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POWER SERIES SUBSPACES OF NUCLEAR FRECHET SPACES
WITH THE PROPERTIES DN AND Q

SUMMARY

Power series spaces constitute an important and well-studied class in the theory of
Fréchet spaces. Linear topological invariants DN and Q are enjoyed by many natural
Fréchet spaces appearing in analysis. In particular, spaces of analytic functions,
solutions of homogeneous elliptic linear partial differential operator with their natural
topologies have the properties DN and Q.

It is a well-known fact that the diametral dimension A(E) and the approximate
diametral dimension & (E) of a nuclear Fréchet space E with the properties DN and Q
are between corresponding invariant of power series spaces Aj(€) and A (€) for some
specific exponent sequence €. This sequence is called associated exponent sequence
of E, see Definition 2.4.2.

Concidence of the diametral dimension and/or approximate diametral dimension
of E with that of a power series space yields some structural results. For example,
in [1], A. Aytuna, J. Krone and T. Terzioglu proved that a nuclear Fréchet space E
with the properties DN and Q contains a complemented copy of Aw(€) provided
A(E) = A(Ax(€)) and € is stable. On the other hand, A. Aytuna, [2], characterized
tame nuclear Fréchet spaces E with the properties DN and € and stable exponent
sequence &, as those that satisfies § (E) = (A1 (€)).

These results lead us to ask the following two questions: Let E be a nuclear Fréchet
space with the properties DN and Q and € be the associated exponent sequence of E.

1. Is there a complemented subspace of E which is isomorphic to Aj(g) if A(E) =
A(A;(€))?

2. If the diametral dimension of E coincides with that of a power series space, then
does this imply that the approximate diametral dimension also do the same and vice
versa?

The basis of this thesis was motivated by these two questions.

The main purpose of this thesis is to determine the connections between the diametral
dimension and the approximate diametral dimension and to investigate power series
subspaces of the nuclear Fréchet spaces with the properties DN and Q using these
invariants.

In the first chapter, some significant studies in the theory of nuclear Fréchet

spaces are mentioned and the aim of this thesis is given. In the second chapter, we
introduced preliminary materials and essential theorems.

XV



In the third chapter, we showed that the second question has an affirmative
answer when the power series space is of infinite type. Then we searched an answer
for the second question in the finite type case and, in this regard, we first proved
that the condition 6 (E) = 0 (A (g)) always implies A(E) = A(A;(€)). For other
direction, the existence of a prominent bounded subset in the nuclear Fréchet space E
plays a decisive role. Among other things, we proved that 6 (E) = & (A (¢)) if and
only if E has a prominent bounded subset and A(E) = A(Aj (g)).

In the first section of the fourth chapter, we showed that a regular nuclear Kéthe
space with the properties DN and Q is a power series space if its diametral dimension
coincides with that of a power series space of infinite type or its approximate diametral
dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family K of
nuclear Kéthe spaces K(ax,) with the properties DN and . First we showed that

for an element of the family of &K which is parameterized by a stable sequence ¢,
A(K(axn)) = A(Ai(e)) and 6(K(axn)) = 0(Ai(er)). Second, we proved that for

an element of the family of & which is parameterized by an unstable sequence
o, A(K(ax,)) = A(A1(€)) and 6(K(ax,)) # 6(Ai(g)) for its associated exponent
sequence €. This showed that the second question has a negative answer for power
series space of finite type. Furthermore, we proved in Theorem 4.3.1 that the first
question has a negative answer, that is, Aj(€) is not isomorphic to any subspace of
these Kothe spaces K(ay,), let alone is isomorphic to a complemented subspace,
though the condition A(K (ay,)) = A(A1(€)) is satisfied.

In the third section of fourth chapter, motivated by our finding in the third section, we

compiled some additional information, for instance, for an element E of the family K
parameterized by an unstable sequence,

» E does not have a prominent bounded set.

* A(E), with respect to the canonical topology, is not barrelled, hence, not
ultrabornological.

* Although the equality A(E) = A (€) is satisfied and the canonical imbedding from
A(E) into A (€) has a closed graph, the canonical imbedding from A(E) into A;(€)
is not continuous.
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DN VE Q OZELLIiGINE SAHIP NUKLEER FRECHET UZAYLARININ
KUVVET SERISi ALT UZAYLARI

OZET

Fréchet uzaylar yerel konveks uzaylarin, normlu uzay olmayan en dnemli orneklerini
iceren bir smiftir. 1950’1 yillarda A. Grothendieck tarafindan niikleerlik tanimim
vermesi ile niikleer Fréchet uzaylar1 bir ¢ok ¢alismanin ilham kaynagi olmustur.

Niikleer Fréchet uzaylarinin yapi teorisine yon veren iki Onemli soru mevcuttur.
Bu sorulardan ilki A. Grothendieck tarafindan ortaya atilmistir ve A. Grothendieck
her niikleer Fréchet uzayinin bazi olup olmadigin1 sormustur. Bazi olmayan niikleer
uzaylarin oldugu B. S. Mitiagin ve N. Zobin tarafindan ispat edilmis, boylece A.
Grothendieck’in sorusu olumsuz bir sekilde cevaplamustir.

1960’larda A. S. Dynin and B. S. Mitiagin, baz1 olan her niikleer Fréechet uzaylarinin
bir niikleer Kothe uzayina izomorf oldugunu gosterdiler. Bu yiizden niikleer Kothe
uzaylari, niikleer Fréchet uzaylarin yapi teorisinde dnemli bir yer kaplamaktadir.

Diger soru ise A. Pelczynski tarafindan sorulmustur. A. Pelzcynski, niikleer
Ko6the uzaylarinin her tiimler uzayinin bazi olup olmadigini sordu. 1975’te B. S.
Mitiagin ve G. Henkin A. Pelczynski’nin sorusunun sonlu tip kuvvet serisi uzaylari
icin olumlu bir cevabi oldugunu gosterdiler.

Bu soruyu sonsuz tip kuvvet serisi i¢in cevaplamak cok uzun zaman aldi. 1989°da E.
Dubinsky ve D. Vogt eger sonsuz tip kuvvet serisi uysal ise bu sorunun olumlu bir
cevabinin oldugunu gosterdiler. E. Dubinsky ve D. Vogt bir sonsuz tip kuvvet serisi
uzaymnin uysal olmasi i¢in bu kuvvet serisini iireten eksponansiyel dizinin kararsiz
olmasi gerektigini gosterdiler. Ote yandan kararli bir eksponansiyel dizi tarafindan
iretilen sonsuz tip kuvvet serisi uzayi icin cevap ise 1990 yilinda A. Aytuna, J. Krone
ve T. Terzioglu tarafindan verildi. A. Aytuna, J. Krone ve T. Terzioglu, kararl bir
eksponansiyel dizi tarafindan iiretilen sonsuz tip kuvvet serisi uzaymnin tiimler alt
uzaylarinin yine sonsuz tip kuvvet serisi alt uzay1 oldugunu gosterdiler. Bu sorunun
sonsuz tip kuvvet serileri i¢in tam cevabi ise 2018 yilinda A. K. Dronov ve V. M.
Kaplitzkii tarafindan verildi. A. K. Dronov ve V. M. Kaplitzkii regiiler bazi olan her
d1, niikleer Kothe uzayinin her tiimler alt uzayinin bir bazi oldugunu gosterdiler.

Yukarida belirttigimiz gibi niikleer Fréchet uzaylarimin yapi teorisi pek c¢ok
matematikci tarafindan ele alinan 6nemli bir alan1 olusturmaktadr.

Biz bu tez caligmasinda DN ve Q ozelliklerine sahip niikleer Fréchet uzaylarinin yapi
teorisi ile ilgilendik. Fréchet uzaylarinin en dogal 6rnekleri ise DN ve Q o6zelliklerine
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sahiptir.  Ozellikle, analitik fonksiyon uzaylar1 ve homojen eliptik lineer kismi
diferansiyel operatorlerin ¢oziim uzaylart DN ve Q 6zelliklerine sahiptir.

DN ve Q ozelligine sahip bir E niikleer Fréchet uzaymin capsal boyutu A(E)
ve yaklagik ¢apsal boyutu 6 (E) dzel bir € ekponansiyel dizisi tarafindan iiretilen sonlu
tip kuvvet serisi uzay1 Aj(€) ve sonsuz tip kuvvet serisi uzay1 A«(€) ile iligkilidir.
Bu eksponansiyel diziye niikleer Fréchet uzayinin iligkili eksponansiyel dizisi denir.
DN ve Q o6zelligine sahip bir E niikleer Fréchet uzayinin ¢apsal boyutunun bu kuvvet
serisi uzaylarindan birinin ¢apsal boyutuna esit olmasi ise iki ekstrem durum olusturur.

IIk olarak; DN ve Q ozelligine sahip bir E niikleer Fréchet uzaymin capsal
boyutunun bir sonsuz tip kuvvet serisi uzayinin ¢apsal boyutuna esit olmasi durumunu
diisiiniirsek, bu durum E uzayinin yapi teorisi hakkinda 6nemli bilgiler verir. Ornegin,
A. Aytuna, J. Krone ve T. Terzioglu, [1], DN ve Q 0zelligine sahip bir E niikleer
Fréchet uzayinin A(E) = A(A=(€)) ve € ekponansiyel dizisi kararli kosullar1 altinda,
Aw(€) uzaymna izomorf bir tiimler alt uzaymin var oldugunu gosterdiler. Aslinda
buradaki c¢apsal boyut kosulu tiimler bir altuzay olusturmak iizere kullanilmustir.
Yine, A. Aytuna, J. Krone ve T. Terzioglu, [I], DN ve Q ozelligine sahip bir E
niikleer Fréchet uzayinin iliskili eksponansiyel dizisi kararli ise £ uzaymin daima
iliskili eksponansiyel dizisi tarafindan {liretilen sonsuz tip kuvvet serisi uzayina
izomorf biraltuzayr oldugunu ispat ettiler. Ayrica, A. Aytuna, J. Krone ve T.
Terzioglu, [1], Kompleks diizlemde alinan herhangi bir bolge iizerinde tanimlanan
analitik fonksiyonlar uzayinin ¢apsal boyut ile karakterize edilebildigini gosterdiler:
D C C bir bolge ve D bolgesi tizerinde tanimli analitik fonksiyonlar uzay1 O(D) olmak
tizere O(D) uzayinin ¢apsal boyutunun bir sonsuz tip kuvvet serisi uzaymin c¢apsal
boyutuna esit olmasi ile O(D) uzaymin bu sonsuz tip kuvvet serisi uzayina izomorf
olmasinin denk oldugunu gosterdiler.

Ikinci ekstrem durum olarak tamimlayacagimiz, DN ve Q Ozelligine sahip bir E
niikleer Fréchet uzayinin ¢apsal boyutunun bir sonsuz tip kuvvet serisi uzayinin ¢apsal
boyutuna esit olmasi, durumunu i¢in elde edilmis bir sonu¢ mevcut degildir. Bu ise
bizi asagidaki soruyu sormaya yonledirdi: E uzayr DN ve Q o6zelligine sahip bir
niikleer Fréchet uzayi ve €, E uzayinin iligkili ekponansiyel dizisi olsun.

1. E uzay1 DN ve Q 6zelligine sahip bir niikleer Fréchet uzay1 ve €, E uzayinin iligkili
ekponansiyel dizisi olsun. Eger A(E) = A(A; (€)) ise, E uzaymnin A;(€) uzayma
izomorf bir tiimler alt uzay1 var midir?

Ote yandan, A. Aytuna, [2], her DN ve Q ozelligine sahip uysal E niikleer Fréchet
uzaymin, 6 (E) = 8(A;(€)) ve € eksponansiyel dizisi kararli olmast durumunda A (€)
uzayina izomorf oldugunu gosterdi. Bu ise bizi asagidaki soruyu sormaya yonledirdi:

2. E uzayr DN ve Q 0Ozelligine sahip bir niikleer Fréchet uzay1 ve €, E uzayinin
iligkili ekponansiyel dizisi olsun. Eger E uzayinin ¢apsal boyutu bir kuvvet serisinin
capsal boyutuna esit ise £ uzayimnin yaklasik capsal boyutu da ayni kuvvet serisinin
yaklasik capsal boyutuna esit midir ve tersi de dogru mudur?

Bu tezin temeli bu iki soru iizerine kurulmustur ve bu tezin amaci, DN ve Q 6zelligine
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sahip niikleer Fréchet uzaylarmin topolojik degismezleri arasindaki baglantilari
arastirmak ve bu baglantilar1 kullanarak, bazi capsal kosullar altinda, bu uzaylarin
kuvvet serisi alt uzaylarinin var olup olmadigini arastirmaktir.

Birinci boliimde niikleer Fréchet uzaylarinin bazi onemli sonuglarina deginilmis
ve bu tez ¢aligmasinin motivasyonu verilmistir. Ikinci boliimde bazi giris yapilari ve
Oonemli teoremler verilmistir.

Uciincii boliimde ikinci sorunun sonsuz tip kuvvet serisi uzaylari icin olumlu
bir cevabinin oldugu gosterilmistir.  Sonlu tip kuvvet serileri icin ise ilk olarak
O0(E) = 6 (A1 (€)) kosulu altinda A(E) = A(A;(€)) saglandig1 ispat edildi. Diger
yoniin E uzaymnin capsal boyutunun topolojisi ile baglantili oldufu gosterildi:
eder A(E) uzayinin kanonik topolojisinin varilleri dolu ise A(E) = A(A (€)) iken
O0(E) = 8 (A;(€)) oldugunu ispat ettik. Ayrica E uzaymnn istiine gesitli capsal
kosullar koydugumuzda da bu sonucu elde edebilecegimizi gosterdik. Bu boliimde bu
soruyu tam bir sekilde karakterize eden sonugta ise belirgin sinirh kiimelerin varliginin
onemli bir rolii vardir: Ikinci soru igin, & (E) = & (A1 (€)) kosulunun saglanmasi
icin gerek ve yeter kosulun E uzayinin belirgin sinirlt bir alt kiimesinin olmasi ve
A(E) = A(A (€)) saglanmasi oldugu gosterildi.

