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STABILITY ANALYSIS OF A MATHEMATICAL MODEL
OF

CRIMEAN CONGO HAEMORRHAGIC FEVER DISEASE

SUMMARY

Today, ticks are harmful parasitic creatures feared by humans. Ticks do not always
carry dangerous diseases. However, we should not ignore the pathogens and viruses
that may be carried because these creatures can carry various viruses and seriously
threaten human health. If it is not diagnosed early, it can result in fatal consequences.

Ticks can get viruses from their hosts at various stages of their lives. Ticks can transmit
these viruses to humans in the adult tick stage. Here we can say that the animals that
ticks use as hosts are only vectors. Cattle, bovine or chickens do not show symptoms
of diseases which are caused by ticks.

In this thesis, the spread of Crimean-Congo haemorrhagic fever disease is investigated
by considering the problem as an epidemic model. Before stating the problem, in
first chapter, some information about dynamic systems is given. The definition of
systems of differential equations and their stability analysis are mentioned. Besides,
the autonomous systems of equations are briefly explained. And how their stability
can be analysed is mentioned. Then, to guide our own problem, information about the
well-known SI, SIR, SIS epidemic models and Prey-Predator model and their stability
is given in the second chapter. And finally in the third chapter the original problem
of the thesis is examined. The system of equation of these models is non-linear.
After writing system of equation we found the equilibrium points first. Then, we
do linearisation by substituting the equilibrium point in to the Jacobian matrix. We
investigated sign of the eigenvalues of these Jacobian matrices which are evaluated by
equilibrium points of epidemic models. If all eigenvalues are negative the equilibrium
point is stable. If at least one eigenvalue is positive, then the equilibrium point is
called unstable. It is not always possible to determine the sign of eigenvalues. In such
a case, we could talk about basic reproduction number. Basic reproduction number is
represented by R0. If R0 < 1, all eigenvalues are negative and the equilibrium point
is a stable equilibrium point. The disease disappear over time. Otherwise, if R0 > 1,
at least one of the eigenvalues is positive. Also, the endemic equilibrium point exist
when R0 > 1. In addition to, when R0 > 1 disease free equilibrium point is unstable
and endemic equilibrium point is stable. And the disease becomes endemic.

The problem is expressed as the combination of the variation of population dynamics
of human, tick and birds(chicken). In all dynamics of human and tick we considered
the in and outs to the compartments, outs as both in the meaning of transfers between
compartments and removals such as death. The inputs to the system are either taken
constants or logistic growth effects.

In this thesis, we investigate the problem in three different ways.

• The model which takes logistic growth both in tick and chicken populations,
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• The model which takes logistic growth only in chicken population,

• The model which takes logistic growth only in tick population.

We use a system of five ODEs to represent the interaction between chicken population,
susceptible and infected populations of humans and ticks. It can be said that there
is SI model between infected tick and susceptible tick, SIS model between infected
human and susceptible human, and Prey-Predator model between tick and chicken.
We have determined the equilibrium points for each model and investigate the stability
of the equilibrium points. During the studies the reproduction numbers were found and
the stability is investigated with respect to the reproduction numbers. The bifurcation
analysis has also been done for tick logistic - chicken logistic model and tick logistic -
chicken constant model.

According to the results of the first and second models, it was observed that there was
a decrease in the number of ticks when the chicken population in the environment was
increased. In addition, if the frequency of unleashing of chickens into the environment
is increased, then ticks can be more likely to increase among chickens is. Therefore,
the number of ticks in the environment may decrease. Due to this decrease, it has
mathematically shown that the Crimean Congo Haemorrhagic Fever disease decreases
over time.
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KIRIM-KONGO KANAMALI ATEŞİNİN
MATEMATİKSEL MODELİNİN KARARLILIK ANALİZİ

ÖZET

Günümüzde keneler insanlar için tehlikeli, parazit taşıyan canlılar olmuşlardır. Bu
nedenle insanlar bu canlılardan uzak durmak için bir çok önlem almaktadırlar. Keneler
her zaman tehlikeli hastalık yayacak virüs taşımazlar. Ancak, insan sağlığını tehdit
edebilecek, tehlikeli virüs ve patojenleri taşıyabileceklerini göz ardı etmemeliyiz. Bu
tip insan sağlığını tehdit eden virüs ve patojenler, erken teşhis edilmediği takdirde,
sonuçları ölümcül olabilir.

Keneler hayatları boyunca 3 evreden geçerler. Bunlar, larva evresi, nymph evresi
ve yetişkin evre olmak üzere üçe ayrılır. Larvalar ve nympler genelde küçük baş
hayvan, taşvan veya kuş gibi canlılardan beslenirler. Yetişkin evreye geldiklerinde
ise daha çok büyük baş hayvanları veya insanları tercih ederler. Bu nedenle keneler
insanlara Kırım-Kongo Kanamalı Ateşi hastalığını yetişkin evresinde bulaştırırlar.
Keneler yaşamlarının çeşitli evrelerinde konak olarak kullandıkları hayvanlardan virüs
alabilirler. O halde, kenelerin konak olarak kullandıkları büyük baş, küçük baş veya
tavukların Kırım-Kongo Kanamalı Ateşi hastalığının semptomlarını göstermediğini ve
hastalıktan etkilenmedi yalnızca taşıyıcı oldukları söylenebilir.

Köylerde, kırsal kesimlerde yaşayan veya çalışan insanların kene ısırığına maruz
kalma ihtimalleri, şehirlerde yaşayan insanlara göre daha fazladır. Bu nedenle köy
yerleri, kırsal kesimler gibi yerlerde yaşayan insanların daha fazla önlem almaları
gerekmektedir. Kenelerden korunmanın çeşitli yolları vardır. Bunlardan bazılarını
şöyle sıralayabiliriz,

• Özellikle tarlada çalışan insanlar veya doğa yürüyüşüne çıkanlar uzun kollu t-shirt
ve pantolon tercih etmelidirler.

• Köy yerlerinde yaşayan, özellikle tarlada çalışan veya kenelerin çok görüldüğü
yerlerde ikamet eden insanların pantolon paçarını çoraplarının içine sokmaları
kenelerden korunmalarına yardımcı olacaktır.

• Doğa yürüyüşüne çıkıldığında, patikaların ortasından yürümeye özen gösterilme-
lidir. Çünkü keneler genellikle toprağa yakın yaprak altlarında bulunurlar.

• Kene sokmasına maruz kalan insanların, keneleri kendi uğraşları ile çıkarmaya
çalışmamalılar. Uzman olmayan bir kişi keneyi çıkarmaya çalışırken kenenin
ısırdığı yerden içeriye kusmasına ve virüs taşıyorsa insana bulaşmasına sebebiyet
verebilir. Bu nedenle kene sokmasına maruz kalan kişi hemen bir hastaneye gitmeli
ve doktor tarafından çıkarılmalıdır.

• Hayvanlar üzerinde olan keneler çıkarılırken çıplak elle çıkarılmamalıdır. Çıplak
elle yapılan temasta hayvanın kanı insana süründüğünde, kene herhangi bir virüs
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veya patojen taşıyorsa bu insana geçebilir. Bu nedenle ken ısırığına maruz kalan bir
hayvanın kan veya vücut sıvısı ile temas edilmemesine özen gösterilmelidir.

• Kenelerin yoğun görüldüğü zamanlar özellikle Nisan-Ekim dönemlerinde ilaçlama
yapılması kenelerin üremesine engel olacak önlemlerden bir tanesidir.

• Kırsal kesimlerde yaşıyan insanlar, kene sokmasına karşı, hayvanlarını belirli
periyodlarda parazit aşılarını yapmalıdırlar.

Bu tezde, kenelerin yoğun olarak bulunduğu yerlerdeki tavukların, burada bulunan
keneler üzerindeki etkisi epidemik bir matematiksel bir model üzerinde araştırılmıştır.
Ayrıca, bu etkinin dolaylı olarak Kırım-Kongo Kanamalı Ateşi hastalığının insan
populayonuna etkisi de incelenmiştir.

Problemimize başlamadan önce, problemin çözümünü ve anlaşılmasını kolaylaştırmak
adına çeşitli bilgiler verdik. İlk olarak, dinamik sistemler hakkında bir takım
tanımlamalar yaptık. Diferansiyel denklem sisteminin, sabit homojen denklem
sisteminin ve otonom denklem sisteminin tanımını yaptık. Ardından bu denklem
sistemlerinin stabilite analizi, neden stabilite analizine ihtiyaç duyduğumuz hakkında
bilgiler verdik. Stabilite analizine başlayabilmek için ilk olarak denge noktalarının
bulunması gerektiğini söyeledik. Ardından denge noktalarını, sisteme ait yazılan
Jacobian matriste yerine koyarak stabilite analizini yapabileceğimizi söyledik.

Denge noktaları, Jacobian matriste yazıldıktan sonra elde edilen matrisin özdeğer-
lerinin işaretlerine göre bulunan denge noktasının stable mı yoksa unstable mı
olduğunun kararının nasıl verileceğini açıkladık. Denge noktasının Jacobian matriste
yerine yazıldıktan sonra elde edilen matrisin tüm özdeğerleri negatif reel kısma sahip
ise bu denge noktasının stable, en az birinin reel kısmı pozitif ise bu denge noktasının
unstable olduğunu söyledik.

Bu tanımlamaları yaptıktan sonra, üçüncü bölümde çok iyi bilinen birkaç matematiksel
modelin analizlerini kendi problemlerimize yol göstermesi adına tekrar yaptık. Bu
modeller arasında SI, SIR, SIS epidemik modelleri ve Prey-Predator (Av-Avcı)
modelini inceledik. Bu modellerin model diyagramlarını çizdik. Ardından bu
modellerin lineer olmayan denklem sistemlerini yazdık. Denklem sistemlerini
yazdıktan sonra stabilite analizlerini yapabilmek için ilk olarak bu modellerin
denge noktalarını bulduk ve sonrasında denklem sistemine ait Jacobian matriste bu
noktalarını yerine koyduk. Elde edilen matrisin özdeğerlerinin işaret incelemesini
yaparak denge noktalarının stable mı yoksa unstable mı olduğuna karar verdik. Fakat
her zaman denge noktasının Jacobian matriste yerine koyularak elde edilen matrisin
özdeğerlerinin kesin olarak negatif ya da kesin olarak pozitif olduğunu söylemek
mümkün olmuyordu. Bazı özdeğerler belli koşullar sağlandığında negatif ya da pozitif
oluyordu. İşte bu durumda basic reproduction number’dan söz edebiliyorduk. R0 ile
temsil edilen bu terim, işaret analizini yapamadığımız özdeğerden elde edilmektedir.
Eğer R0 < 1 ise, bütün özdeğerler negatif olmaktadır. Bu durumda denge noktasının
stable olduğu söylenmektedir. Ayrıca R0 < 1 durumunda hastalık durumu zamanla
ortadan kalkmaktadır. Ayrıca, model incelemelerimizde R0 > 1 olduğu durumlarda
endemik denge noktası adını verdiğimiz denge noktası var olacak aynı zamanda stable
olacaktır. Bu da hastalığın populasyonda varlığını sürdürüp endemik bir hal alacağını
işaret etmektedir.

Biz bu tezde, problemlerimizi üç farklı şekilde ele aldık.
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• Hem kene hem de tavuk populasyonlarının lojistik büyüme olarak alındığı model.

• Yalnızca tavuk populasyonunun lojistik büyüme olarak alındığı model.

• Yalnızca kene populasyonunun logistik büyüme olarak alındığı model.

Problemlerimizde beş tane adi diferansiyel denklemden meydana gelen bir denklem
sistemi oluşturduk. Bu denklemler yazılırken duyarlı insan ve kene populasyonları,
infekte insan ve kene populasyonları ve tavuk populasyonu arasındaki ilişkiler göz
önüne alınmıştır. Burada infekte kene ve duyarlı kene arasında SI model olduğu
söylenebilir. Çünkü bir kene infekte olduktan sonra iyileşme şansı bulunmadığından
tekrar duyarlı olamamaktadır. İnfekte insan ve duyarlı insan arasında ise SIS
modeli bulunmaktadır. Çünkü Kırım-Kongo Kanamalı Ateşi hastalığına yakalanan
bir insan iyileştikten sonra virüsü taşıyan bir kene tarafından ısırılırsa tekrar hastalığa
yakalanma riski bulunmaktadır. Kene populasyonu ve tavuk populasyonu arasında
ise Prey-Predator modeli ilişkisi vardır. Burada keneler avı, tavuklar ise avcıyı temsil
etmektedir.

İncelemiş olduğumuz üç modelden ilk ve üçüncü modelin sonuçlarına baktığımızda,
tavuk populasyonuna eklenen tavuk miktarının sayısı artırıldığında ortamdaki kene
sayısının daha hızlı düştüğü sonucuna varılmıştır. Buna ek olarak, eğer tavukların
kümeslerinden salınma sıklığı da artırıldığında, daha fazla kene bulup yiyeceklerinden
yine kene sayısında bir düşüş olacağı matematiksel olarak görülmüştür. Bu düşüşlere
bağlı olarak Kırım-Kongo Kanamalı Ateşi hastalığının ortamda bir süre kalıcığını
sürdükten sonra zaman içerisinde yok olduğu verilerimizce gösterilmiştir.
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1. INTRODUCTION TO DYNAMICAL SYSTEMS

1.1 What is a System of Differential Equation?

Equations that are associated with one or more variables according to their derivatives

are called differential equations. Differential equations are both at the center of

many theories of physic and are necessary for the mathematical explanation of

many things in nature. For example, they are used to describe many problems in

classical mechanics such as Newton’s and Lagrange’s classical mechanical equations,

Maxwell’s classical electromagnetism equation, Schrödinger’s quantum mechanics

equation, and Einstein’s general gravitation theory.

1.1.1 Linear Homogeneous System of Differential Equation with Constant

Coefficient

A special form system of differential equation is written as [1, 2],

ẋ(t) = Ax(t)+ f (t)

where x ∈ Rn and f is a function depends on the independent variable t. If f (t) = 0,

system of equations become homogeneous

ẋ = Ax. (1.1)

where A is a constant coefficient nxn matrix and

ẋ =
dx
dt

=



dx1

dt
dx2

dt
...

dxn

dt


.

equation (1.1) is called a system of linear homogeneous differential equation with

constant coefficient. It is shown that the general solution of this linear system (1.1)

is given by

x(t) = eAtc

1



where eAt is an nxn matrix and constant valued vector c = x(0) which is x(t) at time

t = 0. Also, it can be seen that (1.1) has a unique solution each point x0 in the phase

space Rn.

Definition 1.1.1. [3] If det(A) 6= 0 then Ax = 0 if and only if x = 0. The origin is

called an equilibrium point of the linear system (1.1).

1.1.2 Stability Analysis of Equilibrium Point in System of Linear Equations

In this section, we are going to look at the stability analysis of equilibrium point.

