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STABILITY ANALYSIS OF A MATHEMATICAL MODEL
OF
CRIMEAN CONGO HAEMORRHAGIC FEVER DISEASE

SUMMARY

Today, ticks are harmful parasitic creatures feared by humans. Ticks do not always
carry dangerous diseases. However, we should not ignore the pathogens and viruses
that may be carried because these creatures can carry various viruses and seriously
threaten human health. If it is not diagnosed early, it can result in fatal consequences.

Ticks can get viruses from their hosts at various stages of their lives. Ticks can transmit
these viruses to humans in the adult tick stage. Here we can say that the animals that
ticks use as hosts are only vectors. Cattle, bovine or chickens do not show symptoms
of diseases which are caused by ticks.

In this thesis, the spread of Crimean-Congo haemorrhagic fever disease is investigated
by considering the problem as an epidemic model. Before stating the problem, in
first chapter, some information about dynamic systems is given. The definition of
systems of differential equations and their stability analysis are mentioned. Besides,
the autonomous systems of equations are briefly explained. And how their stability
can be analysed is mentioned. Then, to guide our own problem, information about the
well-known SI, SIR, SIS epidemic models and Prey-Predator model and their stability
is given in the second chapter. And finally in the third chapter the original problem
of the thesis is examined. The system of equation of these models is non-linear.
After writing system of equation we found the equilibrium points first. Then, we
do linearisation by substituting the equilibrium point in to the Jacobian matrix. We
investigated sign of the eigenvalues of these Jacobian matrices which are evaluated by
equilibrium points of epidemic models. If all eigenvalues are negative the equilibrium
point is stable. If at least one eigenvalue is positive, then the equilibrium point is
called unstable. It is not always possible to determine the sign of eigenvalues. In such
a case, we could talk about basic reproduction number. Basic reproduction number is
represented by Ry. If Ry < 1, all eigenvalues are negative and the equilibrium point
is a stable equilibrium point. The disease disappear over time. Otherwise, if Ry > 1,
at least one of the eigenvalues is positive. Also, the endemic equilibrium point exist
when Ry > 1. In addition to, when Ryp > 1 disease free equilibrium point is unstable
and endemic equilibrium point is stable. And the disease becomes endemic.

The problem is expressed as the combination of the variation of population dynamics
of human, tick and birds(chicken). In all dynamics of human and tick we considered
the in and outs to the compartments, outs as both in the meaning of transfers between
compartments and removals such as death. The inputs to the system are either taken
constants or logistic growth effects.

In this thesis, we investigate the problem in three different ways.

* The model which takes logistic growth both in tick and chicken populations,
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* The model which takes logistic growth only in chicken population,

* The model which takes logistic growth only in tick population.

We use a system of five ODEs to represent the interaction between chicken population,
susceptible and infected populations of humans and ticks. It can be said that there
is ST model between infected tick and susceptible tick, SIS model between infected
human and susceptible human, and Prey-Predator model between tick and chicken.
We have determined the equilibrium points for each model and investigate the stability
of the equilibrium points. During the studies the reproduction numbers were found and
the stability is investigated with respect to the reproduction numbers. The bifurcation
analysis has also been done for tick logistic - chicken logistic model and tick logistic -
chicken constant model.

According to the results of the first and second models, it was observed that there was
a decrease in the number of ticks when the chicken population in the environment was
increased. In addition, if the frequency of unleashing of chickens into the environment
is increased, then ticks can be more likely to increase among chickens is. Therefore,
the number of ticks in the environment may decrease. Due to this decrease, it has
mathematically shown that the Crimean Congo Haemorrhagic Fever disease decreases
over time.
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KIRIM-KONGO KANAMALI ATESININ
MATEMATIKSEL MODELININ KARARLILIK ANALIZI

OZET

Giintimiizde keneler insanlar i¢in tehlikeli, parazit tasiyan canlilar olmuslardir. Bu
nedenle insanlar bu canlilardan uzak durmak i¢in bir cok dnlem almaktadirlar. Keneler
her zaman tehlikeli hastalik yayacak virlis tasimazlar. Ancak, insan saghigim tehdit
edebilecek, tehlikeli viriis ve patojenleri tastyabileceklerini gbz ardi etmemeliyiz. Bu
tip insan saghigin tehdit eden viriis ve patojenler, erken teshis edilmedigi takdirde,
sonuglar1 6liimciil olabilir.

Keneler hayatlar1 boyunca 3 evreden gecerler. Bunlar, larva evresi, nymph evresi
ve yetigskin evre olmak iizere iice ayrilir. Larvalar ve nympler genelde kiiciik bas
hayvan, tagvan veya kus gibi canlilardan beslenirler. Yetiskin evreye geldiklerinde
ise daha c¢ok biiyiik bas hayvanlar1 veya insanlar tercih ederler. Bu nedenle keneler
insanlara Kirim-Kongo Kanamali Atesi hastaliini yetigskin evresinde bulastirirlar.
Keneler yasamlarinin ¢esitli evrelerinde konak olarak kullandiklar1 hayvanlardan viriis
alabilirler. O halde, kenelerin konak olarak kullandiklar: biiyiik bas, kiigiik bag veya
tavuklarin Kirim-Kongo Kanamali Atesi hastaliginin semptomlarini gostermedigini ve
hastaliktan etkilenmedi yalnizca tasiyici olduklar1 sdylenebilir.

Koylerde, kirsal kesimlerde yasayan veya calisan insanlarin kene 1sirigina maruz
kalma ihtimalleri, sehirlerde yasayan insanlara gore daha fazladir. Bu nedenle koy
yerleri, kirsal kesimler gibi yerlerde yasayan insanlarin daha fazla 6nlem almalar
gerekmektedir. Kenelerden korunmanin ¢esitli yollar1 vardir. Bunlardan bazilarini
sOyle siralayabiliriz,

* Ozellikle tarlada calisan insanlar veya doga yiiriiyiisiine ¢ikanlar uzun kollu t-shirt
ve pantolon tercih etmelidirler.

* Koy yerlerinde yasayan, ozellikle tarlada calisan veya kenelerin ¢ok goriildiigii
yerlerde ikamet eden insanlarin pantolon pacarini ¢oraplarinin igine sokmalari
kenelerden korunmalarina yardimci olacaktir.

* Doga yiirliyiisiine ¢ikildiginda, patikalarin ortasindan yiirlimeye 6zen gosterilme-
lidir. Ciinkii keneler genellikle topraga yakin yaprak altlarinda bulunurlar.

* Kene sokmasina maruz kalan insanlarin, keneleri kendi ugraglar1 ile ¢ikarmaya
calismamalilar. Uzman olmayan bir kisi keneyi ¢ikarmaya calisirken kenenin
1sirdid1 yerden igeriye kusmasina ve viriis tagiyorsa insana bulagsmasina sebebiyet
verebilir. Bu nedenle kene sokmasina maruz kalan kisi hemen bir hastaneye gitmeli
ve doktor tarafindan ¢ikarilmalidir.

* Hayvanlar iizerinde olan keneler ¢ikarilirken ciplak elle ¢ikarilmamalidir. Ciplak
elle yapilan temasta hayvanin kani insana siiriindiigiinde, kene herhangi bir viriis
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veya patojen tagiyorsa bu insana gecebilir. Bu nedenle ken 1sirigina maruz kalan bir
hayvanin kan veya viicut sivisi ile temas edilmemesine 6zen gosterilmelidir.

» Kenelerin yogun goriildiigi zamanlar 6zellikle Nisan-Ekim dénemlerinde ilagclama
yapilmasi kenelerin iiremesine engel olacak dnlemlerden bir tanesidir.

* Kirsal kesimlerde yasiyan insanlar, kene sokmasina karsi, hayvanlarini belirli
periyodlarda parazit agilarim1 yapmalidirlar.

Bu tezde, kenelerin yogun olarak bulundugu yerlerdeki tavuklarin, burada bulunan
keneler tizerindeki etkisi epidemik bir matematiksel bir model iizerinde arastirilmistir.
Ayrica, bu etkinin dolayli olarak Kirim-Kongo Kanamali Atesi hastalifinin insan
populayonuna etkisi de incelenmistir.

Problemimize baglamadan 6nce, problemin ¢oziimiinii ve anlagilmasini kolaylastirmak
adma cesitli bilgiler verdik. Ilk olarak, dinamik sistemler hakkinda bir takim
tanimlamalar yaptik. Diferansiyel denklem sisteminin, sabit homojen denklem
sisteminin ve otonom denklem sisteminin tanimini yaptik. Ardindan bu denklem
sistemlerinin stabilite analizi, neden stabilite analizine ihtiya¢ duydugumuz hakkinda
bilgiler verdik. Stabilite analizine baglayabilmek i¢in ilk olarak denge noktalarinin
bulunmasi gerektigini soyeledik. Ardindan denge noktalarini, sisteme ait yazilan
Jacobian matriste yerine koyarak stabilite analizini yapabilecegimizi soyledik.

Denge noktalari, Jacobian matriste yazildiktan sonra elde edilen matrisin 6zdeger-
lerinin isaretlerine gore bulunan denge noktasinin stable mi yoksa unstable mi
oldugunun kararinin nasil verilecegini acikladik. Denge noktasinin Jacobian matriste
yerine yazildiktan sonra elde edilen matrisin tiim 6zdegerleri negatif reel kisma sahip
ise bu denge noktasinin stable, en az birinin reel kismi1 pozitif ise bu denge noktasinin
unstable oldugunu soyledik.

Bu tanimlamalar yaptiktan sonra, iiciincii boliimde cok iyi1 bilinen birka¢ matematiksel
modelin analizlerini kendi problemlerimize yol gdstermesi adina tekrar yaptik. Bu
modeller arasinda SI, SIR, SIS epidemik modelleri ve Prey-Predator (Av-Avci)
modelini inceledik. Bu modellerin model diyagramlarim1 ¢izdik. Ardindan bu
modellerin lineer olmayan denklem sistemlerini yazdik. Denklem sistemlerini
yazdiktan sonra stabilite analizlerini yapabilmek icin ilk olarak bu modellerin
denge noktalarmi bulduk ve sonrasinda denklem sistemine ait Jacobian matriste bu
noktalarin1 yerine koyduk. FElde edilen matrisin 6zde8erlerinin isaret incelemesini
yaparak denge noktalarinin stable m1 yoksa unstable m1 olduguna karar verdik. Fakat
her zaman denge noktasinin Jacobian matriste yerine koyularak elde edilen matrisin
O0zdegerlerinin kesin olarak negatif ya da kesin olarak pozitif oldugunu sdylemek
miimkiin olmuyordu. Bazi1 6zdegerler belli kosullar saglandiginda negatif ya da pozitif
oluyordu. Iste bu durumda basic reproduction number’dan s6z edebiliyorduk. R ile
temsil edilen bu terim, isaret analizini yapamadigimiz 6zdegerden elde edilmektedir.
Eger Ry < 1 ise, biitiin 6zdegerler negatif olmaktadir. Bu durumda denge noktasinin
stable oldugu soylenmektedir. Ayrica Ry < 1 durumunda hastalik durumu zamanla
ortadan kalkmaktadir. Ayrica, model incelemelerimizde Ry > 1 oldugu durumlarda
endemik denge noktas1 adin1 verdigimiz denge noktasi var olacak ayni zamanda stable
olacaktir. Bu da hastaligin populasyonda varligini siirdiiriip endemik bir hal alacagin
isaret etmektedir.

Biz bu tezde, problemlerimizi ii¢ farkli sekilde ele aldik.
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* Hem kene hem de tavuk populasyonlarinin lojistik biiyiime olarak alindigi model.
* Yalnizca tavuk populasyonunun lojistik biiyiime olarak alindig1 model.

* Yalnizca kene populasyonunun logistik biiyiime olarak alindigi model.

Problemlerimizde bes tane adi diferansiyel denklemden meydana gelen bir denklem
sistemi olusturduk. Bu denklemler yazilirken duyarli insan ve kene populasyonlari,
infekte insan ve kene populasyonlar1 ve tavuk populasyonu arasindaki iliskiler goz
Ontine alinmistir. Burada infekte kene ve duyarli kene arasinda S/ model oldugu
sOylenebilir. Ciinkii bir kene infekte olduktan sonra iyilesme sansit bulunmadigindan
tekrar duyarli olamamaktadir. Infekte insan ve duyarli insan arasinda ise SIS
modeli bulunmaktadir. Ciinkii Kirnm-Kongo Kanamali Atesi hastalifina yakalanan
bir insan iyilestikten sonra viriisii tagsiyan bir kene tarafindan 1sirilirsa tekrar hastaliga
yakalanma riski bulunmaktadir. Kene populasyonu ve tavuk populasyonu arasinda
ise Prey-Predator modeli iligkisi vardir. Burada keneler avi, tavuklar ise avciyr temsil
etmektedir.

Incelemis oldugumuz ii¢ modelden ilk ve iiciincii modelin sonuglaria baktigimizda,
tavuk populasyonuna eklenen tavuk miktarinin sayist artirildiginda ortamdaki kene
sayisinin daha hizli diistiigi sonucuna varilmistir. Buna ek olarak, eger tavuklarin
kiimeslerinden salinma siklig1 da artirildiginda, daha fazla kene bulup yiyeceklerinden
yine kene sayisinda bir diisiis olacagi matematiksel olarak goriilmiistiir. Bu diisiislere
bagli olarak Kirim-Kongo Kanamali Atesi hastaligmmin ortamda bir siire kalicigimi
stirdiikten sonra zaman igerisinde yok oldugu verilerimizce gosterilmistir.
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1. INTRODUCTION TO DYNAMICAL SYSTEMS

1.1 What is a System of Differential Equation?

Equations that are associated with one or more variables according to their derivatives
are called differential equations. Differential equations are both at the center of
many theories of physic and are necessary for the mathematical explanation of
many things in nature. For example, they are used to describe many problems in
classical mechanics such as Newton’s and Lagrange’s classical mechanical equations,
Maxwell’s classical electromagnetism equation, Schrédinger’s quantum mechanics

equation, and Einstein’s general gravitation theory.