Dérdiincti bolimiin ilk kisiminda K(ay,), DN ve Q ozelligine sahip regiiler
niikleer bir Kéthe uzay1 olmak tizere A(K(ay,)) = A(Aw(€)) kosulunun saglanmasi
i¢in gerek ve yeter kosul K(ay ,) uzaymin A.(€) uzayina izomorf olmasi ve benzer
sekilde 0 (K (ax,,)) = 0(Ai(€)) kosulunun saglanmast igin gerek ve yeter kosul K (ay )
uzayinin A (€) uzayma izomorf olmasi ifadelerini ispat edildi. Dérdiincii boliimiin
ikinci kisiminda DN ve Q ozelligine sahip K(ay,) niikleer Kothe uzayilarindan
olusan bir aile kuruldu. Bu aileden herhangi eleman icin Kolmogorov c¢aplar1 uzun bir
kombinatoriyel yol ile hesap edildi. Ardindan, Kolmogorov ¢aplari i¢cin hem alt hem
de iist bir kestirimin oldugu ispat edildi. Bu kestirim kullanilarak, bu ailenin kararh €
iligkili eksponansiyel dizisi olan bir elemani K (a ,) i¢in A(K(ax,)) = A(Ai(ex)) ve
0(K(akn)) = 6(A1(e)) oldugunu gosterdik. Dolayistyla, bu ailenin kararli € iligkili
eksponansiyel dizisi olan bir eleman1 K(ay ,) icin ikinci sorunun olumlu bir cevabi
vardir. Bu ailenin kararsiz € iligkili eksponansiyel dizisi olan herhangi bir elemam
K(ay,) icin A(K(ag,)) = A(A1(€)) iken 8 (K (ax,)) # 6(A1(€)) oldugunu ispat ettik.
Bu ise ikinci sorunun sonlu tip kuvvet serileri i¢in olumsuz bir cevabinin oldugunu
gosterir. Bu bilgiyi kullanarak, Teorem 4.3.1°te bu Kothe uzaylarinin Aj(€) uzayina
izomorf bir alt uzayr olmadigini ispat ettik. Dolayisiyla, ilk sorunun da olumsuz bir
cevabi vardir. Dordiincii boliimiin iiclincii kistminda ikinci boliimde elde etti§imiz
sonuclardan hareketle bazi ek bilgiler verdik. Mesela bu ailenin kararsiz € iligkili
eksponansiyel dizisi olan herhangi bir elemani E i¢in

* E uzayi herhangi bir belirgin sinirh alt kiimeye sahip degildir.

* E uzaymn capsal boyutu A(E) dogal topolojisine gore varilleri dolu degildir ve
ultrabornolojik degildir.

* A(E) = Ai(€) ve A(E) uzayindan Aj(€) uzayma giden kapsama tasvirinin grafigi
kapal1 olmasina ragmen, bu kapsama tasviri siirekli degildir.
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1. INTRODUCTION

Fréchet spaces are one of the leading class of locally convex spaces and include most
of the important examples of non-normable locally convex spaces. In the fifties, by
pioneering works of A. Grothendieck’s, nuclear Fréchet spaces are introduced and it
became one of the important sources of inspiration for research.

A. Grothendieck posed an important question about the existence of a basis in a
nuclear Fréchet space. This question answered negatively by B. S. Mitiagin and N.
M. Zobin, [3], that is, there exists a nuclear Fréchet space with no Schauder basis.

In the sixties, Dynin and Mitiagin gave a theorem which states that if a nuclear Fréchet
space has a Schauder basis, then it is canonically isomorphic to a nuclear Kothe space.
Then, it is crucial to investigate the structure of nuclear Ffechet spaces in terms of
Kothe spaces and power series spaces which constitute an important and well-studied
class in the theory of Kothe spaces.

Another important problem is posed by A. Pelczynski [4]: Does every complemented
subspace of a nuclear Kéthe space have a basis? In 1975, B. S. Mitiagin and G.
Henkin, [5], solved Pelczynski’s problem positively for power series spaces of finite
type. On the other hand, it took a long time to solve Pelczynski’s problem for power
series space of infinite type.

In 1989, E. Dubinsky and D. Vogt, [0], showed that if A () is tame, then every
complemented subspace of A. (@) has a basis. Also they proved that A (@) is tame
if a is unstable. In 1990, A. Aytuna, J. Krone, T. Terzioglu , [!], showed that a
complemented subspace of an infinite type power series space A« (@) with stable a,
is indeed an infinite type power series space, therefore it has a basis. Finally, in 2018,
A. K. Dronov and V. M. Kaplitzkii, [7] showed that every complemented subspace
of a nuclear Kothe space E with a regular basis of type (d;) has a basis so, every
complemented subspace of A« (@) has a basis.

As mentioned above, the study of whether the (complemented) subspaces of nuclear

Fréchet spaces have a basis has been handled by several mathematicians. Also, various



topological invariants were introduced to determine the structure of nuclear Fréchet
spaces. For instance, D. Vogt and his school defined DN and Q-type invariants and
characterized entirely subspaces and quotient spaces of stable power series spaces in
terms of these invariants and diametral dimension.
In this thesis, we are mainly interested in the class of nuclear Fréchet spaces with
the properties DN and Q which comprises many natural nuclear Fréchet spaces
such as spaces of analytic functions, solutions of homogeneous elliptic linear partial
differential operators.
A. Aytuna, J. Krone, T. Terzioglu in [8] showed that if E is a nuclear Fréchet space
with the properties DN and €, then there exists a sequence (unique up to equivalence)
€ such that

A(A1(€)) CA(E) C A(Ax (&) (L1)

where A(E) denotes the diametral dimension of E. The sequence € was called
associated exponent sequence of E.

Furthermore, A. Aytuna, J. Krone, T. Terzioglu showed that if E is a nuclear Fréchet
space with the properties DN and Q, possessing stable associated exponent sequence
€ and A(E) = A(A(€)), then E has a complemented subspace which is isomorphic
to infinite type power series space A« (€).

In this thesis, we deal with the other extreme, namely, the main question of this thesis

1S:

Question 1.0.1 Let E be a nuclear Fréchet space with the properties DN and Q and

€ be the associated exponent sequence of E. Is there a (complemented) subspace of E

which is isomorphic to A1 (€) if A(E) = A(Ay (€))7

This problem led us to examine the relationship between the diametral dimension and
the other invariants. The most appropriate topological invariants for comparison with
the diametral dimension is the approximate diametral dimension.

By using the same calculation as in [8], for a nuclear Fréchet space E with properties

DN and Q, it is easy to show
5 (A (£)) € 8 (E) € 8 (A (€)) (1.2)

for approximate diametral dimension 0 (E) of E. Then, we always have

2



A(A1(€)) CA(E)and 6 (E) C 8 (A; (g)) for anuclear Fréchet space E with properties
DN and Q. If we assumed that Question 1.0.1 have an affirmative answer, that is, A; (&)
is isomorphic to a complemented subspace of E provided A (E) = A(Aj (€)), then this
would give us 6 (A} (€)) C § (E) and we would find 0 (E) = 8 (A (€)). Therefore, the
condition A (E) = A (A (€)) would give us the equality 0 (E) = 8 (A (€)). This leads

to ask the following question:

Question 1.0.2 Let E be a nuclear Fréchet space with the properties DN and Q. If
diametral dimension of E coincides with that of a power series space, then does this

imply that the approximate diametral dimension also do the same and vice versa?

This thesis is mainly concerned with these questions.

In the first chapter, some significant studies in the theory of nuclear Fréchet
spaces are mentioned and the aim of this thesis is given. In the second chapter, we

give preliminary materials and essential theorems.

In the third chapter, we showed that Question 1.0.2 has an affirmative answer
when power series space is of infinite type. Then we searched an answer for the
Question 1.0.2 in the finite type case and, in this regard, we first prove that the
condition § (E) = § (A} (€)) always implies A(E) = A(A (€)). For other direction,
the existence of a prominent bounded subset in the nuclear Fréchet space E plays a
decisive role for the answer of Question 1.0.2. Among other things, we prove that

0 (E) =0 (A (g)) if and only if E has a prominent bounded set and A (E) = A(A| (€)).

In the first section of the fourth chapter, we showed that a regular nuclear Kothe
space with the properties DN and Q is a power series space if its diametral dimension
coincides with that of a power series space of infinite type or its approximate diametral

dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family & of
nuclear Kothe spaces K(ax,) with the properties DN and . First we showed that

for an element of the family of &K which is parameterized by a stable sequence «,

3



A(K(arn)) = A(A1(@)) and 8(K(ax,)) = 6(Aj(@)). Second, we proved that for
an element of the family of & which is parameterized by an unstable sequence
o, A(K(ax,)) = A(A1(€)) and 6(K(ax,)) # 6(A1(g)) for its associated exponent
sequence €. This showed that the second question has a negative answer for power
series space of finite type. Furthermore, we proved in Theorem 4.3.1 that the first
question has a negative answer, that is, A(€) is not isomorphic to any subspace of
these Kéthe spaces K(ay,), let alone is isomorphic to a complemented subspace,
though the condition A(K(a ,)) = A(A;(€)) is satisfied. In the third section of fourth
chapter, motivated by our finding in the third section, we compiled some additional
information, for instance, for an element E of the family K parameterized by an

unstable sequence,

» E does not have a prominent bounded set.

* A(E), with respect to the canonical topology, is neither barrelled nor

ultrabornological.

* Although the equality A(E) = A (€) is satisfied and the canonical imbedding from
A(E) into A (€) has a closed graph, the canonical imbedding from A(E) into A;(€)

1S not continuous.



2. PRELIMINARIES

In this section, after establishing terminology and notation, we collect some basic

facts and definitions that are needed them in the sequel.

We will use the standard terminology and notation of [9] and [10]. A complete
Hausdorff locally convex space E whose topology defined by countable fundamental
system of seminorms (||.|;),cy is called a Fréchet space. ~ Without loss of
generality, we will assume the sequence (||.||;).cy is increasing. For each k € N,
Ep:= m is called the local Banach space with respect to the seminorm
||l and we denote the closed unit ball of E; by Uy. Since ker ||.|[,,; C ker||.|, for all
k € N, there exists a natural continuous map i ’,ﬁ 11 Ekt1 — Eg which is referred to as
linking map. Then, a Fréchet space E can be considered as a projective limit of the
projective system (E/€7 i ',i +1>k€N.
Nuclear locally convex spaces were defined by A. Grothendieck in [11]. It is generally
accepted by many mathematicians that his definition is not practical to check whether
a given locally convex space is nuclear or not. In consequence, several mathematicians
reformulated the definition of nuclearity in terms of nuclear maps, Hilbert-Schmidt
maps, diametral dimension, etc. In this thesis, we call a nuclear Fréchet space E as

a Fréchet space that admits a representation as the projective limit of a sequence of

separable Hilbert spaces Ej with Hilbert-Schmidt linking maps i ’,ﬁ L1

2.1 Diametral Dimension and Approximate Diametral Dimension

For a Fréchet space E, we will denote the class of all neighborhoods of zero in E and
the class of all bounded sets in E by % (E) and % (E), respectively. If U and V are
absolutely convex sets of E and U absorbs V, that is, V C CU for some C > 0, and L

is a subspace of E, then we set;

S§(V,U,L)=inf{t>0:V CtU+L}. @2.1)



The n'" Kolmogorov diameter of V with respect to U is defined as;
d,(V,U)=inf{6 (V,U,L) :dimL <n} n=0,1,2,.. (2.2)

Here is a list of some useful properties of Kolmogorov diameters: for details see [12,

Pg. 208, Proposition 1 and Pg. 209, Corollary 5]

Proposition 2.1.1 Let E be a Fréchet space and U and V be two absolutely convex

sets such that U absorbs V. Then, for everyn =10,1,2,...

o dpi1 (V,U) < dp(V,U).

IfVl CVand U C Uy, then dn(Vl,Ul) Sdn(V,U).

dp(AV, BU) = %dn(V,U)for all A,B > 0.

* V is precompact with respect to U if and only if lim d,(V,U) = 0.
n—soo

Definition 2.1.2 The diametral dimension of E is defined as

A(E) :{(tn)neN NUeW(E)3IVeX(E) limtudy (V,U) = 0}

n—soo
- N U awo) -
Ue (E) Ve (E)
where A(V,U) = {(tn)neN : ILm tady (V,U) = O}'

LetUy DU, D--- DU, D --- be abase of neighborhoods of zero of Fréchet space E.

The diametral dimension of E can be represented as

A(E) = {(tn)neN VpEN 3g>p lim b,d, (Up,Up) = o}. (2.4)

Demeulenaere et al. [13] showed that the diametral dimension of a nuclear Fréchet

space can also be represented as

A(E) = {(t”)neN :VpeN Jg>p supltyd, (Uy,Up) < +°°}. (2.5)

neN



Definition 2.1.3 The approximate diametral dimension of a Fréchet space E is defined
as

5 (E) = {(tn)neN:3 Uec%(E)3Be B(E) lim t—> :o}

n—eo dy, (B,U
= U U sBu
Ue% (E)BEA(E)

(2.6)
where 8 (B,U) = {(mneN : Tim t—) - 0}.

n—eo d, (B,U

It follows from Proposition 6.6.5 of [14] that for a Fréchet space E with the base of
neighborhoods Uy DU, D -+ D U, D - - -, the approximate diametral dimension can be

represented as;

n—oo

t
S(E)=1 (ta),en:IPENV g>p lim ————~=0. (2.7)
( ) {( )EN (Uq,Up) }

Let E and G be two Fréchet spaces and U and V be absolutely convex subsets of E

such that V C rU for some r > 0. If there is a linear map T : E — G, then for alln € N
du (T (V)T (U)) < du (V,U) 2.8)

holds and so we have the following proposition:

Proposition 2.1.4 Let E be a Fréchet space and F be a subspace or a qoutient of E.
Then,

« A(E)CA(F).

« 5(F)C 8 (E).

Hence the diametral dimension and the approximate diametral dimension are linear

topological invariants.
Proof. [14, Proposition 6.6.7 and Proposition 6.6.25] 0

The concept of the approximative dimension of a linear metric space which is based on
g-capacity of compact sets in the space was introduced by Kolmogorov and Pelcyznski,

see also [15], [16] and [14]. The relation between invariants introduced above and



e-capacity of compact sets in the space was discovered by Mityagin, see [| 7] and [18].
Among other things, Mityagin conducted a detailed study of these invariants and
used them characterize nuclear locally convex space. The concept of approximate
diametral dimension as stated above was given and studied by Bessaga, Pelczynski

and Rolewicz, [19].

For the proof of these and for additional properties of the diametral
dimension/approximate diametral dimension, we refer the reader to [18], [19], [20,

Chapter 9], [ 14, Chapter 6.6], and [21] .

The properties of the canonical topology on diametral dimension of a nuclear
Fréchet space:
Let E be a nuclear Fréchet space with the increasing systems of seminorms (||. ||, )xen-

Then the diametral dimension
A(E) = {(tn)neN Y peN g > p limtydy (Uy,Uyp) = o}
Nn—soo

- N Uaw,u,) 29

peN g>p

is the projective limit of inductive limits of Banach spaces A (Uq, U p) with the norm
|| (2),,|l = sup|ta|dn(Uy,Uy). Hence A(E) is a topological vector space with respect to

neN
that topology which will be called the canonical topology.