Suppose, A is a constant coefficient nxn matrix and λi, i = 1,2, ... are eigenvalues of

this matrix. These eigenvalues give us information about the system of differential

equation’s behaviour around the equilibrium point. If all eigenvalues of the linear

system (1.1) have negative real parts for t → ∞, the flow gradually approaches the

origin that origin is the equilibrium point of this linear system. On the other hand if

all eigenvalues of the linear system (1.1) has a positive real part for t → ∞ the flow

moves away from the origin. Here we shall use these information to give the following

definitions.

Definition 1.1.2. [3] Suppose that some of the eigenvalues of A have negative real part,

some have positive real part and these eigenvalues are distinct. Also let {w1, ...,wn}

are eigenvectors corresponding to these eigenvalues. Let us denote these eigenvalues

as λ j = a j + ib j and eigenvectors as w j = u j + iv j, j = 1,2, .... Stable, unstable

subspace of the linear system (1.1) represent by Es and Eu respectively. They are

linear subspaces that are shown below;

Es = Span{u j,v j|a j < 0},

Eu = Span{u j,v j|a j > 0}.

• If all the solution curves of the system (1.1) are decreasing functions then it means

all eigenvalues of matrix A have negative real part. All solutions in Es approach

the equilibrium point when t → ∞ then this equilibrium point is called a stable

equilibrium point.

2



• If all eigenvalues of the matrix A has positive real part then all solutions in Eu move

away from the equilibrium point when t→∞. As a result, such an equilibrium point

is called an unstable equilibrium point.

In conclusion, if all eigenvalues of the matrix corresponding to the system of the linear

equations have negative real parts, the equilibrium point of the system is called stable.

Otherwise, if all eigenvalues of the matrix has positive real part, then the equilibrium

point is called unstable. Perko (2013) mentioned this topic in detail in [3].

1.2 System of Autonomous Differential Equations

An autonomous system is a system of ordinary differential equations that contains

explicitly only the dependent variable.

In the previous section we have considered a special autonomous system that is called

the constant coefficient system, it is said that system (1.1) has a unique solution for

every x0 and this solution is x(t) = eAtx0. In this section, we examine system of

non-linear autonomous differential equations.

Definition 1.2.1. The most generalized form of system of first order ordinary

differential equations (ODEs) can be defined as follows,

dx1

dt
= f1(x1, ...,xn)

dx2

dt
= f2(x1, ...,xn)

...
dxn

dt
= fn(x1, ...,xn)

or, in vector notation,

ẋ = f (x) (1.2)

where f : E → Rn and E is an open subset of Rn. Under certain conditions, we show

that the unique solution at each x0 ∈ E point in the maximal interval (α,β ) ⊂ R on

the function f . In general, it is not possible to solve a non-linear system, but a lot of

qualitative information can be obtained about the local behaviour of the solution [4].
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1.2.1 Linearisation

The stability analysis of the non-linear system of differential equation is not as easy

as system of linear equations. As mentioned in Section (1.2), the local behaviour

of the solution of the system (1.2) can be obtained through qualitative information.

Linearisation is a method to deal with the system of non-linear equations. Before

starting to the linearisation, equilibrium points must be found.

Definition 1.2.2. x0 ∈ Rn is called an equilibrium point of ẋ = f (x) if f (x0) = 0. And

also, an equilibrium point x0 is called a hyperbolic equilibrium point of ẋ = f (x) if

none of the eigenvalues of the matrix D f (x0) have zero real part.

Detailed information about this definition is given in [3].

Consider the system (1.2)

ẋ1 = f1(x1,x2, ...,xn),

ẋ2 = f2(x1,x2, ...,xn),

...

ẋn = fn(x1,x2, ...,xn)

(1.3)

and assume that x∗ = (x∗1,x
∗
2, ...,x

∗
n) is equilibrium point of the system (1.3) according

to the definition (1.2.2). Namely,

f1(x∗1,x
∗
2, ...,x

∗
n) = 0,

f2(x∗1,x
∗
2, ...,x

∗
n) = 0,

...

fn(x∗1,x
∗
2, ...,x

∗
n) = 0.

Let us define

ε = x− x∗ (1.4)

for linearisation, (1.4) represent the components of a small perturbation nearby

equilibrium point. To understand how this perturbation behaves near the equilibrium,

we need to derive differential equations for ε . When this derivation is done,

ε̇ = ẋ
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is obtained. It can be written

ε̇ = f (x∗+ ε) (1.5)

by substitution. When Taylor series is expanded to (1.5),

ε̇ = f (x∗)+ ε
∂ f
∂x

+O(ε2),

= ε
∂ f
∂x

+O(ε2),

(1.6)

equation (1.6) is written because we know f (x∗) = 0. Remember that these partial

derivatives in (1.6) are evaluated at the equilibrium point x∗. Thus, they are not

functions, they are constants. Moreover, O(ε2) denotes quadratic term in ε . Since,

ε is small, this quadratic term is extremely small. So, this term can be neglected. The

disturbance ε = (ε1,ε2, ...,εn) evolves according to


ε̇1
ε̇2
...

ε̇n

=



∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn
...

...
...

∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xn




ε1
ε2
...

εn

 . (1.7)

The matrix

J(x∗) =



∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn
...

...
...

∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xn


(x∗1,x

∗
2,...,x

∗
n)

is called the Jacobian matrix at the equilibrium point x∗ [5]. Also (1.7) is called

linearized system. Stability analysis can be performed as described in the subsection

(1.1.2) using Jacobian matrix. Let us give the formal definition of Jacobian Matrix.

Definition 1.2.3. If f : Rn→ Rn is differentiable at x0, then the partial derivatives
∂ fi

∂x j
i, j = 1, ...,n, all exist at x0 and for all x ∈ Rn,

D f (x0)x =
n

∑
i, j=1

∂ fi

∂x j
(x0)x j.

Thus, if f is a differentiable function, the derivative D f is called the nxn Jacobian

matrix

D f =
[

∂ fi

∂x j

]
.
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After finding the equilibrium points of the non-linear system of equation, the Jacobian

matrix of the system (1.2) should be written. To analyse the stability of the equilibrium

points, these points are substituted in the Jacobian matrix.

Consider, x∗ is the equilibrium point of system (1.2) and, λi, i = 1,2, ... are the

eigenvalues of the Jacobian matrix which is evaluated at the x∗. If all eigenvalues

of this matrix less than zero, the solution of the system start from initial condition

converge to this equilibrium point at t → ∞. In that case, the equilibrium point x∗

called locally asymptotically stable.

Theorem 1.2.1. [6] A necessary and sufficient condition for an equilibrium to be

locally asymptotically stable is that all eigenvalues of the Jacobian have negative real

part.

These theorems are given in detail by Martcheva (2010) in [6].

Perko (2013) mentioned another important theorem in [3] about local qualitative of

ordinary differential equations. The Hartman-Grobman Theorem is a very important

result in the local qualitative theory of ordinary differential equations. The theorem

shows that a hyperbolic equilibrium point has the same qualitative structure as the

linear system ẋ = Ax with the non-linear ẋ = f (x) system where A = D f (x0) near x0.

In other words, the theorem states that the behaviour of a dynamic system in an area

near the hyperbolic equilibrium is qualitatively the same as behaviour its linearization

around this equilibrium point. Hence, simpler linearization of the system can be used

to analyze the behaviour around the hyperbolic equilibrium point when dealing with

these dynamic systems.

Theorem 1.2.2 (The Hartman-Grobman Theorem [3]). Let E be an open subset of Rn

containing the origin, let f ∈ C1(E), and let φt be the flow of the non-linear system

(1.2). Suppose that f (0) = 0 and that the matrix A = D f (0) has no eigenvalue with

zero real part. Then there exists a homomorphism H of an open set U containing the

origin onto an open set V containing the origin such that for each x0 ∈U, there is an

open interval I0 ⊂ R containing zero such that for all x0 ∈U and t ∈ I0

H ◦φt(x0) = eAtH(x0);

6



i.e., H maps trajectories of (1.2) near the origin onto trajectories of (1.1) near the

origin and preserves the parametrization by time.

Proof of the theorem is given in [3] by (Perko, 2013). We shall use the

Hartman-Grobman theorem in our problem in section three.
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2. EPIDEMIC MODELS

Epidemiology is the scientific area that examines disease and health patterns on a

population basis. The word "epidemiology" consists of Greek terms. "epi" meaning

"upon", "demos", "people" and "logos", that is "study". This etymology applies only to

the human population of the subject of epidemiology [6]. The father of epidemiology

is often considered to be the Greek doctor Hippocrates (460–377 BC), who described

the connection between the disease and the environment [7]. The term "epidemiology"

appears to have been used for the first time in 1802 by the Spanish doctor de Villalba

to describe the work of epidemics in Epidemiologia Espanola [8]. Until the twentieth

century epidemiological studies were mostly related to infectious diseases. Today, the

leading causes of deaths worldwide are diseases such as stroke and coronary heart

disease, positioning diseases that are not transmitted from one person to another as the

main concern of epidemiology. Infectious diseases include low respiratory infections

and HIV in the world as the dominant causes of death.

According to the Centers for Disease Control and Prevention, an epidemic is an

increase in the number of disease cases beyond what is normally expected in a

geographic area. Often, the increase in cases occurs quickly. On the other hand, a

pandemic is used to describe a disease that has spread to many countries and affects a

large number of people. While a pandemic may be described as a kind of epidemic, it

cannot be said that an epidemic is a type of pandemic.

Mathematical epidemiology was raised to a new level by the model of the outspread

of infectious diseases, published by Kermack and McKendrick in 1927. In their

article, “A contribution to the mathematical theory of epidemics” [9], Kermack and

McKendrick published for the first time a deterministic epidemic model that included

susceptible, infected, and removed individuals. This model does not contain natural

birth, natural death, or disease-related death and, as a result, models only disease

outbreaks. Kermack and McKendrick published Part II and Part III of their “A

contribution to the mathematical theory of epidemics” in 1932 and 1933, respectively,
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to capture epidemic modeling of diseases that can be established in a population and

persist.

Mathematical model is a definition of a system using mathematical tools and language.

In addition, the process of developing mathematical models is called mathematical

modelling. In general mathematical modelling can be applied to biological or any other

system but we will deal with the modelling of infectious diseases and their spread in

populations. Mathematical models have been developed to explain a system, to study

the effects of its different components, and to make predictions about its behaviour.

The modelling process requires that a biological scenario be translated in a math

problem. The modelling process begins with a clear definition of methods based on

understanding the system. Translation to mathematical equations must be done with a

specific aim or a biological question in mind. Then the verbal description of the system

is coded with mathematical equations.

In this section, we will analyze SI, SIR, SIS and Predator-Prey models first and finally,

we will begin to interpret our mathematical model. To understand the phenomena

of a general epidemic model we will give different, simple, very well known models

explicitly.

2.1 SI Model

SI model is the simplest epidemic model. There are only susceptible individuals S

and infective individuals I in the population. When susceptible individual contact

with an infective person the disease is transmitted and the susceptible person becomes

infectious immediately. Besides, this model, which has already been analyzed before,

is not containing naturally occurring or disease-related deaths and also there is no

source term for the susceptible population. Detailed research of this model is

investigated in [10].

The diagram of the model is given as,

S I
β IS

Figure 2.1 : Transfer diagram of SI model.
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where β is a non-dimensional parameter representing infectious contact rate. So the

system of differential equations according to the figure 2.1 can be written as

dS
dt

=−β IS, (2.1)

dI
dt

= β IS. (2.2)

As we can see from (2.1) and (2.2), the population is constant. So that,

S+ I = N.

If we reduce the system into one equation, we can analyse the system easily. Let us

write N− I instead of S;

− dI
dt

=−β I(N− I)

⇒ dI
dt

= β IN−β I2

⇒ dI
dt

= β IN(1− I
N
).

Which is a logistic growth equation given usually as below,

dI
dt

= rI(1− I
K
) (2.3)

where r represents growth rate of infective population and K is called carrying capacity.

Here we will investigate the stability of this model. First find the equilibrium points;

dI
dt

= 0⇒ βNI(1− I
N
) = 0,

I0 = 0,

I1 = N.

A typical application of the logistic equation is a widespread population growth model,

in which the growth rate is proportional to both the current population and the number

of available resources, originally due to Pierre-François Verhulst in 1838. The Verhulst

equation was published after reading Verhulst Thomas Malthus’ “An Essay on the

Principle of Population” [11]. Verhulst obtained the logistic equation to describe the

self-limiting growth of a biological population. The equation was rediscovered in 1911

by A. G. McKendrick for bacterial growth in broth and experimentally tested using a

technique for non-linear parameter estimation.
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Figure 2.2 : SI outbreak showing logistic grown.

After finding the equilibrium points, the stability analysis of these equilibrium points

can be done. The equilibrium point I0 is an unstable and the equilibrium point I1 is a

stable equilibrium point by the [6].

One can see the solution curves of the SI system given by (2.1)-(2.2) in the Figure 2.2,

where the horizontal axis represents time, while the vertical axis represents susceptible

and infective populations. This figure shows the change in the number of susceptible

and infected people over time. In addition to this, when the parameter β , which is

called the contact rate increases the infected human population grows rapidly, and the

same ratio decreases in the susceptible population. So, if parameter β in the SI model

decreases the spread of the disease decreases accordingly.

So, in the Figure 2.2, the susceptible population in the SI model decreases over time

while the infective population grows logistically, therefore the disease spreads and all

population is infected over time.
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2.2 SIR Model

The SI model express the spread of disease when infected people do not get treatment.

But normally infected people may recover and become healthy. To consider such case

we analyse the model with S, I, R where R represents the recovered population or at

some studies it is called the removed population.

This outbreak model has very different dynamics. While the susceptible class

always decreases independently of the initial condition the recover class always

increases independently of the initial condition. In addition, the infective class either

monotonically decreases to zero, depending on the initial condition, or it increases

non-monotonously to reach the top point first and then monotonically decreases to

zero. This topic is mentioned the work of (Martcheva, 2010) [6].

In this section, one of the most commonly reviewed versions, SIR, will be discussed.

In my model here, I also add the natural and disease-related deaths. On the other

hand, the SI model in the subsection 2.1 does not contain any of these. The susceptible

individuals S becomes infected and stay infected with no chance of recovery. Everyone

in the population are infected after a while in this model.

In this model, individuals leave the susceptible compartment in rate β and enter the

infected compartment. Also, they can be leave from the susceptible compartment

by dying in a natural way at the rate of d. Infected people can be treated and

separated from the infected class at the rate of α , or they can be leave by natural

death or disease-related death at the rate of q. In the very well-known SIR model, total

population enter in the susceptible compartment at the rate of γ . For convenience, let’s

write γN = Λ.

