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Istanbul Technical University

Co-advisor : Prof. Dr. Aydın AYTUNA ..............................
Middle East Technical University
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Prof. Dr. Fatma ÖZDEMİR ..............................
Istanbul Technical University
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POWER SERIES SUBSPACES OF NUCLEAR FRÉCHET SPACES
WITH THE PROPERTIES DN AND ΩΩΩ

SUMMARY

Power series spaces constitute an important and well-studied class in the theory of
Fréchet spaces. Linear topological invariants DN and Ω are enjoyed by many natural
Fréchet spaces appearing in analysis. In particular, spaces of analytic functions,
solutions of homogeneous elliptic linear partial differential operator with their natural
topologies have the properties DN and Ω.

It is a well-known fact that the diametral dimension ∆(E) and the approximate
diametral dimension δ (E) of a nuclear Fréchet space E with the properties DN and Ω

are between corresponding invariant of power series spaces Λ1(ε) and Λ∞(ε) for some
specific exponent sequence ε . This sequence is called associated exponent sequence
of E, see Definition 2.4.2.

Concidence of the diametral dimension and/or approximate diametral dimension
of E with that of a power series space yields some structural results. For example,
in [1], A. Aytuna, J. Krone and T. Terzioğlu proved that a nuclear Fréchet space E
with the properties DN and Ω contains a complemented copy of Λ∞(ε) provided
∆(E) = ∆(Λ∞(ε)) and ε is stable. On the other hand, A. Aytuna, [2], characterized
tame nuclear Fréchet spaces E with the properties DN and Ω and stable exponent
sequence ε , as those that satisfies δ (E) = δ (Λ1(ε)).
These results lead us to ask the following two questions: Let E be a nuclear Fréchet
space with the properties DN and Ω and ε be the associated exponent sequence of E.

1. Is there a complemented subspace of E which is isomorphic to Λ1(ε) if ∆(E) =
∆(Λ1 (ε))?

2. If the diametral dimension of E coincides with that of a power series space, then
does this imply that the approximate diametral dimension also do the same and vice
versa?

The basis of this thesis was motivated by these two questions.
The main purpose of this thesis is to determine the connections between the diametral
dimension and the approximate diametral dimension and to investigate power series
subspaces of the nuclear Fréchet spaces with the properties DN and Ω using these
invariants.

In the first chapter, some significant studies in the theory of nuclear Fréchet
spaces are mentioned and the aim of this thesis is given. In the second chapter, we
introduced preliminary materials and essential theorems.
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In the third chapter, we showed that the second question has an affirmative
answer when the power series space is of infinite type. Then we searched an answer
for the second question in the finite type case and, in this regard, we first proved
that the condition δ (E) = δ (Λ1 (ε)) always implies ∆(E) = ∆(Λ1 (ε)). For other
direction, the existence of a prominent bounded subset in the nuclear Fréchet space E
plays a decisive role. Among other things, we proved that δ (E) = δ (Λ1 (ε)) if and
only if E has a prominent bounded subset and ∆(E) = ∆(Λ1 (ε)).

In the first section of the fourth chapter, we showed that a regular nuclear Köthe
space with the properties DN and Ω is a power series space if its diametral dimension
coincides with that of a power series space of infinite type or its approximate diametral
dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family of
nuclear Köthe spaces K(ak,n) with the properties DN and Ω. First we showed that

for an element of the family of which is parameterized by a stable sequence α ,
∆(K(ak,n)) = ∆(Λ1(α)) and δ (K(ak,n)) = δ (Λ1(α)). Second, we proved that for

an element of the family of which is parameterized by an unstable sequence
α , ∆(K(ak,n)) = ∆(Λ1(ε)) and δ (K(ak,n)) 6= δ (Λ1(ε)) for its associated exponent
sequence ε . This showed that the second question has a negative answer for power
series space of finite type. Furthermore, we proved in Theorem 4.3.1 that the first
question has a negative answer, that is, Λ1(ε) is not isomorphic to any subspace of
these Köthe spaces K(ak,n), let alone is isomorphic to a complemented subspace,
though the condition ∆(K(ak,n)) = ∆(Λ1(ε)) is satisfied.

In the third section of fourth chapter, motivated by our finding in the third section, we

compiled some additional information, for instance, for an element E of the family
parameterized by an unstable sequence,

• E does not have a prominent bounded set.

• ∆(E), with respect to the canonical topology, is not barrelled, hence, not
ultrabornological.