1.1.1 Linear Homogeneous System of Differential Equation with Constant

Coefficient
A special form system of differential equation is written as [1,2],
x(t) = Ax(t) + /(1)

where x € R" and f is a function depends on the independent variable ¢. If f(¢) =0,

system of equations become homogeneous

X =Ax. (1.1)
where A is a constant coefficient nxn matrix and

dx;
dt
dXQ

. dx E

X=—=

dt .

dx,
dt

equation (1.1) is called a system of linear homogeneous differential equation with
constant coefficient. It is shown that the general solution of this linear system (1.1)

is given by
x(t)=eVc

1



where ¢ is an nxn matrix and constant valued vector ¢ = x(0) which is x(z) at time
t = 0. Also, it can be seen that (1.1) has a unique solution each point x( in the phase

space R".

Definition 1.1.1. [3] If det(A) # 0 then Ax = 0 if and only if x = 0. The origin is

called an equilibrium point of the linear system (1.1).

1.1.2 Stability Analysis of Equilibrium Point in System of Linear Equations
In this section, we are going to look at the stability analysis of equilibrium point.

Suppose, A is a constant coefficient nxn matrix and A;, i = 1,2, ... are eigenvalues of
this matrix. These eigenvalues give us information about the system of differential
equation’s behaviour around the equilibrium point. If all eigenvalues of the linear
system (1.1) have negative real parts for + — oo, the flow gradually approaches the
origin that origin is the equilibrium point of this linear system. On the other hand if
all eigenvalues of the linear system (1.1) has a positive real part for t — oo the flow
moves away from the origin. Here we shall use these information to give the following

definitions.

Definition 1.1.2. [3] Suppose that some of the eigenvalues of A have negative real part,
some have positive real part and these eigenvalues are distinct. Also let {wy,...,w,}
are eigenvectors corresponding to these eigenvalues. Let us denote these eigenvalues
as Aj = a;+ib; and eigenvectors as w; = u; +iv;, j =1,2,.... Stable, unstable
subspace of the linear system (1.1) represent by E* and E“ respectively. They are

linear subspaces that are shown below;

E° = Span{uj,vjlaj < 0},

E" = Span{u;j,vjla; > 0}.

* If all the solution curves of the system (1.1) are decreasing functions then it means
all eigenvalues of matrix A have negative real part. All solutions in E* approach
the equilibrium point when ¢ — oo then this equilibrium point is called a stable

equilibrium point.



« If all eigenvalues of the matrix A has positive real part then all solutions in E* move
away from the equilibrium point when ¢ — co. As a result, such an equilibrium point

is called an unstable equilibrium point.

In conclusion, if all eigenvalues of the matrix corresponding to the system of the linear
equations have negative real parts, the equilibrium point of the system is called stable.
Otherwise, if all eigenvalues of the matrix has positive real part, then the equilibrium

point is called unstable. Perko (2013) mentioned this topic in detail in [3].

1.2 System of Autonomous Differential Equations

An autonomous system is a system of ordinary differential equations that contains

explicitly only the dependent variable.

In the previous section we have considered a special autonomous system that is called
the constant coefficient system, it is said that system (1.1) has a unique solution for
every xo and this solution is x(#) = e*’xo. In this section, we examine system of

non-linear autonomous differential equations.

Definition 1.2.1. The most generalized form of system of first order ordinary

differential equations (ODEs) can be defined as follows,

dx
d_tl - fl (.X'l, "'7-xn)
dx
d_t2 = fz(XI, ...,xn)
dx
d_tn = fn()ﬂ, ...,xn)
or, in vector notation,
i= f(x) (1.2)

where f : E — R" and E is an open subset of R". Under certain conditions, we show
that the unique solution at each xo € E point in the maximal interval (¢, ) C R on
the function f. In general, it is not possible to solve a non-linear system, but a lot of

qualitative information can be obtained about the local behaviour of the solution [4].



1.2.1 Linearisation

The stability analysis of the non-linear system of differential equation is not as easy
as system of linear equations. As mentioned in Section (1.2), the local behaviour
of the solution of the system (1.2) can be obtained through qualitative information.
Linearisation is a method to deal with the system of non-linear equations. Before

starting to the linearisation, equilibrium points must be found.

Definition 1.2.2. xy € R" is called an equilibrium point of x = f(x) if f(x9) =0. And
also, an equilibrium point xq is called a hyperbolic equilibrium point of x = f(x) if

none of the eigenvalues of the matrix D f(xg) have zero real part.

Detailed information about this definition is given in [3].

Consider the system (1.2)
Xy = fl (X] » X2, "‘7xn)7
X2 :fZ(xl7x27“'7xn)7

(1.3)

xn = fn(-xla-x27 -~~>xn)
and assume that x* = (x},x3,...,x;) is equilibrium point of the system (1.3) according

to the definition (1.2.2). Namely,

fi(x],x35,...,x;) =0,

fr(x1,x3,...,x,) =0,

Let us define
e=x—x" (1.4)

for linearisation, (1.4) represent the components of a small perturbation nearby
equilibrium point. To understand how this perturbation behaves near the equilibrium,

we need to derive differential equations for €. When this derivation is done,
E=x

4



is obtained. It can be written

£=f(x"+e) (1.5)

by substitution. When Taylor series is expanded to (1.5),

€= f(x") +sa—f +0(£?),

ox
_df 2
= £$+0(8 )

equation (1.6) is written because we know f(x*) = 0. Remember that these partial

(1.6)

derivatives in (1.6) are evaluated at the equilibrium point x*. Thus, they are not
functions, they are constants. Moreover, 0(82) denotes quadratic term in €. Since,
€ is small, this quadratic term is extremely small. So, this term can be neglected. The

disturbance € = (g1, &, ...,&,) evolves according to

8f1 afl L afl
q axl axZ (9x,,
AREE AR
.2 =3 8x1 (9)62 9xy, .2 . (1.7)
@) \of ot of | \®
ox; dxo 9xp
The matrix
8f1 afl o afl
8x1 8xz axn
8f2 afz . af2
J(x) = [ dx1 Ix2 0%
ox; 0xy xn/ (xt5...03)

is called the Jacobian matrix at the equilibrium point x* [5]. Also (1.7) is called
linearized system. Stability analysis can be performed as described in the subsection

(1.1.2) using Jacobian matrix. Let us give the formal definition of Jacobian Matrix.

Definition 1.2.3. If f: R" — R" is differentiable at x(, then the partial derivatives ——

(9xj
i, j=1,...,n, all exist at xo and for all x € R",
3fz
X() X =
JZ’I ax,

Thus, if f is a differentiable function, the derivative Df is called the nxn Jacobian

matrix

dfi
br= {3%} '

5



After finding the equilibrium points of the non-linear system of equation, the Jacobian
matrix of the system (1.2) should be written. To analyse the stability of the equilibrium

points, these points are substituted in the Jacobian matrix.

Consider, x* is the equilibrium point of system (1.2) and, A;, i = 1,2,... are the
eigenvalues of the Jacobian matrix which is evaluated at the x*. If all eigenvalues
of this matrix less than zero, the solution of the system start from initial condition
converge to this equilibrium point at ¢t — oo. In that case, the equilibrium point x*

called locally asymptotically stable.

Theorem 1.2.1. [6] A necessary and sufficient condition for an equilibrium to be
locally asymptotically stable is that all eigenvalues of the Jacobian have negative real

part.

These theorems are given in detail by Martcheva (2010) in [6].

Perko (2013) mentioned another important theorem in [3] about local qualitative of
ordinary differential equations. The Hartman-Grobman Theorem is a very important
result in the local qualitative theory of ordinary differential equations. The theorem
shows that a hyperbolic equilibrium point has the same qualitative structure as the

linear system x = Ax with the non-linear X = f(x) system where A = D f(xo) near xo.

In other words, the theorem states that the behaviour of a dynamic system in an area
near the hyperbolic equilibrium is qualitatively the same as behaviour its linearization
around this equilibrium point. Hence, simpler linearization of the system can be used
to analyze the behaviour around the hyperbolic equilibrium point when dealing with

these dynamic systems.

Theorem 1.2.2 (The Hartman-Grobman Theorem [3]). Let E be an open subset of R"
containing the origin, let f € C'(E), and let ¢; be the flow of the non-linear system
(1.2). Suppose that f(0) = 0 and that the matrix A = Df(0) has no eigenvalue with
zero real part. Then there exists a homomorphism H of an open set U containing the
origin onto an open set V containing the origin such that for each xo € U, there is an

open interval Iy C R containing zero such that for all xo € U and t € I

Ho ¢y (x0) = ¢ H (xo);



i.e., H maps trajectories of (1.2) near the origin onto trajectories of (1.1) near the

origin and preserves the parametrization by time.

Proof of the theorem is given in [3] by (Perko, 2013). We shall use the

Hartman-Grobman theorem in our problem in section three.






2. EPIDEMIC MODELS

Epidemiology is the scientific area that examines disease and health patterns on a
population basis. The word "epidemiology" consists of Greek terms. "epi" meaning
"upon", "demos", "people" and "logos", that is "study". This etymology applies only to
the human population of the subject of epidemiology [6]. The father of epidemiology
is often considered to be the Greek doctor Hippocrates (460-377 BC), who described
the connection between the disease and the environment [7]. The term "epidemiology"
appears to have been used for the first time in 1802 by the Spanish doctor de Villalba
to describe the work of epidemics in Epidemiologia Espanola [8]. Until the twentieth
century epidemiological studies were mostly related to infectious diseases. Today, the
leading causes of deaths worldwide are diseases such as stroke and coronary heart
disease, positioning diseases that are not transmitted from one person to another as the

main concern of epidemiology. Infectious diseases include low respiratory infections

and HIV in the world as the dominant causes of death.

According to the Centers for Disease Control and Prevention, an epidemic is an
increase in the number of disease cases beyond what is normally expected in a
geographic area. Often, the increase in cases occurs quickly. On the other hand, a
pandemic is used to describe a disease that has spread to many countries and affects a
large number of people. While a pandemic may be described as a kind of epidemic, it

cannot be said that an epidemic is a type of pandemic.

Mathematical epidemiology was raised to a new level by the model of the outspread
of infectious diseases, published by Kermack and McKendrick in 1927. In their
article, “A contribution to the mathematical theory of epidemics” [9], Kermack and
McKendrick published for the first time a deterministic epidemic model that included
susceptible, infected, and removed individuals. This model does not contain natural
birth, natural death, or disease-related death and, as a result, models only disease
outbreaks. Kermack and McKendrick published Part II and Part III of their “A

contribution to the mathematical theory of epidemics” in 1932 and 1933, respectively,



to capture epidemic modeling of diseases that can be established in a population and

persist.

Mathematical model is a definition of a system using mathematical tools and language.
In addition, the process of developing mathematical models is called mathematical
modelling. In general mathematical modelling can be applied to biological or any other
system but we will deal with the modelling of infectious diseases and their spread in
populations. Mathematical models have been developed to explain a system, to study
the effects of its different components, and to make predictions about its behaviour.
The modelling process requires that a biological scenario be translated in a math
problem. The modelling process begins with a clear definition of methods based on
understanding the system. Translation to mathematical equations must be done with a
specific aim or a biological question in mind. Then the verbal description of the system

is coded with mathematical equations.

In this section, we will analyze SI, SIR, SIS and Predator-Prey models first and finally,
we will begin to interpret our mathematical model. To understand the phenomena
of a general epidemic model we will give different, simple, very well known models

explicitly.

2.1 SI Model

SI model is the simplest epidemic model. There are only susceptible individuals S
and infective individuals / in the population. When susceptible individual contact
with an infective person the disease is transmitted and the susceptible person becomes
infectious immediately. Besides, this model, which has already been analyzed before,
is not containing naturally occurring or disease-related deaths and also there is no
source term for the susceptible population. Detailed research of this model is

investigated in [10].

The diagram of the model is given as,

BIS
S 1

Figure 2.1 : Transfer diagram of SI model.
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where f is a non-dimensional parameter representing infectious contact rate. So the

system of differential equations according to the figure 2.1 can be written as

ds
dl

As we can see from (2.1) and (2.2), the population is constant. So that,

S+I1=N.

If we reduce the system into one equation, we can analyse the system easily. Let us

write N — [ instead of S;

dl
—— =-BIN-1I
= BI( )
dl 5
— =pBIN — pI
== B B
dl 1
— =BIN(1——).
= = BIN( N)

Which is a logistic growth equation given usually as below,
—=rl(1—-) (2.3)

where r represents growth rate of infective population and K is called carrying capacity.

Here we will investigate the stability of this model. First find the equilibrium points;

dl 1

— =0=pBNI(1-=)=0
10:07
I, =N.

A typical application of the logistic equation is a widespread population growth model,
in which the growth rate is proportional to both the current population and the number
of available resources, originally due to Pierre-Francois Verhulst in 1838. The Verhulst
equation was published after reading Verhulst Thomas Malthus’ “An Essay on the
Principle of Population” [11]. Verhulst obtained the logistic equation to describe the
self-limiting growth of a biological population. The equation was rediscovered in 1911
by A. G. McKendrick for bacterial growth in broth and experimentally tested using a

technique for non-linear parameter estimation.

11
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Figure 2.2 : SI outbreak showing logistic grown.

After finding the equilibrium points, the stability analysis of these equilibrium points
can be done. The equilibrium point / is an unstable and the equilibrium point /; is a

stable equilibrium point by the [6].

One can see the solution curves of the SI system given by (2.1)-(2.2) in the Figure 2.2,
where the horizontal axis represents time, while the vertical axis represents susceptible
and infective populations. This figure shows the change in the number of susceptible
and infected people over time. In addition to this, when the parameter 3, which is
called the contact rate increases the infected human population grows rapidly, and the
same ratio decreases in the susceptible population. So, if parameter f in the ST model

decreases the spread of the disease decreases accordingly.