Therefore, the diagram should be like this;

S I R

dS (d +q)I dR

β IS
N αI

Λ

Figure 2.3 : Transfer diagram of SIR model.
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Let us write the system of the differential equations [10, 12];

dS
dt

= Λ− β IS
S+ I +R

−dS, (2.4)

dI
dt

=
β IS

S+ I +R
− (d +q)I−αI, (2.5)

dR
dt

= αI−dR. (2.6)

We assume that the population size N = S+ I +R is constant,

dN
dt

=
dS
dt

+
dI
dt

+
dR
dt

.

Let us substitute the equations (2.4), (2.5) and (2.6) in the above equation.

dN
dt

= Λ− β IS
S+ I +R

−dS+
β IS

S+ I +R
− (d +q)I−α +αI−dR

dN
dt

= Λ−dN−qI

The reader should be careful not to confuse the parameter d and differential d. It can

be said that population is constant, if Λ = dN−qI. Since the system is non-linear, we

need to write the Jacobian matrix to do the stability analysis. Then the stability of the

equilibrium points can be investigated by substituting in the Jacobian matrix.

Let us find the equilibrium points of the system;

dS
dt

= 0⇒ Λ− β IS
S+ I +R

−dS = 0,

dI
dt

= 0⇒ β IS
S+ I +R

− (d +q)I−αI = 0,

dR
dt

= 0⇒ αI−dR = 0.

Solution of these equations are given in the table (2.1).

Equilibrium Points Description

E0 = (Λ

d ,0,0)
Disease-free equilibrium point. The only non-zero
population is susceptible human population at Λ

d .

E∗ = (S∗, I∗,R∗)
Endemic Equilibrium point which exist d +q+α < β and
q < β .

S∗ =−(d +α)Λ

d(q−β )
, I∗ =− d(d +q+α−β )

(d +α)(d +q+α)
S∗,R∗ =

α

d
I∗.

Table 2.1 : Equilibrium points of SIR model.

Let us write the Jacobian matrix of the system.
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J =


−d +

ISβ

(S+ I +R)2 −
Iβ

(S+ I +R)
ISβ

(S+ I +R)2 −
Iβ

(S+ I +R)
ISβ

(S+ I +R)2

− ISβ

(S+ I +R)2 +
Iβ

(S+ I +R)
−d−q−α− ISβ

(S+ I +R)2 +
Iβ

(S+ I +R)
− ISβ

(S+ I +R)2

0 α −d

.

Now we can investigate stability analysis of the equilibrium points.

1. Equilibrium point E0 = (
Λ

d
,0,0)

Let us do the stability analysis by substituting the disease-free equilibrium point in

the Jacobian matrix.

J(E0) =

−d −β 0
0 −d−q−α +β 0
0 α −d

 (2.7)

Eigenvalues of this matrix are,

λ1 =−d,

λ2 =−d,

λ3 =−d−q−α +β .

If we look at the eigenvalues which are found, it can be said that the eigenvalues λ1

and λ2 are negative. But the eigenvalue λ3 becomes negative when the condition

β

d +q+α
< 1 (2.8)

is satisfied. In this case, all eigenvalues will be negative thus the equilibrium point

E0 is called a stable equilibrium point.

So we can say that,

R0 =
β

d +q+α
. (2.9)

R0 is a threshold value. When it is less than 1, the eigenvalue is negative therefore

the equilibrium point is stable, so the disease will disappear. But if it is greater than

1, as the eigenvalue will be positive,the equilibrium point will be unstable, therefore

the disease will spread. When the flow passes from stable to unstable equilibrium

points or vice versa, R0 will be equal to 1, when it happens we call it bifurcation.

If we look at the basic reproduction number, it can be said that the basic

reproduction number is the ratio of an individual becoming infective to the by sum

of the proportion of individuals who enter treatment, the natural death rate and the
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disease-related death rate. The interpretation is very straightforward: the rate of

infection is greater than the rate of the sum of natural death, disease-related death

and transmission rate.

2. Equilibrium point E∗ = (S∗, I∗,R∗)

Now, let us do the stability analysis by substituting the endemic equilibrium point

in the Jacobian matrix.

J(E∗) =


−d +

I∗S∗β
(S∗+ I∗+R∗)2 −

I∗β
(S∗+ I∗+R∗)

I∗S∗β
(S∗+ I∗+R∗)2 −

I∗β
(S∗+ I∗+R∗)

I∗S∗β
(S∗+ I∗+R∗)2

− I∗S∗β
(S∗+ I∗+R∗)2 +

I∗β
(S∗+ I∗+R∗)

−d−q−α− I∗S∗β
(S∗+ I∗+R∗)2 +

I∗β
(S∗+ I∗+R∗)

− I∗S∗β
(S∗+ I∗+R∗)2

0 α −d


(2.10)

from which we can write the characteristic polynomial

P(λ ) = (λ +d)(λ 2 +h1λ +h2) (2.11)

where we have defined,

h1 =
d(β −q)

α +d
,

h2 =
d(d +q+α)(q−β )(d +q+α−β )

β (α +d)
.

As seen in Table 2.1, the equilibrium point E∗ exist if

q < β (2.12)

and

R0 =
β

d +q+α
> 1. (2.13)

It is clear that h1 and h2 are positive according to (2.12), (2.13) and also it is obvious

that λ1 =−d < 0, in addition we also know that

λ2 +λ3 =−h1,

λ2λ3 = h2.

So, the other two roots of this characteristic equation (2.11) are negative. For more

detailed calculations, see [13]. For the existence of this equilibrium point and

more detailed information the reader may look at (Martcheva, 2015)’s and (Britton,

2012)’s work [6, 10].
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Basically, for the existence of the equilibrium point E∗, the threshold value must be

greater than 1 R0 > 1. In this case, all eigenvalues of the Jacobian matrix (2.10) are

negative. Therefore, according to the Theorem 1.2.1 the equilibrium point E∗ is a

locally asymptotically stable for R0 > 1.

Figure 2.4 : SIR model when β = 0.28,α = 0.14,Λ = 0.015,d = 0.01,q = 0.002

The graphic that appeared in the numerical solution is given by assigning certain values

to the parameters of the well-known SIR model in Figure 2.4. In this graph, the

horizontal axis represents the time, the vertical axis expresses susceptible, infective

and recovery populations at time t. The graph is plotted when the threshold value is

R0 < 1,therefore the disease first spreads and then decreases. Reader can see [14] for

more details.

2.2.1 Bifurcation Analysis

In this section, we shall examine bifurcation analysis of the well-known SIR model. As

is known, bifurcation occurs when the threshold value is R0 = 1. The equilibrium point

is locally asymptotically stable by Theorem 1.2.1 when the threshold value R0 < 1, and

the unstable state occurs when the threshold value is R0 > 1.
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2.2.1.1 Castillo-Chavez and Song Theorem

Castillo-Chavez and Song bifurcation theorem is a useful method in determining the

direction of the bifurcation at critical point which is called basic reproduction number

R0.

Theorem 2.2.1 (Castillo-Chavez and Song [6]). Consider the following general system

of ODEs with a parameter φ :

dx
dt

= f (x,φ), f : RnxR→ Rn, f ∈C2(RnxR) (2.14)

where 0 is an equilibrium point of the system. Assume the following conditions:

A1. A = Dx f (0,0) = (
∂ fi

∂x j
(0,0)) is the linearisation matrix of system that we define

above around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of

A , and other eigenvalues have negative real parts.

A2. The matrix A has a non-negative right eigenvector w and a left eigenvector v each

corresponding to the zero eigenvalue.

a =
n

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0), (2.15)

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0), (2.16)

where fk is the kth component of f .

The local dynamics of around 0 are totally determined by a and b.

i. a > 0, b > 0. When φ < 0 with |φ | � 1, 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there

exists a negative and locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When φ < 0 with |φ | � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ | � 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a

positive unstable equilibrium appears;
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iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0. If a < 0

and b > 0, then a forward bifurcation occurs at φ = 0.

The proof of the theorem can be found at [15].

Remark. In practice, the following two observations are important.

1. In fact, the equilibrium point 0 by the theorem (2.2.1) is the disease free equilibrium

point and φ is one of the parameter of the basic reproduction number R0, also the

critical value of φ is value of parameter which makes the basic reproduction number

R0 = 1.

2. It is known that if the disease free equilibrium point has positive entries, the right

eigenvector w need not to be non-negative. It means components of the right

eigenvector could be negative that correspond to positive entries in the disease free

equilibrium point. In addition, components of the right eigenvector that correspond

to zero entries in the disease free equilibrium point has to be non-negative [6].

We set S = x1, I = x2, R = x3. By calling the system of equations as ẋ = f (t) we shall

write (2.4)-(2.6) as follows in therms of the new variables:

f1 = Λ− βx1x2

(x1 + x2 + x3)
−dx1,

f2 =
βx1x2

(x1 + x2 + x3)
− (d +q+α)x2,

f3 = αx2−dx3.

(2.17)

The parameter φ which is given in theorem (2.2.1) is represented by β with critical

value obtained from R0 = 1,

β̃ = d +q+α.

The disease free equilibrium point of this model is [x̃1 = Λ

d , x̃2 = 0, x̃3 = 0]. The

linearisation around the disease free equilibrium evaluated at β̃ is given by above

A =

−d −β̃ 0
0 −d−q−α + β̃ 0
0 α −d

 .
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Eigenvalues of this matrix are,

λ1 =−d,

λ2 =−d,

λ3 = 0.

λ3 = 0 is a simple eigenvalue of Dx f . The right and left eigenvectors can now be

calculated to use in the theorem.

The right eigenvector w corresponding to the zero eigenvalue is found as

w = (−d +q+α

α
,

d
α
,1)T ,

whereas the left eigenvector v corresponding to the zero eigenvalue is evaluated as

v = (0,1,0).

The second derivatives are evaluated at the disease free equilibrium (S̃, Ĩ, R̃) = (Λ

d ,0,0)

and with β = β̃ .

∂ 2 f2

∂x1∂x2
=

∂ 2 f2

∂x2∂x1
=

(d +q+α)d
Λ

∂ 2 f2

∂x2∂β
= 1

By using these derivatives, a and b are found as follows:

b =
∂ 2 f2

∂x2∂β
v2w2 = (1)(

d
α
)(1) =

d
α

> 0,

a =
∂ 2 f2

∂x1∂x2
v2w1w2 +

∂ 2 f2

∂x2∂x1
v2w2w1 =−2

((d +q+α)d)2

α2Λ
< 0.

It is clearly seen that a < 0, b > 0. This shows according to the condition iv of the

theorem 2.2.1, the sign of at least one eigenvalue of the matrix (2.7) changes from

negative to positive. So the equilibrium point E0 becomes unstable. When R0 < 1,

the equilibrium point E∗ does not exist because its components are negative. When

R0 cross the value 1, the negative unstable equilibrium point E∗ becomes positive and

locally asymptotically stable.
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2.3 SIS Models

In the SIR model which we have examined in the previous subsection, the recovering

individuals leave the general population. And, they do not enter susceptible

compartment again. In the very well-known SIS model that we shall examine now,

we consider that not every disease will immunize. Therefore the infected individuals

are possible to become infected again after recovery [16]. Therefore, we do not use the

recovery class in this model. But consider the recovered infected individuals directly

transfer to the susceptible compartment. Therefore in the SIS model, population divide

into two subgroups. These are susceptible S and infected I classes.

The diagram of this model is given in the figure (2.5), Here Λ is the number of

S I

dS (d +q)I

β IS
S+ I

αI

Λ

Figure 2.5 : Transfer diagram of SIS model.

susceptible individuals enter into the susceptible compartment either by birth or

immigration. β is the transmission rate of disease.
β IS
S+ I

is the average of the

transmission number per day from susceptible to infected compartments when they

interact, which is called standard incidence [16]. d is the natural death rate, α is the

recovery rate and q is the disease-related death rate. So the system of the differential

equations can be written according to the figure 2.5

dS
dt

= Λ− β IS
S+ I

−dS+αI, (2.18)

dI
dt

=
β IS
S+ I

− (d +q+α)I. (2.19)

It is assumed that the population size is constant. First we should find out which

condition must be provided for this assumption. So it is known that,

dN
dt

=
dS
dt

+
dI
dt

= 0 (2.20)
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Then, let us substitute the equations (2.18) and (2.19) in the equation (2.20),

dN
dt

= Λ− β IS
S+ I

−dS+αI +
β IS
S+ I

− (d +q+α)I,

dN
dt

= Λ−dN−qI.

Therefore, the population size remains constant when Λ = dN +qI is provided.

Since, this system of equations is non-linear, we should do linearisation. Let us find

the equilibrium points of the system,

dS
dt

= 0⇒ Λ− β IS
S+ I

−dS+αI = 0

dI
dt

= 0⇒ β IS
S+ I

− (d +q+α)I = 0.

Solution is determined as:

E0 = (
Λ

d
,0),

E∗ = (
Λ(d +q+α)

β (d +q)−q(d +q+α)
,

Λ(d +q+α−β )

q(d +q+α)− (d +q)β
).

Then let us write the Jacobian matrix of system,

Equilibrium Point / (S, I) Description

E0 = (Λ

d ,0)
Disease-free equilibrium point. The only non-zero
population is susceptible human population Λ

d .
E∗ = (S∗, I∗) Endemic Equilibrium point.

Table 2.2 : Equilibrium points of SIS model.

J =

−d +
ISβ

(I +S)2 −
Iβ

I +S
α +

ISβ

(I +S)2 −
Sβ

I +S

− ISβ

(I +S)2 +
Iβ

I +S
−d−q−α− ISβ

(I +S)2 +
Sβ

I +S

 . (2.21)

Let us investigate stability analysis of the equilibrium points by substituting

equilibrium points in the Jacobian matrix.

1. Equilibrium point E0 = (
Λ

d
,0)

The Jacobian matrix is

J(E0) =

(
−d α−β

0 −d−q−α +β

)
. (2.22)
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Eigenvalues of matrix (2.22) are,

λ1 =−d,

λ2 =−d−q−α +β .

It is clear that the eigenvalue λ1 is negative. But the eigenvalue λ2 becomes negative

when the condition
β

d +q+α
< 1

is satisfied. In this case, all eigenvalues are negative then it can be said that the

equilibrium point E0 is a locally asymptotically stable according to the theorem

(1.2.1). If
β

d +q+α
> 1,

then λ2 is positive. Therefore equilibrium point E0 is called unstable equilibrium

point.So the threshold value will be

R0 =
β

d +q+α
. (2.23)

As one can see easily the basic reproduction number R0 in this SIS model is the same

as in the very well-known SIR model. The interpretation is very straightforward: the

rate of infection is greater than the rate of the sum of natural death, disease-related

death and transmission rate.