• Although the equality ∆(E) = Λ1(ε) is satisfied and the canonical imbedding from
∆(E) into Λ1(ε) has a closed graph, the canonical imbedding from ∆(E) into Λ1(ε)
is not continuous.
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DN VE ΩΩΩ ÖZELLİĞİNE SAHİP NÜKLEER FRÉCHET UZAYLARININ
KUVVET SERİSİ ALT UZAYLARI

ÖZET

Fréchet uzayları yerel konveks uzayların, normlu uzay olmayan en önemli örneklerini
içeren bir sınıftır. 1950’li yıllarda A. Grothendieck tarafından nükleerlik tanımını
vermesi ile nükleer Fréchet uzayları bir çok çalışmanın ilham kaynağı olmuştur.

Nükleer Fréchet uzaylarının yapı teorisine yön veren iki önemli soru mevcuttur.
Bu sorulardan ilki A. Grothendieck tarafından ortaya atılmıştır ve A. Grothendieck
her nükleer Fréchet uzayının bazı olup olmadığını sormuştur. Bazı olmayan nükleer
uzayların olduğu B. S. Mitiagin ve N. Zobin tarafından ispat edilmiş, böylece A.
Grothendieck’in sorusu olumsuz bir şekilde cevaplamıştır.

1960’larda A. S. Dynin and B. S. Mitiagin, bazı olan her nükleer Frćechet uzaylarının
bir nükleer Köthe uzayına izomorf olduğunu gösterdiler. Bu yüzden nükleer Köthe
uzayları, nükleer Fréchet uzayların yapı teorisinde önemli bir yer kaplamaktadır.

Diğer soru ise A. Pelczynski tarafından sorulmuştur. A. Pelzcynski, nükleer
Köthe uzaylarının her tümler uzayının bazı olup olmadığını sordu. 1975’te B. S.
Mitiagin ve G. Henkin A. Pelczynski’nin sorusunun sonlu tip kuvvet serisi uzayları
için olumlu bir cevabı olduğunu gösterdiler.

Bu soruyu sonsuz tip kuvvet serisi için cevaplamak çok uzun zaman aldı. 1989’da E.
Dubinsky ve D. Vogt eğer sonsuz tip kuvvet serisi uysal ise bu sorunun olumlu bir
cevabının olduğunu gösterdiler. E. Dubinsky ve D. Vogt bir sonsuz tip kuvvet serisi
uzayının uysal olması için bu kuvvet serisini üreten eksponansiyel dizinin kararsız
olması gerektiğini gösterdiler. Öte yandan kararlı bir eksponansiyel dizi tarafından
üretilen sonsuz tip kuvvet serisi uzayı için cevap ise 1990 yılında A. Aytuna, J. Krone
ve T. Terzioğlu tarafından verildi. A. Aytuna, J. Krone ve T. Terzioğlu, kararlı bir
eksponansiyel dizi tarafından üretilen sonsuz tip kuvvet serisi uzayının tümler alt
uzaylarının yine sonsuz tip kuvvet serisi alt uzayı olduğunu gösterdiler. Bu sorunun
sonsuz tip kuvvet serileri için tam cevabı ise 2018 yılında A. K. Dronov ve V. M.
Kaplitzkii tarafından verildi. A. K. Dronov ve V. M. Kaplitzkii regüler bazı olan her
d1, nükleer Köthe uzayının her tümler alt uzayının bir bazı olduğunu gösterdiler.

Yukarıda belirttiğimiz gibi nükleer Fréchet uzaylarının yapı teorisi pek çok
matematikçi tarafından ele alınan önemli bir alanı oluşturmaktadır.

Biz bu tez çalışmasında DN ve Ω özelliklerine sahip nükleer Fréchet uzaylarının yapı
teorisi ile ilgilendik. Fréchet uzaylarının en doğal örnekleri ise DN ve Ω özelliklerine
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sahiptir. Özellikle, analitik fonksiyon uzayları ve homojen eliptik lineer kısmi
diferansiyel operatörlerin çözüm uzayları DN ve Ω özelliklerine sahiptir.

DN ve Ω özelliğine sahip bir E nükleer Fréchet uzayının çapsal boyutu ∆(E)
ve yaklaşık çapsal boyutu δ (E) özel bir ε ekponansiyel dizisi tarafından üretilen sonlu
tip kuvvet serisi uzayı Λ1(ε) ve sonsuz tip kuvvet serisi uzayı Λ∞(ε) ile ilişkilidir.
Bu eksponansiyel diziye nükleer Fréchet uzayının ilişkili eksponansiyel dizisi denir.
DN ve Ω özelliğine sahip bir E nükleer Fréchet uzayının çapsal boyutunun bu kuvvet
serisi uzaylarından birinin çapsal boyutuna eşit olması ise iki ekstrem durum oluşturur.