So, in the Figure 2.2, the susceptible population in the S model decreases over time
while the infective population grows logistically, therefore the disease spreads and all

population is infected over time.

12



2.2 SIR Model

The SI model express the spread of disease when infected people do not get treatment.
But normally infected people may recover and become healthy. To consider such case
we analyse the model with S, I, R where R represents the recovered population or at

some studies it is called the removed population.

This outbreak model has very different dynamics. While the susceptible class
always decreases independently of the initial condition the recover class always
increases independently of the initial condition. In addition, the infective class either
monotonically decreases to zero, depending on the initial condition, or it increases
non-monotonously to reach the top point first and then monotonically decreases to

zero. This topic is mentioned the work of (Martcheva, 2010) [6].

In this section, one of the most commonly reviewed versions, SIR, will be discussed.
In my model here, I also add the natural and disease-related deaths. On the other
hand, the SI model in the subsection 2.1 does not contain any of these. The susceptible
individuals S becomes infected and stay infected with no chance of recovery. Everyone

in the population are infected after a while in this model.

In this model, individuals leave the susceptible compartment in rate S and enter the
infected compartment. Also, they can be leave from the susceptible compartment
by dying in a natural way at the rate of d. Infected people can be treated and
separated from the infected class at the rate of «, or they can be leave by natural
death or disease-related death at the rate of g. In the very well-known SIR model, total
population enter in the susceptible compartment at the rate of . For convenience, let’s

write YN = A.

Therefore, the diagram should be like this;

BIS

N ol
A S 1 R

L]

dS (d+q)1 dR

Figure 2.3 : Transfer diagram of SIR model.
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Let us write the system of the differential equations [10, 12];

s BIS

W AP s 2.4
dt S+I+R ’ (24)
- BIS

G __ PP aror—al 25
4 - Ssyier _Wtol-al (23)
dR

9N ol —dR. 2.6
7 o (2.6)

We assume that the population size N = S+ I + R is constant,

dN dS . dl . dR
dt dt dt dt’

Let us substitute the equations (2.4), (2.5) and (2.6) in the above equation.
dN IS IS
aN L BIS e BIS
dt S+I+R S+I+R

dN
— =A—dN —qgl
dt 1

The reader should be careful not to confuse the parameter d and differential d. It can

—(d+q)I —a+ ol —dR

be said that population is constant, if A = dN — gl. Since the system is non-linear, we
need to write the Jacobian matrix to do the stability analysis. Then the stability of the

equilibrium points can be investigated by substituting in the Jacobian matrix.

Let us find the equilibrium points of the system;

ds BIS

QoA PP s

ar 0T AT g B0
dl BIS
Y0P Gr—al=0
dr Stiir Wtol-al=0,
dR

— =0=al—dR=0.
d *

Solution of these equations are given in the table (2.1).

Equilibrium Points | Description
A Disease-free equilibrium point. The only non-zero
E() - (E’()’O) . . . . A
population is susceptible human population at ‘.
Endemic Equilibrium point which exist d + ¢+ a < 8 and
E*=(S*,I",R*) |4<B.
dg—PB)’ d+a)d+g+a) ’ d__

Table 2.1 : Equilibrium points of SIR model.

Let us write the Jacobian matrix of the system.
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ISP 1B ISB 1B ISP

—d+ _ _ P
(S+I+R? (S+I+R) (S+I+R? (S+I+R) (S+I+R)?

= B, P g B TiB P
(S+I+R?2 ' (S+I+R) i (S+I+R?2 " (S+I+R) (S+I+R)?

0 a —d

Now we can investigate stability analysis of the equilibrium points.

A
1. Equilibrium point Ey = (E’ 0,0)
Let us do the stability analysis by substituting the disease-free equilibrium point in

the Jacobian matrix.

—d -B 0
JE))=| 0 —d—g—o+B O (2.7)
0 o —d
Eigenvalues of this matrix are,
A = —d,
A =—d,

A=-d—q—a+p.

If we look at the eigenvalues which are found, it can be said that the eigenvalues A,
and A, are negative. But the eigenvalue A3 becomes negative when the condition

B

— <1 2.8
d+qg+o (2.8)

is satisfied. In this case, all eigenvalues will be negative thus the equilibrium point

Ey is called a stable equilibrium point.

So we can say that,

__ B
d+q+oa’

Ry is a threshold value. When it is less than 1, the eigenvalue is negative therefore

Ro (2.9

the equilibrium point is stable, so the disease will disappear. But if it is greater than
1, as the eigenvalue will be positive,the equilibrium point will be unstable, therefore
the disease will spread. When the flow passes from stable to unstable equilibrium

points or vice versa, Ry will be equal to 1, when it happens we call it bifurcation.

If we look at the basic reproduction number, it can be said that the basic
reproduction number is the ratio of an individual becoming infective to the by sum

of the proportion of individuals who enter treatment, the natural death rate and the

15



disease-related death rate. The interpretation is very straightforward: the rate of
infection is greater than the rate of the sum of natural death, disease-related death

and transmission rate.

. Equilibrium point E* = (S*,I*, R*)
Now, let us do the stability analysis by substituting the endemic equilibrium point

in the Jacobian matrix.

3 I's*B 3 B r's*B B g r'sB
(S*+1*+R*)2  (S*+I*+R*) (S*+1*+R*)2  (S*+I*+R*) (S*+1I* +R*)?
(S*+I +R) T (S*+I"+R") 1 (S*+I+R*)?  (S+I*+R)  (S*+I*+R)?

0 [0 —d
(2.10)

from which we can write the characteristic polynomial

P(A) = (A +d)(A* + A +hy) (2.11)
where we have defined,
_dB—-q)
= a+d ’
by~ dd+g+a)g—p)d+q+o—p)
. Ba+d) '

As seen in Table 2.1, the equilibrium point E* exist if

q<pB (2.12)

and

B

=—>1 2.13
d+q+o 2.13)

Ro

It is clear that i1 and h; are positive according to (2.12), (2.13) and also it is obvious

that A; = —d < 0, in addition we also know that
M+ A3 = —hy,

Mz = hy.

So, the other two roots of this characteristic equation (2.11) are negative. For more
detailed calculations, see [13]. For the existence of this equilibrium point and
more detailed information the reader may look at (Martcheva, 2015)’s and (Britton,

2012)’s work [6,10].
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Basically, for the existence of the equilibrium point E*, the threshold value must be
greater than 1 Ry > 1. In this case, all eigenvalues of the Jacobian matrix (2.10) are
negative. Therefore, according to the Theorem 1.2.1 the equilibrium point E* is a

locally asymptotically stable for Ry > 1.

—— Susceptible Population Infective Population

Recovery Population

0.8

0.6

0.4 \

0.2

10 20 30 40 50

Figure 2.4 : SIR model when 8 =0.28, ¢ = 0.14,A = 0.015,d = 0.01,4 = 0.002

The graphic that appeared in the numerical solution is given by assigning certain values
to the parameters of the well-known S/R model in Figure 2.4. In this graph, the
horizontal axis represents the time, the vertical axis expresses susceptible, infective
and recovery populations at time ¢. The graph is plotted when the threshold value is
Ry < 1,therefore the disease first spreads and then decreases. Reader can see [14] for

more details.

2.2.1 Bifurcation Analysis

In this section, we shall examine bifurcation analysis of the well-known S/R model. As
is known, bifurcation occurs when the threshold value is Ry = 1. The equilibrium point
is locally asymptotically stable by Theorem 1.2.1 when the threshold value Ry < 1, and

the unstable state occurs when the threshold value is Ry > 1.
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2.2.1.1 Castillo-Chavez and Song Theorem

Castillo-Chavez and Song bifurcation theorem is a useful method in determining the
direction of the bifurcation at critical point which is called basic reproduction number

Ro.

Theorem 2.2.1 (Castillo-Chavez and Song [6]). Consider the following general system
of ODEs with a parameter ¢:

% = f(x,9), fiR"“R—R", f € C*(R"xR) (2.14)

where 0 is an equilibrium point of the system. Assume the following conditions:

dfi
8xj

above around the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of

Ay. of = Dyf(0,0) = (=—(0,0)) is the linearisation matrix of system that we define

o, and other eigenvalues have negative real parts.

As. The matrix o/ has a non-negative right eigenvector w and a left eigenvector v each

corresponding to the zero eigenvalue.

o Z vkww.ﬁ(o 0) (2.15)
ki, j=1 ’8x,-axj 1E
Y 02 fi
b= kél kaim((),()), (2.16)

where fy is the kth component of f.

The local dynamics of around 0 are totally determined by a and b.

i. a>0,b>0. When ¢ <0with|9| < 1, 0is locally asymptotically stable, and there
exists a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and there

exists a negative and locally asymptotically stable equilibrium;

ii. a<0,b<0. When ¢ <0 with || < 1, 0is unstable; when 0 < ¢ < 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a>0,b<0. When ¢ <0 with |¢| < 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ < 1, 0 is stable, and a

positive unstable equilibrium appears;

18



iv. a<0,b>0. When ¢ changes from negative to positive, 0 changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Farticularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ =0. Ifa <0

and b > 0, then a forward bifurcation occurs at ¢ = 0.

The proof of the theorem can be found at [15].

Remark. In practice, the following two observations are important.

1. Infact, the equilibrium point O by the theorem (2.2.1) is the disease free equilibrium
point and ¢ is one of the parameter of the basic reproduction number Ry, also the
critical value of ¢ is value of parameter which makes the basic reproduction number

Ro=1.

2. It is known that if the disease free equilibrium point has positive entries, the right
eigenvector w need not to be non-negative. It means components of the right
eigenvector could be negative that correspond to positive entries in the disease free
equilibrium point. In addition, components of the right eigenvector that correspond

to zero entries in the disease free equilibrium point has to be non-negative [6].

We set S = x, I = xp, R = x3. By calling the system of equations as x = f(¢) we shall

write (2.4)-(2.6) as follows in therms of the new variables:

ﬁxlxz
AN g
h itx+xs)
ﬁxl)CQ (2.17)
f (X1 + 2+ x3) (d+q+ o),

J3 = 0xy —dx3.
The parameter ¢ which is given in theorem (2.2.1) is represented by B with critical
value obtained from Ry = 1,
B=d+q+a.
The disease free equilibrium point of this model is [x] = %,x} = 0,43 = 0]. The

linearisation around the disease free equilibrium evaluated at ﬁ is given by above

—d -0
d=1 0 —-d—g—oa+p O
0 a —d
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Eigenvalues of this matrix are,

A =—d,
A= —d,
A3 =0

A3 = 0 is a simple eigenvalue of D, f. The right and left eigenvectors can now be

calculated to use in the theorem.

The right eigenvector w corresponding to the zero eigenvalue is found as

_dtata d
a 7a7 )

w=(
whereas the left eigenvector v corresponding to the zero eigenvalue is evaluated as
v=(0,1,0).

The second derivatives are evaluated at the disease free equilibrium (S,7,R) = (4,0,0)

and with B = J.
%f,  9%fp  (d+q+a)d
8)613)62 N 8x28x1 n A
%f {
0x20B
By using these derivatives, a and b are found as follows:
9% f d d
= =1)(=)(1)=—=>0
T598" = QM) =5 >0
9*f2 9*f2 ((d+g+a)d)?
— =-2 0.
a 8x1 8x2 vawiwz + 8x28x1 22w oA <

It is clearly seen that @ < 0, b > 0. This shows according to the condition iv of the
theorem 2.2.1, the sign of at least one eigenvalue of the matrix (2.7) changes from
negative to positive. So the equilibrium point Ey becomes unstable. When Ry < 1,
the equilibrium point E* does not exist because its components are negative. When
Ry cross the value 1, the negative unstable equilibrium point E* becomes positive and

locally asymptotically stable.
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2.3 SIS Models

In the SIR model which we have examined in the previous subsection, the recovering
individuals leave the general population. And, they do not enter susceptible
compartment again. In the very well-known SIS model that we shall examine now,
we consider that not every disease will immunize. Therefore the infected individuals
are possible to become infected again after recovery [16]. Therefore, we do not use the
recovery class in this model. But consider the recovered infected individuals directly
transfer to the susceptible compartment. Therefore in the SIS model, population divide

into two subgroups. These are susceptible S and infected / classes.

The diagram of this model is given in the figure (2.5), Here A is the number of

ol
VRN
A S 1
BIS
[ 531
dS (d+q)I

Figure 2.5 : Transfer diagram of SIS model.

susceptible individuals enter into the susceptible compartment either by birth or

immigration. f is the transmission rate of disease. is the average of the
transmission number per day from susceptible to infected compartments when they
interact, which is called standard incidence [16]. d is the natural death rate, o is the
recovery rate and g is the disease-related death rate. So the system of the differential

equations can be written according to the figure 2.5

ds BIS

a5 _ P I 2.1
dr AR (2.18)
dl IS

ar_ P>, I 2.1
G sy @tato) (2.19)

It is assumed that the population size is constant. First we should find out which

condition must be provided for this assumption. So it is known that,

dN _dSs dl _

bt 2.20
dt dt+dt (2.20)
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Then, let us substitute the equations (2.18) and (2.19) in the equation (2.20),

dN BIS BIS

5 o, dS+ o +S+I (d+q+ ),
dN

— =A—dN —ql.

di 1

Therefore, the population size remains constant when A = dN + ¢l is provided.

Since, this system of equations is non-linear, we should do linearisation. Let us find

the equilibrium points of the system,

ds BIS
—=0=>A————-dS+al=0
dr st1 T

dl BIS
—=0=——(d I=0.
dt :>S+I (d+q+a)

Solution is determined as:

A

EO = (E:O)a

Ald+q+ ) Ald+g+a—p)
B(d+q)—q(d+q+a) qld+q+a)—(d+q)B

E* = ( ).

Then let us write the Jacobian matrix of system,

Equilibrium Point / (S,7) | Description
A Disease-free equilibrium point. The only non-zero
E() == (370) . . . . A
population is susceptible human population 4.
E* = (8%,I%) Endemic Equilibrium point.