In Figure (2.6) it is shown that, when R0 < 1, the solution of the system starts from

the initial condition that adequately close the equilibrium point E0 and converge

to this equilibrium point at t → ∞. In other words, while the infectious individual

population size decrease to zero over time, the susceptible individual population

size is steady state.
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Figure 2.6 : Phase portrait of equilibrium point E0 = (
Λ

d
,0) while R0 < 1. When

Λ = 0.03, β = 0.4, d = 0.4, q = 0.03, α = 0.1

Therefore, it can be seen that the equilibrium point is asymptotically stable by the

theorem 1.2.1.

2. Equilibrium point E∗ = (S∗, I∗)

Solution of the system is found as

S∗ =
Λ

d +(q+d)(R0−1)
,

I∗ =
(R0−1)Λ

d +(q+d)(R0−1)
.

So it is clear that the equilibrium point E∗ exists if and only if when R0 > 1.

After writing this equilibrium point, now we can investigate stability analysis of

the endemic equilibrium point E∗ by substituting it in the Jacobian matrix,

J(E∗) =

 −d +
I∗S∗β

(I∗+S∗)2 α +
I∗S∗β

(I∗+S∗)2 −
S∗β

I∗+S∗

− I∗S∗β
(I∗+S∗)2 +

I∗β
I∗+S∗

−d−q−α− I∗S∗β
(I∗+S∗)2 +

S∗β
I∗+S∗

 . (2.24)

The characteristic polynomial of this matrix (2.24) is

P(λ ) = (λ 2 +h1λ +h2) (2.25)
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where

h1 = β −q−α,

h2 =
(d +q+α−β )(q(d +q+α)− (d +q)β )

β
.

We can write h2 as

h2 =
(d +q+α)(R0−1)((d +q)R0−q)

R0
. (2.26)

Since the existence of the equilibrium point E∗ depends on being R0 > 1, so h2

is always positive. If
q+α

β
< 1, one can see that h1 > 0. And the sum of the

eigenvalues are negative. λ1λ2 > 0 and λ1+λ2 < 0 all eigenvalues of matrix (2.24)

are negative. Therefore, endemic steady state equilibrium point E∗ of the system is

locally asymptotically stable by the theorem (1.2.1).

If
q+α

β
> 1, one can see that h1 < 0. And the sum of the eigenvalues are positive.

λ1λ2 > 0 and λ1 +λ2 > 0 all eigenvalues of matrix (2.24) are positive. Therefore,

endemic equilibrium point is an unstable equilibrium point.

Figure 2.7 : Phase portrait of equilibrium points E0 = (
Λ

d
,0) and E∗ = (S∗, I∗) while

R0 > 1. When Λ = 0.03, β = 0.7, d = 0.4, q = 0.03, α = 0.1

In Figure (2.7), it is shown that when R0 > 1 the solution of the system starts from

the initial condition that adequately closes the equilibrium point E∗ and converges to
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this equilibrium point at t → ∞. In other words, the infectious individual population

size increases when the susceptible individual population size decreases. Hence, it

can be seen that the equilibrium point E∗ is asymptotically stable according to the

theorem (1.2.1). Also, the flow of the system converges to equilibrium point E∗ and

the flow moves away from the equilibrium point E0 and this equilibrium point is called

an unstable equilibrium point.

2.4 Prey-Predator Models

In this section, we will examine the of prey-predator equations, also known as

Lotka-Volterra equation. In this type of model, we have two types of population. One

of them is prey and the other is a predator.

The Lotka–Volterra predator-prey model was initially recommended by Alfred J. Lotka

in 1910. In 1925, Lotka used the equations to analyse predator-prey interactions in his

book Elements of Physical Biology [17], and reproduce the equations that we know

today. Vito Volterra, who was interested in the statistical analysis of fish catches in

the Adriatic, independently investigated the equations in 1926 [18]. The equations are

based on the investigation that the predator-prey dynamics are often oscillatory. More

detailed explanations are described by (Martcheva, 2015) in the reference [6]. Also,

the Lotka-Volterra model makes some assumptions for the environment and evolution

of the prey-predator populations:

• The prey population always can find sufficient food.

• The food supply of the predator population depends on the prey population.

• The environment does not change in favor of a species, in addition to genetic

adaptation is slow enough.

If we explain the prey-predator model a little more, we can say that if there is

no predator in the environment, the number of prey will gradually increase. This

increment continues until the food stock of the previous ones is exhausted. We call

that carrying capacity. As a predator enters the environment, the number of prey will

decrease while the number of predators will increase for a while. Likewise, in the
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absence of prey, the number of predators will begin to decrease, and in the presence of

prey, it will continue to increase.

Then, let’s describe the model’s diagram,

Q P

uQ sPQ

rP(1− P
K
)vQP

Figure 2.8 : Transfer diagram of Prey-Predator model.

where P represents prey and Q represents predator. We can write the system of

differential equation according to the diagram shown in figure 2.8;

dP
dt

= rP(1− P
K
)− sPQ, (2.27)

dQ
dt

= vQP−uQ. (2.28)

Here, predators eat preys at the rate of s. Where v represents the growing rate of

predators. The predators die or leave from the population at a rate of u for various other

reasons. Also, K is the carrying capacity of the prey in the absence of the predator,

and r is the growth rate of the prey population.

Since the prey-predator model is a non-linear system, we should do linearisation. First

equilibrium points must be found; then, linearisation is done by finding the Jacobian

matrix. After, it can be talked about the stability analysis of the equilibrium points.

System of equation (2.27)-(2.28) has three equilibrium points. The first equilibrium

point which corresponds to the disappearance of both prey and predator is called the

extinction equilibrium point. It is given by E0 = (0,0).

The second equilibrium point which corresponds to the absence of the predator

only and existence of the prey population. This equilibrium point called the

predator-extinction equilibrium which is given by E1 = (K,0).

The third and last equilibrium point which corresponds to a predator-prey coexistence

is given by E∗ = (
u
v
,
r(Kv−u)

Ksv
).

These equilibrium points can be seen more clearly in the Table 2.3. For more detailed

information the reader may look at again (Martcheva, 2015)’s book [6].
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Equilibrium Point / (P,Q) Description
E0 = (0,0) Extinction equilibrium.
E1 = (K,0) Predator-extinction equilibrium point.

E∗ = (
u
v
,
r(Kv−u)

Ksv
) Predator–prey coexistence equilibrium point.

Table 2.3 : Equilibrium points of Prey-Predator Model.

Now we can write the Jacobian matrix of non-linear system of equation,

J =

(
−u+Pv Qv
−Ps −Pr

K +(1+ P
K )r−Qs

)
To investigate stability of the equilibrium points.

1. Equilibrium point E0 = (0,0)

We can do the stability analysis by substituting the first found equilibrium point

E0 in the Jacobian matrix. This matrix also called the community matrix in some

literatures

J(E0) =

(
−u 0
0 r

)
(2.29)

whose eigenvalues of matrix (2.29) are

λ1 =−u

λ2 = r.

Since λ1 < 0 but λ2 > 0 this equilibrium point is called unstable equilibrium point.

Let us consider the other equilibrium points.

2. Equilibrium point E1 = (K,0)

Substitution of the second equilibrium point E1 in the Jacobian matrix gives

J(E1) =

(
−u+Kv 0
−Ks −r

)
(2.30)

whose eigenvalues of this matrix are,

λ1 =−r,

λ2 = Kv−u.
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When we consider these eigenvalues, it can be easily seen that the first eigenvalue

λ1 < 0 but the other eigenvalue’s sign depends on some conditions. If
Kv
u

< 1, then

λ2 < 0. It can be said that the basic reproduction number is

R0 =
Kv
u
. (2.31)

If R0 < 1, the number of prey increases and the prey only equilibrium point is called

locally asymptotically stable from the theorem (1.2.1). Otherwise when R0 > 1, the

number of predators increases, the number of prey decreases and equilibrium point

E1 is called unstable equilibrium point. If R0 = 1, bifurcation may occur.

Figure 2.9 : Phase portrait of equilibrium point E1 = (K,0) while R0 < 1. When
r = 0.7, K = 0.1, s = 0.2, v = 0.4, u = 0.3

In figure (2.9) it is seen that, when R0 < 1 for the solution of the system starts from

the initial condition that adequately closes the equilibrium point E1 and converge

to this equilibrium point at t → ∞. In other words, when the predator population

size decreases to zero over time, the prey population size is steady state. Therefore,

it can be seen that the equilibrium point is asymptotically stable from the Theorem

1.2.1.
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3. Equilibrium point E∗ = (
u
v
,
r(Kv−u)

Ksv
)

If the equilibrium point E∗ is written as;

E∗ = (
u
v
,
ru(R0−1)

Ksv
),

the stability analysis can be done more easily. Hence it can be seen that, equilibrium

point E∗ exists when R0 > 1. Substitution of the equilibrium point E∗ gives

J(E∗) =

 0
r(Kv−u)

Ks
−su

v
− ru

Kv

 . (2.32)

The characteristic equation of matrix (2.32) is

P(λ ) = λ
2 +h1λ +h2

where

h1 =
r(Kv−u)

Kv
+

2ru
Kv
− r,

h2 =
ru(Kv−u)

Kv
.

Let us simplify h1 and h2 as follows:

h1 = r+
1

R0
,

h2 = ru(1− 1
R0

)

where R0 is given by the equation (2.31). Existence of the equilibrium point E∗

depends on R0 > 1. It is obvious that h1 > 0 and h2 > 0 and therefore λ1 +λ2 < 0

because λ1 +λ2 =−h1 and λ1λ2 > 0 as λ1λ2 = h2. Thus all eigenvalues of matrix

(2.32) are negative. As a result, according to the theorem (1.2.1) the equilibrium

point E∗ is called locally asymptotically stable equilibrium point. And if R0 = 1,

bifurcation may occur.

In Figure (2.10) it can be seen that, when R0 > 1 for the solution of the system starts

from the initial condition that adequately closes the equilibrium point E∗ and converge

to this equilibrium point at t→ ∞.
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Figure 2.10 : Phase portrait of equilibrium point E∗ = (K,0) and

E∗ = (
u
v
,
r(Kv−u)

Ksv
) while R0 > 1. When r = 0.7, K = 0.3, s = 0.2,

v = 0.5, u = 0.1

In other words, when the predator population size increases by feeding with preys and

the prey population size decrease depend on this situation. Therefore, it can be seen

that the equilibrium point E∗ is locally asymptotically stable from the theorem (1.2.1).

Also, while flow of the system converges to equilibrium point E∗, it moves away from

the equilibrium point E0 and equilibrium point E0 is called unstable equilibrium point.
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3. STABILITY ANALYSIS OF A MATHEMATICAL MODEL OF CRIMEAN
CONGO HAEMORRHAGIC FEVER DISEASE

3.1 Introduction

Here, we will present a mathematical model expressing the spread of Crimean

Congo haemorrhagic fever disease, by considering the effect of chickens on the tick

population.

Chickens were shown to be natural predators of ticks. Rhipicephalus

appendiculatus (the brown ear tick) were recovered in large numbers from

the crops and gizzards of chickens which had scavenged for 30 min- 1 hour

among tick-infested cattle. Other ticks recovered were Amblyomma variegatum

(tropical bont tick) and Boophilus decoloratus (blue cattle tick). The numbers

of ticks recovered ranged from 3 to 331, with an average of 81 per chicken.

Cattle facilitated the predation of ticks by certain behavioural actions. Chickens

also picked up both engorged and unengorged ticks seeded on vegetation, but

unengorged ticks were preferred [19].

In the nature, birds and chickens eat ticks. They keep many creatures, especially cattle,

away from them. Therefore, birds are natural predators of ticks. Veterinarians around

the world used the tick control method for cattle. Chickens are natural predators of

ticks that feed on cattle, so chickens can be used as part of the tick control plan. If

chickens are allowed to access pastures, they can eat a significant number of insects,

especially ticks. Ticks climb the grass and wait for a suitable host. Thus, ticks that

climb to the top of the grass can be noticed by chickens and eaten. Large ticks are easily

eaten by chickens. This issue has been tackled more extensively by Sahito (2013)

in [20].

Let us give some more information about the ticks, they have three stages after

hatching. These are larval, nymph and adult stages. If an adult female tick is infected,

then the Crimean-Congo haemorrhagic fever (CCHF) virus can pass into the eggs after
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mating. Then ticks hatch as larvae and they are fed by the blood of small mammals and

birds [21]. If they do not have CCHF virus, they can get CCHF virus from their hosts.

After the larvae stage, they turn into nymphs. Nymphs also engorge by the blood of

small mammals and birds and may get CCHF virus from their hosts. After the nymphs

stage, they turn into adult female or male ticks. Adults are fed by blood of cattle to

mate and lay eggs and may get CCHF virus. Only at the adult stage, a tick can bite and

feed on humans and transfer CCHF virus [22]. People living in rural areas where the

reproduction rate of ticks is more are likely to be exposed to bites of ticks. There are

several ways to be protected against tick bites.

• Precautions like wearing long-sleeved clothing and trousers should be taken during

trekking or fieldwork.

• Trouser cuff should be inserted into the socks during the periods when ticks are

dense.

• While hiking, care should be taken while walking in the middle of the paths because

ticks are usually found under the leaf, close to the soil.

• Insect repellent sprays can be a preventive method for ticks and other insects.

• Ticks on animals should not be removed with bare hands. If the tick carries a virus,

the disease can be transmitted by contact with the blood or body fluid of the host

animal.

• Care should be taken while applying pesticides in the fields during the breeding

time of ticks.

• With the possibility of tick bites, animals should be given parasite vaccines in a

timely manner.

Crimean Congo haemorrhagic fever disease was first described in the 12th century

in Tajikistan. During the years 1944-45, it was often seen among the Soviet soldiers

who helped collect products on the Western Crimean steppes in the Crimean region of

Russia [23]. Congo virus was detected from a patient with a fever in Zaire in 1956. In

1969, Congo virus and Crimean haemorrhagic fever viruses were identified to be the

same virus, and the disease was renamed Crimean-Congo Haemorrhagic Fever. The
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disease first attracted attention in Turkey in 2002, and in 2003, a definitive diagnosis

was made. The cases of Crimean Congo haemorrhagic fever are more common in the

spring and summer, beginning from the time ticks are activated. The Crimean Congo

Haemorrhagic Fever cases, which attracted attention for the first time around Tokat

province, are mostly concentrated in the north of Central Anatolia, the Central Black

Sea, and north of Eastern Anatolia. It is mentioned by (Tartar, Balın, Akbulut and

Demirdag, 2019) in reference [24].

According to data from the Ministry of Health of Turkey Crimean-Congo

haemorrhagic fever begin to appear in the spring with the fatality rate hover around

4-5% in Turkey. Considering the incidence of cases by years, it can be mentioned that

there is an increase and decrease tendency and the highest case was 1318 individuals

in 2009. Although 343 Crimean Congo haemorrhagic fever cases were identified in

2017, it still remains important in Turkey.