In the fourth chapter, we will give some results provided that the canonical
topology of A(E) is barrelled. So, we take a closer look the canonical topology
of A(E) and Theorem 2.1.5 gives a condition to the barrelledness of the canonical

topology of A(E). Before, we give some definitions that are needed in the sequel.

Let X be a locally compact ¢-compact topological space. The space of continuous
functions on X will be denoted by C(X). Recall that a function 4 : X — R is said
to vanish at infinity on X if for every € > 0O there is a compact set K in X such that

|h(x)| < € for every x € X — K. For a strictly positive function f, we define

Cir0)(X) ={g € C(X): f|g| vanishes at infinity on X}. (2.10)



Let & = (fmn), ey be @ double indexed sequnce of strictly increasing positive

functions of C(X) satisyfing

1 < fon < fntin (2.11)

for every m,n € N. This gives continuous inclusions C( Fons0) C C( Funs1,0) for each
n € N and C(fm+1,n70) C C(fm,n+1,0) for each n € N.

Hence, we can define the following weighted inductive limits

(ﬂm)o(X) = indneN C(f

m,ns

0)(X) (2.12)

for each m € N. Since the inclusion (.27, +1)o(X) C (#,)o(X) is continuous for every
m € N, we can define the projective spectra of (LB)-spaces (.27, )(X )¢ with inclusions
as linking maps

(€ )o(X) := proj,,en (“m)o(X). (2.13)

The space (276 )o(X) is called a weighted (PLB)-space of continuous functions.

Now we show that A(E) is a weighted PLB-space of continuous functions. Indeed,
for fixed p,g € N, {dn (Uq,Up)}
fr.q : N = R defined by f,4(n) = d, (U,;,U,) where N is equipped with discrete

nen Can be identified with the continuous function

topology which is locally compact and o-compact topological space. Then, for each

pP:9q;

A (Ug,Up) = { (1) lim 1,dy (U, Uy) = 0}
= {(ta) € C(N) : 1 fp4(n) vanishes at infinity on N} (2.14)
= a0 M)
Since dy (Ug+1,Up) < dn (Ug,Up) < dy (Uyg,Upyy) for all n € N, the matrix
(fPa‘I)p,qu = (d(.) (Uq,UP))Mqu of a double sequence of weights increases with
respect to the first indices and decreases with respect to the second indices.
Therefore, A(E) is of the form weighted PLB-space of continuous functions
proj,indg> C( Frg:0) (N), as desired.
The topological properties of weighted PLB-spaces of continuous functions were
studied in [22]. In particular, the following theorem gives an information about the

canonical topology of diametral dimension A (E) which is a direct consequence of [22,

Theorem 3.7].



Theorem 2.1.5 Let E be a Fréchet space. The following conditions are equivalent:

1. A(E) is ultrabornological with respect to the canonical topology.
2. A(E) is barrelled with respect to the canonical topology.

3. A(E) satisfies (wQ)-condition
(wQ): VN 4 M,n VK,m, 3 k,§>0:

min (d,' (Un,UN) ,d; (Uk,UK)) <S8d; (Um7UM) Vie N. (2.15)

2.2 Kothe Spaces and Power Series Spaces

A matrix (akﬁ) of non-negative numbers is called a Kothe matrix if it is satisfies

k,neN
that for each k € N there exists an n € N with a; , > 0 and ay , < ay 41 for all k,n € N.

For a Kothe matrix (ak,n)k neN’

K (ag,) = {x = (xn) 2 |Ix[l ==Y |xn] an < +oo forall k € N} (2.16)
n=1
is called a Kothe space. Every Kothe space is a Fréchet space given by the semi-norms

in its definition.

Dynin-Mitiagin Theorem [9, Theorem 28.12] states that if a nuclear Fréchet
space E with the sequence of seminorms (||.|[;),cy has a Schauder basis (e),cp»
then it is canonically isomorphic to a nuclear Kothe space defined by the matrix
(llenlli)y nery- Therefore, it is important to understand the structure of nuclear Kothe

spaces in the theory of nuclear Fréchet spaces.

Nuclearity of a Kothe space was characterized as follows:

Theorem 2.2.1 (Grothendieck-Pietsch Criterion) K (ay,) is nuclear Kiothe space if

Ak.n

and only if for every k € N, there exists a l > k so that Z < oo

n=1 al7n

Proof. [9, Theorem 28.15]. O

T. Terzioglu gave an estimation for n/"-Kolmogorov diameters of a Kothe space K ()
by using the matrix (ax )k nen-

10



Proposition 2.2.2 Let K(ay ,) be a Kothe space and fixed n € N. Assume J C N with
|[J| =n+1and I C N with |I| < n. Then for every p and q > p,

inf{@:iej}gdn(Uq,Up)gsup{@:i¢1}. 2.17)
aq,i dq,i
Proof. [23, Proposition 1]. O

Definition 2.2.3 A Kothe space K(ay ) is called regular if the sequence <ap—’n>
’ Agn ) neN

is non-increasing for every p and q > p.

Remark 2.2.4 In the light of the above proposition, we conclude that for any regular

a
pntl If, on

Kothe space K (ap,), the n'"-Kolmogorov diameter is d, (Uq,Up) =
ag,n+1
the other hand, K (aI,’n) is not regular, then, one can find Kolmogorov diameters

Apn

by rewriting the sequence with terms in a descending order so that

Ag.n / neN
the n'*-Kolmogorov diameter of K (a,,) is nothing but the n+ 1 —th term of this

descending sequence.

Power series spaces form an important family of Fréchet spaces and they play a

significant role in this thesis, for a comprehensive survey see [24]. Let & = (), be

a non-negative increasing sequence with lim ¢, = 4. A power series space of finite
n—soo

type is defined by

> 1
A () := {x = (Xn)pen © x|l == Z |xp| e k% < oo forall k € N} (2.18)

n=1

and a power series space of infinite type is defined by

Aw (@) := {x = (%) per : Xl == Z x| € X% < 400 for all k € N} . (2.19)

n=1

Power series spaces are actually Fréchet spaces equipped with the seminorms in its
definitions. The nuclearity of a power series space of finite type A; (&) and of infinite

1 1
type A (0t) are equivalent to the conditions lim n(n) = 0 and sup n(n)
n—ree Oy neN On

< oo,

respectively.

Definition 2.2.5 An exponent sequence o is called finitely nuclear if A; () is nuclear.

11



Diametral dimension and approximate diametral dimension of power series spaces are
AN (@) =A (), A(Aw (@) = Ao (@)’ (2.20)

and

S(A(a) =Ai(a),  §(Ax(a)) =Ax(at), (2.21)

for details see [19] and [18].

Definition 2.2.6 An exponent sequence Q. is called

. (04
stable if  sup 2n < oo,
neN On
(04
weakly-stable if  sup ol o0,
neN  On
. o
unstable if  lim LR SR,
n—yoo (Xn

It follows that « is stable, respectively weakly-stable, if and only if £ = E X E,

respectively, E = E x K where E = A, (@) for r =1 or r = oo, for proofs see [25].

2.3 Dragilev’s Invariants, Bessaga’s Invariants and Vogt’s DN and Q-Type

Invariants

The following topological invariants were defined by M. M. Dragilev, [26] and E.

Dubinsky, [27] to be used in the structure theory of Kothe spaces.

A Kothe space K (ay ) is called of type dj,

Ak4+-1,n < Ak+1,n+1

(d()): Vk,n >
Ak.n Akn+1
a2
(dy): 3kV, Il  sup—L < 4o
neN Ak,n Al n
(dp): Vk 3j VI sup ak’nzal’n < oo

Akn  Aktln

12



Ak+1,n

a
> k+2,n

(d4)1 A k,n =
Ak.n Ak+1,n

M
a a
Ak n Ak+1.n

if the corresponding conditions holds. One can easily observe that dj is equivalent to
regularity, see Definition 2.2.3.

Motivated by M. M. Dragilev’s work, C. Bessaga, [28], introduced the following
conditions (D;) and (D;) by using Kolmogorov diameters:

d,(V,W
(Dy): 3U VW 3V lim (V. W)

M
n=s-+e0 dy (W, U)

dy(W,U
(Dy): YU IW YV lim W.U)
n—-+eo d, (V,W)

Note that if E is a regular nuclear Kothe space, then the conditions (Dj) and (D)

ap n+1
Pt for

are equivalent the condition (d;) and (d), respectively, since d,,(U,,U,) =
Agn+1

every p,qg > pandn € N.

Another basis-free formulations of properties (d;), i = 0,...,5 were given by D. Vogt

and his school in [29] and [30], as follows: A Fréchet space (E, ||.||;)ken is said to

have the property:

(DN) 3k Vj 31, C>0 [l < € llxllg (1<l VxeE

MN) 3k V)3, C>00<A<l Ixll; <€ llxlif Ixll; ™ VxeE
Q) Vp3IgvkIc>00<t<l  |lz<clyly I vyeE
@ V¥p3IgVk3IC>0 Iyl < Clylly Ivll; VyeE

where |[ly||; = sup{ly(x)|: [Ix|l, <1} € RU {4} is the gauge functional of
the polar U for Uy = {x € E : ||x||, < 1}.
These are independent of the choice of the seminorm-system, they are topological

invariants of the Fréchet space E.

13



The DN-types invariants are inherited by subspaces and the Q-type invariants are
inherited by quotient spaces, see [Y, Chapter 29].

If E is a Kéthe space K (ay ), then dy and ds implies (DN), d, implies Q, d4 implies
Q and ds implies (DN). Moreover, the reverse of these implications hold true for
either the matrix (ay , )k nen OF some matrix (bg )k nen that is equivalent to (ay )k nen.
see [31]. Further, in [31], D. Vogt characterized € for K&the spaces in terms of Kothe

matrix as follows:

Proposition 2.3.1 A Kothe space K (akJ,) has the property Q if and only if the

condition
Vp 3gVk3j>0,C>0  (apn) an<Clag,)’" WneN (222

is satisfied.
Proof. [31, Proposition 5.3]. O

By using the technique in [31, 5. 1 Proposition], one can easily obtain the following:

Proposition 2.3.2 A Kothe space K (akﬂ) has the property DN if and only if the

condition

-1

3po Vp 3g 30<A<1,C>0  ap,<Clapyn) (agn)’ VneN (2.23)

is satisfied.

A power series space of finite type A (a) has the properties DN and Q, a power series
space of infinite type A (o) has the properties DN and €, see [9, Ch. 29].

Most of the spaces appearing in the theory of nuclear Fréchet spaces have the
properties DN and Q. For example, the space O(M) of analytic functions on a Stein
manifold M with the topology of uniform convergence on compact subsets of M has

the properties DN and Q, see [1], [32] and references therein.

DN — Q Compatible Semi-norm System

Let E be a nuclear Fréchet space with the properties DN and Q. We can assume the

14



topology of E defined by an increasing sequence (||.||;),<y of Hilbertian semi-norms

satisfying

DN: Yk 3C>00<i<l Xl sy <C IxIE |xlli2 Vx€EE
and

Q: Vk3IC>0,0<t<I i <CUyll) (vl YyekE.

The nuclear Fréchet space with the increasing sequence (|.||;).cy of Hilbertian
semi-norms satisfying the conditions DN and Q as indicated above is called DN — Q

Compatible Semi-norm System.

In [33], T. Terzioglu showed that DN- and Q-type invariants are related to some

conditions on Kolmogorov diameters.

Proposition 2.3.3 Let E be a nuclear Fréchet space. If E has DN-property, then the

condition

Jk V) 3L,C>0,0<A<1  dy(U,Up) <Cdy(U;,U)TE  YneN (2.24)
is satisfied. If E has Q-property, then the condition

Vp 3g Yk 3C>0,0<j<1  dy(U,U,) <Cdy(Up, Uy VYneN (225)

is satisfied.
Proof. [33, Page 4 and 7]. O

As a direct consequence of the above proposition, one can obtain the following:

Corollary 2.3.4 Let E be a nuclear Fréchet space with DN — Q compatible semi-norm

system (||.]|; )ken. The following conditions
Vk 3C>0,0<A <1 dp(Upso,Up) < Cdn(Ups1, U)TE  YneN (226)
and
Vp ok 3C>0,0<j<1  d(Ups1,Up) <Cdy(Up,Up)!  YneN (2.27)
are satisfied.

15



2.4 Associated Exponent Sequence and Power Series Subspaces

We end this section by recalling the following results which gives a relation between
th diametral dimension/approximate diametral dimension of a nuclear Fréchet spaces
with the properties DN, Q and that of a power series spaces A (€) and A (&) for some

special exponent sequence €.

Proposition 2.4.1 Let E be a nuclear Fréchet space with the properties DN and Q.

There exists an exponent sequence (unique up to equivalence) € = (&,) satisfying:

A(Ai (£)) CA(E) C A(As (8)). (2.28)
Furthermore, A1 (o) C A(E) implies Ay (&) C A;(€) and A(E) C AL (&) implies
AL (g) C A ().

Proof. [&, Proposition 1.1]. O

Definition 2.4.2 Let E be a nuclear Fréchet space with the properties DN and €. The
sequence € (unique up to equivalence) in the above proposition is called the associated

exponent sequence of E in [5].

We note that Aw(€) is always nuclear provided E is nuclear, but it may happen that
A (€) is not nuclear. For example, if we take the space of rapidly decreasing sequence
s = Aw(In(n)), the associated exponent sequence of s is (In(n)),cn and Aj(In(n)) is
not nuclear.

In the proof of the above proposition, A. Aytuna, J. Krone and T. Terzioglu showed
that there exists an exponent sequence (unique up to equivalence) (&,) such that for

each p € N and g > p, there exist C;,C; > 0 and a,a, > 0 satisfying
Cre”N& <d,(U,U,) < Cre 928 (2.29)
for all n € N. From this inequality, one can easily obtain

5 (A-(€)) C 8 (E) € 5 (A1 (¢)). (2.30)
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In [8], A. Aytuna, J. Krone and T. Terzioglu showed that for a d-dimensional Stein
manifold M, the exponent sequence associated to the space O(M) of analytic functions
on M is the sequence (”%)neN- We note that the sequence (n é)neN is stable and
A (n é) is nuclear. We also note that A (n %) is isomorphic to the space O(C¢) and
Ai(n é) is isomorphic to the space O(A?) where A¢ denotes the unit polycylinder in

C4, see [34] and references therein.