Table 2.2 : Equilibrium points of SIS model.

IS 1B ISB SB

, T se xS T TEsE I+ -

“|ooss o B, ISB SB[ (2.21)
I+S82 1+ 1 I+8)?2 1+

Let us investigate stability analysis of the equilibrium points by substituting

equilibrium points in the Jacobian matrix.

A
1. Equilibrium point Ey = <E’O)

The Jacobian matrix is

—d o —
J(Eo):(o —d—q—a+ﬁ>' (2.22)
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Eigenvalues of matrix (2.22) are,

A= —d,

M=—-d—qg—o+p.

It is clear that the eigenvalue A, is negative. But the eigenvalue A, becomes negative

when the condition

L<1
d+qg+o

is satisfied. In this case, all eigenvalues are negative then it can be said that the
equilibrium point Ej is a locally asymptotically stable according to the theorem

(1.2.1). If

_B
d+q+a

then A, is positive. Therefore equilibrium point Ej is called unstable equilibrium

I

point.So the threshold value will be

B

= —. 2.23
d+qg+a ( )

Ry

As one can see easily the basic reproduction number R in this SIS model is the same
as in the very well-known SI/R model. The interpretation is very straightforward: the
rate of infection is greater than the rate of the sum of natural death, disease-related

death and transmission rate.

In Figure (2.6) it is shown that, when Ry < 1, the solution of the system starts from
the initial condition that adequately close the equilibrium point Ey and converge
to this equilibrium point at t — co. In other words, while the infectious individual
population size decrease to zero over time, the susceptible individual population

size is steady state.
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Figure 2.6 : Phase portrait of equilibrium point Ey = <E’O) while Ry < 1. When
A=0.03,=04,d=04,¢g=0.03, x =0.1

Therefore, it can be seen that the equilibrium point is asymptotically stable by the

theorem 1.2.1.

. Equilibrium point E* = (§*,I")

Solution of the system is found as

B A
d+(q+d)(Rp—1)’
_ (Ro—1A
d+(qg+d)(Rp—1)

*

*

So it is clear that the equilibrium point E* exists if and only if when Ry > 1.
After writing this equilibrium point, now we can investigate stability analysis of

the endemic equilibrium point £* by substituting it in the Jacobian matrix,

I's*p I's*p S*B
—d+—— o+ -
J(E*) B (I* +S*)2 (I* —|—S*)2 I* —|—S* (2 24)

— + —d—q—o—

(I*+S*)2 I* + S* +

(I*-i—S*)Z I* + S*
The characteristic polynomial of this matrix (2.24) is

P(A) = (A*+ A +hy) (2.25)
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where

hl :ﬁ_q_av
b — (d+q+a—PB)(qd+q+a)—(d+q)B)
2 = B .

We can write hy as

d+q+a)(Ro—1)((d+q)Ro—q)
Ro '

hy = ( (2.26)

Since the existence of the equilibrium point E* depends on being Ry > 1, so &y

(04
is always positive. If +a < 1, one can see that 41 > 0. And the sum of the

B
eigenvalues are negative. A, > 0 and A + A, < 0 all eigenvalues of matrix (2.24)
are negative. Therefore, endemic steady state equilibrium point E* of the system is

locally asymptotically stable by the theorem (1.2.1).

o
If & > 1, one can see that 71 < 0. And the sum of the eigenvalues are positive.

Az >0 and A; + Ay > 0 all eigenvalues of matrix (2.24) are positive. Therefore,

endemic equilibrium point is an unstable equilibrium point.

\ o NG
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A
Figure 2.7 : Phase portrait of equilibrium points Ey = ( E’O) and E* = (S*,I*) while
Ry>1. WhenA=0.03,3=0.7,d=0.4,4=0.03,a =0.1

In Figure (2.7), it is shown that when Ry > 1 the solution of the system starts from

the initial condition that adequately closes the equilibrium point E* and converges to
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this equilibrium point at # — c. In other words, the infectious individual population
size increases when the susceptible individual population size decreases. Hence, it
can be seen that the equilibrium point E* is asymptotically stable according to the
theorem (1.2.1). Also, the flow of the system converges to equilibrium point £* and
the flow moves away from the equilibrium point Ey and this equilibrium point is called

an unstable equilibrium point.

2.4 Prey-Predator Models

In this section, we will examine the of prey-predator equations, also known as
Lotka-Volterra equation. In this type of model, we have two types of population. One

of them is prey and the other is a predator.

The Lotka—Volterra predator-prey model was initially recommended by Alfred J. Lotka
in 1910. In 1925, Lotka used the equations to analyse predator-prey interactions in his
book Elements of Physical Biology [17], and reproduce the equations that we know
today. Vito Volterra, who was interested in the statistical analysis of fish catches in
the Adriatic, independently investigated the equations in 1926 [18]. The equations are
based on the investigation that the predator-prey dynamics are often oscillatory. More
detailed explanations are described by (Martcheva, 2015) in the reference [6]. Also,
the Lotka-Volterra model makes some assumptions for the environment and evolution

of the prey-predator populations:

* The prey population always can find sufficient food.
* The food supply of the predator population depends on the prey population.

* The environment does not change in favor of a species, in addition to genetic

adaptation is slow enough.

If we explain the prey-predator model a little more, we can say that if there is
no predator in the environment, the number of prey will gradually increase. This
increment continues until the food stock of the previous ones is exhausted. We call
that carrying capacity. As a predator enters the environment, the number of prey will

decrease while the number of predators will increase for a while. Likewise, in the
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absence of prey, the number of predators will begin to decrease, and in the presence of

prey, it will continue to increase.

Then, let’s describe the model’s diagram,

VOP——— Q k--------- P QrP(l—Iz;)

J J

uQ sPQO

Figure 2.8 : Transfer diagram of Prey-Predator model.

where P represents prey and Q represents predator. We can write the system of

differential equation according to the diagram shown in figure 2.8;

dP P
g y
i vOP —uQ. (2.28)

Here, predators eat preys at the rate of s. Where v represents the growing rate of
predators. The predators die or leave from the population at a rate of u for various other
reasons. Also, K is the carrying capacity of the prey in the absence of the predator,

and r is the growth rate of the prey population.

Since the prey-predator model is a non-linear system, we should do linearisation. First
equilibrium points must be found; then, linearisation is done by finding the Jacobian

matrix. After, it can be talked about the stability analysis of the equilibrium points.

System of equation (2.27)-(2.28) has three equilibrium points. The first equilibrium
point which corresponds to the disappearance of both prey and predator is called the
extinction equilibrium point. It is given by Ep = (0,0).

The second equilibrium point which corresponds to the absence of the predator

only and existence of the prey population. This equilibrium point called the
predator-extinction equilibrium which is given by E| = (K,0).
The third and last equilibrium point which corresponds to a predator-prey coexistence

u r(Kv— u))

is given by E* — (.
is given by (v e

These equilibrium points can be seen more clearly in the Table 2.3. For more detailed
information the reader may look at again (Martcheva, 2015)’s book [6].
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Equilibrium Point / (P,Q) | Description
Ep = (0,0) Extinction equilibrium.
E; = (K,0) Predator-extinction equilibrium point.
Kv—
E* = (E, y) Predator—prey coexistence equilibrium point.
v sV

Table 2.3 : Equilibrium points of Prey-Predator Model.

Now we can write the Jacobian matrix of non-linear system of equation,

J— —u+ Py Qv
"\ -Ps —E 4+ (1+E)r—0s

To investigate stability of the equilibrium points.

1. Equilibrium point Eg = (0,0)

We can do the stability analysis by substituting the first found equilibrium point
Ey in the Jacobian matrix. This matrix also called the community matrix in some

literatures

r

J(Eo) = (_O” O> (2.29)

whose eigenvalues of matrix (2.29) are

AIZ—M
A =r

Since A; < 0 but A, > 0 this equilibrium point is called unstable equilibrium point.

Let us consider the other equilibrium points.

2. Equilibrium point £} = (K,0)

Substitution of the second equilibrium point E; in the Jacobian matrix gives

—u+Kv 0 ) (2.30)

J(Er) = < _Ks  _r

whose eigenvalues of this matrix are,

28



When we consider these eigenvalues, it can be easily seen that the first eigenvalue
: . . Kv
A1 < 0 but the other eigenvalue’s sign depends on some conditions. If — < 1, then

u
A> < 0. It can be said that the basic reproduction number is

_Kv

Ry = (2.31)

u

If Ry < 1, the number of prey increases and the prey only equilibrium point is called
locally asymptotically stable from the theorem (1.2.1). Otherwise when Ry > 1, the
number of predators increases, the number of prey decreases and equilibrium point

E is called unstable equilibrium point. If Ry = 1, bifurcation may occur.

2=

\\\\\\\\\\\\\\ =

Q

0.10 ]
0.08 \

Figure 2.9 : Phase portrait of equilibrium point E; = (K,0) while Ry < 1. When
r=07,K=0.1,s=02,v=04,u=0.3

In figure (2.9) it is seen that, when Ry < 1 for the solution of the system starts from
the initial condition that adequately closes the equilibrium point £ and converge
to this equilibrium point at # — co. In other words, when the predator population
size decreases to zero over time, the prey population size is steady state. Therefore,
it can be seen that the equilibrium point is asymptotically stable from the Theorem

1.2.1.
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Kv—
3. Equilibrium point E* = (E, %)
% sV

If the equilibrium point E* is written as;

E*_(u ru(Ro—1)
N Ksv

)7

the stability analysis can be done more easily. Hence it can be seen that, equilibrium

point E* exists when Ry > 1. Substitution of the equilibrium point E* gives

0 r(Kv—u)
JEY={ o, Ks, |. 2.32)
v Kv

The characteristic equation of matrix (2.32) is

P(A) =A%+ A+ hy

where
r(Kv—u) 2ru
hh=—1 2+
1 Kv + Kv 4
ru(Kv —u)
hy =22V M)
Kv

Let us simplify /; and A, as follows:

where Ry is given by the equation (2.31). Existence of the equilibrium point E*
depends on Ry > 1. It is obvious that #; > 0 and &, > 0 and therefore 4| + 1, <0
because A; + Ay = —hy and A; A, > 0 as LAy = hy. Thus all eigenvalues of matrix
(2.32) are negative. As a result, according to the theorem (1.2.1) the equilibrium
point E* is called locally asymptotically stable equilibrium point. And if Ry =1,

bifurcation may occur.

In Figure (2.10) it can be seen that, when Ry > 1 for the solution of the system starts
from the initial condition that adequately closes the equilibrium point £* and converge

to this equilibrium point at ¢ — oo,
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Figure 2.10 : Phase portrait of equilibrium point E* = (K,0) and
[y (u r(Kv—u)

Y

X ) while Rp > 1. When r =0.7, K = 0.3, s = 0.2,
% sV

v=0.5,u=0.1

In other words, when the predator population size increases by feeding with preys and
the prey population size decrease depend on this situation. Therefore, it can be seen
that the equilibrium point E* is locally asymptotically stable from the theorem (1.2.1).
Also, while flow of the system converges to equilibrium point £*, it moves away from

the equilibrium point Ey and equilibrium point Ej is called unstable equilibrium point.
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3. STABILITY ANALYSIS OF A MATHEMATICAL MODEL OF CRIMEAN
CONGO HAEMORRHAGIC FEVER DISEASE

3.1 Introduction

Here, we will present a mathematical model expressing the spread of Crimean
Congo haemorrhagic fever disease, by considering the effect of chickens on the tick

population.

Chickens were shown to be natural predators of ticks.  Rhipicephalus
appendiculatus (the brown ear tick) were recovered in large numbers from
the crops and gizzards of chickens which had scavenged for 30 min- 1 hour
among tick-infested cattle. Other ticks recovered were Amblyomma variegatum
(tropical bont tick) and Boophilus decoloratus (blue cattle tick). The numbers
of ticks recovered ranged from 3 to 331, with an average of 81 per chicken.
Cattle facilitated the predation of ticks by certain behavioural actions. Chickens
also picked up both engorged and unengorged ticks seeded on vegetation, but

unengorged ticks were preferred [19].

In the nature, birds and chickens eat ticks. They keep many creatures, especially cattle,
away from them. Therefore, birds are natural predators of ticks. Veterinarians around
the world used the tick control method for cattle. Chickens are natural predators of
ticks that feed on cattle, so chickens can be used as part of the tick control plan. If
chickens are allowed to access pastures, they can eat a significant number of insects,
especially ticks. Ticks climb the grass and wait for a suitable host. Thus, ticks that
climb to the top of the grass can be noticed by chickens and eaten. Large ticks are easily
eaten by chickens. This issue has been tackled more extensively by Sahito (2013)
in [20].

Let us give some more information about the ticks, they have three stages after

hatching. These are larval, nymph and adult stages. If an adult female tick is infected,

then the Crimean-Congo haemorrhagic fever (CCHF) virus can pass into the eggs after
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mating. Then ticks hatch as larvae and they are fed by the blood of small mammals and
birds [21]. If they do not have CCHF virus, they can get CCHF virus from their hosts.
After the larvae stage, they turn into nymphs. Nymphs also engorge by the blood of
small mammals and birds and may get CCHF virus from their hosts. After the nymphs
stage, they turn into adult female or male ticks. Adults are fed by blood of cattle to
mate and lay eggs and may get CCHF virus. Only at the adult stage, a tick can bite and
feed on humans and transfer CCHF virus [22]. People living in rural areas where the
reproduction rate of ticks is more are likely to be exposed to bites of ticks. There are

several ways to be protected against tick bites.

* Precautions like wearing long-sleeved clothing and trousers should be taken during

trekking or fieldwork.

* Trouser cuff should be inserted into the socks during the periods when ticks are

dense.

* While hiking, care should be taken while walking in the middle of the paths because

ticks are usually found under the leaf, close to the soil.
* Insect repellent sprays can be a preventive method for ticks and other insects.

¢ Ticks on animals should not be removed with bare hands. If the tick carries a virus,
the disease can be transmitted by contact with the blood or body fluid of the host

animal.