3.2 Problem

This study investigates the effects of chickens on ticks within the framework of the

spread of the disease. We examine three types of epidemiological models in the thesis;

Tick Logistic Growth - Chicken Logistic Growth Model, Tick Constant - Chicken

Logistic Growth Model and Tick Logistic Growth - Chicken Constant Model. We

first consider the growth of both tick and chicken populations as the logistic growth

equation. We analyse this model in section 3.2.1. Then we consider the growth of

the chicken population as logistic growth; details are given in section 3.2.2. Finally,

we consider the growth of ticks as logistic growth, the work of which is given in

detail in section 3.2.3. We use a system of four ODE’s to represent the interactions

between infected and susceptible populations of humans and ticks. We add a fifth

ODE which models the dynamics of a chicken population and its effect on the ticks.

The model assumes finite total population of humans which is denoted by N, and finite

total population of ticks are represented by T . The human population is mutually

divided into two sub-populations. These are the susceptible class which is represented

by S and the infected human class which is represented by I. Similarly we subdivide

the tick population into susceptible and infected ticks compartment, they are denoted

by Ts and Ti, respectively. The chicken population is denoted by B.
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Then, we do the following model assumptions:

• Crimean Congo haemorrhagic fever is an SIS model for humans; there is no

immunity on the recovery. Someone with treatment can be infected again when

bitten by a tick carrying the virus.

• The age structure is not included in the model because there is no age group

specifically exposed to Crimean Congo haemorrhagic fever disease. Only the

people living in rural areas may be exposed to this disease are included in the model.

• All ticks are considered in the model are adult ticks and also somehow infective

ticks have no way of recovering and gaining immunity.

• All parameters are constant. In reality, the parameters depend on the region being

modelled, the population growth rates depends on, the season, temperature, etc.

Let us list the parameters and variables common in all 3 models for a better

understanding.

• N→ Total population size.

• S→ Susceptible human population size.

• I→ Infected human population size.

• Ts→ Susceptible tick population size.

• Ti→ Infected tick population size.

• B→ Size of the bird population.

• Λ1→ Humans: Population growth.

• Λ2→ Ticks: Population growth.

• Λ3→ Chickens: Population growth.

• γ → Recovery rate of humans.

• β1→ Transmission rate: Tick to human.

• β2→ Transmission rate: Tick to tick.
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• β3→ Transmission rate: Bird to tick.

• d→ Natural death rate of humans.

• µ → Natural death rate of chickens.

• q0→ Natural death rate of ticks.

• q1→ Birds caused death rate of ticks.

• α → Crimean Congo haemorrhagic fever death rate of humans.

• r1→ Growth rate of chickens.

• r2→ Growth rate of ticks.

• K1→ Carrying capacity of chickens.

• K2→ Carrying capacity of ticks.

3.2.1 Tick logistic growth - chicken logistic growth model

In this subsection, we consider the growth of both susceptible ticks and chicken

populations as logistic growth.

The diagram of the Tick Logistic Growth - Chicken Logistic Growth model is shown

in the figure 3.1.

Figure (3.1) represents dynamics the model. The bidirectional dotted arrows between

the boxes represent the interaction between the classes.

So, we can write the system of differential equation;

dS
dt

= Λ1 + γI−β1STi−dS, (3.1)

dI
dt

= β1STi− (α +d + γ)I, (3.2)

dTs

dt
= r2T (1− T

K2
)−β2TsTi−β3TsB− (q0 +q1B)Ts, (3.3)

dTi

dt
= β2TsTi +β3TsB− (q0 +q1B)Ti, (3.4)

dB
dt

= r1B(1− B
K1

). (3.5)

The variation of the susceptible human population, S: Equation (3.1) represents the

susceptible human population dynamics. The increments of the susceptible population
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Ts

I

Ti

S

B

dS(α +d)I

q0Ti +q1TiB

Λ1

q0Ts +q1TsB

β3TsB

β2TsTi
r2T (1− T

K2
)

r1B(1− B
K1

)

γI

β1STi

Figure 3.1 : Tick Logistic Growth - Chicken Logistic Growth Model Chart.

are shown by Λ1 and γI. Here, Λ1 represents the number of individuals entering

the environment. γ represents the recovery rate of infected individuals. Terms

that cause decrements of the susceptible human population are shown by β1STi and

dS. β1 represents the transmission rate of disease between susceptible and infective

individuals. And d represents the natural death rate.

The variation of the infected human population, I : Equation (3.2) represents the

dynamics of the infected human population. The source term of infected people

compartment is the term β1STi. Individuals leave the compartment of infected

people either with the healing condition which is represented by γI, or leave with

disease-related death or natural death which are represented by αI and dI, respectively.

The variation of the susceptible tick population, Ts: Equation (3.3) represents the

dynamics of the susceptible tick population. In this model, we write the source

term of the susceptible tick population with the logistic equation because the tick

population varies depending on the temperature of the environment, the season and the

number of nutrients in the environment. The parameters of growth rate and carrying

capacity are represented by r2 and K2, respectively in this logistic equation. Terms

that cause decrements of susceptible tick population are represented by β3TsB, β2TsTi,
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q0Ts and q1TsB. The parameter β3 is the transmission rate between ticks and chickens.

Transmission rate between ticks is denoted by β2.

The variation of the infected tick population, Ti: Equation (3.4) represents the

dynamics of the infected tick compartment. The source terms of the infected tick

population are given by β3TsB and β2TsTi. Terms that cause the decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Equation (3.5) describes the dynamics of

the chicken population. In this model we assume, the source term of the chickens as

logistic growth. Where r1 is the growth rate and K1 is the carrying capacity of chickens.

Since, this system of equations is a non-linear system, we should do linearisation. We

must find equilibrium points first. After finding equilibrium points we should write the

Jacobian matrix of the system. Then, we can investigate the stability analysis of the

equilibrium points by substituting equilibrium points in the Jacobian matrix.

Since S+ I = N and Ts +Ti = T , to analyse more easily, we can write the following

equations:

dN
dt

= Λ1−dN−αI, (3.6)

dI
dt

= β1(N− I)Ti− (α +d + γ)I, (3.7)

dT
dt

= r2T (1− T
K2

)− (q0 +q1B)T, (3.8)

dTi

dt
= β2(T −Ti)Ti +β3(T −Ti)B− (q0 +q1B)Ti, (3.9)

dB
dt

= r1B(1− B
K1

). (3.10)

The equilibrium points of the system (3.6)-(3.10) are given in the table (3.1).
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Equilibrium Points / (N, I,T,Ti,B) Description

E0 = (
Λ1

d
,0,0,0,0) Disease free equilibrium point.

E1 = (
Λ1

d
,0,0,0,K1) Disease free equilibrium point.

E2 = (
Λ1

d
,0,

K2(r2−q0)

r2
,0,0)

Disease free equilibrium point which exist
r2 > q0.

E3 = (N̄, Ī, T̄ , T̄i,0) Endemic Equilibrium point.
E∗ = (N∗, I∗,T ∗,Ti

∗,K1) Endemic Equilibrium point.

Table 3.1 : Equilibrium Points of Tick Logistic Growth - Chicken Logistic Growth
Model.

After finding equilibrium points of the system (3.6)-(3.10) which we are shown in the

Table 3.1, we can write the Jacobian matrix of the system,

J =



−d −α 0 0 0
Tiβ1 −d−α−Tiβ1− γ 0 (N− I)β1 0

0 0 r2−q0−Bq1−
2r2T
K2

0 −q1T

0 0 Tiβ2 +Bβ3 (T −2Ti)β2−B(q1 +β3)−q0 β3(T −Ti)−q1Ti

0 0 0 0 r1−
2Br1

K1


.

(3.11)

Let us investigate the stability of the equilibrium points.

1. Equilibrium Point E0 = (
Λ1

d
,0,0,0,0)

This equilibrium point contains only the susceptible human population N =
Λ1

d
.

Stability analysis can be done by substituting the disease-free equilibrium point E0

in the Jacobian matrix,

J(E0) =


−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 r2−q0 0 0
0 0 0 −q0 0
0 0 0 0 r1

 .

Eigenvalues of this matrix are,

λ1 =−d,

λ2 =−q0,

λ3 = r1,

λ4 = r2−q0,

λ5 =−d−α− γ.
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It is obvious that, λ1, λ2 and λ5 are less than zero, λ3 is greater than zero. Hence

we can say that the equilibrium point E0 is an unstable equilibrium point.

2. Equilibrium Point E1 = (
Λ1

d
,0,0,0,K1)

This equilibrium point contains only susceptible human and chicken populations

N =
Λ1

d
and B = K1, respectively. If we substitute equilibrium point E1 in Jacobian

matrix, we obtain;

J(E1) =


−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 r2−q0−K1q1 0 0
0 0 K1β3 −q0−K1(q1 +β3) 0
0 0 0 0 −r1

 .

Eigenvalues of this matrix are,

λ1 =−d,

λ2 =−r1,

λ3 = r2−q0−K1q1,

λ4 =−q0−K1(q1 +β3),

λ5 =−d−α− γ.

It is clear that the sign of the eigenvalues λ1, λ2, λ4, λ5 are negative. If

r2

q0 +K1q1)
< 1, (3.12)

the sign of λ3 becomes negative too. And the equilibrium point E1 is called locally

asymptotically stable by the theorem (1.2.1). The basic reproduction number is

defined as

R0 =
r2

q0 +K1q1
. (3.13)

If the growth rate of ticks which is represented by r2 is greater than the denominator

in R0, then, ticks in the environment increase. If R0 = 1, bifurcation may occur. If

the growth rate of ticks r2 is less than the denominator in R0, then equilibrium point

is a stable equilibrium point. In this case, flow approaches the equilibrium point, the

spread of ticks decreases. The spread of the disease also decreases correspondingly.
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3. Equilibrium point E2 = (
Λ1

d
,0,

K2(r2−q0)

r2
,0,0)

If we substitute the equilibrium point E2 in the Jacobian matrix,

J(E1) =



−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 q0− r2 0
K2q1(q0− r2)

r2

0 0 0 K2β2−
q0(r2 +K2β2)

r2
β3(K2−

K2q0

r2
)

0 0 0 0 r1


is obtained. Eigenvalues of this matrix are

λ1 =−d,

λ2 = r1,

λ3 = q0− r2,

λ4 = K2β2−
q0(r2 +K2β2)

r2
,

λ5 =−d−α− γ.

Since λ2 > 0, the equilibrium point E2 is an unstable equilibrium point.

4. Equilibrium point E3 = (N̄, Ī, T̄ , T̄i,0)

The N̄, Ī, T̄ and T̄i are found as

N̄ =
(d +α + T̄iβ1 + γ)Λ1

(d +α)(d + T̄iβ1)+dγ
,

Ī =
T̄iβ1Λ1

(d +α)(d + T̄iβ1)+dγ
,

T̄ =
K2(r2−q0)

r2
,

T̄i =
K2r2β2−q0(r2 +K2β2)

K2r2β2
.

The equilibrium point E3 exists when the necessary conditions are provided. These

conditions are

• r2 > q0,

• K2r2β2 > q0(r2 +K2β2).

When we substitute the equilibrium point E3 in the Jacobian matrix, one of the

eigenvalues is found as r1. Recall that, r1 represents a growth rate of chickens and
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it is a non-negative constant. As one eigenvalue of being positive is a sufficient

condition to say the equilibrium point E3 is an unstable equilibrium point.

5. Equilibrium point E∗ = (N∗, I∗,T ∗,Ti
∗,K1)

The components of equilibrium point E∗ are given;

N∗ =
(d +α +Ti

∗β1 + γ)Λ1

(d +α)(d +Ti
∗β1)+dγ

,

I∗ =
Ti
∗β1Λ1

(d +α)(d +Ti
∗β1)+dγ

,

T ∗ =−K2(q0 +K1q1− r2)

r2

Ti
∗ =− 1

2r2β2
[q0(r2 +K2β2)+K1(q1r2 +K2q1β2 + r2β3)−K2r2β2

−{(K1(q1r2 +K2q1β2 + r2β3)+q0(r2 +K2β2)−K2r2β2)
2

−4K1K2(q0 +K1q1− r2)r2β2β3}1/2
]
.

This equilibrium point exists if

r2

q0 +K1q1
> 1.

Note that this condition refers R0 > 1 (see (3.13)). As seen here, the existence of

equilibrium point E∗ depends on the basic reproduction number R0 > 1. Recall,

when R0 = 1, bifurcation might occur. An exchange in stability occurs between

equilibrium E1 and one of the other equilibrium points. Since the existence of E∗

depends on R0 > 1, the change in stability is between E1 and E∗. Investigation of

the stability analysis of equilibrium point E∗ can be done by substituting this in the

Jacobian matrix;

J(E∗) =


−d −α 0 0 0

Ti
∗β1 −d−α−Ti

∗β1− γ 0 (N∗− I∗)β1 0

0 0 r2−q0−K1q1−
2r2T ∗

K2
0 −q1T ∗

0 0 Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 (T ∗−Ti
∗)β3−q1Ti

∗

0 0 0 0 −r1

 .

(3.14)

We can write matrix (3.14) as a block matrix;

J(E∗) =



−d −α 0 0 0

Ti
∗β1 −d−α−Ti

∗β1− γ 0 (N∗− I∗)β1 0

0 0 r2−q0−K1q1−
2r2T ∗

K2
0 −q1T ∗

0 0 Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 (T ∗−Ti
∗)β3−q1Ti

∗

0 0 0 0 −r1


.
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We can write

J1(E∗) =
(
−d −α

Ti
∗β1 −d−α−Ti

∗β1− γ

)
, (3.15)

J2(E∗) =

r2−q0−K1q1−
2r2T ∗

K2
0 −q1T ∗

Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 (T ∗−Ti
∗)β3−q1Ti

∗

0 0 −r1

 .

First, let us find the sign of eigenvalues of matrix J1(E∗).

Theorem 3.2.1. [3] Let δ = detA and τ = traceA where A is a 2x2 matrix and

consider the linear system

ẋ = Ax. (3.16)

a. If δ < 0 (3.16) has a saddle at the origin.

b. If δ > 0 an τ2− 4δ ≥ 0, (3.16) has a node at the origin; it is stable if τ < 0

and unstable if τ > 0.

c. If δ > 0 an τ2−4δ < 0, and τ 6= 0, (3.16) has a focus at the origin; it is stable

if τ < 0 and unstable if τ > 0.

d. If δ > 0 and τ = 0, (3.16) has a center at the origin.

Note that in case (b), τ ≥ 4|δ |> 0; τ 6= 0.

The proof of the theorem can be found at [3].

Since

Trace(J1) =−2d−α−Ti
∗
β1− γ < 0

and

det(J1) = d2 +Ti
∗
αβ1 +d(α +Ti

∗
β1 + γ)> 0,

both eigenvalues of J1(E∗) have negative real parts by the theorem (3.2.1).