When it is necessary to explicitly state the associated exponent sequence € of a
nuclear Fréchet space E, we always work with DN-Q compatible semi-norm system
on E and then, the associated exponent sequence € of a nuclear Fréchet space E
with DN-Q compatible semi-norm system will be taken as € = (—logd,,(U2,U1)),cn

where U; denotes the closed unit ball of the local Banach space E;, i = 1,2, see [&, Pg.

128] .

For a nuclear Fréchet space E with the properties DN and € and the associated
exponent sequence €, concidence of the diametral dimension of E with that of
power series spaces defined by € form two extreme cases. In [2, Theorem 3.4],
A. Aytuna showed that only extreme cases hold for the space O(M) of analytic
functions on M with dimension d by proving that either A(O(M)) = A(Aw(n é)) or
A(O(M)) = A(As(nT)).

The extreme case A(E) = A(Aw(€)) gives an information about a (complemented)
subspace of a nuclear Fréchet space E with the properties DN and Q and stable
associated exponent sequence €. In [8], A. Aytuna, J. Krone and T. Terzioglu proved
that a nuclear Fréchet space E with the properties DN and €2 contains a complemented

copy of Aw(€) provided that A(E) = A(Aw(€)) and € is stable.

Theorem 2.4.3 Let E be a nuclear Fréchet space with the properties DN and €
and stable associated exponent sequence €. If A(E) = A(Aw(€)), then E has

complemented subspace which is isomorphic to A (€).

Proof. [8, Theorem 1.2]. O
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There is another observation which contains some information about some subspaces
of E without assuming the extreme A(E) = A(A«(€)). A. Aytuna, J. Krone and T.
Terzioglu, [8], proved that there is an imbedding from subspaces of Aj(€) with the

property DN into E:

Theorem 2.4.4 Let E be a nuclear Fréchet space with the properties DN and Q and
€ the stable associated exponent sequence with Ay (€) nuclear. If Y has property DN

and is isomorphic to a subspace A (€), then'Y is also isomorphic to a subspace of E.

Proof. [8, Theorem 2.2]. O

As a consequence of the above theorem, we conclude that Aw(€) is isomorphic to a
subspace of E if A« (€) is isomorphic to a subspace Aj(€). It is well-known that A (€)
is isomorphic to a subspace Aj(¢€) for stable €, [35, 4.2 Theorem]. On the other hand,
A (@) is not isomorphic to a subspace Aj(a) for an unstable «, [25, 3.3 Corollary].
Although there is no complete characterization of when A« () is isomorphic to a
subspace Aj(a), Z. Nurlu proved that if A.(c) is isomorphic to a subspace Aj(a),
then o is weakly stable, [30, Proposition 2.6]. But the reverse implication is not
true since Z. Nurlu construct a weakly stable o so that A () is not isomorphic to a

subspace A (@) see [26, Example 2.10].

On the other hand, there is no information for the other extreme A(E) = A(A;(€)).

This leads us to ask the Question 1.0.1 in Introduction.
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3. THE PROPERTIES OF NUCLEAR FRECHET SPACES WHOSE
DIAMETRAL AND/OR APPROXIMATE DIAMETRAL DIMENSION
COINCIDES WITH THAT OF A POWER SERIES SPACE

The main purpose of this chapter is to give an answer to Question 1.0.2 in stated

Introduction:

Question 1.0.2 Let E be a nuclear Fréchet space with the properties DN and
Q. If diametral dimension of E coincides with that of a power series space, then does

this imply that the approximate diametral dimension also do the same and vice versa?

We first relate the Question 1.0.2 to Bessaga’s D and Dj-conditions. Then, we
give a necessary and sufficient condition confirming Question 1.0.2. However, the

answer of Question 1.0.2 in finite type case is negative as seen in the fourth chapter.

Throughout this chapter, we will assume that the sequence (||.|[;);c Of semi-norms
on a nuclear Fréchet spaces with the properties DN and Q is DN — Q compatible

system.

3.1 Results for the Case of Power Series Space of Infinite Type

The main result in this section is the following theorem which shows that Question

1.0.2 has an affirmative answer when the power series space is of infinite type.

Theorem 3.1.1 Let E be a nuclear Fréchet space with properties DN and Q and €
be the associated exponent sequence of E. Then A(E) = A(Aw(€)) if and only if
O0(E)=0(Ax(€)).
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For the proof of Theorem 3.1.1 we need the following Lemma characterizing
coincidence of 6(E) with 6(A«(€)), motivated by the following formula given by
A. Aytuna in [2]:

Proposition 3.1.2 Let E be a nuclear Fréchet space E with the properties DN, Q and

associated exponent sequence €. Then

S(E)=8(A1(e) <« infsuplimsup 29 g G.1)
P g>p neN &n
where €, (p,q) = —logd, (Ug,Up).
Proof. [2, Corollary 1.10] O

The same characterization can be given for power series spaces of infinite type as

follows:

Lemma 3.1.3 Let E be a nuclear Fréchet space with properties DN and Q and € =

(&n),en be the associated exponent sequence of E. Then

§(E)=5(Au(e)) < infsupliminf D) _ o (3.2)

pGN q>p neN 8n

where €, (p,q) = —logd, (Ug,Up).

Proof. The approximate diametral dimension & (E) can be written as

S(E)=J() 8pq (3.3)

P q=p

[tn] . .
where 8,, = < (fy),cn :SUp———— < +o0 » is a Banach space with norms

! . . . .
= sup i Hence, the approximate diametral dimension can be

e = 204, 0,0
equipped with the topological inductive limit of Fréchet spaces. Then, the approximate
diametral dimension with this topology is barrelled. On the other hand, the inclusion
O0(E) C 6 (Ax(€)) = Aw(€) gives us that the identity mapping i : 0 (E) — A« (€) has
a closed graph. Since 6 (E) is barrelled, by using Theorem 5 of [37], we conclude that

the identity mapping is continuous. Therefore,
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O0(E)= U m Opg — A (€) is continuous < Vp ﬂ Opg — Aw (€) is continuous

p qzp q=p
z
& VYp VR>1 Jg>p, C>0 sup|tn|R£”§Csup¢ V(t,) € 0 (E)
neN neN dn (UQ’ UP)
C
& Vp VR>1 dg>p,C>0 R"< ————  VneN
TRORTA
S
& Vp VR>1 InR< supliminfM
g>p neN &y
g £
& Vp supliminfM =40 & inf supliminfM = +o0
q>p neN & PeNqZp neN &y
(3.4)
Now since 8 (E) O 8 (A (€)) always holds for the associated exponent sequence € of
E, we have
&
S(E)=06(Ax(g)) <&  inf supliminfM = oo, (3.5)
pENg>p neN &

as desired. U

Proof of Theorem 3.1.1 For the proof of necessity part, we assume that 6 (E) =

£
8 (Aw(€)). By Lemma 3.1.3, inf supliminfM = -+oo. Then we have
. &(pq)
Vp YVM>0 dg>p liminf————>M (3.6)
and
Vp YM>0 3g>p d,(U,U,) <e Mé VneN  (3.7)

Let take a (x,),,cn € A(Aw (€)), then there exists a S > 0 such that
—Se,
sup |x,| e < oo (3.8)
neN
which means that there exists a C > 0 such that for every n € N

x| < CedEn., (3.9)

Now, for a fixed p and the number S, from (3.6) we can find a ¢ > p such that for every
neN
Xa|d (Uy, Up) < CedEne™58n — C. (3.10)
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Then, (x,),cn € A(E) and so A(A-(€)) C A(E). Since we always have A(E) C
A (A (€)), we obtain A (E) = A (A (€)) .
To prove the sufficiency part, assume A(E) = A (A (€)) and 8 (E) # 6 (A (€)).

§(E) £ 8 (Au(e)) © 3p suplimint@ P D o,

Sdp M >0 supliminfM <M

g>p neN &, (3.11)

&
©3p IM>0 vg>p limint2 2D <y
neN &y

&3p IM>0 Vg>p 3L, CN d,(U,U,) > e Mén Vnel,

Now since A (E) = A(Aw (€)) = A (€) = {(x”)neN :IR >0 sup|x,e R < —|—°°},
neN

for every R > 0, we have eRén ¢ A, (€)' = A(E). Therefore, for the above p, we can
find a g > p, such that

supeR€nd,, (Uy,U,) < +o. (3.12)
neN

Then for every n € I3, we obtain
e<R_M) € < eRgndn (Uq,Up) < supeRgndn (Uq,Up) < oo, (3.13)
neN
But then if we choose R > M, we have a contradiction. Hence A(E) = A (A (€))
implies 6 (E) = 6 (A (€)), as desired. O

We end this section with the following result which gives a relation between having the
property D and its diametral dimension of a nuclear Fréchet space with the properties

DN and Q.

Proposition 3.1.4 Let E be a nuclear Fréchet space with the properties DN and  and
€ be the associated exponent sequence of E. Then, A(E) = A(A«(€)) implies that E
has the property D;.

Proof. Let us assume that A(E) = A(Aw(€)). From Lemma 3.1.3 and Theorem 3.1.1,

we have
& (p,
inf supliminfM — Joo (3.14)
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where &, (p,q) = —logd, (Ug,U,). Then,

A(E)=A(Ax(g)) « inf supliminfm = too
PENg>p neN &
UAN S N
& YM>0 Vp 3g imint 2229 < (3.15)

neN &
& YM>0Vp 3¢ IngeN Yn>ng  dy(Uy,Up) < dy(Us,Up)M

Now we fix p € N. From Corollary 2.3.4, there exists aC > 0 and 0 < j < 1 so that
dy(Ua,Uy) < Cdy(Uy, Uy’ (3.16)

2
for all n € N. We also choose a M which is greater than —, and from (3.14), there
J

exists a ¢ > p and ny € N such that
dy(Uy,Up) < dy(Up,Up) M <™ g,(U,,Uy) M/ (3.17)

for all n > ng. This gives us that

d”l(UfJ’Ul’)

<CcMog (U, U)Mi-l <cMg (U, U 3.18
dn(Uprl)_ n( P> 1) = n( )22 l) ( )

for all n > ng. Since E nuclear, we can assume li_r>n dn(Up,,U;) = 0. Then we have that
n—oo

. dn(Ug,Up)
Vp 3 lim ——————= =0. 3.19
P24 ) (3.19)
This means that E has the property D1, as requested. U

3.2 Results for the Case of Power Series Space of Finite Type

In this section, we turn our attention to the finite type power series case for Question
1.0.2. First of all, we show that 6 (E) = 0 (A (€)) implies A (E) = A(A; (€)) which
supports Question 1.0.2 in one direction. Furthermore, we give certain conditions on
Kolmogorov diameters of E for which Question 1.0.2 verifies in the other direction.
Then in main result of this section, we prove that if E is a nuclear Fréchet space with
the properties DN and Q, then 8 (E) = 0 (A (€)) if and only if E has a prominent
bounded set and A(E) = A(A; (€)). However, the answer of Question 1.0.2 in finite
type case in general is negative as seen in the fourth chapter.

We begin this section by giving the following proposition which answers Question

1.0.2 in one direction.
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Proposition 3.2.1 Let E be a nuclear Fréchet space with properties DN and € and
€ = (&) ey e the associated exponent sequence of E. Then 6 (E) = 6 (A1 (€)) implies
A(E) = A(A (g)).

Proof. Let us assume that § (E) = 8 (A (€)). From Proposition 3.1.2, we have

g
O0(E)=0(A1(g) & infsuplimsupM =0
P g>p neN €n
g
&SVr>0 dp Vg>p limsupM <r
neN €n
SVr>0 dp Vg>p dngeN Vn>ng d, (Uq,Up) > e T,
(3.20)
Now, we take (x,),cy € A(E) and for the above p, we find a § > p such that
sup |[xa| dy (Uz,Up) < 40 (3.21)
neN
and from the above inequality, we obtain
| e ™" E < sup |x,| dy (U, Up) (3.22)

neN
for sufficienty large n, this means that (x,), .y € A(A1 (€)) and so A(E) C A(A; (g)).
But then since A(E) D A(A (g)), we have A(E) = A(Aq (¢€)). O

One can prove the converse of Proposition 3.2.1 under some assumption on the

canonical topology of the diametral dimension as shown in the following theorem:

Theorem 3.2.2 Let E be a nuclear Fréchet space with properties DN and € and
€ = (&n),en be the associated exponent sequence of E. If A(E), with the canonical

topology, is barrelled, then A(E) = A(A; (€)) if and only if § (E) = 8 (A1 (€)).

Proof. The proof of the necessity part follows from Proposition 3.2.1. To prove
the sufficiency part, let A(E) = A(A; (€)) and assume that A (E) with the canonical
topology be barrelled. Then since the convergence in A (E) implies the coordinate-wise
convergence, the inclusion A (E) < A (€) has a closed graph. But then since A (E) is
barrelled, the inclusion map A (E) < A (€) is continuous by [37, Theorem 5]. Taking

into account that A(E) is the projective limit of inductive limits of Banach spaces,
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ﬂ U A(Uq,Up), the continuity of the inclusion map ﬂ U A(Uq,Up) —
PeN g=p+1 PeN g=p+1
A (€) gives us

Vi>0 3p Vg>p 3C>0 VneN e e < Cd,(U,U,)). (3.23)
L o &pg) _ i
This implies inf suplimsup———= =0, so 6 (E) = & (A} (€)), as desired. O
PENg>p  neN €n

It is worth noting that, by Theorem 2.1.5, the barrelledness of the canonical topology

of A(E) is equivalent to the following condition

(wQ): VN IM,n ¥ Km 3 k,S>0:
(3.24)
min(di(Un,UN),di(Uk,UK)) SSdi(Um,UM) VieN.

However, determining the barrelledness of A(E) is not easy in practice. In the
following proposition, by posing below condition on diameters, we eliminate the

barrelledness condition of Theorem 3.2.2.

Condition A: Vp, Vg >p, Is>q, Vk>s, IC>0 d,(UyUy) < Cdy (U, Uy)
Vn € N.

Proposition 3.2.3 Let E be a nuclear Fréchet space with the properties DN and
and € be the associated exponent sequence of E. If E satisfies the condition A and

A(E) = A(A (€)), then 8 (E) = 8 (A (€)).