 Care should be taken while applying pesticides in the fields during the breeding

time of ticks.

» With the possibility of tick bites, animals should be given parasite vaccines in a

timely manner.

Crimean Congo haemorrhagic fever disease was first described in the 12th century
in Tajikistan. During the years 1944-45, it was often seen among the Soviet soldiers
who helped collect products on the Western Crimean steppes in the Crimean region of
Russia [23]. Congo virus was detected from a patient with a fever in Zaire in 1956. In
1969, Congo virus and Crimean haemorrhagic fever viruses were identified to be the

same virus, and the disease was renamed Crimean-Congo Haemorrhagic Fever. The
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disease first attracted attention in Turkey in 2002, and in 2003, a definitive diagnosis
was made. The cases of Crimean Congo haemorrhagic fever are more common in the
spring and summer, beginning from the time ticks are activated. The Crimean Congo
Haemorrhagic Fever cases, which attracted attention for the first time around Tokat
province, are mostly concentrated in the north of Central Anatolia, the Central Black
Sea, and north of Eastern Anatolia. It is mentioned by (Tartar, Balin, Akbulut and
Demirdag, 2019) in reference [24].

According to data from the Ministry of Health of Turkey Crimean-Congo
haemorrhagic fever begin to appear in the spring with the fatality rate hover around
4-5% in Turkey. Considering the incidence of cases by years, it can be mentioned that
there is an increase and decrease tendency and the highest case was 1318 individuals
in 2009. Although 343 Crimean Congo haemorrhagic fever cases were identified in

2017, it still remains important in Turkey.

3.2 Problem

This study investigates the effects of chickens on ticks within the framework of the
spread of the disease. We examine three types of epidemiological models in the thesis;
Tick Logistic Growth - Chicken Logistic Growth Model, Tick Constant - Chicken
Logistic Growth Model and Tick Logistic Growth - Chicken Constant Model. We
first consider the growth of both tick and chicken populations as the logistic growth
equation. We analyse this model in section 3.2.1. Then we consider the growth of
the chicken population as logistic growth; details are given in section 3.2.2. Finally,
we consider the growth of ticks as logistic growth, the work of which is given in
detail in section 3.2.3. We use a system of four ODE’s to represent the interactions
between infected and susceptible populations of humans and ticks. We add a fifth
ODE which models the dynamics of a chicken population and its effect on the ticks.
The model assumes finite total population of humans which is denoted by N, and finite
total population of ticks are represented by 7. The human population is mutually
divided into two sub-populations. These are the susceptible class which is represented
by S and the infected human class which is represented by /. Similarly we subdivide
the tick population into susceptible and infected ticks compartment, they are denoted

by 75 and T;, respectively. The chicken population is denoted by B.
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Then, we do the following model assumptions:

Crimean Congo haemorrhagic fever is an SIS model for humans; there is no
immunity on the recovery. Someone with treatment can be infected again when

bitten by a tick carrying the virus.

The age structure is not included in the model because there is no age group
specifically exposed to Crimean Congo haemorrhagic fever disease. Only the

people living in rural areas may be exposed to this disease are included in the model.

All ticks are considered in the model are adult ticks and also somehow infective

ticks have no way of recovering and gaining immunity.

All parameters are constant. In reality, the parameters depend on the region being

modelled, the population growth rates depends on, the season, temperature, etc.

Let us list the parameters and variables common in all 3 models for a better

understanding.

N — Total population size.

S — Susceptible human population size.
I — Infected human population size.

T; — Susceptible tick population size.
T; — Infected tick population size.

B — Size of the bird population.

A1 — Humans: Population growth.

Ay — Ticks: Population growth.

A3z — Chickens: Population growth.

Y — Recovery rate of humans.

PB1 — Transmission rate: Tick to human.

B> — Transmission rate: Tick to tick.

36



* PB3 — Transmission rate: Bird to tick.
* d — Natural death rate of humans.
* 1 — Natural death rate of chickens.

* go — Natural death rate of ticks.

q1 — Birds caused death rate of ticks.
* o — Crimean Congo haemorrhagic fever death rate of humans.
¢ r; — Growth rate of chickens.

¢ rp — Growth rate of ticks.

K1 — Carrying capacity of chickens.

K> — Carrying capacity of ticks.

3.2.1 Tick logistic growth - chicken logistic growth model

In this subsection, we consider the growth of both susceptible ticks and chicken

populations as logistic growth.

The diagram of the Tick Logistic Growth - Chicken Logistic Growth model is shown

in the figure 3.1.

Figure (3.1) represents dynamics the model. The bidirectional dotted arrows between

the boxes represent the interaction between the classes.

So, we can write the system of differential equation;

ds

Z:A1+}/I—ﬁlSTi—dS, 3.1
dl
7 = PisTi—(a+d+)1, (3.2)
dT, T
d—s =nrT (1 ——)—BTT; — B3T:B — (g0 + q1B)T;, (3.3)
t K>
dT;
i BT Ti + BT3B — (g0 + q1B)T;, (3.4)
dB B
— =rB(l——). 3.5
s ( Kl) (3.5)

The variation of the susceptible human population, S: Equation (3.1) represents the

susceptible human population dynamics. The increments of the susceptible population
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Figure 3.1 : Tick Logistic Growth - Chicken Logistic Growth Model Chart.

are shown by A; and yI. Here, A represents the number of individuals entering
the environment. 7Y represents the recovery rate of infected individuals. Terms
that cause decrements of the susceptible human population are shown by f;S7; and
dS. P represents the transmission rate of disease between susceptible and infective

individuals. And d represents the natural death rate.

The variation of the infected human population, / : Equation (3.2) represents the
dynamics of the infected human population. The source term of infected people
compartment is the term f;S7;. Individuals leave the compartment of infected
people either with the healing condition which is represented by yI, or leave with

disease-related death or natural death which are represented by o/ and dI, respectively.

The variation of the susceptible tick population, 7;: Equation (3.3) represents the
dynamics of the susceptible tick population. In this model, we write the source
term of the susceptible tick population with the logistic equation because the tick
population varies depending on the temperature of the environment, the season and the
number of nutrients in the environment. The parameters of growth rate and carrying
capacity are represented by r, and K, respectively in this logistic equation. Terms

that cause decrements of susceptible tick population are represented by B3 7,B, B T,T;,
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qoTs and g T;B. The parameter f33 is the transmission rate between ticks and chickens.

Transmission rate between ticks is denoted by ;.

The variation of the infected tick population, 7;: Equation (3.4) represents the
dynamics of the infected tick compartment. The source terms of the infected tick
population are given by B37;B and B, 7 T;. Terms that cause the decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Equation (3.5) describes the dynamics of
the chicken population. In this model we assume, the source term of the chickens as

logistic growth. Where ry is the growth rate and K is the carrying capacity of chickens.

Since, this system of equations is a non-linear system, we should do linearisation. We
must find equilibrium points first. After finding equilibrium points we should write the
Jacobian matrix of the system. Then, we can investigate the stability analysis of the

equilibrium points by substituting equilibrium points in the Jacobian matrix.

Since S+1 =N and T, +T; = T, to analyse more easily, we can write the following

equations:
dN
A —dN—al 3.6
— | al, (3.6)
dl
= =b (N-DT;— (e +d+7y)l, (3.7
dT T
— =pT(l-—)-— B)T :
7 r ( K2> (QO+QI ) ) (3.8)
dT;
d_tl = Bo(T —T))T; + B3(T — T;)B — (g0 + q1B)T;, (3.9)
dB B
@5 _ o B(1-2 3.10
& =nBi- ) G-10

The equilibrium points of the system (3.6)-(3.10) are given in the table (3.1).
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Equilibrium Points / (N,1,T,T;,B) | Description
A
Ey= (71,0, 0,0,0) Disease free equilibrium point.
A
E = (71,0, 0,0,K7) Disease free equilibrium point.
A (= - — - - -
By = Ay 0, 2(ra—qo) 0,0) Disease free equilibrium point which exist
d ) > qo.
E; = (N,I,T,T;,0) Endemic Equilibrium point.
E* = (N*,I*,T*,T;",K;) Endemic Equilibrium point.

Table 3.1 : Equilibrium Points of Tick Logistic Growth - Chicken Logistic Growth
Model.

After finding equilibrium points of the system (3.6)-(3.10) which we are shown in the

Table 3.1, we can write the Jacobian matrix of the system,

—d - 0 0 0
Tipy —d—a—Tpi—v 0 ol (N—=1)Bi 0
j=| © 0 r2—q0—Bq1 — ;(22 0 —qT
0 0 Tip> + B3 (T —2T;) B> — B(q1 + B3) — 40 ﬁ3(T—Ti33—q1Ti
0 0 0 0 - Kl”
(3.11)
Let us investigate the stability of the equilibrium points.
I : Ay
1. Equilibrium Point Ey = (7,0,0,0,0)
Aj

This equilibrium point contains only the susceptible human population N = e

Stability analysis can be done by substituting the disease-free equilibrium point E

in the Jacobian matrix,

-d -« 0 0 0
A

0 —-d—a—y 0 ﬁldl 0

J(E) =1 ¢ 0 m—q 0 0

0 0 0 —q0 O

0 0 0 0

Eigenvalues of this matrix are,

A = —d.
A2 = —qo,

A3 =r,

A4 =r2—qo,
As=—d—oa—Y.



It is obvious that, A;, A, and A5 are less than zero, A3 is greater than zero. Hence

we can say that the equilibrium point Ej is an unstable equilibrium point.

A
. Equilibrium Point E| = (71 ,0,0,0,K7)
This equilibrium point contains only susceptible human and chicken populations
A
N = 71 and B = K|, respectively. If we substitute equilibrium point £ in Jacobian

matrix, we obtain;

—d — 0 0 0
A
0 —d—a—y 0 P 0
J(Er) = d
! 0 0 r—qo—Kiqi 0 0
0 0 Ki B3 —qo—Ki(q1+B3) O
0 0 0 0 —r

Eigenvalues of this matrix are,

A‘ZZ =,
M =r—qo—Kiq,
Ay = —qo — Ki(q1+ B3),

As=—d—a—17.

It is clear that the sign of the eigenvalues A, Ay, A4, A5 are negative. If

)

—— <1, (3.12)
q0+Kiq1)

the sign of A3 becomes negative too. And the equilibrium point E| is called locally
asymptotically stable by the theorem (1.2.1). The basic reproduction number is
defined as

)

Ro=—12 (3.13)
q0 +Kiq1

If the growth rate of ticks which is represented by r; is greater than the denominator
in Ry, then, ticks in the environment increase. If Ry = 1, bifurcation may occur. If
the growth rate of ticks r; is less than the denominator in Ry, then equilibrium point

is a stable equilibrium point. In this case, flow approaches the equilibrium point, the

spread of ticks decreases. The spread of the disease also decreases correspondingly.
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Al K,
—.,0
d )

If we substitute the equilibrium point £ in the Jacobian matrix,

(FZ_QO)70,O)
rn

3. Equilibrium point E; = (

—d —o 0 0 0
A
0 —d—a—y 0 _ﬁldl 0
K _
JE)=] 0 0 do—r2 0 241 (zo )
2
K K
0 0 Kpr— qolr2 + Kof) Bs(Kp — —240)
y) 1)
0 0 0 0 -
is obtained. Eigenvalues of this matrix are
M =—d,
7(«2 =T,
A3 =qo—r2,
K
Ao =Ko — qo(r2 + 2132)7
r
15 =—d—o— Y.

Since A, > 0, the equilibrium point E; is an unstable equilibrium point.

4. Equilibrium point E3 = (N,I,T,T;,0)
The N, I, T and T; are found as

(d+ o+ TP+ 7)A
(d+a)(d+Tp)+dy’
TiBi Ay
(d+a)(d+Tp)+dy’

K> (2 — q0)
r ’
Karafr — qo(ra + KaBa)
Koraf3

N =

I

~Ni
Il Il

~.

The equilibrium point E3 exists when the necessary conditions

conditions are

* 1 >qo,

* Korafr > qo(ra +Kaf3a).

are provided. These

When we substitute the equilibrium point E3 in the Jacobian matrix, one of the

eigenvalues is found as r;. Recall that, | represents a growth
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it is a non-negative constant. As one eigenvalue of being positive is a sufficient

condition to say the equilibrium point E3 is an unstable equilibrium point.

. Equilibrium point E* = (N*,I*, T*, T;*,K})

The components of equilibrium point E* are given;

(d+a+TF B +y)A
(d+a)(d+TBr)+dy’
T B
(d+a)(d+TBr)+dy’
~ Ka(qo+Kigi —n)

r

. 1
T = 5 [qo(r2+KaBa2) + K1 (q172 + Kaq1 Ba + 12 B3) — Kara

—{(Ki(q172+K2q1B2 +12B3) + qo(r2 + K2 Ba) — Kara3n)?

—4K1K>(qo + Ki1q1 — rz)r2ﬁ2ﬁ3}l/2] :

N* =

*

T =

This equilibrium point exists if

)

g+ Kigi .
Note that this condition refers Ry > 1 (see (3.13)). As seen here, the existence of
equilibrium point E* depends on the basic reproduction number Ry > 1. Recall,
when Ry = 1, bifurcation might occur. An exchange in stability occurs between
equilibrium E; and one of the other equilibrium points. Since the existence of E*
depends on Ry > 1, the change in stability is between E| and E*. Investigation of

the stability analysis of equilibrium point E* can be done by substituting this in the

Jacobian matrix;

—d —a 0 0 0
T;'*ﬁ| 7d70677}*ﬁ177 0 (N*fl*)ﬁ| 0
2r,T*
JE)=] 0 0 r—qo—Kiq1 — [2(2 0 —q1T*
0 0 TPy + K1 B3 (T* 2T —Ki(q1 +B3) —q0 (T"=T")Bs—aqn T*
0 0 0 0 Zr
(3.14)
We can write matrix (3.14) as a block matrix;
—d —a 0 0 0
T}*B1 —d—oc—T,-*[;’.—y 0 (N*—I*)ﬁ| 0
" 2r,T* )
J(E*) = 0 0 ry—qo—Kiq) — —=2 0 - T"
K>
0 0 T B2+ K1 B3 (T*=2T")B—Ki(q1 +B3) —q0 (T"=T")Bs —qu Ti"
0 0 0 0 —n
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‘We can write

o [ —d —o
2rT*
rm—qo—Kig1 — rf{z 0 —qT"
h(E7) = B+ K1 B3 (T =2T*)B —Ki(q1 +B3) —q0 (T*—Ti")Bs — a1 Ti*
0 0 n

First, let us find the sign of eigenvalues of matrix J; (E*).