Eigenvalues of J2(E∗) are

λ1 =−r1,

λ2 = r2−q0−K1q1−
2r2T ∗

K2
,

λ3 = (T ∗−2Ti
∗)β2−q0−K1(q1 +β3).
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It is clear that the eigenvalue λ1 is negative. If we substitute T ∗ in eigenvalue λ2,

we obtain

λ2 =−(q0 +K1q1)(R0−1).

Remember that, the equilibrium point E∗ exists,when R0 > 1. So, we can say that

the eigenvalue λ2 is negative. Now, we can investigate sign of last eigenvalue λ3.

We can write λ3 as

λ3 =−
1

R0(q0 +K1q1)

[
{(q0 +K1q1)

2(4K1K2(R0−1)R0β2β3

+[K2β2 +R0(q0−K2β2 +K1(q1 +β3))]
2)}1/2

]
.

It is clear that the last eigenvalue of J2(E∗) is negative. As a result, all eigenvalues of

matrix J(E∗) are negative. Hence, this equilibrium point is a locally asymptotically

stable by the theorem (1.2.1).

Equilibrium points of the system has five non-negative equilibria. E0, E1 and

E2 are disease-free equilibrium points and E3, E∗ are endemic equilibrium points.

Equilibrium points E0 and E1 exists without any conditions, whereas E2, E3 and E∗

exist when necessary conditions are provided. Also, E0, E2 and E3 are unstable.

R0 Sensitivity Analysis

To examine the sensitivity of R0 to each of its parameters, following Arriola and

Hyman [25], the normalised forward sensitivity index with respect to each of the

parameters are calculated:

Ar2 =

∂R0
R0
∂ r2
r2

=
r2

R0

∂R0

∂ r2
= r2

(
q0 +K1q1

r2

)(
1

q0 +q1K1

)
= 1, (3.17)
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Aq0 =

∂R0
R0

∂q0
q0

=
q0

R0

∂R0

∂q0
= q0

(
q0 +K1q1

r2

)(
− r2

(q0 +K1q1)2

)
=− q0

q0 +K1q1
< 0,

AK1 =

∂R0
R0

∂K1
K1

=
K1

R0

∂R0

∂K1
= K1

(
q0 +K1q1

r2

)(
− r2q1

(q0 +K1q1)2

)
=− K1q1

q0 +K1q1
< 0,

Aq1 =

∂R0
R0

∂q1
q1

=
q1

R0

∂R0

∂q1
= q1

(
q0 +K1q1

r2

)(
− K1r2

(q0 +K1q1)2

)
=− K1q1

q0 +K1q1
< 0.

It is seen here, R0 is most sensitive to changes in r2. An increase or decrease in r2 will

bring about increase or decrease of the same proportion in basic reproduction number

R0. One can also see that q0, K1 and q1 have an inversely proportional relationship with

R0; an increase in any of these parameters will bring about a decrease in R0, however,

the size of decrease will be proportionally smaller. In other words, if the precautions

are taken in the breeding time of ticks, the increase of infective ticks may be prevented.

Consequently, the spread of the disease can decrease.

Bifurcation Analysis

In this model, we shall examine bifurcation analysis. It is known that, bifurcation

occurs when R0 = 1. We use the Castillo-Chavez and Song bifurcation theorem (2.2.1)

which is given in the second chapter. Let us recall,

a =
n

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0),

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0)

(3.18)
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from the theorem. We set S = x1, I = x2, Ts = x3, Ti = x4 and B = x5. Therefore

N = x1 + x2 and T = x3 + x4. System (3.6)-(3.10) becomes

f1 = Λ1−d(x1 + x2)−αx2, (3.19)

f2 = β1x1x4− (γ +d +α)x2, (3.20)

f3 = r2(x3 + x4)(1−
x3 + x4

K2
)− (q0 +q1x5)(x3 + x4), (3.21)

f4 = β2x3x4 +β3x3x5− (q0 +q1x5)x4, (3.22)

f5 = r1x5(1−
x5

K1
). (3.23)

Let us consider the parameter φ which is given in theorem (2.2.1) is represented by

r2. Here r2 is the obvious choice of bifurcation parameter because basic reproduction

number R0 is more sensitive to changes in r2 as seen in the equation (3.17). When

R0 = 1, we can write

r̃2 = q0 +K1q1.

So, the disease free equilibrium point E1 of this model is (x̃1 =
Λ1

d
, x̃2 = 0, x̃3 = 0, x̃4 =

0, x̃5 = K1). The Jacobian matrix for the disease free equilibrium point is evaluated

J =


−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 0 0 0
0 0 K1β3 −q0−K1(q1 +β3) 0
0 0 0 0 −r1

 .

Eigenvalues of this matrix are

λ1 = 0,

λ2 =−d,

λ3 =−q0−K1(q1 +β3),

λ4 =−r1,

λ5 =−d−α− γ.

It is clear that λ1 is a simple eigenvalue of Dx f . So we can write right eigenvector and

left eigenvector according to the theorem (2.2.1).

The right eigenvector w corresponding to the zero eigenvalue is

w = (− αβ1Λ1

d2(d +α + γ)
,

β1Λ1

d(d +α + γ)
,
q0 +K1(q1 +β3)

K1β3
,1,0)T
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and the left eigenvector v corresponding to the zero eigenvalue is

v = (0,0,1,0,0).

The second derivatives in formulas (3.18) are evaluated at disease free equilibrium

point E0 = (
Λ1

d
,0,0,0,K1), and r2 = r̃2. The non-zero derivatives are given as follows,

∂ 2 f2

∂x1∂x4
=

∂ 2 f2

∂x4∂x1
= β1,

∂ 2 f3

∂x3∂x4
=

∂ 2 f3

∂x4∂x3
=−2

r2

K2
,

∂ 2 f3

∂x3∂x5
=

∂ 2 f3

∂x5∂x3
=−q1,

∂ 2 f3

∂x4∂x5
=

∂ 2 f3

∂x5∂x4
=−q1,

∂ 2 f3

∂x32 =−2
r2

K2
,

∂ 2 f3

∂x42 =−2
r2

K2
,

∂ 2 f4

∂x3∂x4
=

∂ 2 f4

∂x3∂x3
= β2,

∂ 2 f4

∂x3∂x5
=

∂ 2 f4

∂x5∂x3
= β3,

∂ 2 f4

∂x4∂x5
=

∂ 2 f4

∂x5∂x4
=−q1,

∂ 2 f4

∂x3∂x5
2 =−2

r1

K1
,

∂ 2 f3

∂x3∂ r2
= 1,

∂ 2 f3

∂x4∂ r2
= 1.

If we substitute these derivatives in a and b given by (3.18),

a = v2w1w4
∂ 2 f2

∂x1∂x4
+ v2w4w1

∂ 2 f2

∂x4∂x1
+2v3w3

2 ∂ 2 f3

∂x32 + v3w3w4
∂ 2 f3

∂x3∂x4

+ v3w4w3
∂ 2 f3

∂x4∂x3
+ v3w3w5

∂ 2 f3

∂x3∂x5
+2v3w4

2 ∂ 2 f3

∂x42 + v3w5w3
∂ 2 f3

∂x5∂x3

+ v3w4w5
∂ 2 f3

∂x4∂x5
+ v3w5w4

∂ 2 f3

∂x5∂x4
+ v4w3w4

∂ 2 f4

∂x3∂x4
+ v4w4w3

∂ 2 f4

∂x4∂x3

+ v4w3w5
∂ 2 f4

∂x3∂x5
+ v4w5w3

∂ 2 f4

∂x5∂x3
+ v4w4w5

∂ 2 f4

∂x4∂x5
+ v4w5w4

∂ 2 f4

∂x5∂x4

+2v5w5w5
∂ 2 f5

∂x5∂x5

=
4r2

K1
2K2β3

2

[
−(q0 +K1q1)

2−3K1(q0 +K1q1)β3−3K1
2
β3

2
]
,

b = v3w3
∂ 2 f3

∂x3∂ r2
+ v3w4

∂ 2 f3

∂x4∂ r2
= 2+

q0 +K1q1

K1β3

are obtained. It is obvious that a < 0 and b > 0. This shows, according to the result

of iv. in the theorem (2.2.1), the stability of the equilibrium point E1 is changed from

stable to unstable.

When R0 < 1, equilibrium point E1 is stable and components of the equilibrium point

E∗ are negative. It is mean, when R0 < 1, the equilibrium point E∗ does not exist.
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Figure 3.2 : Bifurcation diagram of the Infected Tick Population. Where K2 = 1000,
q0 = 0.0025, q1 = 0.0063, β3 = 0.004, K1 = 2, β2 = 0.49.

Therefore, when R0 < 1, there only exists the disease-free equilibrium point. When

R0 > 1, the disease-free equilibrium point becomes unstable, endemic equilibrium

point E∗ becomes positive and stable. As a result, we can say that forward bifurcation

occurs.

Simulations

Here, to better understand the stability analysis of the system we simulate the model.

Let us fix the following parameters and total human population in the system (3.6) -

(3.10) as follows:

N = 5000, r1 = 0.2, r2 = 0.75, K2 = 300,

q0 = 0.025, β2 = 0.0023, β3 = 0.0015, β1 = 0.008,

α = 0.0018, d = 0.011, γ = 0.017.

We choose the initial conditions as,

B(0) = 2, T (0) = 100, Ti(0) = 0, I(0) = 0.

Here we shall consider various cases by choosing the rest of the parameters differently.

1. Case 1

If we choose K1 = 20 and q1 = 0.063, then R0 = 0.583 < 1. And if we choose
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the parameter K1 = 20 and q1 = 0.073, then R0 = 0.505 < 1. Note that because

R0 < 1 the stability will point out that the disease vanish. When the parameters are

K1 = 20 and r1 = 0.2, the graphic of the chicken population over time is given in

figure (3.13).

Figure 3.3 : Chicken Population Over Time. We choose K1 = 20, so that R0 < 1.

Figure 3.4 : Tick Population Over Time.
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Figure 3.5 : Infected Tick Population Over Time.

Figure 3.6 : Infected People Population Over Time.

Figures (3.4), (3.5) and (3.6) show that the tick population, infected tick population

decrease and eventually vanish, which means the disease eventually dies out. Recall

that, q1 is chicken-related death rate of ticks. According to figures (3.5) and (3.6)

an increase in q1 causes the tick population and infected tick population increase

less and vanish faster. Therefore, we can say that if we increase the frequency of

the unleashed chickens in the environment, chicken related-death rate q1 of ticks

also increases. Thus, the tick population vanish rapidly.

2. Case 2

If we choose parameter K1 = 5 and q1 = 0.063, then R0 = 2.205. And if we choose

q1 = 0.073, then R0 = 1.923. Which means as R0 > 1, the equilibrium points are

unstable. When the parameters are K1 = 5 and r1 = 0.2, the graphic of the chicken

population over time is given in figure (3.7).
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Figure 3.7 : Chicken Population Over Time. We choose K1 = 5, so that R0 > 1.

Figure 3.8 : Tick Population Over Time.

Figure 3.9 : Infected Tick Population Over Time.
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Figure 3.10 : Infected People Population Over Time.

As we can see in the figures (3.8) and (3.9) first, the tick population increases

for a while, then it slightly decreases and eventually remains constant. Besides,

according to figure (3.10), first the spread of the disease increases due to the increase

of tick population. After, it decreases for a while due to the chicken-related death

rate q1. And eventually, the disease spreads and becomes endemic.

3.2.2 Tick constant - chicken logistic growth model

In this subsection, we will consider the growth of only chicken population as logistic

growth whereas we take the number of the ticks entering to the system as constant.

The diagram of that we call tick constant - chicken logistic growth model is shown in

the figure 3.11.

The bidirectional dotted arrows between the boxes represent the interaction between

the classes.

So let us write the system of non-linear differential equation;

dS
dt

= Λ1 + γI−β1STi−dS, (3.24)

dI
dt

= β1STi− (α +d)I− γI, (3.25)

dTs

dt
= Λ2−β2TsTi−β3TsB− (q0 +q1B)Ts, (3.26)

dTi

dt
= β2TsTi +β3TsB− (q0 +q1B)Ti, (3.27)

dB
dt

= r1B(1− B
K1

). (3.28)
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Ts

I

Ti

S

B

dS(α +d)I

q0Ti +q1TiB

Λ1

Λ2

q0Ts +q1TsB

β3TsB

β2TsTi

r1B(1− B
K1

)

γI

β1STi

Figure 3.11 : Tick Constant - Chicken Logistic Growth Model Chart.

The variation of the susceptible human population, S: Equation (3.24) represents the

susceptible human population dynamics. The increments of the susceptible population

are shown by Λ1 and γI. Here, Λ1 represents the number of individuals entering

the environment. γ represents the recovery rate of infected individuals. Terms that

cause the decrements of the susceptible human population are shown by β1STi and

dS. β1 represents the transmission rate of disease between susceptible and infected

individuals, and d represents the natural death rate.

The variation of the infected human population, I : Equation (3.25) represents the

dynamics of the infected human population. The source term of infected people

compartment is the term β1STi. Individuals leave the compartment of infected

people either with the healing condition which is represented by γI, or leave with

disease-related death or natural death which are represented by αI and dI, respectively.

The variation of the susceptible tick population, Ts: Equation (3.26) represents

the dynamics of the susceptible tick population. We write the source term of the

susceptible tick population with Λ2, where Λ2 represents the number of ticks enter

the susceptible tick compartment. Terms that cause decrements of susceptible tick

population are represented by β3TsB, β2TsTi, q0Ts and q1TsB.
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The variation of the infected tick population, Ti: Equation (3.27) represents the

dynamics of the infected tick compartment. The source terms of the infected tick

population are given by β3TsB and β2TsTi. Terms that cause the decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Eq. (3.28) represents the dynamic of the

chicken population. We assume, the source term of the chicken population is logistic

growth equation where r1 represents growth rate of chickens and carrying capacity of

chickens is represented by K1.

Since S+ I = N and Ts +Ti = T , to analyse more easily, we can write the following

equations:

dN
dt

= Λ1−dN−αI, (3.29)

dI
dt

= β1(N− I)Ti− (α +d)I− γI, (3.30)

dT
dt

= Λ2− (q0 +q1B)T, (3.31)

dTi

dt
= β2(T −Ti)Ti +β3(T −Ti)B− (q0 +q1B)Ti, (3.32)

dB
dt

= r1B(1− B
K1

). (3.33)

All parameters in this system are non-negative constants. Since this system of

equations is a non-linear, we use Hartman Grobman theorem given in theorem (1.2.2).

We should linearise it so that we can perform stability analysis. As in the previous

model examples, we must substitute the equilibrium points of the system (3.29)-(3.33)

in the Jacobian matrix. Then we can talk about the behaviour of the flow locally, near

the equilibrium points according to the sign of the eigenvalues by applying the Hartman

Grobman theorem. Equilibrium points of the system is given in the table (3.2).