Proof. Suppose that E satisfies the condition A and A(E) = A (A (g)). If

g
0 (E) # 6 (A (g)), then by Proposition 3.1.2, we have infsuplimsup & (p,q) #0. and
P g>p neN n
this gives the following condition:

IM >0 Vp 3q,>p, ,CN d,(U,U,) <e Me  wner, (325
For p=1, there exists a number g and an infinite subset /| so that for all n € I;
dy (Uq,,Up) < e M&n, (3.26)

and so it follows from the condition A that we have a number ¢, such that for all k > ¢,

there exists a C > 0 so that for all n € N
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dn (Ug,,Uy) < Cdy (U, Uy,) (3.27)

holds. Then, by the inequality 3.25, there exists a number g3 and an infinite subset I,
so that foralln € I,
dy (Uyy, Uy, ) < e M&n, (3.28)

It follows that there exists a C; > 0 so that foralln € N
dn (Ug,,U1) < Cidy (Ugy, Uy,) (3.29)

holds. Now applying the same process for g, and g3, we can find g4, g5 and C; > 0
such that
dn (Ugs»Uyy) < Cadn (Ugs, U, ) (3.30)

for all n € N. Continuing in this way, we can find the sequences {g };cy and {Ci } e

satisfying

dn (UQI’Ul) < Cidy (Uqaleh) < Cod, (U6157U44) < - < Gy (UCI2k+1’Uq2k) <

3.31)
for all n € N. Moreover, for each k € N, there exists a I; C N such that
d’l (U612k+1 ’ Ufhk) < e—M&‘n (3‘32)
forall n € I.
Now, for each k € N, we define
By = {x = (%n) : sup Cy|xn|dy (Uq2k+17U612k) < +°°} ) (3.33)
neN
where By is a Banach space under the norm |x||x = sup Cy|xs|dyn (Ugy,.,,Uqy, ) for all

neN
k € N. By the inequality 3.31, we have By, C By and || - [[x < || - ||xx1 for all k € N.
Since (gk) ey 18 strictly increasing and unbounded, for all p € N, there exists a kg € N

such that go¢, > p and this gives us U(hk0 CU,. ForallneN

dn <U<12k0+17UP> <dp (UQ2k0+1 ) UthkO) ) (3.34)
which means that ﬂBk C A(E). Moreover, the equality A(E) = A(A; (€)) yields a
k
continuous imbedding of the projective limit ﬂBk into Aj (€). Then since ﬂBk and
k k
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A (&) are Fréchet spaces and the imbedding map has a closed graph, by [37, Theorem

5], this map is continuous and so

ﬂBk — A(A;(€)) is continuous
k

& V>0 3k C suplrle e < C sup|x,|d, (Ugner>Ugni) Y (xn) € ﬂBp
n neN p

U,

& V>0 3kC VneN e 8 <Ca,(U ) -

Q2k+1"

(3.35)

But, this contradics to the inequality 3.28. Therefore, § (E) = & (A (€)) holds when
A(E) = A(A (€)) and the condition A holds. O

There could be other diameter conditions as above which yields the same conclusion

in Proposition 3.2.3. For example, by introducing

Condition B: Vp Vq1,9,....qp, Is < p,IC >0 max d, (U, U;) < Cd, (Uy,,Uy)

1<i<q
Vn e N.
we get the following result:

Proposition 3.2.4 Let E be a nuclear Fréchet space with the properties DN and

and € be the associated exponent sequence of E. If E satisfies the condition B and

A(E) = A(A (€)), then 8 (E) = 8 (A (€)).

The proof is similar to Proposition 3.2.3 except that the projective limit will be

replaced by ODk, where Dy, = {x = (x,) : :lelg % | 11;11_agxpdn (qu, U,') < —|—°°}.

In [38], T. Terzioglu defined the notion prominent bounded subset in order to
show that the diametral dimension of some Fréchet spaces is determined by a single

bounded set:
Definition 3.2.5 Let E be a Fréchet space. A bounded set B is said to prominent if

A(E):{(x,,)neN : lim x,d, (B,U,) =0 vp}. (3.36)

n—r+oo
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In this case one can introduce a natural Fréchet space topology on A (E) as well as its

canonical topology which is not Fréchet.

T. Terzioglu also gave a necessary and sufficient condition for a bounded subset
to be prominent [Proposition 3, [39]], namely, B is a prominent set if and only if for

each p there is a q and C > 0 such that
dy (Uyg,Up) < Cdy, (B,Uy) (3.37)

holds for all n € N.
In the following proposition, we prove that having a prominent bounded subset is

closely related to Bessaga’s condition Ds:

. dn (Ug, Up)
D;: a lim ————% =0. .
) Vp dqg Vk lim a (Ukqu) 0 (3.38)

Proposition 3.2.6 Let E be a nuclear Fréchet space. The following are equivalent:

1. E has a prominent bounded set B.
2. E has the property D;.

€.(q,!
3. For every p there exists q > p such that suplimsup M < 1 holds.
I>q neN & (P:q)

We need the following lemma for the proof of Proposition 3.2.6. As usual, we assume

that all semi-norms are Hilbertian.

Lemma 3.2.7 Let E be a nuclear Fréchet space. Then for all p,q > p, there isa s > q

such that
lim dn (Us, Up)

Proof. Let E be a nuclear Fréchet space and p,q > p. Since nuclear Fréchet spaces
are Schwartz, there is a number k > p such that Uy is precompact with respect to U,
and so the canonical inclusion map i’; : E; — Ej is compact.

Now assume that k > g. Then Uy C U, and there exists a s > k so that i : E; — Ej is
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compact. Thus it follows from [ 13, Proposition 1.2 ] given by Demeulenaere et al.

lim dn (Us, Up) (Us, Up)

=0 3.40
e 4 (U Uy) (3.40)

and since Uy C Uy, d, (Ui, U,) < d, (Uq, Up) for all n € N. Hence we get

dy (U, Uy)

=0. 341
e 4, (Ug, Uy) (34D

If now g > k, then the map i;], : E; — E, is compact since i;i, = iZ o i];? and if, is compact.

On the other hand, there exists a § satisfying § > ¢g and ifl : Es — E, is compact. Again

from [ 13, Proposition 1.2], we get

lim M =0. (3.42)
n=tedy, (Ug,Up)
Therefore,
d, (Us,U
Vp,g>p 3s>q, lim ﬁ =0, (3.43)
n=redy\Ug,Up
as desired. O

It is worth noting that, by using Lemma 4.6, the condition D, can also be stated as

follows:

d
D, : Vp dq Vk sup < oo (3.44)

We are now ready to give the proof of Proposition 3.2.6.

Proof of Proposition 3.2.6 1 = 2: This follows immediately from Lemma 4.6 and the
definition of D;.
2 = 3 : Suppose E has the condition D,. Then, for every p, there exists a ¢ > p such
that for all k > ¢

d, (U,,U dn (Ug, U
supM<+oo & IM>0 VYneN M<M
neN dy (Ulqu) dy (UkaUq)
& IM>0 VrneN  g(p,q) > —InM+¢g,(q,k)
k
&= limsupwgl.
neN . €n(P:4q)

(3.45)
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Further by Corollary 2.3.4, we have a condition on Kolmogorov diameters for this g
31C>0,0<A <1 dy(Uyir,U)) < Cdy(Ugi1,Uy) T Vne€N.  (3.46)
Then, for every k > g+ 1, there exists a C > 0 such that the inequality
g(qg+1,k) <C+(1—21)ey(gq,k) VneN (3.47)
holds. This gives

En(gt+1,k) _ &(g+1,k) elg.k) _

& (p,g+1)  &(p,q+1) &(q.k)

&, (q+ 1,k) &, (g +1,k)
& (q,k)  €(p,q)

(3.48)

and

1,k 1,k 1.k
limsupm<hmsu Sn(q+ > )8n(q+ s )

<(1-A)<l1 3.49
neN & (Pyg+1) 7 uen &(gk)  €(p.q) = ) (3.49)

Hence, for every p there exists a § > p such that

& (q,!
sup lim sup — (9, ~)

[>qg neN Sn(p,q)

< 1. (3.50)

3 = 1: Now we assume that the condition in 3 is satisfied. We fix a p € N

€,(q.k
and choose a ¢ satisfying suplimsup — (9.%)
k>q neN &n (paQ>

< 1. We also fix an € > 0 satisfying

. & (4,k)
sup lim sup
k>q neN &n (pa Q)

< 1—&. Then, for each k > g there exists N(k) so that

en(g,k) < (1—¢€)&(p.q) Vn>N(k). (3.51)

Without loss of generality, we can choose the sequence (N(k)), to be increasing.
I —(1—

Let §; := € (1 S)EN(Q“)(p’q). Since E is in particular Schwartz, we can assume

that U, is precompact with respect to U,. Therefore, we can find a finite subset

Z(]%]) C Uy satisfying

Ugi1 CZ, 1)+ 81U, (3.52)
Thus, we can write
dn(Ug1,Uq) < dn(Z}, 11,Uq) + i vneN  (3.53)

and
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265, = ¢ (1)) (P:4) < ~En(g+1)(Pg+ 1) _ dn(g+1)(Ug1,Uqg)
(3.54)

< dN(qH)(Z(lq,l)’Uq) + 1.

This gives us that

1 —(1-
dN(q+1)(Z(lq71)7Uq) >6 = Ee (1 S)SN(qul)(paq}_ (3.55)

For each N(g+ 1) <n < N(g+2), using the above argument, we can get a finite subset

Z}, ny C Ug with 1
dn(Z},:Uq) 2 5 e~ (1—€)&(p.q) (3.56)
1 1
Let Z, = U Z{4n)- Then,
N(g+1)<n<N(q+2)
1
dn(Z4,Uy) > 5 o~ (1=&)en(p.q) VY N(g+1)<n<N(g+2). 3.57)

We proceed to get a finite set Z; C Uy so that

dn(2:,U) > = e~ (1 = €)&n(p,q) VN(G+s) <n<N(g+s+1). (3.58)

| =

LetZ, = U Zfl. Since Z; C Uy for all s, then Z; is bounded and

s=1

dn(Z,,Uy) > %e_(l —€)&n(p,q) Vn>N(g+1). (3.59)

Without loss of generality, we can assume ¢ = p+ 1. Then, we can write

du(Zp,Upy1) > = e~ (1= E)an(p,p+1) Yn>N(p+1). (3.60)

1
2

Now we choose a sequence (Ay);cp» A > 0 such that Z = U Ak Z. is bounded. Then,
k=1

we find that for every p,

Ay

2

Ap

dn(ZaUerl) 2 Apdn(zvapH) 2 dn(Up+1>Up)(l_£) = 2

dn(Up11,Up)  (3.61)

for all n € N. This completes the proof, as desired. U

As an easy consequence of Proposition 3.2.6 and Proposition 3.1.2, we obtain the

following result which gives a relation between having prominent bounded subset and
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its approximate diametral dimension of a nuclear Fréchet space with the properties DN

and Q:

Corollary 3.2.8 Let E be a nuclear Fréchet space with the properties DN and Q and
the associated exponent sequence €. Then 8 (E) = 0 (A (€)) implies that E has a

prominent bounded subset.

The following theorem is the main result of this section which says that Question 1.0.2

holds true provided E has a prominent bounded subset:

Theorem 3.2.9 Let E be a nuclear Fréchet space with the properties DN and € and €
the associated exponent sequence. 8 (E) = 8 (A} (€)) if and only if E has a prominent
bounded set and A (E) = A (€).

Proof. Let E be a nuclear Fréchet space with a prominent bounded subset B. Then E

satisfies condition D>

- dy (Ug,Up)
= k lim ———————=% = .62
Vp dg V lim a (Uk,Uq) 0 (3.62)

and, in particular, if we take N = p, M = n = g and m = k, we get
YN 3 M,n Vm, 3 S>0: d,(Uy,,Uy) <8d, (Up,Uy) Vn € N. (3.63)

which means that E satisfy the condition (wQ) given in Theorem 2.1.5 and so A (E)
is barrelled with respect to the canonical topology. Hence the result follows from

Theorem 3.2.2. O

In the final part of this section we examine the conditions for which the converse of
Corollary 3.2.8 also holds.

For this, we define

. £
A(E) = {(fn)neN : Vp, VO<e<l1, g>p ngr}rlwfndn (Uyg,Up) :O}~
(3.64)
The next result provides a condition that implies 6 (E) = 0 (Aj(€)) when E has a

prominent subset.

Proposition 3.2.10 Let E be a nuclear Fréchet space with the properties DN and Q,
its associated exponent sequence € = (&,),cn. If E has a prominent bounded subset B
and A(E) = A(E), then 6 (E) = 6 (A (€)).
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Proof. Let B be a prominent bounded subset of E. Then, for all p € N, there exists a

q > p and a C > 0 so that for every n € N
dy (Ug,Up) < Cdy, (B,Uy) (3.65)

holds. Also, since B is bounded and g, is the associated exponent sequence, then there

exist C1,Co,D1,Dy > 0 and ay,a, > 0 satisfying
Die” %8 < Cd, (Uy,Up) < dy (B,U,) < Cady (Ugs1,U,) < Dae” %280 (3.66)
for every n € N. On the other hand,

AE) = { s 0 Jim s (B.0;) =0 (367

is a Fréchet space since B is a prominent bounded set. Fix p, ¢ > p and €. Consider

the Banach space

n

Buey={1= (o Jim [uldr (0:0,)° <o), G69)

Since Uyy1 C Uy, we have d, (Ug+1,U,) < dy (Uy,Up) for every n € Nand B¢ C

By e g+1. Then we endowe the space A(E) = (1] | Bp.e,q With the projective limit
(p.g)a>p
of inductive limits of Banach spaces B¢ 4. In view of Grothendieck Factorization

theorem ([10], p.225), for all p, 0 < € < 1 there exists ag > p such that A(E) — B, ¢ 4

is continous
Vp,0<e<l, 3g>p, C>0 d,(U,U,)" <dy(B,U;) VneN. (3.69)

o
Now take 8 > 0. Then, for a given p, we choose 0 < € < 1 so that 0 < € < —. Then
ai

there exists a C > 0 so that for all n € N,
Ce €48 < Cd, (B,U,) < d, (Up,Uy)® &  Ce %% <d, (U,,U,)" <Cd, (B,U,)
& InC— 8¢, <InC+Ind, (B,U;) <InC+Ind, (U;,U,)

= —Ind, (U,U;) < (InC—1InC) + 8¢,

l
= limsupM <4.

n gn

Hence, we obtain that for all & > 0 there is a g such that

l /
suplimsup & (9,!) <é and infsup lim supM =0, (3.70)
I>q n & 9 I>q n &En
which means that 6 (E) = 6 (A (g)). O
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Below we observe that the reverse implication in Proposition 3.2.10 is also true.
Tndeed:
Note that A(E) is always an algebra under pointwise multiplication. If (t,),cy €

A (E), then for all p, 0 < € < 1, we can choose ¢ > p such that

€
lim #,d, (Uy,Up) 2 =0, (3.71)

n—oo

which means (17) € A(E). Thus for any (ty),cx . (Sn),en € A(E), we have that
(tnSn)peny € A(E) as [t,s,] < % + % for all n € N.