Theorem 3.2.1. [3] Let 6 = detA and T = traceA where A is a 2x2 matrix and

consider the linear system
X =Ax. (3.16)

a. If 6 <0 (3.16) has a saddle at the origin.

b. If § > 0 an 1> —48 >0, (3.16) has a node at the origin; it is stable if T < 0

and unstable if T > 0.

c. If6>0an1>—48 <0, and t#0, (3.16) has a focus at the origin; it is stable

if T < 0 and unstable if T > 0.

d. If 6 > 0and t =0, (3.16) has a center at the origin.
Note that in case (b), T > 4|6| > 0; T # 0.

The proof of the theorem can be found at [3].

Since
Trace(J1)=-2d—a—T;"B1—y<0
and
det(J)) =d*+ T afy+d(o+ T B +7) > 0,

both eigenvalues of Jj(E*) have negative real parts by the theorem (3.2.1).

Eigenvalues of Jo(E*) are

M = —ry,
27‘2T*
K
A3 = (T" =2T;") B2 — g0 — K1 (q1 + B3).

b =r—qo—Kiq —
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It is clear that the eigenvalue A; is negative. If we substitute 7* in eigenvalue A,,

we obtain

A = —(qo+Ki1q1)(Ro—1).

Remember that, the equilibrium point £* exists,when Ry > 1. So, we can say that
the eigenvalue A, is negative. Now, we can investigate sign of last eigenvalue A3.

We can write A3 as

1
Ro(q0+ Kiq1)

+ [K282 + Ro(qo — K282 + K1 (g1 +B3))]2)}1/2] .

A= [{(q0+ K1q1)*(4K1K2(Ro — 1)Ro B2 B3

It is clear that the last eigenvalue of J,(E™) is negative. As aresult, all eigenvalues of
matrix J(E*) are negative. Hence, this equilibrium point is a locally asymptotically

stable by the theorem (1.2.1).

Equilibrium points of the system has five non-negative equilibria. Ej, E; and

E; are disease-free equilibrium points and E3, E* are endemic equilibrium points.

Equilibrium points Ey and E; exists without any conditions, whereas E,, E3 and E*

exist when necessary conditions are provided. Also, Ey, E> and E3 are unstable.

Ry Sensitivity Analysis

To examine the sensitivity of Ry to each of its parameters, following Arriola and

Hyman [25], the normalised forward sensitivity index with respect to each of the

parameters are calculated:

IRy

£ IR K 1
A, =R _nof_ (wthia 1, @17
dr Ro dr r q0+q1Ki

r
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IR
07" 990 Ry dqo r (g0 +K1q1)?

40
q0

— =<

q0+Kiq1

Ae = R0 _KidRy (o +Kigi\ ([ na
K79k T Ry 0K : r (g0 + K1q1)?
Kiq1

g0+ Kig
IRy

A :&:ﬂ@:m (qo+K1Q1) (— alte >
N 9q) Ro dqy ) (QO+KIQ1)2

q1

Y

Y

_ Kiq
g0+ K191
It is seen here, Ry is most sensitive to changes in ;. An increase or decrease in rp will

bring about increase or decrease of the same proportion in basic reproduction number
Rp. One can also see that g, K; and g1 have an inversely proportional relationship with
Rp; an increase in any of these parameters will bring about a decrease in Ry, however,
the size of decrease will be proportionally smaller. In other words, if the precautions
are taken in the breeding time of ticks, the increase of infective ticks may be prevented.

Consequently, the spread of the disease can decrease.

Bifurcation Analysis

In this model, we shall examine bifurcation analysis. It is known that, bifurcation
occurs when Ry = 1. We use the Castillo-Chavez and Song bifurcation theorem (2.2.1)

which is given in the second chapter. Let us recall,

n 82
a= Z kaina gk (0,0),
ki j=1 XiOXj
; 52, (3.18)
b= k;l VWi 8)6,'3(]5 (0,0)
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from the theorem. We set S = x{, I = x», Ty = x3, T; = x4 and B = x5. Therefore

N =x1+x and T = x3+ x4. System (3.6)-(3.10) becomes

fi=A1—d(x1+x2) — 0tx, (3.19)
fo=Bixixqg — (y+d+ o)xz, (3.20)
fy = s ) (1= 25— (go 4 qras) (s + ), (3.21)
fa = Boxzxa + B3x3xs — (qo + q1x5)x4, (3.22)
ﬁzrwﬂb—%& (3.23)

Let us consider the parameter ¢ which is given in theorem (2.2.1) is represented by
r2. Here r, is the obvious choice of bifurcation parameter because basic reproduction
number R( is more sensitive to changes in r, as seen in the equation (3.17). When

Ry =1, we can write

=qo+Kiq.

A
So, the disease free equilibrium point E; of this model is (X] = 7],)62 =0,03=0,X =

0,X5 = K; ). The Jacobian matrix for the disease free equilibrium point is evaluated

—d —o 0 0 0
A

0 —-d—a—y 0 E%l 0

I=1 o0 0 0 0 0

0 0 KiBs —qo—Ki(q1+B3) O

0 0 0 0 —r

Eigenvalues of this matrix are

A =0,

A =—d,

A3 = —qo—Ki(q1+Bs),
Ay = —r1,
As=—d—a—1Y.

It is clear that A; is a simple eigenvalue of D, f. So we can write right eigenvector and

left eigenvector according to the theorem (2.2.1).

The right eigenvector w corresponding to the zero eigenvalue is
( afiA BiAr  qo+Ki(g+B3)
d(d+oty)dd+a+ty) K
47
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and the left eigenvector v corresponding to the zero eigenvalue is
v=(0,0,1,0,0).

The second derivatives in formulas (3.18) are evaluated at disease free equilibrium

A
point Ey = (71,0, 0,0,K}), and r, = 3. The non-zero derivatives are given as follows,

I’ _ P h _B I’fs _ P _ s
8)61 aX4 8x48x1 b 8)63 aX4 8)648)63 K2 ’
I’f _ PH I’f _ PH
8)638)65 aX5aX3 a 8)648)65 8)658)64 a1
°fs Y] f; Y]
ox32 Ky’ oxi2 Ky
Ffy Oy _p P*fs Oy _p
dx30xs  Ox3dxz 2 dx30xs  Oxsdx3 3
P fs  Pfa 02 f4 _ N
&X4aX5 N aX5aX4 - T 8)638)652 4 Kl7
8x38r2 ’ 8X4ar2 '

If we substitute these derivatives in a and b given by (3.18),

*fo 22 202 f3 9% f3
_—Je —JL 49 Z
0x10x4 +v2waw 0x40x1 +avWs 0x32 T VIWIWY 0x30x4

0%f; 0% f3 02 0%f;
+V3W4W3m+v3w3wsm+2"3w42 f J

a = vywiwy

0x42 0x50x3

PE PE 221 221
+ v3wswy + vawzwy + vawaws

V3w aX4aX5 8x58x4 aX3aX4 aX4aX3

43 SBX38x5 4rs 38X58x3 47 58x48X5 4 48X58X4
2

+ 2V5W5W5 8)658)65

4y
2 [—(610-1-1(1611)2—3K1(QO+K1611)/33—3K1213327

a 3 a C]1D+K q

b= yaws— 23 g3
3w 0x301) V3w 0x401 KB

are obtained. It is obvious that a < 0 and b > 0. This shows, according to the result
of iv. in the theorem (2.2.1), the stability of the equilibrium point E; is changed from
stable to unstable.

When Ry < 1, equilibrium point E is stable and components of the equilibrium point
E* are negative. It is mean, when Ry < 1, the equilibrium point E* does not exist.
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Figure 3.2 : Bifurcation diagram of the Infected Tick Population. Where K; = 1000,
qo = 0.0025, g1 = 0.0063, B3 = 0.004, K; =2, B, = 0.49.
Therefore, when Ry < 1, there only exists the disease-free equilibrium point. When
Ro > 1, the disease-free equilibrium point becomes unstable, endemic equilibrium
point E* becomes positive and stable. As a result, we can say that forward bifurcation

OoCcurs.

Simulations

Here, to better understand the stability analysis of the system we simulate the model.
Let us fix the following parameters and total human population in the system (3.6) -

(3.10) as follows:

N = 5000, r =02, = 0.75, K> = 300,
go = 0.025, B, = 0.0023, By = 0.0015, By = 0.008,
o = 0.0018, d=0011, y=0.017.

We choose the initial conditions as,
B(0) =2, T(0) =100, 7;(0) =0, 1(0) =0.

Here we shall consider various cases by choosing the rest of the parameters differently.

1. Case 1
If we choose K7 = 20 and ¢g; = 0.063, then Ry = 0.583 < 1. And if we choose
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the parameter K; = 20 and ¢; = 0.073, then Ry = 0.505 < 1. Note that because
Ry < 1 the stability will point out that the disease vanish. When the parameters are
K1 =20 and r; = 0.2, the graphic of the chicken population over time is given in

figure (3.13).

Chicken Population Over Time

Chicken

Time

) 10 15 20 25

Figure 3.3 : Chicken Population Over Time. We choose K| = 20, so that Ry < 1.

Tick Population Over Time
Tick

150 I
— ,=0.063

100
— — ¢4=0.073

50

' Time
5 10 15 20 25

Figure 3.4 : Tick Population Over Time.
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Infected Tick Population Over Time

Infected Tick
8
6 — ¢4=0.063
" — ¢4=0.073

Time
5 10 15 20

Figure 3.5 : Infected Tick Population Over Time.

Infected People Population Over Time
Infected People

1500
— ¢4=0.063

1000
— ¢4=0.073

500

' Time
5 10 15 20

Figure 3.6 : Infected People Population Over Time.

Figures (3.4), (3.5) and (3.6) show that the tick population, infected tick population
decrease and eventually vanish, which means the disease eventually dies out. Recall
that, g; is chicken-related death rate of ticks. According to figures (3.5) and (3.6)
an increase in g causes the tick population and infected tick population increase
less and vanish faster. Therefore, we can say that if we increase the frequency of
the unleashed chickens in the environment, chicken related-death rate g; of ticks

also increases. Thus, the tick population vanish rapidly.

. Case 2

If we choose parameter K1 =5 and g; = 0.063, then Ry = 2.205. And if we choose
q1 = 0.073, then Ry = 1.923. Which means as Ry > 1, the equilibrium points are
unstable. When the parameters are K1 = 5 and r; = 0.2, the graphic of the chicken
population over time is given in figure (3.7).
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Chicken Population Over Time
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Figure 3.7 : Chicken Population Over Time. We choose K| =5, so that Ry > 1.

Tick Population Over Time
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Figure 3.8 : Tick Population Over Time.
Infected Tick Population Over Time
Infected Tick
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Figure 3.9 : Infected Tick Population Over Time.
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Infected People Population Over Time
Infected People

5000
4000

3000 |

— ¢4=0.063

— ¢4=0.073

2000
1000 |
Time
5 10 15 20 25

Figure 3.10 : Infected People Population Over Time.

As we can see in the figures (3.8) and (3.9) first, the tick population increases

for a while, then it slightly decreases and eventually remains constant. Besides,

according to figure (3.10), first the spread of the disease increases due to the increase

of tick population. After, it decreases for a while due to the chicken-related death

rate g;. And eventually, the disease spreads and becomes endemic.

3.2.2 Tick constant - chicken logistic growth model

In this subsection, we will consider the growth of only chicken population as logistic

growth whereas we take the number of the ticks entering to the system as constant.

The diagram of that we call tick constant - chicken logistic growth model is shown in

the figure 3.11.

The bidirectional dotted arrows between the boxes represent the interaction between

the classes.

So let us write the system of non-linear differential equation;

ds

E=A1+Yl—l315Ti—dS,

dl

i BiST: — (o +d)I — I,

dT;
= = Ay — BT, T; — B3TsB — (g0 + q1B) T,
dT;

o BT T + B3TB — (90 + q1B)T;,
dB B

— =rB(l—-——).

dt "1 ( K])
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r1B(1 — —)
1

B
BsT:B
A T, - | T; qoTi+q1TiB
J{ BZTTE E
qoTs +q1 T,B 3
v ‘
1 S Aq
(a+a)i  PSTi ds

Figure 3.11 : Tick Constant - Chicken Logistic Growth Model Chart.

The variation of the susceptible human population, S: Equation (3.24) represents the
susceptible human population dynamics. The increments of the susceptible population
are shown by A; and yI. Here, A represents the number of individuals entering
the environment. 7 represents the recovery rate of infected individuals. Terms that
cause the decrements of the susceptible human population are shown by f;S7; and
dS. P represents the transmission rate of disease between susceptible and infected

individuals, and d represents the natural death rate.

The variation of the infected human population, I : Equation (3.25) represents the
dynamics of the infected human population. The source term of infected people
compartment is the term f;S7;. Individuals leave the compartment of infected
people either with the healing condition which is represented by I, or leave with

disease-related death or natural death which are represented by o/ and dI, respectively.

