

]
, B2 =

[
−0.11
0.55

]
, Bw1 =

[
0.56
0.79

]
, Bw2 =

[
0.30
−0.30

]
,

C1 =

[
−0.57
1.33

]T

, C2 =

[
0.62
0.73

]T

,D1 =

[
0.31
−1.30

]T

, D2 =

[
−0.43
0.34

]T

.

In order to solve this system with the constants

α1 = 0.42, α2 = 0.34, h1 = 0.1, h2 = 0.3, hd = 0.01, R = I, δ = 1,

δ
′ = 1, ε = 25, µ = 1.1, d = 0.01, γ = 1.6, Tf = 5 and N0 = 0
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Algorithm 2 for Theorem 9 is applied. The following controller and observer gains are

obtained.

K1 =
[
4.0529 4.2057

]
, K2 =

[
10.0924 −5.7680

]
,

L1 =
[
0.1104 −0.2539

]T
, L2 =

[
−0.1304 −0.1370

]T
.

The ADT is obtained as τ∗a = 0.0744.

Note that, even for large µ , small τ∗a can be obtained for H∞ case. The reason stands

in the denominator of the ADT formula in (6.10). Since the conditions (6.8b) and

(6.8c) are relaxed to choose γ and d, smaller τ∗a can be obtained depending on these

constants.
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7. CONCLUSIONS

This dissertation investigates the FT stability of switched systems, FT boundedness

and H∞ FT boundedness of the switched systems with and without interval time-delay

and disturbances.

First, FT stability of switched systems were analyzed by using vector and matrix norms

and the results were presented in the third chapter. Sufficient conditions for FT stability

were obtained. These conditions include the spectral properties of the subsystems,

which were obtained by using Jordan decomposition. Possible activation numbers of

the subsystems were deduced from these conditions. ADT conditions were presented

by considering that all the subsystems have negative, positive and mixed spectral norm

bounds. Numerical examples presented at the end of the third chapter showed that

the number of activations of the subsystems can be adjusted to ensure FT stability and

the proposed ADT bounds for different types of systems ensure FT stability of the

switched system.

Second, the FT boundedness of the switched systems with interval time-delay and

disturbances were analyzed based on a state-feedback controller. Sufficient conditions

were obtained for system vector. Due to the nonconvex elements on these conditions,

a cone-complementarity linearization was made. A numerical example was presented

at the end of the fourth chapter.

Third, observer-based controller was proposed to ensure FT boundedness of switched

linear systems having interval time-delay. Sufficient conditions and ADT bounds

were presented in case of unstable and mixed stable subsystems in the fifth chapter.

Cone-complementarity linearization method and algorithm were proposed for the

calculation of the variables in ADT bound having nonconvex elements. Given

numerical example demonstrated that applied controller enables the system to switch

more frequently among the subsystems. On the other hand, the controller was extended

to be applied to unstable and mixed stable subsystems and all the possible cases were

presented with a numerical example.
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Finally, observer based H∞ controller was designed for the H∞ FT boundedness of

switched linear systems with interval time delay in the presence of disturbance. In

this chapter, sufficient conditions were again obtained for the subsystem matrices to be

mixed stable and the effectiveness and validity of the proposed conditions were shown

on a numerical example.

Extending proposed conditions by relaxing the subconditions via mode-dependent

stabilization analysis can create new directions in the future. Concerning the matrix

condition number minimization results in the literature, the estimations in the ADT

bounds can be improved further. Last but not least, FT input-to-state (FTISS) stability

notions can be investigated to propose new frameworks to analyze nonlinear systems.
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