Equilibrium Points / (N, I,T,Ti,B) Description

E0 = (
Λ1

d
,0,

Λ2

q0
,0,0) Disease free equilibrium point.

E1 = (N̄, Ī, T̄ , T̄i,0)
Endemic equilibrium point which exist
when β2Λ2 > q0

2.
E∗ = (N∗, I∗,T ∗,Ti

∗,K1) Endemic Equilibrium point.

Table 3.2 : Equilibrium points of the Tick Constant - Chicken Logistic Growth Model
Table.

55



Jacobian matrix can be written as follows,

J =


−d −α 0 0 0
Tiβ1 −d−α−Tiβ1− γ 0 (−I +N)β1 0

0 0 −q0−Bq1 0 −q1T
0 0 Tiβ2 +Bβ3 (T −Ti)β2−q0−Bq1−Tiβ2−Bβ3 (T −Ti)β3−q1Ti

0 0 0 0 r1−
2Br1

K1

 .

Let us investigate the stability of each equilibrium points.

1. Equilibrium Point E0 = (
Λ1

d
,0,

Λ2

q0
,0,0)

This equilibrium point contains only human and susceptible tick populations N =
Λ1

d
and T =

Λ2

q0
respectively.

Then let us do the stability analysis by substituting the disease-free equilibrium

point E0 in the Jacobian matrix,

J(E0) =



−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 −q0 0 −q1Λ2

q0

0 0 0 −q0 +
β2Λ2

q0

β3Λ2

q0
0 0 0 0 r


.

Eigenvalues of this matrix are

λ1 =−d,

λ2 =−q0,

λ3 = r,

λ4 =−d−α− γ,

λ5 =−
q0

2−β2Λ2

q0

It is clear that the eigenvalues λ1,λ2,λ3 are non positive and the eigenvalue λ3 is

grater than zero. Therefore, we can say that E0 equilibrium point is an unstable

equilibrium point.
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2. Equilibrium Point E1 = (N̄, Ī, T̄ , T̄i,0)

Components of the equilibrium point E1 are given;

N̄ =
q0(q0β1−β2(d +α + γ))Λ1−β1β2Λ1Λ2

q0(d +α)(q0β1−dβ2)−dq0β2γ− (d +α)β1β2Λ2
,

Ī =
β1Λ1(β2Λ2)−q0

2

q0(d +α)(q0β1−dβ2)−dq0β2γ− (d +α)β1β2Λ2
,

T̄ =
Λ2

q0
,

T̄i =
Λ2

q0
− q0

β2
.

There are some conditions for the existence of the equilibrium point E1. If

these conditions for existence of equilibrium point E1 are satisfied, one of the

eigenvalues which are obtained by substituting in the Jacobian matrix is found

positive. Therefore, this equilibrium point is also unstable.

3. Equilibrium Point E∗ = (N∗, I∗,T ∗,Ti
∗,K1)

Components of the equilibrium point E∗ are given;

N∗ =
(d +α +Ti

∗β1 + γ)Λ1

(d +α)(d +Ti
∗β1)dγ

,

I∗ =
Ti
∗β1Λ1

(d +α)(d +Ti
∗β1)+dγ

,

T ∗ =
Λ2

q0 +1 Kq1
,

Ti
∗ =− 1

2(q0 +K1q1)β2
[(q0 +K1q1)(q0K1(q1 +β3))−β2Λ2

−
√

(q0Kq1)2(q0 +K1(q1 +β3))2−2(q0 +K1q1)β2(q0 +K1(q1−β3))Λ2 +β2
2
Λ2

2
]
.

If we select all the parameters for the components of the equilibrium point E∗ as

non-negative, we see that Ti
∗ is positive. N∗ and I∗ contain Ti

∗. Therefore, I∗ and

Ti
∗ are also positive. Besides, it is clear that T ∗ is positive. Let us substitute the

equilibrium point in the Jacobian matrix;

J(E∗) =


−d −α 0 0 0

Ti
∗β1 −d−α−Ti

∗β1− γ 0 (−I∗+N∗)β1 0
0 0 −q0−K1q1 0 −q1T ∗

0 0 Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 T ∗β3−Ti
∗(q1 +β3)

0 0 0 0 −r1

 .

The matrix J(E∗) is can be written as block matrix,
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J(E∗) =



−d −α 0 0 0

Ti
∗β1 −d−α−Ti

∗β1− γ 0 (N∗− I∗)β1 0

0 0 −q0−K1q1 0 −q1T ∗

0 0 Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 T ∗β3−Ti
∗(q1 +β3)

0 0 0 0 −r1


.

We can write

J1(E∗) =
(
−d −α

Ti
∗β1 −d−α−Ti

∗β1− γ

)
,

J2(E∗) =

 −q0K1q1 0 −q1T ∗

Ti
∗β2 +K1β3 (T ∗−2Ti

∗)β2−K1(q1 +β3)−q0 T ∗β3−Ti
∗(q1 +β3)

0 0 −r1

 .

Since

Trace(J1(E1)) =−2d−α−Ti
∗
β1− γ < 0

and

det(J1(E1)) = d2 +Ti
∗
αβ1 +d(α +Ti

∗
β1 + γ)> 0,

according to the theorem (3.2.1) both eigenvalues of the matrix J1(E∗) have

negative real parts. Let’s write the characteristic polynomial of J2(E∗)

P(λ ) = (λ +q0 +K1q1)(λ + r1)(λ +q0 +K1(q1 +β3)+β2(2Ti
∗−T ∗)).

Eigenvalues of this matrix are

λ1 =−q0−K1q1,

λ2 =−r1,

λ3 =−q0−K1(q1 +β3)−β2(2Ti
∗−T ∗).

It is clear that the eigenvalues λ1 and λ2 are negative. If 2Ti
∗ > T ∗ is provided, all

eigenvalues are negative. Then, the equilibrium point E∗ is called stable equilibrium

point.

Otherwise, if 2Ti
∗ < T ∗ and q0 +K1(q1 +β3)> β2(2Ti

∗−T ∗), all eigenvalues will

be negative again and equilibrium point E∗ is called stable. And if 2Ti
∗ < T ∗ and

q0 +K1(q1 +β3)< β2(2Ti
∗−T ∗), equilibrium point is a unstable.
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3.2.3 Tick logistic growth - chicken constant model

Here we consider the problem within the framework of the numbers of entering to the

ticks and chicken populations as constants.

The diagram of the tick logistic growth - chicken constant model is shown in the figure

(3.12)

Ts

I

Ti

S

B

dS(α +d)I

q0Ti +q1TiB

Λ1

q0Ts +q1TsB

µB

Λ3

β3TsB

β2TsTi
r2T (1− T

K2
)

γI

β1STi

Figure 3.12 : Tick Logistic Growth - Chicken Constant Model Chart.

Let us write the system of non-linear equation according to figure 3.12;

dS
dt

= Λ1 + γI−β1STi−dS, (3.34)

dI
dt

= β1STi− (α +d + γ)I, (3.35)

dTs

dt
= r2T (1− T

K2
)−β2TsTi−β3TsB− (q0 +q1B)Ts, (3.36)

dTi

dt
= β2TsTi +β3TsB− (q0 +q1B)Ti, (3.37)

dB
dt

= Λ3−µB. (3.38)

The variation of the susceptible human population, S: Equation (3.34) represents the

susceptible human population dynamics. The increments of the susceptible population

are shown by Λ1 and γI. Here, Λ1 represents the number of individuals entering

the environment. γ represents the recovery rate of infected individuals. Terms that
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cause decrements of the susceptible human population are shown by β1STi and dS. β1

represents the transmission rate of disease between susceptible and infected individuals

and d represents the natural death rate.

The variation of the infected human population, I : Equation (3.35) represents the

dynamics of the infected human population. The source term of infected people

compartment is the term β1STi. Individuals leave the compartment of infected

people either with the healing condition which is represented by γI, or leave with

disease-related death or natural death which are represented by αI and dI, respectively.

The variation of the susceptible tick population, Ts: Equation (3.36) represents the

dynamics of the susceptible tick population. In this model, we write the source term of

the susceptible tick population with the logistic equation because the tick population

varies depending on the temperature of the environment, the season and the number

of nutrients in the environment. The parameters growth rate and carrying capacity

are represented by r2 and K2, respectively in this logistic equation. Terms that cause

decrements of susceptible tick population are represented by β3TsB, β2TsTi, q0Ts and

q1TsB where the parameter β3 is the transmission rate between ticks and chickens.

Transmission rate between ticks is denoted by β2.

The variation of the infected tick population, Ti: Equation (3.37) represents the

dynamics of the infected tick compartment. The source terms of the infected tick

population are given by β3TsB and β2TsTi. Terms that cause decrements of infected

tick population are similar to the susceptible tick population.

The variation of the chicken population, B: Eq.(3.38) represents the dynamics of

the chicken population. In the model, we represent the source term of the chicken

population with a constant term Λ3. Loss due to death of the chicken population is

represented by the term µB.

60



Since S+ I = N and Ts +Ti = T , to analyse more easily, we can write the following

equations (3.34)-(3.38)

dN
dt

= Λ1−dN−αI, (3.39)

dI
dt

= β1(N− I)Ti− (α +d + γ)I, (3.40)

dT
dt

= r2T (1− T
K2

)− (q0 +q1B)T, (3.41)

dTi

dt
= β2(T −Ti)Ti +β3(T −Ti)B− (q0 +q1B)Ti, (3.42)

dB
dt

= Λ3−µB. (3.43)

All parameters in this non-linear system of equations are non-negative constants.

Since, this system of equations is a non-linear system, we will again use the Hartman

Grobman theorem and to use the theorem similarly what have been done in the previous

cases, we examine the behaviours of the linearised system in the neighbourhood of

the equilibrium points. so that we shall investigate the local stability of the problem.

Equilibrium points of the system are found by solving the following equations:

dN
dt

= 0⇒ Λ1−dN−αI = 0,

dI
dt

= 0⇒ β1(N− I)Ti− (α +d + γ)I = 0,

dT
dt

= 0⇒ r2T (1− T
K2

)− (q0 +q1B)T = 0,

dTi

dt
= 0⇒ β2(T −Ti)Ti +β3(T −Ti)B− (q0 +q1B)Ti = 0,

dB
dt

= 0⇒ Λ3−µB = 0.

Equilibrium Points / (N, I,T,Ti,B) Description

E0 = (
Λ1

d
,0,0,0,

Λ3

µ
) Disease free equilibrium point.

E∗ = (N∗, I∗,T ∗,Ti
∗,B∗) Endemic Equilibrium point.

Table 3.3 : Equilibrium Points of Tick Logistic Growth - Chicken Constant Model.

Equilibrium points are given in the Table (3.3).
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Stability Analysis

Let us write the Jacobian matrix,

J =


−d −α 0 0 0
Tiβ1 −d−α−Tiβ1− γ 0 (N− I)β1 0

0 0 r2−Bq1−q0−2
r2T
K2

0 −q1T

0 0 Tiβ2 +Bβ3 (T −Ti)β2−q0−B(q1 +β3) (T −Ti)β3−q1Ti
0 0 0 0 −µ

 .

Let us investigate the stability of the equilibrium points.

1. Equilibrium point E0 = (
Λ1

d
,0,0,0,

Λ3

µ
)

This equilibrium point is disease-free equilibrium point because, it contains only

human population and chicken population N =
Λ1

d
and B =

Λ3

µ
respectively.

Then let us do the stability analysis by substituting the disease-free equilibrium

point E0 in the Jacobian matrix,

J(E0) =



−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 r2−q0−
q1Λ3

µ
0 0

0 0
β3Λ3

µ
−(q1 +β3)Λ3 +q0µ

µ
0

0 0 0 0 −µ


.

Eigenvalues of J(E0) are

λ1 =−d,

λ2 =−d−q− γ,

λ3 =−µ,

λ4 =−
q1Λ3 +q0µ +β3Λ3

µ
,

λ5 =−q0 + r2−
q1Λ3

µ
.

It is obvious that eigenvalues λ1,λ2,λ3 and λ4 are negative. But the eigenvalue λ5

becomes negative when
r2µ

q0µ +q1Λ3
< 1

is satisfied. In this case, all eigenvalues will have negative real parts then we

can say that the disease-free equilibrium point E0 is called locally asymptotically
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stable according to theorem 1.2.1. Hence, the disease dies out and tick population

decrease. If
r2µ

q0µ +q1Λ3
> 1

then λ5 is positive. Then disease-free equilibrium point E0 is a unstable equilibrium

point. So, we can say that the threshold value of this model is

R0 =
r2µ

q0µ +q1Λ3
. (3.44)

As a result, when R0 < 1, the equilibrium point E0 is called locally asymptotically

stable according to the theorem (1.2.1). In this case, the flow gets closer to the

equilibrium point over time. If R0 > 1 the equilibrium point is called unstable and

flow goes away from the equilibrium point E0. Besides if R0 = 1 bifurcation occurs.

2. Equilibrium point E∗ = (N∗, I∗,T ∗,Ti
∗,B∗)

The components of this endemic equilibrium point are given;

N∗ =
(d +α +Ti

∗β1 + γ)Λ1

(d +α)(d +Ti
∗β )+dγ

,

I∗ =
Ti
∗β1Λ1

(d +α)(d +Ti
∗β1)+dγ

,

T ∗ =
K2((r2−q0)µ−q1Λ3)

r2µ
,

Ti
∗ =− 1

2r2β2µ2

[
(q1(r2 +K2β2)+ r2β3)Λ3µ +(q0r2 +K2(q0− r2)β2)µ

2

−{µ2(−4K2r2β2β3Λ3(q1Λ3 +(q0− r2)µ)+ [q1(r2 +K2β2)Λ3 +K2q0β2µ

+r2(β3Λ3 +q0µ−K2β2µ)]2)}1/2
]
,

B∗ =
Λ3

µ
.

The endemic equilibrium point E∗ exists when the conditions

• r2µ > q1Λ3,

•
r2µ

q0µ +q1Λ3
> 1

are provided. Note that last condition refers R0 > 1(see (3.44)). When we substitute

endemic equilibrium in Jacobian matrix,

J(E∗) =



−d −α 0 0 0
Ti
∗β1 −d−α−Ti

∗β1− γ 0 (N∗− I∗)β1 0

0 0 r2−q0−
2r2T ∗

K2
− q1Λ3

µ
0 −q1T ∗

0 0 Ti
∗β2 +

β3Λ3

µ
T ∗β2−q0−2Ti

∗β2−
(q1 +β3)Λ3

µ
T ∗β3−Ti

∗(q1 +β3)

0 0 0 0 −µ
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is obtained. The matrix J(E∗) is can be written as a block matrix;

J(E∗) =



−d −α 0 0 0

Ti
∗β1 −d−α−Ti

∗β1− γ 0 (N∗− I∗)β1 0

0 0 r2−q0−
2r2T ∗

K2
− q1Λ3

µ
0 −q1T ∗

0 0 Ti
∗β2 +

β3Λ3

µ
T ∗β2−q0−2Ti

∗β2−
(q1 +β3)Λ3

µ
T ∗β3−Ti

∗(q1 +β3)

0 0 0 0 −µ


.