The variation of the susceptible tick population, 7: Equation (3.26) represents
the dynamics of the susceptible tick population. We write the source term of the
susceptible tick population with A,, where A; represents the number of ticks enter
the susceptible tick compartment. Terms that cause decrements of susceptible tick

population are represented by B37;B, B> T;T;, qoTy and g1 TB.
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The variation of the infected tick population, 7;: Equation (3.27) represents the
dynamics of the infected tick compartment. The source terms of the infected tick
population are given by B37;B and B, 7 T;. Terms that cause the decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Eq. (3.28) represents the dynamic of the
chicken population. We assume, the source term of the chicken population is logistic
growth equation where r| represents growth rate of chickens and carrying capacity of

chickens is represented by K.

Since S+1 =N and T;+ T; = T, to analyse more easily, we can write the following

equations:

dN

— =A;—dN—al 32

T &5 G2
dl

2 = BN =DT— (a+d)I -1, (3.30)

dr

o =M@+ aB)T, (3.31)
t

dT;

— = BT =T)Ti+ (T — T)B— (q0+ a1 B)T;, (3.32)

dB B

5 L B(1— 2. 3.33
i —nB0- ) (3.33)

All parameters in this system are non-negative constants. Since this system of
equations is a non-linear, we use Hartman Grobman theorem given in theorem (1.2.2).
We should linearise it so that we can perform stability analysis. As in the previous
model examples, we must substitute the equilibrium points of the system (3.29)-(3.33)
in the Jacobian matrix. Then we can talk about the behaviour of the flow locally, near
the equilibrium points according to the sign of the eigenvalues by applying the Hartman

Grobman theorem. Equilibrium points of the system is given in the table (3.2).

Equilibrium Points / (N,1,T,T;,B) | Description
A A
Ey = (71, 0, —2,0, 0) Disease free equilibrium point.
q0
m T T Endemic equilibrium point which exist
Ey=WN,LT,T,0) when BrAs > go?.
E* = (N*,I",T*,T;*,K;) Endemic Equilibrium point.

Table 3.2 : Equilibrium points of the Tick Constant - Chicken Logistic Growth Model
Table.
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Jacobian matrix can be written as follows,

—d - 0 0 0
Tpr —d—a—-Tpi—y 0 (=I+N)B 0
j=1 0 0 —q0—Bq 0 T
0 0 T +BBs (T —T:)B2—qo—Bq1 — T2 — BB3 (T*Ti)%B*qlTi
0 0 0 0 =20

K

Let us investigate the stability of each equilibrium points.

AL A
1. EquﬂﬂnhnnI%ﬁntEb::(7530,—2,OJD
q0

This equilibrium point contains only human and susceptible tick populations N =

A A
andT =22 respectively.
d 40

Then let us do the stability analysis by substituting the disease-free equilibrium

point Ey in the Jacobian matrix,

—d —a 0 0 0
A

0 -d—oa—vy 0 PiA 0

d A
g1/
JE)=1| 0 0 —4q0 0 —?
A A

0 0 0 —qt P2 Pl

q0 q0

0 0 0 0 r

Eigenvalues of this matrix are

A = —d,

X2 = —qo,

M=,

AM=—-d—a—1Y,

hs = _q0° — By
q0

It is clear that the eigenvalues A, A, A3 are non positive and the eigenvalue A3 is
grater than zero. Therefore, we can say that Ey equilibrium point is an unstable

equilibrium point.
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2. Equilibrium Point Ey = (N,1,T,T;,0)

Components of the equilibrium point £ are given;

qo(qoP1 — Ba(d + ot + 7)) A1 — B1 a1 Az

N= qo(d + a)(qoP1 — dB2) — dqoBay — (d + &) B1 o A2’
I— BiA1(BaA2) — qo°
qo(d + a)(qoP1 —dB2) — dqoBay— (d + &) B1 o A2’
r="2
q0
oM g0
g B

There are some conditions for the existence of the equilibrium point Ej. If
these conditions for existence of equilibrium point E; are satisfied, one of the
eigenvalues which are obtained by substituting in the Jacobian matrix is found

positive. Therefore, this equilibrium point is also unstable.

3. Equilibrium Point E* = (N*,I*, T*  T;* K}

Components of the equilibrium point E* are given;

. [d+a+TBi+7A
N = )
(d+a)(d+T*Br)dy
. Ti*BiAy
(d+a)(d+TBi)+dy’
M
qo+1Kqr’
1
T = — [(q0 + K141)(q0K1(q1 + B3)) — B2z

2(q0+ K1q1)B2
- \/(CIOK%)Z(QO +Ki(q1+ B3)) — 2(q0 + K191 (g0 + K1 (g1 — B3)) Aa + B2 Ad? | .

If we select all the parameters for the components of the equilibrium point E* as
non-negative, we see that 7;* is positive. N* and I* contain 7;*. Therefore, I* and
T;* are also positive. Besides, it is clear that 7 is positive. Let us substitute the

equilibrium point in the Jacobian matrix;

—d - 0 0 0
T,'*ﬁ] —d—(X—’E*B]—’)/ 0 (—]*-‘rN*)ﬁ] 0
JE)=] O 0 —q0—Kiq1 0 - T*
0 0 T'Ba+KiBs (T" =207 )B—Ki(q1+B3) —q0 T*Bs—Ti*(q1+Bs3)
0 0 0 0 —r

The matrix J(E*) is can be written as block matrix,
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—d —o 0 0 0
T —d—o—TBi—y 0 (N*=TI")Bi 0
JED=1 o0 0 —q0—Kiq 0 T
0 0 T B+ KiB3 (T =2T7")B— Ki(q1+B3) —q0 T"B3—Ti"(q1+ B3)
0 0 0 0 —n

We can write

o [ —d -
HE )—<Ti*l31 —d—a_Ti*Bl_Y)7

—qoK1q1 0 - T"
L(E*)=|T*B+Kifz (T"=2T;7")B—Ki(q1+B3) —qo0 T*Bs—T;"(q1+3)
0 0 —nIn
Since
Trace(]1 (E])) =-2d—a— Tz*ﬁl —r< 0
and

det(J\(E1)) = d* + T af +d(a+T;*Bi +7v) > 0,

according to the theorem (3.2.1) both eigenvalues of the matrix J;(E*) have

negative real parts. Let’s write the characteristic polynomial of J,(E™)

P(A) = (A+qo+Kiq1)(A+r1) (A +q0+Ki(q1+B3) + B 2T —T7)).

Eigenvalues of this matrix are

M =—q0—Kiqi,

A,z:—l"l,

A3 =—q0—Ki(q1+B3) — BT = T7).

It is clear that the eigenvalues A; and A, are negative. If 27;* > T* is provided, all
eigenvalues are negative. Then, the equilibrium point £* is called stable equilibrium

point.

Otherwise, if 27;* < T* and qo + K1 (q1 + B3) > B2(2T;* — T™*), all eigenvalues will
be negative again and equilibrium point E* is called stable. And if 27;* < T* and

qo+Ki(q1+ B3) < B2(2T;* — T*), equilibrium point is a unstable.
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3.2.3 Tick logistic growth - chicken constant model

Here we consider the problem within the framework of the numbers of entering to the

ticks and chicken populations as constants.

The diagram of the tick logistic growth - chicken constant model is shown in the figure

(3.12)

A3

Bl uB

T — BB

nT(1—— T, - o T qoTi+q:1T:B
K2 l BZT:le FN
qoTs +q1T;B 1
v ‘
1 S Aq

(o+d)I BiST; ds

Figure 3.12 : Tick Logistic Growth - Chicken Constant Model Chart.

Let us write the system of non-linear equation according to figure 3.12;

ds

o = MVl = BiSTi—dS, (3.34)
dl

= = PiSTi—(a+d+)1, (3.35)

dT, T

—ds =nT(1—-—)=BLT;— BT:B— (90 +q1B)T;, (3.36)
t K>

dT;

— =BT+ BsTiB— (q0 + 1 B)T; (3.37)

dB

— — A3 —uB. 3.38
ar e H (3%

The variation of the susceptible human population, S: Equation (3.34) represents the
susceptible human population dynamics. The increments of the susceptible population
are shown by A; and yI. Here, A; represents the number of individuals entering

the environment. 7Y represents the recovery rate of infected individuals. Terms that
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cause decrements of the susceptible human population are shown by B;ST; and dS. B
represents the transmission rate of disease between susceptible and infected individuals

and d represents the natural death rate.

The variation of the infected human population, 7 : Equation (3.35) represents the
dynamics of the infected human population. The source term of infected people
compartment is the term f;S7;. Individuals leave the compartment of infected
people either with the healing condition which is represented by yI, or leave with

disease-related death or natural death which are represented by o/ and dI, respectively.

The variation of the susceptible tick population, 75: Equation (3.36) represents the
dynamics of the susceptible tick population. In this model, we write the source term of
the susceptible tick population with the logistic equation because the tick population
varies depending on the temperature of the environment, the season and the number
of nutrients in the environment. The parameters growth rate and carrying capacity
are represented by r, and K5, respectively in this logistic equation. Terms that cause
decrements of susceptible tick population are represented by B37,B, B, T;T;, qoTs and
q1T;B where the parameter 3 is the transmission rate between ticks and chickens.

Transmission rate between ticks is denoted by f3;.

The variation of the infected tick population, 7;: Equation (3.37) represents the
dynamics of the infected tick compartment. The source terms of the infected tick
population are given by B37;B and B,T,T;. Terms that cause decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Eq.(3.38) represents the dynamics of
the chicken population. In the model, we represent the source term of the chicken
population with a constant term Asz. Loss due to death of the chicken population is

represented by the term uB.
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Since S+1 =N and T;+ T; = T, to analyse more easily, we can write the following

equations (3.34)-(3.38)

dN

—— =A—dN—al 3.3

e~ * 9
dI

dT T

Tl = =)= B)T 341
g =nTU=g) = (@+aB)T, (3.41)
dT;

— =BT =T)Ti+ (T = T)B— (q0+ 1 B)T;, (3.42)
dB

— =A3—uUB. 3.43
a2 H G4

All parameters in this non-linear system of equations are non-negative constants.
Since, this system of equations is a non-linear system, we will again use the Hartman
Grobman theorem and to use the theorem similarly what have been done in the previous
cases, we examine the behaviours of the linearised system in the neighbourhood of
the equilibrium points. so that we shall investigate the local stability of the problem.

Equilibrium points of the system are found by solving the following equations:

dN
— =0=>A;1—dN—-al =0,
dt
dl
T =0=BI(N-DT;,— (e +d+7y) =0,
dTr T
0= nT(1— ) — B)T =0
7 T ( Kz) (90+q1B) ,
dT;
L= 0= BT~ )T+ s(T ~T)B~ g0+ 41B)Ti =0,
dB
— =0=>A3—uB=0.
i 3—H
Equilibrium Points / (N,1,T,T;,B) | Description
A
Ey= (71, 0,0,0, f) Disease free equilibrium point.
E* = (N*,I*,T*,T;*,B¥) Endemic Equilibrium point.

Table 3.3 : Equilibrium Points of Tick Logistic Growth - Chicken Constant Model.

Equilibrium points are given in the Table (3.3).
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Stability Analysis

Let us write the Jacobian matrix,

—d - 0 0 0
T —d—a-Tpi—y 0 . (N=D)B 0
J= 0 0 rngqlfqonrIZ(— 0 —q1T
>
0 0 T:B, + Bf3 (T—T)B2—qo—B(qi+B3) (T—T)Bs—aqiT;
0 0 0 0 “u

Let us investigate the stability of the equilibrium points.

A A
1. Equilibrium point Ey = (71,(),0,0, f)
This equilibrium point is disease-free equilibrium point because, it contains only

A A
human population and chicken population N = 71 and B = ﬁ respectively.

Then let us do the stability analysis by substituting the disease-free equilibrium

point Ey in the Jacobian matrix,

—d —a 0 0 0
A
0 —-d—a—y 0 ﬁldl
A
J(Eo)=| O 0 noa-TF 0 0
A A
0 0 B3As (14 B3)As+qou 0
u u
0 0 0 0 —u

Eigenvalues of J(Ey) are

A= —d,
l=—d—q—,

13:_,’-17

o — 173+ qopt + B3 A3
4 — — ’

U

1A3
As = —610+F2—q7-

It is obvious that eigenvalues A1, 45,3 and A4 are negative. But the eigenvalue As

becomes negative when
r
2H1 <
qot +q1A3

is satisfied. In this case, all eigenvalues will have negative real parts then we

1

can say that the disease-free equilibrium point Ey is called locally asymptotically
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stable according to theorem 1.2.1. Hence, the disease dies out and tick population
decrease. If
U
qol + q1A3
then As is positive. Then disease-free equilibrium point Ej is a unstable equilibrium

> 1

point. So, we can say that the threshold value of this model is

U

Ry= —2" .
qoM +q1A3

(3.44)

As a result, when Ry < 1, the equilibrium point Ej is called locally asymptotically
stable according to the theorem (1.2.1). In this case, the flow gets closer to the
equilibrium point over time. If Ry > 1 the equilibrium point is called unstable and

flow goes away from the equilibrium point Eq. Besides if Ry = 1 bifurcation occurs.