However A(E) need not to be an algebra under pointwise multiplication. If it does,
then A (E) satisfies the condition "(t,) € A(E) implies (t2) € A(E)", vice versa. This
condition gives that (2" ) € A(E) for all m € N. Now, for a p and & > 0, we can choose

1
sufficiently large m € N such that E < € and find a q so that

lim 12" d, (Up,Up) =0 and  lim t,d,, (Uy,Up)“ =0 (3.72)

n—oo n—oo

which gives that A(E) C A(E). Since the inclusion A (E) C A(E) always holds, we
have A (E) = A(E). Hence we have proved the following:

Proposition 3.2.11 Let E be a nuclear Fréchet space with the properties DN and Q.

The following conditions are equivalent:

2. A(E) is an algebra under pointwise multiplication.
3. (ta) € A(E) implies (t2) € A(E).

As a consequence we get the following result completing Proposition 3.2.10 with

which we end this section:

Corollary 3.2.12 Let E be a nuclaer Fréchet space with the properties DN and Q,
its associated exponent sequence € = (&,),cn. Then E has a prominent bounded

subset and A(E) is an algebra under pointwise multiplication if and only if 8 (E) =

8 (A1 (g)).
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4. POWER SERIES SUBSPACES OF A NUCLEAR KOTHE SPACE WITH
THE PROPERTIES DN AND Q

This chapter centered around the Question 1.0.1 stated in Introduction that is about
the existence power series subspaces of a nuclear Kothe space with the properties DN
and € such that its diametral and/or approximate diametral dimension coincides with

that of a power series space.

In the first section, we show that a regular nuclear Kothe space with the properties DN
and Q is itself a power series space if its diametral dimension coincides with that of a
power series space of infinite type or its approximate diametral dimension coincides

with that of a power series space of finite type.

In the second section, we construct a family K of nuclear Kothe spaces with
the properties DN and Q whose elements parameterized by an exponent sequence
. Motivated by our finding in the third section, we obtain that Question 1.0.2 has a
negative answer for some element of K with certain parameter «. Then, we show
that for certain parameter o, an element of K does not have a subspace which is
1somorphic to power series space of finite type generated by its associated exponent

sequence. Hence the Question 1.0.1 is answered negatively in general.

4.1 Regular Kothe Spaces Whose Diametral and/or Approximate Diametral

Dimension Coincides with That of A Power Series Space.

The aim of this section is to prove the following results:

Proposition 4.1.1 Let K(ay,) be a regular nuclear Kéthe space with the properties
DN and Q and € be the associated exponent sequence of K (ay.,). Then, A(K(ay,)) =
A(Aw(€)) if and only if K (ay ) is isomorphic to Aws(€).
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Proposition 4.1.2 Let K(ay,) be a regular nuclear Kéthe space with the properties
DN and Q and € be the associated exponent sequence of K (ay ). Then, 6(K(a,)) =
0(A1(€)) if and only if K (ay.,) is isomorphic to A (€).

Before giving the proofs of the above propositions, we need to mention two significant

results:

Proposition 4.1.3 If E is a nuclar Kothe space with the property dy and dy, then E is

isomorphic to a power series space of infinite type.
Proof. [27, 1.4.2 Proposition] O

Proposition 4.1.4 If E is a nuclar Kothe space with the property dy and ds, then E is

isomorphic to a power series space of finite type.

Proof. [27, 1.4.3 Proposition] O

Proof of Proposition 4.1.1 The proof of the necessity part is clear. For the sufficiency
part, assume that A(K(ay,)) = A(A«(€)) for a regular nuclear Kéthe space with the
properties DN and Q. Proposition 3.1.4 gives us that K (ay ,) has the property D; which
is equivalent the properties d; and DN. Then, K(ay ,,) is isomorphic to a power series
space of infinite type by Proposition 4.1.3. Since A(K(ay,)) = A(Aw(€)), it follows

that K(ay ,) and A«(€) are isomorphic, as desired. d

Proof of Propostion 4.1.2 The proof of the necessity part is clear. For the sufficiency
part, assume that (K (ax,)) = 6(A(€)) for a regular nuclear Kothe space with the
properties DN and Q. Proposition 3.2.6 and Corollary 3.2.8 give us that K (ay ,) has the
property D, which is equivalent the properties d, and Q. Then, K () is isomorphic
to a power series space of finite type from Proposition 4.1.4. Since A(K(ay,)) =

A(A1(€)), it follows that K(ay ,) and A (€) are isomorphic, as desired. O
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4.2 K ,-Spaces

In this section, we will construct a family of nuclear Kothe spaces with the properties
DN and Q and parameterized by a finitely nuclear sequence o« and show that
a subfamily of these Kothe spaces satisfied that A (K (ax,)) = A(A;(€)) and
8 (K (akn)) # 8 (A1 (g)) for its associated exponent sequence €. This shows that

Question 1.0.2 has a negative answer.

We proceed as follows: First, we will divide natural numbers N into infinite
disjoint union of infinite subsets. For this purpose, we order the elements of N? by

matching them with the elements of N such that any element (x,y) € N? corresponds

1 2 —1
to the element % +y(x+1)+ % € N. One can visualize this
ordering as shown in the following graphic:
7
4 8
2 9
1 3 6 10
I I, I3 I4 I

Figure 4.1 : Graphic 1

As shown in the above figure, each vertical line /; has infinitely many elements and N

can be expressed as an infinite disjoint union of g, that is, N = U L.
seN
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Let a = (0,),,cp be a strictly increasing, positive, finitely nuclear sequence. We
define a matrix (ax,), . by setting
1

—— 0,
e k. if k<s

Akn = 1 (41)
<——+1) o,
e\ Kk if k>s4+1.

Y

where n € I, s € N.

J

Infact, (akﬂ)kneN is a Kothe matrix, since for every n,k € N, 0 <ay, < ai41,. We
denote the Kothe space generated by a matrix (ag,)knen as in 4.1 by Ko We say
that the space K, is parameterized by the sequence . We denote the family of all

Kothe space K, by K.

Now, we show that each element of the family K is nuclear and satisfies the

properties DN and Q:

Lemma 4.2.1 Let K, be an element of the family K parametrized by o = (O nen-

Then, K o is nuclear and has the properties DN and Q.

o3}

. a .
Proof. In order to prove the nuclearity of K ., we show that the series Z T 18
n—1 Ak4+-1,n
convergent for each k € N: Since
1 1

kn (k) O 4.2)

Ak+-1,n
for every k,n € N and A; () is nuclear, then the series Z is convergent and so

— Ak+1n
K 4 is nuclear, as asserted.
We now prove that Ky, has the DN property by using Proposition 2.3.2. We will

show that for all p € N there exists a0 < A < 1 such that the inequality

)lfl

apn < (a1,)* (ap1n 43)

is satisfied for all n € N.
Let p,n € N and assume n € I, s € N. There are two cases for pand s: p < sor p > s.

First we assume that p < s: In this case,
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1 1
Oty —e ™ and > ¢ 1 O 4.4
appn=e an Apiin=>e€ . 4.4)

aAln = e )
1 1

Second we assume that s < p: In this case,

1 1
_ ——+1) 0, ——=+1)0,
aj,=e Qn apJ,:e( p ) " and ap+17n:e< p+1 > " 4.5)
11
. . . . 1
But then the inequality 4.3 is satisfied for any A < £—2 1+ .
2- 5
Hence, if we choose a A > 0 satisfying
i1 1 1 11
p p+l p  p+l p ptl
/'L<m1n{ — T }_2_ . (4.6)
p+1 p+1 p+1

then inequality 4.3 holds in general and so &K, has the property DN, as claimed.

We now prove that K, has Q -property by using Proposition 2.3.1. We will

show that for all p € N and for k > p there exists a j > 0 such the inequality
~ +1
(ap,n)Jak,n < (aerLn)J+ 4.7)

is satisfied for all n € N.
Let p,n € N and assume n € Ig, s € N. There are two case for pand s: p < sor p > s.

First we assume that p < s: In this case,
1

—Lla, ——Loy (_
app=e P 7, api1,>e Pt and ap, <e

1 1
——zt1
for all k > ¢. Then, the inequality 4.7 is satisfied for any j > £ Jrll_ l
p pHl
Second we assume that s < p: In this case,
_1 _ 1 1
apn = e< I’H)a", Apyin = e( P+1+1>a and ay, = e< k+]>a" 4.9)
1 1
. . o 1kl
for all k > g. Therefore, the inequality 4.7 is satisfied for any j > — T
p - pHl
Now, we choose a j > 0 satisfying
1 1 1 1 1 1
-+l ——= ———r+1
1% 1 % 1 %
]>max(p1 T ,If T ):1’1 i (4.10)
p  ptl p p+l P ptHl

and so that the inequality 4.7 is satisfied for all n € N. Hence K, has the property Q,
O

as claimed.
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Remark 4.2.2 It is worth noting that any element K o of the family K does not have

the property (d),

(dr): Wk 3j VI supndno o @.11)
n (ajn)

Since forall j e N, n €1,

1 1
—Q, —= 0 (=g +D) 0
ajp,=e " ajp=e J ajrip=e It (4.12)
and
Al ndj+in 2 Oy Alndj+1,n A1ndj+1,n
—I=r = e(i+1) = Sup ———5"— =sup — 5 =+ (4.13)
(ajn) nel; (@jn) neN  (@jn)

then, K o does not have the property (d2). So the family K does not contain a power

series space of finite type.

4.2.1 Kolmogorov diameters of an element K, of the family &

In this subsection, we calculate Kolmogorov diameters of an element %a of the

family K. In order to determine n'"-Kolmogorov diameter of a Kéthe space Ko, we

Ap,n

will rerwrite the sequence ( ) in descending order. We know from Remark
neN

Agn
2.2.4 that the n'*-Kolmogorov diameter of the space Ky is the n+ 1""-term of this

descending sequence.

Let K, be an element of the family K parameterized by an exponent sequence o.

Letustake a p,ag > pand ann € I, s € N. Then, we can write

Apn ecl’qa”, s>qgors<p
oz — 1 (4.14)
Agn e(cpq_ )a”7 p§s<q
. . I 1
where ¢, 1s the negative number = —; + ;1
We define the set I = U I with the elements (n;)cn ordered increasingly, namely,

p<s<q
n; < n;yy for all i € N. We also denote the index of the element of 7, on the line with

the equation x +y = g +k —2 by sy foreach k =0,1,2, ..., as seen from the following

graphic. Since every a line with the equation x+y = g+ k — 2 has g — p elements of /,

then | sy —sx =q—p|forevery k=0,1,2,....
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\\ L N
g
N > N
N \\ .\
\\ h S .
o k1 |
h kN L%
i} \\ \\
sk \\ \\
KX e »
\\ \\\
AN S
‘e -
\\\ \\
nSl ‘\ \\\
I I \\ IR the line with the equation
nso \\ \\\ \\\
“\ \.\ ® \\ x+y:q+k_1
N N N N
\\ \\ \\\ \\\
‘e  } s ‘/ 3 . .
s P . . the line with the equation
n2 \\ \\ \\ \\\
ll\ \R\ \\\ . x+y:q+k—2
Y N N \\
18] \\ ng \\ \\\ N

Figure 4.2 : Graphic 2

Considering the above graphic, the elements of  are placed in N as follows:

n nyn3 n4nsng W W

1 element 2 elements 3 elements g-p many elements  g-p many elements

Figure 4.3 : Graphic 3

Now we assume that the terms e€r4 (xm’ m € N — 1, are on the blue points and the
terms e(cl"l o 1) a”i, n; € I, are on the red points at this line.

Apn

Before sorting the terms of the sequence < ) , we note that the terms of
neN

Agn
the sequences (ecl’qam) and e(cpq B 1) On; have decreasing order in
meN-I N
e

themselves.
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Ap,n

We are now ready to order the terms of the sequence ( ) decreasing
neN

dg.n
and read Kolmogorov diameters d, (Uq, Up) foralln=0,1,2,....

. a . .
At first, we take into account the part of (ﬂ) including the first n; — 1
Ag.n / neN

terms:

eCpq %1 eCpq %2 eCpq O3 oPa%ny —1

Figure 4.4 : Diagram 1

Since « is increasing, this part has decreasing order and all terms in this part is greater
than the terms corresponding to the elements of /. Then, having decreasing order, this
part remains the same. However, we write this part by shifting to the left taking into

account the zero indices for Kolmogorov diameter.

Ap,n eCpq 1 H Cpq 02 eCrg On—1 - e(cpq —1) oy,
Agn
dn(Ug,Up) | e€ra 1 || ¢Cpg %2 €pg Om—1 |—
d() d] dn172 dnlfl

Figure 4.5 : Diagram 2

So, forevery 0 <n <ny —2,
dn(Uq, Up) =ePa%n+1, (4.15)

In order to find the diameter d,,, —1(Uy,,U),), we will compare the term e(cpq —1)an

with the terms P4 am, m e N—1I, m > np, and the greatest term gives the diameter

dny—1(Ug, Up):
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e(cpq — o, < ¢Spg Om & O < Apg Oy (4.16)

where Ay, = 1+ ﬂ. Then, the terms ‘P4 am, m € N—1, m > np, satisfying

q—7p
Oy < ApgQp, is greater than the term e<cl’q a 1) ®n1 . So we must write the terms
e€ra ocm, m € N—1I, m > ny, satisfying oy, < A, 0ty before the term e(cl"l o 1) ®ny
in decreasing order.

We call the greatest element m € N — I satisfying o, < Ap, 0tpy; as iy. As shown in the

following figure, we can assume that there exists a k; > 0 so that the inequality

nsy, <i<ns (4.17)

(k1 +1)

holds.

Figure 4.6 : Graphic 4

The above figure can also be visualized as follows:

niy npn3 n4 ns ne nskl 1 ns(k1—|—1)
Figure 4.7 : Graphic 5
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This means that the number of elements of I which is less than i; is s(k1 +1)~ 1.
So, before the term e(CPq - 1) Qni we will write ip—|[s (ki +1) "~ 1] many e€rd O
m € N—1, m < iy, terms in decreasing order. Furthermore, while writing these terms
in decreasing order, every term e<cl"1 o 1) a”a, 1<a<s (ki +1)~ 1 shifts to the right
and every term eCra a’”, m € N—1I, m < iy, shifts to the left, as shown in Figure 4.9.