We cab write

J1(E∗) =
(
−d −α

Ti
∗β1 −d−α−Ti

∗β1− γ

)
and

J2(E∗) =


r2−q0−

2r2T ∗

K2
− q1Λ3

µ
0 −q1T ∗

Ti
∗β2 +

β3Λ3

µ
T ∗β2−q0−2Ti

∗β2−
(q1 +β3)Λ3

µ
T ∗β3−Ti

∗(q1 +β3)

0 0 −µ

 .

Since

Trace(J1(E∗)) =−2d−α−Ti
∗
β1− γ < 0,

and

det(J1(E∗)) = d2 +dα +dTi
∗
β1 +Ti

∗
αβ1 +dγ > 0

according to theorem (3.2.1) both eigenvalues of matrix J1(E∗) have negative real

parts. Now, let us investigate sign of the eigenvalues of matrix J2(E∗). Eigenvalues

of this matrix are

λ1 =−µ,

λ2 = r2−q0−
2r2T ∗

K2
− q1Λ3

µ
,

λ3 = β2(T ∗−Ti
∗)−q0−

(q1 +β3)Λ3

µ
.

It is clear that the eigenvalue λ1 is negative. If we substitute T ∗, Ti
∗ and R0 in

eigenvalues λ2 and λ3, we obtain

λ2 =−
(R0−1)(q1Λ3 +q0µ)

µ
,

λ3 =−
1

R0µ(q1Λ3 +q0µ)
{(q1Λ3 +q0µ)2[4K2(R0−1)R0β2β3Λ3µ

+(q1R0Λ3+K2β2µ +R0(β3Λ3 +q0µ−K2β2µ))2]}1/2.
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Recall, the equilibrium point E∗ exists, when R0 > 1. So we can say that eigenvalues

λ2 and λ3 are negative. As a result, all eigenvalues of matrix J2(E∗) are negative.

So, this equilibrium point is a locally asymptotically stable according to the theorem

1.2.1.

As a result, equilibrium points of the system has two non-negative equilibria. E0 is a

disease-free equilibrium point and E∗ is an endemic equilibrium point. Equilibrium

point E0 exists without any conditions, whereas E∗ exists when R0 > 1.

Sensitivity Analysis of R0

To analyse the sensitivity of basic reproduction number R0 to each of its parameters,

we use method of Arriola and Hyman [25]. The normalised forward sensitivity index

with respect to each of the parameters is calculated as,

Ar2 =

∂R0
R0
∂ r2
r2

=
r2

R0

∂R0

∂ r2
= r2

(
q0µ +q1Λ3

r2µ

)(
µ

q0µ +q1Λ3

)
= 1, (3.45)

Aµ =

∂R0
R0
∂ µ

µ

=
µ

R0

∂R0

∂ µ
= µ

(
q0µ +q1Λ3

r2µ

)(
q1r2Λ3

(q1Λ3 +q0µ)2

)
=

q1Λ3

q1Λ3 +q0µ
> 0,

Aq1 =

∂R0
R0

∂q1
q1

=
q1

R0

∂R0

∂q1
= q1

(
q0µ +q1Λ3

r2µ

)(
− r2Λ3µ

(q1Λ3 +q0µ)2

)
=−

(
q1Λ3

q1Λ3 +q0µ

)
< 0,

AΛ3 =

∂R0
R0

∂Λ3
Λ3

=
Λ3

R0

∂R0

∂Λ3
= Λ3

(
q0µ +q1Λ3

r2µ

)(
− q1r2µ

(q1Λ3 +q0µ)2

)
=−

(
q1Λ3

q1Λ3 +q0µ

)
< 0,

Aq0 =

∂R0
R0

∂q0
q0

=
q0

R0

∂R0

∂q0
= q0

(
q0µ +q1Λ3

r2µ

)(
− r2µ2

(q1Λ3 +q0µ)2

)
=−

(
q0µ

q1Λ3 +q0µ

)
< 0.

We can see that, among these six parameters, basic reproduction number R0 is most

sensitive to change in r2 and µ . A decrease or increase in r2 causes a decrease or
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increase in R0 with the same proportion. And also an increase or decrease in the value

of µ leads to a corresponding increase or decrease in R0. Conversely, the other three

parameters have an inversely proportional relationship with R0, so an increase in q1,

Λ3 and q0 will bring about a decrease in R0. Recall that the parameter µ is the death

rate of chickens. Increase in µ is not preferred. Moreover, the parameters q1, Λ3, β3

and q0 may have directly or inversely proportional relationship with the reproduction

number. As a result R0 is the most sensitive to changes in r1 because, although Aµ > 0,

it is also seen that Aµ < 1.

Bifurcation Analysis

In this model we shall examine bifurcation analysis for this model. It is known

that, bifurcation may occur when basic reproduction number R0 = 1. We use the

Castillo-Chavez and Song bifurcation theorem (2.2.1).

We set S = x1, I = x2, Ts = x3, Ti = x4 and B = x5. Therefore it can be said that

N = x1 + x2 and T = x3 + x4. System (3.34)-(3.38) is written in therms of the notation

ẋ = f (x) as follows:

f1 = Λ1−d(x1 + x2)−αx2, (3.46)

f2 = β1x1x4− (γ +d +α)x2,

f3 = r2(x3 + x4)(1−
x3 + x4

K2
)− (q0 +q1x5)(x3 + x4),

f4 = β2x3x4 +β3x3x5− (q0 +q1x5)x4,

f5 = Λ3−µx5.

Let us consider the parameter φ which is given in the theorem (2.2.1) is represented

by r2. Note that r2 is the obvious choice of the bifurcation parameter because, as it has

been shown in (3.45) that basic reproduction number R0 is more sensitive to changes

in r2. So, we can write,

r̃2 =
q0µ +q1Λ3

µ
.

So, the disease free equilibrium point E0 of this model is (x̃1 =
Λ1

d
, x̃2 = 0, x̃3 = 0, x̃4 =

0, x̃5 =
Λ3

µ
). The linearisation around the disease free equilibrium evaluated at r̃2 is
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given by

J =



−d −α 0 0 0

0 −d−α− γ 0
β1Λ1

d
0

0 0 −0 0 0

0 0
β3Λ3

µ
−(q1 +β3)Λ3 +q0µ

µ
0

0 0 0 0 −µ


. (3.47)

Eigenvalues of this matrix are

λ1 = 0,

λ2 =−d,

λ3 =−d−α− γ,

λ4 =−µ,

λ5 =−
q1Λ3 +β3Λ3 +q0µ

µ
.

It is clear that λ1 is a simple eigenvalue of Dx f . So we can find right eigenvector and

left eigenvector according to the theorem (2.2.1).

The right eigenvector w corresponding to the zero eigenvalue is

w = (− αβ1Λ1

d2(d +α + γ)
,

β1Λ1

d(d +α + γ)
,
(q1 +β3)Λ3 +q0µ

β3Λ3
,1,0)T

and left eigenvector v corresponding to the zero eigenvalue is

v = (0,0,1,0,0)

.

The second derivatives in formulas (3.18) are evaluated at the disease free equilibrium

point E0 = (
Λ1

d
,0,0,0,

Λ3

µ
), and r2 = r̃2. The non-zero derivatives are given as follows,

∂ 2 f2

∂x1∂x4
=

∂ 2 f2

∂x4∂x1
= β1,

∂ 2 f3

∂x3∂x4
=

∂ 2 f3

∂x4∂x3
=−q1−2

r2

K2
,

∂ 2 f3

∂x32 =−2
r2

K2
,

∂ 2 f3

∂x42 =−2q1−2
r2

K2
,

∂ 2 f4

∂x3∂x4
=

∂ 2 f4

∂x4∂x3
= β2,

∂ 2 f4

∂x3∂x5
=

∂ 2 f4

∂x5∂x3
= β3,

∂ 2 f4

∂x4∂x5
=

∂ 2 f4

∂x5∂x4
=−q1,
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∂ 2 f3

∂x3∂ r2
= 1,

∂ 2 f3

∂x4∂ r2
= 1.

If these derivatives are substituted in a and b,

a = v2w1w4
∂ 2 f2

∂x1∂x4
+ v2w4w1

∂ 2 f2

∂x4∂x1
+2v3w3

2 ∂ 2 f3

∂x32 + v3w3w4
∂ 2 f3

∂x3∂x4

+ v3w4w3
∂ 2 f3

∂x4∂x3
+ v3w4

2 ∂ 2 f3

∂x42 + v4w3w4
∂ 2 f4

∂x3∂x4
+ v4w4w3

∂ 2 f4

∂x4∂x3

+ v4w3w5
∂ 2 f4

∂x3∂x5
+ v4w5w3

∂ 2 f4

∂x5∂x3
+ v4w4w5

∂ 2 f4

∂x4∂x5
+ v4w5w4

∂ 2 f4

∂x5∂x4

=−2q1−2
r2

K2
− 2(K2q1 +2r2)((q1 +β3)Λ3)+q0µ

K2β3Λ3
− 4r2((q1 +β3)Λ3 +q0µ)2

K2β3
2
Λ3

2
,

b = v3w3
∂ 2 f3

∂x3∂ r2
+ v3w4

∂ 2 f3

∂x4∂ r2
= 2+

q1Λ3 +q0µ

β3Λ3

are obtained. It is clear that a < 0 and b > 0. This shows, according to the result of iv.

in the theorem (2.2.1), the stability of the equilibrium point E0 is changed from stable

to unstable.

Figure 3.13 : Bifurcation diagram of the Infected Tick Population. Where K2 = 1000,
q0 = 0.015, q1 = 0.033, β3 = 0.0015, Λ3 = 3, β2 = 0.0023, µ = 0.05.

When R0 < 1, equilibrium point E1 is stable and components of the equilibrium point

E∗ are negative. It is mean, when R0 < 1, the equilibrium point E∗ does not exist.

Therefore, when R0 < 1, there only exists the disease-free equilibrium point. When

R0 > 1, the disease-free equilibrium point becomes unstable. And also when R0 > 1
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and r2µ > q1Λ3 provide endemic equilibrium point E∗ becomes positive and stable.

As a result, we can say that forward bifurcation occurs.

Simulations

Here, we simulate the model to understand the stability analysis of the system better.

Let us fix the following parameters and total human population in the system (3.39) -

(3.43) as follows:

N = 5000, r2 = 0.95, K2 = 1000, r2 = 0.95

q0 = 0.015, β2 = 0.0023, β3 = 0.0015, β1 = 0.0027,

α = 0.0018, d = 0.0064, γ = 0.037.

We choose the initial conditions as,

B(0) = 20, T (0) = 100, Ti(0) = 0, I(0) = 0.

1. Case 1

In this case, we assume that the chicken population is increased over time. When

Λ3 = 5 and Λ3 = 4, the increment in chicken population over time is shown in figure

(3.14). Also, how this increment in the chicken population affects the number of

ticks is shown in figures (3.15) and (3.16).

Figure 3.14 : Chicken Population Over Time. We choose Λ3 = 4 and Λ3 = 5, so that
R0 < 1.
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Figure 3.15 : Tick Population Over Time.

Figure 3.16 : Infected Tick Population Over Time.

Figure 3.17 : Infected People Population Over Time.
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If we choose the parameter Λ3 = 4, then R0 = 0.3578 < 1. And if we choose

the parameter Λ3 = 5, then R0 = 0.2865 < 1. As we can see in the figures (3.15),

(3.16) and (3.17), tick population, infected tick population decreases and eventually

vanishes. Also the disease eventually dies out.

Recall that, Λ3 is population growth of chickens. According to figures (3.14) an

increase in Λ3 causes the tick population and infected tick population increase less

and vanish faster. In conclusion, when the number of daily added chickens in to the

environment increase, tick population and infected tick population vanish faster in

the environment.

2. Case 2

In this case, we assume that the chicken population is decreased over time. When

Λ3 = 0.9 the decrement in chicken population over time is shown in figure (3.19).

Also, how this decrement in the chicken population affects the number of ticks and

infected people population is shown in Figures (3.19), (3.20) and (3.21).

Figure 3.18 : Chicken Population Over Time. We choose Λ3 = 0.9, so that R0 > 1.

If we choose parameter Λ3 = 0.9, then R0 = 1.5599. As we can see in the figures

(3.19), (3.20) and (3.21), we can say that the tick population, the infected tick

population and the infected people population increase. So, the disease spreads

and becomes endemic.
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Figure 3.19 : Tick Population Over Time.

Figure 3.20 : Infected Tick Population Over Time.

Figure 3.21 : Infected People Population Over Time.

As a result, if the number of chickens daily added in the environment increases, the

number of tick and infected tick population can be decreased. Thus, the spread of the

disease can be prevented in the environment.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have studied the spread of a tick bone disease into human with

the effect of chicken-bird existence in a mathematical perspective. We considered

every dependent variable as a separated compartment and transmission between these

components are assumed to be continuous. There are three basic dependent variables;

human and ticks are taken into consideration in two main groups, susceptible and

infected whereas birds are assumed to be a single group. In addition to the interactions

between two subgroups of human and ticks, we have also investigated the interaction

between birds-ticks and human-tick.

We have examined three different cases by depending on the assumptions to the

entrance to bird and tick compartments. In one, the entrance of both are considered

with logistic growth model and in the other two, when one is taken into account with

logistic growth, the other is assumed to be constant. We have considered in all these

cases the virus might be transmitted to human by a tick bite. Tick might get virus

either by a contact to an infected tick or to the birds which carry the virus. The relation

between ticks and bird compartments is not only limited to this transmission, but the

decrement of ticks has been also taken into consideration as they are natural preys for

birds-chicken. We have also taken into consideration the natural and disease-related

deaths.

The problem, as it is expressing many various possible cases, represents a quite general

study which has not been done before in the literature. But as mentioned in the

thesis before, normally ticks are at three stages and the diseases might be transmitted

by not only by the adult ticks but also by larvae and nymph. Here we have only

considered ticks as adult ticks, for a more general future study ticks might be taken

into consideration at their three different stages. Because the problem with its present

form is hard enough, considering ticks in their 3 stage will be for sure much harder. To

handle such a problem some contacts between compartments should be given up.
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In the thesis, each problem is examined as application of Hartman Grobman Theorem.

That is to say we have investigated the local stability of the equilibrium points. The

basic Reproduction numbers are determined and with respect to the reproduction

numbers, the parameter regimes are studied. The bifurcation analysis has also been

done by considering Castillo Chavez Bifurcation Theorem. Finally, for each case,

some simulations for particular parametric regimes has been done. The graphs of

solution curves are depicted and the physical expressions of the results have been

discussed.

As a future problem, even though it would be really hard, the global stability analysis

might be studied by taking some simplifications.
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