. Equilibrium point E* = (N*,I*,T*, T;*, B¥)
The components of this endemic equilibrium point are given;

(d+a+TBi+7)A
(d+o)(d+T*B)+dy’
T BiA
(d+a)(d+T7Bi) +dy’
T — K> ((r2—qo)p —611/\3)7

U

1
TF=—— 4+ Ko Bo) + 1 B3) Azt + (gors + Ko (go — 7 2
TN T [(q1(r2+K2Ba) + r2Bs) As i + (qora + Ka(qo — r2) Ba) 1

—{ W (—4K2r2BaB3As(q1As + (qo — r2) 1) + [q1 (r2 + K2 o) Az + Kago ot

+r2(B3As + ot — KaBot)?) 12
_As
o

The endemic equilibrium point E* exists when the conditions

N* =

*

B*

* U >qiAs,

.L>l

qol +q1A3
are provided. Note that last condition refers Ry > 1(see (3.44)). When we substitute

endemic equilibrium in Jacobian matrix,

—d - 0 0 0
T*By —d—a—-T"Bi—vy 0 (N*—=1")B 0
2nT*  qiA3
. 0 0 r—qo— - . 0 —qT*
= N (ar + B)A )
+
0 0 E*Bﬁ% T*ﬁzfqonTi*ﬁzf% T*Bs— T3 (g1 + Bs)

0 0 0 0 —u
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is obtained. The matrix J(E™) is can be written as a block matrix;

—d —a 0 0 0
T*'Br —d—a—T*Bi—y 0 (N*=I")B 0
J(E*) = 0 0 r2—qo— 2;2{3"* - q:\3 0 - T
0 0 T}*BZ+% T*ﬁzqu*ZTi*ﬁzf(ql-'_“& T*Bs—Ti*(q1+ B3)
0 0 0 0 —u

We cab write

and
2 —qo— 22: qlli\3 0 —qT*
*) — A + B3)A
h(E7) 1B 4 P23 T*ﬁz—Qo—2Ti*[32—((hf3)3 T*Bs — T (q1 + B3)
0 0 —H
Since
Trace(J;1(E*))=—-2d—o—T;"B1 —y <O,
and

det(Jy(E*)) = d* +da+dT; B + T;*apy +dy > 0

according to theorem (3.2.1) both eigenvalues of matrix J; (E*) have negative real
parts. Now, let us investigate sign of the eigenvalues of matrix J,(E*). Eigenvalues

of this matrix are

)“1 =i,
A 2T qiA3
2=r2—qo— -

1 K u
A=B(T*—T, )_QO_M'

u
It is clear that the eigenvalue A; is negative. If we substitute 7%, T;* and Ry in

eigenvalues A, and A3, we obtain

A — (Ro—1)(q1A3 +qopt)
2 = — 9

u

1
- Az +qopt)*[4K>(Ry — 1)R A
RON(Q1A3+qOu){<QI 3+ qoht)"[4K2 (Ro — 1)RoP2 Azt

+ (q1RoA3 + K> ot + Ro(B3A3 + ot — Kzﬁz#))z]}l/z-

A3 =

64




Recall, the equilibrium point E* exists, when Ry > 1. So we can say that eigenvalues

A and A3 are negative. As a result, all eigenvalues of matrix J,(E*) are negative.

So, this equilibrium point is a locally asymptotically stable according to the theorem

1.2.1.

As a result, equilibrium points of the system has two non-negative equilibria. Ey is a

disease-free equilibrium point and E* is an endemic equilibrium point. Equilibrium

point Ey exists without any conditions, whereas E* exists when Ry > 1.

Sensitivity Analysis of R

To analyse the sensitivity of basic reproduction number Ry to each of its parameters,

we use method of Arriola and Hyman [25]. The normalised forward sensitivity index

with respect to each of the parameters is calculated as,

IRy

Ry 3

7 an Ry 0 rn
r

A

We can see that,

r2 IRo _ u

) (CIOH +q1A3

ry <CIOH+Q1A3 (3.45)

ru

)=

R _ M IRy _ (QOH+CJ1A3) ( q11203 )
%u Ry du raf (9173 +qop)?
q1\3
QA3 +qop
IR
B_non_, (auran)(niu )
aqqll RO aql nu (QIA3 ‘f‘CIO.u)Z
A
_ (L) <0,
913 +qou
IR
R _AsoRy _ (_‘10“+41A3) (_%)
8AA33 Ry OA3 ru (q1A3+qolt)?
A
_ (L) <0,
q1A3 +qou
IR
R _ 0 9R _ (qoﬂ+q1/\3) (_L)
Bqﬂ(l)o Ro 9qo ru (q1A3 +qop)?
_ <—q°“ ) <0
q1A3 +qol

among these six parameters, basic reproduction number Ry is most

sensitive to change in r, and . A decrease or increase in r, causes a decrease or
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increase in Ry with the same proportion. And also an increase or decrease in the value
of u leads to a corresponding increase or decrease in Ry. Conversely, the other three
parameters have an inversely proportional relationship with Ry, so an increase in g,
Az and go will bring about a decrease in Ry. Recall that the parameter u is the death
rate of chickens. Increase in u is not preferred. Moreover, the parameters ¢, Az, 33
and go may have directly or inversely proportional relationship with the reproduction
number. As a result Ry is the most sensitive to changes in r1 because, although A, > 0,

it is also seen that Ay, < 1.

Bifurcation Analysis

In this model we shall examine bifurcation analysis for this model. It is known
that, bifurcation may occur when basic reproduction number Ry = 1. We use the

Castillo-Chavez and Song bifurcation theorem (2.2.1).

We set S = x1, I = xp, Ty = x3, T; = x4 and B = x5. Therefore it can be said that
N =x1+x and T = x3 + x4. System (3.34)-(3.38) is written in therms of the notation

X = f(x) as follows:

fi=A1—d(x;+x2) — axy, (3.46)
fo=PBixixa— (y+d+ o)xz,
x3+x
f3 — r‘z(X3 —I—X4)(1 — 3K 4
2
fa = Boxaxs + B3xzxs — (qo + q1x5)x4,

) — (o +q1x5)(x3 +x4),

fs = A3 — lxs.

Let us consider the parameter ¢ which is given in the theorem (2.2.1) is represented
by r,. Note that r; is the obvious choice of the bifurcation parameter because, as it has
been shown in (3.45) that basic reproduction number Ry is more sensitive to changes

in r,. So, we can write,

. Qo +q1A3
Fp = —m—.
u
. ey . . A S . .
So, the disease free equilibrium point Ey of this model is (X} = 7,x2 =0,03=0,X3 =

A ) . ) e .
0,55 = —3) The linearisation around the disease free equilibrium evaluated at 7> is
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given by

—d —o 0 0 0
A
0 —-d—o—y 0 A y ! 0
J=10 0 —0 0 0 (3.47)
A A
0 0 BAs (a1t Bs)As+qon
H H
0 0 0 0 —u
Eigenvalues of this matrix are
A =0,
A2 - _d7
M=—-d—a-—1v,
A‘4 =—MH,

~qiA3+ B3As +qoM

A =
p u

It is clear that A; is a simple eigenvalue of D, f. So we can find right eigenvector and

left eigenvector according to the theorem (2.2.1).

The right eigenvector w corresponding to the zero eigenvalue is

afiA BiA; (g1 + B3)As +qou

- 2 9 ) ,1,O)T
d (d+oc+y) d(d‘F(X‘I"}’) ﬁgAg

w=(
and left eigenvector v corresponding to the zero eigenvalue is

v=1(0,0,1,0,0)

The second derivatives in formulas (3.18) are evaluated at the disease free equilibrium

A
oint £y = (—l, 0,0,0, —3) and r, = 7. The non-zero derivatives are given as follows,
|y d u g

Pfh P h _B ’fH_ Pf Y]
3)618)64 B &X48X1 — P a)C3aX4 N 8X48)C3 -4 Kz’
92 82
%fs Iy _B Ify Oy _p
8)638)64 N a)C48X3 P aX3aX5 N 8X58X3 P
*fs i

0x40xs  Oxs50x4 -
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82f3 _1 a2f3

= =1.
aX3a}’2 ’ 3X4ar2
If these derivatives are substituted in a and b,
0* 9 fs 20%f3 Rk
= 2 )
a v2w1w48x18X4 + vowaw 9x10x, + 2vaws Ixa2 +v W3W4a oxs
9 f3 202 f3 923 92 f3
+ v3waws Txa003 + v3wy _aX42 4+ vaw3wy T30 + vawaws Txa0s
0 fs 02 f4 02 fs 92 fs
—|—V4W3W5a 05 +V4W5W3a oxs —|—V4W4W5a oS + vawswy Ixsos
_ g 22 2(Kag1 +2m)((q1 4 B3)As) +qoit  4ra((q1 + B3)As +qout)?
K> K>B3A3 K2B3* A3 ’
9 f3 9% f3 q1A3 +qol
b= — —p4 7 T
L 0x3071) +VsWs 0x4071 + BsAz

are obtained. It is clear that a < 0 and b > 0. This shows, according to the result of iv.
in the theorem (2.2.1), the stability of the equilibrium point Ey is changed from stable

to unstable.

Infected Tick

wWiN
Ul T

=]
i
I

Stable
OFE Unstahle DFE

sl e [ R [N Gy [ ST gy g i el =

. q -
d 2 3 1 5 i

Figure 3.13 : Bifurcation diagram of the Infected Tick Population. Where K, = 1000,
qo = 0.015, g; =0.033, B3 =0.0015, A3 =3, B = 0.0023, u = 0.05.

When Ry < 1, equilibrium point Ej is stable and components of the equilibrium point
E* are negative. It is mean, when Ry < 1, the equilibrium point E* does not exist.
Therefore, when Ry < 1, there only exists the disease-free equilibrium point. When

Rp > 1, the disease-free equilibrium point becomes unstable. And also when Ry > 1
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and it > g1 A3 provide endemic equilibrium point E* becomes positive and stable.

As a result, we can say that forward bifurcation occurs.

Simulations

Here, we simulate the model to understand the stability analysis of the system better.
Let us fix the following parameters and total human population in the system (3.39) -

(3.43) as follows:

N = 5000, 7y =0.95, K> = 1000, ry =0.95
go = 0.015, B, = 0.0023, B3 = 0.0015, B = 0.0027,
o = 0.0018, d = 0.0064, y=0.037.

We choose the initial conditions as,

B(0) = 20, 7(0) = 100, T;(0) =0, 1(0) =0.

1. Case 1
In this case, we assume that the chicken population is increased over time. When
A3z =5 and Az =4, the increment in chicken population over time is shown in figure
(3.14). Also, how this increment in the chicken population affects the number of

ticks is shown in figures (3.15) and (3.16).

Chicken Population Over Time

Chicken

80 -

70|

60: — N3=5
50| — N3=4

40

30

Time

5 10 5 20 25 30

Figure 3.14 : Chicken Population Over Time. We choose A3 =4 and A3z = 5, so that
Ry < 1.
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Tick Population Over Time

Tick
120
100
80 — /\3=
60 - L
40 r
20 r
: . Time
2 4 6 8 10 12 14
Figure 3.15 : Tick Population Over Time.
Infected Tick Population Over Time
Infected Tick
— /\3=4
— N3=
: : : ‘ Time
2 4 6 8 10 12 14
Figure 3.16 : Infected Tick Population Over Time.
Infected People Population Over Time
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Figure 3.17 : Infected People Population Over Time.
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If we choose the parameter Az = 4, then Ry = 0.3578 < 1. And if we choose
the parameter A3 =5, then Ry = 0.2865 < 1. As we can see in the figures (3.15),
(3.16) and (3.17), tick population, infected tick population decreases and eventually

vanishes. Also the disease eventually dies out.

Recall that, A3 is population growth of chickens. According to figures (3.14) an
increase in A3 causes the tick population and infected tick population increase less
and vanish faster. In conclusion, when the number of daily added chickens in to the
environment increase, tick population and infected tick population vanish faster in

the environment.

. Case 2
In this case, we assume that the chicken population is decreased over time. When
A3z = 0.9 the decrement in chicken population over time is shown in figure (3.19).
Also, how this decrement in the chicken population affects the number of ticks and

infected people population is shown in Figures (3.19), (3.20) and (3.21).

Chicken Population Over Time

Chicken

20.0
19.5
19.0 -

18.5

| ! Time
0 10 20 30 40 50 60

Figure 3.18 : Chicken Population Over Time. We choose A3 = 0.9, so that Ry > 1.

If we choose parameter Az = 0.9, then Ry = 1.5599. As we can see in the figures
(3.19), (3.20) and (3.21), we can say that the tick population, the infected tick
population and the infected people population increase. So, the disease spreads

and becomes endemic.
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Tick Population Over Time
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Figure 3.19 : Tick Population Over Time.
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Figure 3.20 : Infected Tick Population Over Time.

Infected People Population Over Time
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Figure 3.21 : Infected People Population Over Time.

As a result, if the number of chickens daily added in the environment increases, the
number of tick and infected tick population can be decreased. Thus, the spread of the

disease can be prevented in the environment.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have studied the spread of a tick bone disease into human with
the effect of chicken-bird existence in a mathematical perspective. We considered
every dependent variable as a separated compartment and transmission between these
components are assumed to be continuous. There are three basic dependent variables;
human and ticks are taken into consideration in two main groups, susceptible and
infected whereas birds are assumed to be a single group. In addition to the interactions
between two subgroups of human and ticks, we have also investigated the interaction

between birds-ticks and human-tick.

We have examined three different cases by depending on the assumptions to the
entrance to bird and tick compartments. In one, the entrance of both are considered
with logistic growth model and in the other two, when one is taken into account with
logistic growth, the other is assumed to be constant. We have considered in all these
cases the virus might be transmitted to human by a tick bite. Tick might get virus
either by a contact to an infected tick or to the birds which carry the virus. The relation
between ticks and bird compartments is not only limited to this transmission, but the
decrement of ticks has been also taken into consideration as they are natural preys for
birds-chicken. We have also taken into consideration the natural and disease-related

deaths.

The problem, as it is expressing many various possible cases, represents a quite general
study which has not been done before in the literature. But as mentioned in the
thesis before, normally ticks are at three stages and the diseases might be transmitted
by not only by the adult ticks but also by larvae and nymph. Here we have only
considered ticks as adult ticks, for a more general future study ticks might be taken
into consideration at their three different stages. Because the problem with its present
form is hard enough, considering ticks in their 3 stage will be for sure much harder. To

handle such a problem some contacts between compartments should be given up.
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In the thesis, each problem is examined as application of Hartman Grobman Theorem.
That is to say we have investigated the local stability of the equilibrium points. The
basic Reproduction numbers are determined and with respect to the reproduction
numbers, the parameter regimes are studied. The bifurcation analysis has also been
done by considering Castillo Chavez Bifurcation Theorem. Finally, for each case,
some simulations for particular parametric regimes has been done. The graphs of
solution curves are depicted and the physical expressions of the results have been

discussed.

As a future problem, even though it would be really hard, the global stability analysis

might be studied by taking some simplifications.
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