In order to find n; — 1"

Kolmogorov diameter, we shift the term corresponding to the
first element n; of /. Considering also that we shift the terms to the left for do(U,, U)),

we find that for everynj —1 <n <mnp —3,
dn(Ug,Up) = epa On+2, (4.18)

So, we found the Kolmogorov diameters until the indices n, —2. Now, we also shift
the terms corresponding to the element n, and n3 of /. Up till now, we shift the terms

to the left four-indices, then we find that for everynp —2 <n <n4—S5§
dy(Uq, Up) = efpa On+4. (4.19)

We would like to point out that the endpoints of the intervals in which we determine
Kolmogorov diameters are generally represented by the elements of /,. Because the
terms corresponding to the elements of / that we shift to the right and the terms
corresponding to the elements of N — I that we shift to the left are between the two

elements of I, as seen in the following figure.

Ny Ny
—

y)
A)

Figure 4.8 : Graphic 6
Another significant point in writing the endpoints of the intervals in which we
determine the diameters are to find out how many elements, the terms corresponding

to the elements of 1, we shift to the right.

Let’s continue to calculate the diameters with this perspective.
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Figure 4.9 : Diagram 3
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Let us assume that we replaced ng, — [so + 1] terms in decreasing order. In order to
find n g, — so-th Kolmogorov diameter, we shift 5| terms corresponding to the elements

of I in total, for every ngy —so < n < ng; — [s1 + 1], we have
dn(Uq, Up) = eSPa%n+sp (4.20)

Considering the terms that we shift to the right in each step, we can write for every

0<k<k andforeverynsk—skSngns(k+1) —[s(k+1)+1]

Cpq &n +s
dn (Ug, Up) = (k+1) 4.21)
and for all ng —sg, <n<ir—sq | q
Cpq On +s
dn (UQ7UP) =e (kl & 1) ’ (422)

Therefore, we shift i; — [S(kl T 1] many terms e“Pd On meN—I, m<ito

left, namely, we sort all terms which is greater than e(cl’q B 1)O"’ll. Hence, the term

e(cl"l —Dan, is replaced at the indices | j; =i — s(k1 +1) + 1|, namely,

dj, (Uq, Up) = e(Cpa —Domy | (4.23)

Now assume that the first a — 1, (a > 1) terms corresponding to the elements of I are

placed in decreasing order.

Before the term e\Cpa — l)a”a, we must write the terms ePa%m g ¢ N — [
which is greater than e(CPq - l)a”a, satisfying the inequality o, < Ap,0p,. We call
the greatest element of m € N satisfying oy, < A, 0tp, as i,. We can assume that there
exists a k;, € N so that

sy, <la<nsg ) (4.24)

sk, . "Skat1)

Figure 4.10 : Graphic 7
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This means that the number of elements of I which is less than i, is S(ka +1)” 1.

So, before the term e(cl’q_ 1) Cna we write i, — (s(k F1) T 1) many erd O
a
m e N—1, m <i,, terms in decreasing order. Since we assume that the first a — 1

terms corresponding to the elements of / is placed in decreasing order, then the term

e(cl’q —Doan, are replaced at the indices | j, =iy —S (ka+1) + a |, namely,

d; (U, Up) = e(Cpq —1)0n, (4.25)

Now, we determine Kolmogorov diameters between the indices j, and j,. for every
a>1.

Starting the index j,, we must compare the term e(cpq N 1) na+1 with the terms
eCra Otm’ m € N—1I and for every m € N — I satisfying oy, < Ap, Ong 1> We write the
terms ¢“P4%n | before the term e(cpq N 1) Onayr, Again, we call the largest element of

N — [ satisfying above inequality as i,| for which there is k, | € N satisfying

Let us continue to decreasing order from j, + 1:

For all j, +1 gngns(ka+1) —s(ka+1)+a—1

cpqo‘n+s(ka+1) —a

If any, for every k, +1 < k < k411 — 1 and for every ngy —sx+a<n < NS ) —
Sk+1)+a—1
Cpq O _
dn (Ug, Up) =e P4 P HS0kin) —2 (4.28)
and for every nska+1 ~SKaiq +a<n<iyq— S(ka+1 +1) +a
Cpq®n +s —a
dn (Ug, Up) =e (Kay1+1) % (4.29)
We sort all terms which is greater than e(cl’q N 1>a”a+1. Then, the term

e(cl’q_ Dotng. is replaced at the indices |ja+1 =1y 419 “S(kpi1+1) +a+1|
a

namely,

d; | (UgUp) =elpa— Donaiy | (4.30)
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Hence, we determine all Kolmogorov diameters between the terms e(cl’q —1) Ong
and e(cpq —Dong, for every a > 1. Therefore, we can calculate all Kolmogorov
diameters by following the above observation, and finally we can write:

l.LetJ:={j,:a € N} whereja:ia—s(k _H)—i—a. Foralla € N,

Cpg— 1)
d; (UgUp) = e(cpa—1) g (4.31)
2. For a,k € N, we define
L= [nsk — St a,ng —Skr1+Ha— 1} (4.32)
and
k= | U Ik (4.33)

For every n € K, there is an a € N and a k € N satistying k, +1 < k < k,+1 — 1 such

that

dy (U,,Uy) = eP1%n+sie1 —a, (4.34)

3. Let L = U [ja+1,ns . For every n € L, there is an
aeN

a € N such that

(ko+1) —S(ka+1)+a—1]

et s, 11y

dn (Ug,Up) =e (4.35)

4. LetM = U [nsk —ska—ka—l,ja—l] For every n € M, there is an a € N such
a

aeN
that

Cpg O +
dy (U Uy) =e 0 Clka+ 1) = (a—1), (4.36)

All Kolmogorov diameters in the light of above observation are found since N =
{0,1,...,n; —2} UJUKULUM. This completes the determination of the diameters.
Now, we give an estimation for Kolmogorov diameters of an element K, of the family

K which is parameterized by o.

Theorem 4.2.3 Let K, be an element of the family K with the parameter «. For

every p, q > p there exists a N € N such that
era%n < d,(U,,U,) < fraOn (4.37)

for everyn > N.
48



Proof. Let p € N and ¢ > p. Above we obtained Kolmogorov diameters d,(Uy,U))
on each subsets {0, 1,...,n; — 1}, J, K, L and M of N. We will show that the inequality
4.37 holds for sufficiently large elements of each subsets J, K, L, and M of N.

Primarily, we will show that 2j, > i, for sufficiently large a € N. We know that for

every i, there exists a k, € N satisfying nsp < g < ns(k 1)
a a

’

‘ ~
Ipq Iq llqﬂ(az Igrk,—1

the line with the equationx+y =qg+k, —2

Y

the line with the equation x+y =¢g+k, — 1

Figure 4.11 : Graphic 8

As shown in the above figure, ng k is on the line which has the equation x4y =
a

g+ kg — 2. Since the first element of [, ¢, > is less than ng k> We can write
a

k,—2 k,—1 —2)(g—1 ky(ky—1
ng > Wtka=2)(gthk—1) _ (9-2)(q )+(q—1)ka+ atka=1) = 439,
kq 2 2 2
Also as nsy < i,, then we can write
a
—2)(g—1 kg (kg —1
R (4.39)
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kq (kg —
Since EI_E ks = +oo, we can assume that % > (ka+1)(g—p) and
a oo
—1)k
% > so for sufficiently large a € N. Hence we can write
la
5 2sot(ka+1)(@=p) =50k, 4 1) (4.40)
and we find
. . . i -
]azla—S(ka+l>+a>za—§“:5“ = (20> ia (4.41)

Now, we will show that the inequality 4.37 is satisfied for a sufficiently large element
of J. Let take an a € N satisfiying 2j, > i,. There exist two cases for 2j,: 2j, € N—1
or2j, €l

We know that i, is the greatest element of m € N — [ satisfying e(cl"l N 1) na <

e€ra%m then we can write
eCraQk ~ e(cpq —1) an, (4.42)
forevery k > i, ke N—1. If 2j, € N—1, then
£P1% 0 < ¢P1%2ja < o(¢pg—1) Oy (4.43)

If 2j, €1, then 2j,+ (¢q—p) € N—1TI and 2j,+ (¢ — p) < 4, is satisfied for a

sufficiently large a and we find

Cra%4j, < ec”qaZja +(q@—p) < e(cpq —1) Ong (4.44)
Also, we know that i, > j, for every a € N, thus we can write
— CpgO; CpgO;
dja(Uq’UP) = e(cp‘l 1) Ong <eP17lag < e P17 ]a, (4.45)

The above inequalites give us that

P e < d; (Ug,Up) = o(epg=1) Oy < Cra%ja. (4.46)

Then, the inequality 4.37 is satisfied for sufficiently large element of J.
We now prove that the inequality 4.37 is satisfied for sufficiently large elements of K,

L and M. In order to see this, we first show that
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nsp > 2sy

for sufficently large k € N.

Ip—l Iq Iq+k—2

the line with the equationx+y=¢g+k—2

Figure 4.12 : Graphic 9

(4.47)

We know that ng k is on the line which has equation x+y = g+ k — 2 for every k =

0,1.... Since the first element of I, is less than ng Kk then we can write

nsy > (g+k=2)(g+k—1) (¢-2)(g—1)

2 2

— 1k
+(g—1)k+ >

The inequalities

k.(k—1)

T2 k(g—p) and

(g—1)k>2(so+1)

hold for a sufficiently large k. Then we find

nsy = 2(so+k(g—p)+1) =2s;

for a sufficiently large k € N.

k(k—1)

(4.48)

(4.49)

(4.50)

Now we show that the inequality 4.37 is satisfied for sufficiently large element of K.

Let take ann € K. Then, there existaa € Nand a k € N satisfying k, +1 <k <k 41 —1

suchthatnsk—sk+a§n§nsk+l —sk+1+a—1and
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dy (Uy,Uy) = ePa%ntsi1 —a 4.51)

Since ng i 25, for a sufficiently large k € N, we can write
skgnsk—sk—i—agn = n+spe;—a<2n. (4.52)
for sufficiently large a. Then, we obtain
d, (U,,U,) = Pa%n+ s —a > (Cra®n > CpaQian (4.53)
and always we have
dy (U, U,) = P49+ k1 —a < (CpgOn (4.54)

since ¢ is increasing.
Therefore, the inequality 4.37 is satisfied for sufficiently large elemets of K.
Now, we will show that the inequality 4.37 is satisfied for a sufficiently large element

of L. Let us take a n € L. Then, there is an a € N such that

and

Pants (g, +1) "4

dn (Ug,Up) =€ (4.56)

Since Sk, < nska —ska+a < js+1<nand ”+S(ka+ ) —a < 2n for a sufficiently

large n, then we find

rants (g, 41y~

a
dy (Ug,Up) =e > ¢PaM2n > Cra%4n (4.57)

and always we have

Cpg O _
rq ”+5ka a<ecpqan (4.58)

dn (qu Up) =e

since « 1s increasing. Therefore, the inequality 4.37 is satisfied for sufficiently large
element of L.
Now we will show that the inequality 4.37 is satisfied for a sufficiently large element

of M. If n € M, then thereisana € N

nska —ska+a <n<j,—1(4.59)
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and

CpqOly 4 (g —1)4.60)
d(UpUy) = TSk Tl

Againwecanwriteska gnsk —ska+a§nandnsk +s(ka+1)—a+1§2n for a
a a

sufficiently large a. Hence we find

€pg% 4 s —(a—1
dy (Ug,Up) = e (at 1) " S e > Crian @)

and always we have

Cpqo‘n+s(ka+ 1)~

a
dy (Ug,Up) = e < ¢Cpa%n (4.62)

since « is increasing. Therefore, the inequality 4.37 is satisfied for a sufficiently large

element of M. This completes the proof. 0

4.2.2 The diametral dimension and the approximate diametral dimension of an

element of the family X parameterized by a stable sequence o

As a consequence of Theorem 4.2.3, we will compute the diametral dimension and
the approximate diametral dimension of an element Ky, of the family K which is

parameterized by a stable sequence «.

Corollary 4.2.4 Let K, be an element of the family K which is parameterized by a
stable sequence . Then, A(Kg) = A(A1 (04,)) and §(Kq) = (A1 (o).
Proof. From Proposition 4.2.3, we have

A(A1(04)) CA(K y) C A(A1(0un)) (4.63)

and

S(A1(0un)) € 8(Fy) C 8(A1(aw)). (4.64)

On the other hand, A{(a,) = Aj(ay,) since o is stable. Then A(K o) = A(A (o))
and 8(Kg) = 8(A1 (o). O

4.2.3 The diametral dimension and the approximate diametral dimension of an

element of the family K parameterized by an unstable sequence o
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In this subsection, we will prove that A(Kg) = A(A1(04,11)) and §(Ky) #
8 (A1 (041 1)) for an element Ky of the family K which is parameterized by an
unstable sequence . Besides, we will show that all regular elements of the family

K are parameterized by an unstable sequence o.

Proposition 4.2.5 Let K, be an element of the family K which is parameterized by
an unstable sequence a. Then, A(K ) = A(A1 (041 1)).

Proof. We can calculate Kolmogorov diameters as in the previous determined for
every p and g > p. Since « is unstable, then there exists an @y € N such that for

all a > ay, there is no m > n,, m € N satisfying
O S qu al’la (465)

. R cpg— 1)
Now, we examine closely the indices replaced the term e( Pq ) ap . We know

that ( )
Cpq—l On . |
d; U,,Up) = (ao—1)

‘](a()—l)( q P) e

where ](ao—l) = l(a0_1> — S(ao—l) + ag— 2. Since  «;

(4.66)

<
(ap—1)
Apg a”(ao—l) and there is no m > ng satisfying am < Apg Angy» then we

find i (ap—1) < ng. Therefore, the following figure below is valid:

Nag—1 ja()—l ia()—l na
Figure 4.13 : Graphic 10

This gives that for all j(ao —1) <n<ngy—2,

dy(Uy,Up) = e€pa Fntl, (4.67)

Ap,n

Besides, we obtain that the sequence ( ) has decreasing order starting from
neN

a
q.n
the indices j( ao—1) + 1, since for every a > ay, there is no n > ngq, satisfying o, <

Apq 0p . Then, we have for all a > ag

d (U,,U,) = elpa = 1)0n, (4.68)

I’la—l

andforallm2j<a0_1),m€N—I
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dn(Uy,Up) = e€pa Om+1, (4.69)

Since d,(U,,U,) < ePa%+1 for every n € N, then we find A(Fq) D A(A;(t11)).
For the other direction, let us take a sequence (x,),cy € A(Ky),ane>0andapecN

1
satisfying — < €. We will show that
p

sup |x,| e €%+l < oo, (4.70)
neN

Since (x,),cny € A(K ), there exist a ¢ > p and M > 0 satisfying

sup [x,| dy (Up,Uy) < M. (4.71)
neN

Let us define I = U I. For sufficiently large n € N — I, we can write
P<s<q

ule " EO+1 < x|y, (U, Up) = P %t < M (4.72)

since ¢, > —€&. Therefore, the sequence | e €0%n+1 ig bounded on the set N — 1.

If we show that |x,|e~€%+1 is also bounded on 1, then we will find that (x,),.y €

ANy (Qnr1))-
Let take another po > ¢, then there exist a gy and M, > 0 such that

Sup x| dn (Ugy, Upy ) < Ma. (4.73)

neN

Let us define J = U I;. Since cp 4, > —€, we find
Po<s<qo

| e TEOHL < x|y (Upy, Uy, ) = eCPostoFntl < . (4.74)

for sufficently large n+1 € N —J. Also, it is easy to see that / C N —J. Then, the

above inequalities give us that
x| e €%t < My, (4.75)

for all n € I. Hence, the sequence |x,| e~ €%+1 is also bounded on I. Therefore, we

find

sup x| e €%+ < oo (4.76)
neN
and (x4),cy € A (A1 (Qut1)). This says that A(Kq) = A(A; (Qt1)). O
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Proposition 4.2.6 Let Ky be an element of the family K which is parameterized by
a stable sequence . Then, (K y) # 8(A1 0y 1)).

Proof. In the proof of the previous proposition, we show that if & is unstable, then for

all p € N and g > p, there is a ag € N such that for all a > ag

d, _1(UyU,) =elcra=1)0n,, 4.77)

na-—l

so the last equality holds except for finitely many numbers of elements of /. Then we

have
—8”“;::” 4y, (4.78)
and
limsup 2129 0 inpeuplimsup 22D S0 479)
aeN O, P g neN O+l
By Proposition 3.1.2, we have & (K (ax,)) # 6 (A1 (¢tut1)). O

Remark 4.2.7 Proposition 4.2.5 and Proposition 4.2.6 shows that Question 1.0.2 has
a negative answer for the elements of the family K which is parametrized by an

unstable exponent sequence.

Now, we will show that all regular elements of the family K are parameterized by an
unstable sequence ¢. First, we will give a condition for the regularity of the elements

of the family K.

Recall that a Kothe space generated by the matrix (akﬂ) is called regular

k,neN
if the inequality

ak+1,n<ak+1,n+1 (4.80)
Akn  Qkptl

is satisfied for all k,n € N see Definition 2.2.3.

Let K4 be an element of the family K parameterized by an exponent sequence o

and n € I, s € N. Then, there exist two cases forn+1: n+1 €l orn+1 € 1.

>s+1.

1 2
e First we assume n+ 1 € Iy, : For this case, n+1 > w
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i) For k+1 <s, we have
1

1
-7 Qay
agp=e k=M, Ui =e K177
g - (4.81)
Appp1 =€ kL A+1n+1 =€ k+1 S
Since « is increasing, the inequality
1 1 1 1
ettn _ (5= 757) O Se(z—m)anﬂ _ Hktlntl (4.82)
Ak n Ak n+1
holds in this case.
ii) For k > s+ 1, we have
1 1 1
_1 o — +1)o
akm:e( k+ ) I’l, ak+17n_e( k+1 ) n7
(—3+1) ( +1)a (489
—_— = a —_
jpr1 =€ k 2y Aps1pr1 =€ kF1 ntl
Since « is increasing, the inequality
1 1 1 1
M:e(z—m)% Se(z—m)anﬂ _ Getlntl (4.84)
Ak.n Ak.n+1
holds in this case.
iii) For k = s, we have
1 1
— ——— 4+ 1
ak,l’l:e k n’ ak+1n:e( ket1 ) na 4.85
— 101 B 1O‘n+1 )
Qg1 =€ Kk ; Ak+1p+1 =€ KT
Then, these give that
1 1 1 1
Aj+1,n :e(z_kTﬁ’l)O‘n and A1 41 (E_H_l)o‘nﬂ,
A n A n+-1
(4.86)
. . .. a a . .
In this case, the regularity condition adt < frlntl g equivalent to the
Ak.n Ak n+1
following inequality:
(1+k(k+1))ot, < oy Vnel, keN (4.87)
. s(s+1
¢ Next, we assume n+ 1 € I;: For this case, n = % > s.
i) For k+1 <s, we have
_ 1
U =€ "a” Qi = BT, (4.88)
| .
_1 Do ——— 4+ 1)
fent-1 Se( et ot Q1,41 e
Since o is increasing,
1 | 1 |
M:e(;—m)% ge(%_k_)aflﬂ < M (4.89)

Af.n Ak n+1
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ii) For k > s+ 1, we have

1 1
1D ——+ 1o,
e = lmx e, Ahet-ln = Ammr o, (4.90)
(—1—1—1)06 1 (—L—I—I)OC +1 .
Agny1 =€ K (an Apyipp) =€kl S
Since o is increasing,
i (A — AV, _ (- L))o Ak+1,n+1
AN R 25 PA NP AV I o WA (o R Ll 4.91)
Ain Ak n+1
iii) For k = s, we have
1 1
— ——+ 1,
Apn=2¢€ k= ak+1,n:€( k1 ) n’ 4.92
(—L+ 1) oy (g1 + Do @
Ay Se' k (an Api1pr1 =€ ktl ~

Then, these gives that

i

1 1
et D g T T O < Bl g
Ak.n Ak n+1

~—

Ak+1n e(

: . .. Gyl _a
In this case, the regularity condition ktln o “kt+lntl

< is equivalent to the
Akn Ak n+1
inequality (4.5).

Hence, we have obtained a regularity condition for a Kothe space K, from above

observation:

Proposition 4.2.8 Let K be an element of the family K parameterized by the

sequence o. Then, Ky is regular if and only if the inequality
(I+s(s+1))an < Qi (4.94)

is satisfied for alln € I and s € N.

—_

n—

(I+i(i+ 1))) satisfies the
0 neN

1=

We also note that the sequence (Qi),cny = (

condition of Proposition 4.2.8 since

Ot 1

=1+4+nn+1))>(1+s(s+1)) (4.95)

n

foralln € I, s € N.

As a consequence of Proposition 4.2.8, we obtain the following result:
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Corollary 4.2.9 Let Ky be an element of the family K parameterized by the

sequence o. If Ky is regular, then the sequence « is unstable.

Proof. Let K, be a regular Kéthe space generated by the matrix (g, )i en given

Q
in 4.1 and assume « is not unstable, that is, lim :;rl # +oo, Then, there exist a
n—oo
. " a]’lk"‘l .
M > 0 and a non-decreasing sequence (1), SO that sup o < M. Since (k) ey
keN N
is non-decrasing and K, is regular, we can write
(04 Q
Tl o Tl g (4.96)
ak al’lk
for all kK € N and from Proposition 4.2.8, we find that
Ok+1
k

for all k € I, s € N. This is a contradiction, therefore @ must be unstable, as desired.

O

Remark 4.2.10 Being unstable is not sufficient for regularity of Kothe space K .

For instance, the sequence (0),cn = ((n—1)!),cy does not satisfy the condition of
s(s+1)

Proposition 4.2.8. Indeed, for every s € N, n = € l;and
Ot 1 s(s+1)
=n= <1+s(s+1). (4.98)
ol 2

Remark 4.2.11 As a corollary of Proposition 4.2.5, Proposition 4.2.6 and Corollary
4.2.9, we can obtain that A(K 4)) = AA (¢ty41)) and §(K o) # (A1 (041 1)) for a
regular element K o of the family K which is parameterized by an exponent sequence

.
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4.3 Inferences Acquired From the Family K

In this section, we compile some additional information for the family & .

We have shown that an element Ky, of the family K which is parametrized by
an unstable sequence o constitutes a counterexample to Question 1.0.2. An element
K of the family K which is parametrized by an unstable sequence « is crucial for

Question 1.0.1, as well:

Theorem 4.3.1 There exists a nuclear Fréchet space E with the properties DN and
satisfying A(E) = A(A1(€)), for its associated exponent sequence €, with the property

that there is no subspace of E which is isomorphic to A (€).

Proof. Let K, be an element of the family &K which is parametrized by an unstable
sequence o.. We proved that A(K' ) = A(A1(0,11)) in Proposition 4.2.5. Therefore,
the sequence (Q,11),c i the associated exponent sequence of K 4. Besides, we
showed that §(K o) # 8(A1 (1)) in Proposition 4.2.6.

Assume that there exists a subspace of K, which is isomorphic to Aj(0,1). This
gives us that §(A1(@,11)) € 8(Kg) by Proposition 2.1.4. Since always (K ) C
S(A1(tyy1)), we conclude that §(Ky) = §(A1(@,41)). But this is a contradiction.

Hence, there is no subspace of Ky, which is isomorphic to Ay (G, 1). U

Remark 4.3.2 The above theorem indicates that Question 1.0.1 has a negative answer.
It is worth mentioning that we can even find even a nuclear regular Kothe space with

the properties listed in Theorem 4.3.1.

In the third chapter, we gave conditions confirming an affirmative answer for Question
1.0.2. Obviously, these conditions are not valid for an element Ky of the family K
which is parameterized by an unstable sequence . For instance, Theorem 3.2.2 says
that Question 1.0.2 has positive answer provided that A(E) is barrelled with respect to

the canonical topology. Therefore, we obtain the following:
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Proposition 4.3.3 Let K be an element of the family K parameterized by an
unstable sequence o. Then A(K ), with the canonical topology, is neither barrelled

nor ultrabornological.

We actually wanted the barrelledness in Theorem 3.2.2 to be able to use a closed
graph type theorem, [37, Theorem 5, Pg. 40] which says that a linear map f from a
barrelled space X into a Fréchet space Y is continuous provided that the graph of f is

closedin X xY.

Since 8§(K¢q) # 8(A1(ayr1)) and A(Ky) = Aj(a,11), the technique used in
the proof of Theorem 3.2.2 is not valid for an element Ky of the family K
parameterized by an unstable sequence o. Hence, this gives us that the identity

mapping from A(K g ) into Aj(c,41) is not continuous although it has a closed graph:

Theorem 4.3.4 Let K, be an element of the family I parameterized by an unstable
sequence o. Then A(Ky) = A(A1(Ctyy1)) and the identity map from A(K ) into

A1 (0441) is not continuous although it has a closed graph.

Again since A(K'y) = A(A1(t,41)) and 8(Ky) # 8(A1(04 1)) for an element
Ky of the family K parameterized by an unstable sequence «, as a corollary of

Proposition 3.2.6 and Corollary 3.2.8, we have the following:

Theorem 4.3.5 There exists a nuclear Fréchet space E with the properties DN and €
satisfying A(E) = A(A1(€)) for its associated exponent sequence € such that there is

no prominent bounded set of E. Hence, this space also does not satisfy D,-property.

Remark 4.3.6 It is worth to note that as a consequence of Corollary 4.2.4, Proposition
3.2.6 and Corollary 3.2.8, an element K o of the family K parameterized by a stable
sequence o has the property D,, whereas, we showed that this space does not have the

property dy in Remark 4.2.2.

A nuclear Fréchet space E with an increasing sequence of seminorms ({|.|[;),cp 18

called tame if there exists an increasing function o : N — N, such that for every
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continuous linear operator 7 : E — E there exists a ng € N and C > 0 so that
IT() < Cll¥llogy VxCE. (499)

In [2, Theorem 2.3], A. Aytuna proved that a nuclear Fréchet space E with the
properties DN and  and stable associated exponent sequence € is isomorphic to a
power series space of finite type if and only if E is tame and 8(E) = 6(A;(€)). As a

consequence of this result and Remark 4.3.6, we have the following:

Proposition 4.3.7 Let K be an element of the family K parameterized by a stable

sequence . Then, K is not tame.
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S. CONCLUSIONS

In this thesis we have investigated the structure of nuclear Fréchet spaces with the
properties DN and Q by studying the relations between their topological invariants.
Diametral dimension and/or approximate diametral dimension of a nuclear Fréchet
space E with the properties DN and Q is closely related to those of a designated power
series space. In this thesis, we focused our attention to nuclear Fréchet spaces E with
the properties DN and Q whose diametral and/or approximate diametral dimension

coincides with that of a designated power series space.

In the first chapter, we mention some significant studies in the theory of nuclear
Fréchet spaces and give the aim of this thesis. In the second chapter, we give

preliminary materials and essential theorems.

In the third chapter, we showed that Question 1.0.2 has an affirmative answer
when power series space is of infinite type. Then we searched an answer for the
Question 1.0.2 in the finite type case and, in this regard, we first prove that the
condition 6 (E) = 8 (A;(€)) always implies A(E) = A(A;(g)). For the other
direction, existence of a prominent bounded subset in the nuclear Fréchet space E
plays a decisive role for the answer of Question 1.0.2. Among other things, we
prove that 8 (E) = 6 (A (¢)) if and only if E has a prominent bounded set and
A(E) = A(A; (€)).

In the first section of the fourth chapter, we showed that a regular nuclear Kothe
space with the properties DN and Q is a power series space if its diametral dimension
coincides with that of a power series space of infinite type or its approximate diametral

dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family XK of nuclear
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Kothe spaces Ko with the properties DN and Q. First we showed that for an
element of the family of K which is parameterized by a stable sequence «, we have
A(K ) = A(A1(a)) and §(K o) = 8(A;(a)). Next, we proved that for an element
of the family of &K which is parameterized by an unstable sequence o, we have
A(K ) = A(A1(€)) and §(K ) # 8(A1(e)) for its associated exponent sequence €.
This showed that the second question has a negative answer for power series space
of finite type. Furthermore, we proved in Theorem 4.3.1 that the first question has
a negative answer, that is, Aj(€) is not isomorphic to any subspace of these Kothe
spaces K 4, let alone is isomorphic to a complemented subspace, though the condition
A(K ) = A(A1(€)) is satisfied. In the third section of fourth chapter, motivated by our
finding in the third section, we compiled some additional information. For instance,

for an element E of the family K parameterized by an unstable sequence:

» E does not have a prominent bounded set.

* A(E), with respect to the canonical topology, is not barrelled, hence, not

ultrabornological.

* Although the equality A(E) = Aj(€) is satisfied and the canonical imbedding from
A(E) into A (€) has a closed graph, the canonical imbedding from A(E) into A;(€)

1S not continuous.

In the future, we would like to search the conditions which will give us an imbedding
from a power series space of finite type to a nuclear Fréchet spaces with the properties
DN and Q. In this context we propose to give special emphasize to the elements of the

family K parameterized by a stable sequence.
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