İlk olarak; DN ve Ω özelliğine sahip bir E nükleer Fréchet uzayının çapsal
boyutunun bir sonsuz tip kuvvet serisi uzayının çapsal boyutuna eşit olması durumunu
düşünürsek, bu durum E uzayının yapı teorisi hakkında önemli bilgiler verir. Örneğin,
A. Aytuna, J. Krone ve T. Terzioğlu, [1], DN ve Ω özelliğine sahip bir E nükleer
Fréchet uzayının ∆(E) = ∆(Λ∞(ε)) ve ε ekponansiyel dizisi kararlı koşulları altında,
Λ∞(ε) uzayına izomorf bir tümler alt uzayının var olduğunu gösterdiler. Aslında
buradaki çapsal boyut koşulu tümler bir altuzay oluşturmak üzere kullanılmıştır.
Yine, A. Aytuna, J. Krone ve T. Terzioğlu, [1], DN ve Ω özelliğine sahip bir E
nükleer Fréchet uzayının ilişkili eksponansiyel dizisi kararlı ise E uzayının daima
ilişkili eksponansiyel dizisi tarafından üretilen sonsuz tip kuvvet serisi uzayına
izomorf biraltuzayı olduğunu ispat ettiler. Ayrıca, A. Aytuna, J. Krone ve T.
Terzioğlu, [1], Kompleks düzlemde alınan herhangi bir bölge üzerinde tanımlanan
analitik fonksiyonlar uzayının çapsal boyut ile karakterize edilebildiğini gösterdiler:
D⊆C bir bölge ve D bölgesi üzerinde tanımlı analitik fonksiyonlar uzayı O(D) olmak
üzere O(D) uzayının çapsal boyutunun bir sonsuz tip kuvvet serisi uzayının çapsal
boyutuna eşit olması ile O(D) uzayının bu sonsuz tip kuvvet serisi uzayına izomorf
olmasının denk olduğunu gösterdiler.

İkinci ekstrem durum olarak tanımlayacağımız, DN ve Ω özelliğine sahip bir E
nükleer Fréchet uzayının çapsal boyutunun bir sonsuz tip kuvvet serisi uzayının çapsal
boyutuna eşit olması, durumunu için elde edilmiş bir sonuç mevcut değildir. Bu ise
bizi aşağıdaki soruyu sormaya yönledirdi: E uzayı DN ve Ω özelliğine sahip bir
nükleer Fréchet uzayı ve ε , E uzayının ilişkili ekponansiyel dizisi olsun.

1. E uzayı DN ve Ω özelliğine sahip bir nükleer Fréchet uzayı ve ε , E uzayının ilişkili
ekponansiyel dizisi olsun. Eğer ∆(E) = ∆(Λ1 (ε)) ise, E uzayının Λ1(ε) uzayına
izomorf bir tümler alt uzayı var mıdır?

Öte yandan, A. Aytuna, [2], her DN ve Ω özelliğine sahip uysal E nükleer Fréchet
uzayının, δ (E) = δ (Λ1(ε)) ve ε eksponansiyel dizisi kararlı olması durumunda Λ1(ε)
uzayına izomorf olduğunu gösterdi. Bu ise bizi aşağıdaki soruyu sormaya yönledirdi:

2. E uzayı DN ve Ω özelliğine sahip bir nükleer Fréchet uzayı ve ε , E uzayının
ilişkili ekponansiyel dizisi olsun. Eğer E uzayının çapsal boyutu bir kuvvet serisinin
çapsal boyutuna eşit ise E uzayının yaklaşık çapsal boyutu da aynı kuvvet serisinin
yaklaşık çapsal boyutuna eşit midir ve tersi de doğru mudur?

Bu tezin temeli bu iki soru üzerine kurulmuştur ve bu tezin amacı, DN ve Ω özelliğine
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sahip nükleer Fréchet uzaylarının topolojik değişmezleri arasındaki bağlantıları
araştırmak ve bu bağlantıları kullanarak, bazı çapsal koşullar altında, bu uzayların
kuvvet serisi alt uzaylarının var olup olmadığını araştırmaktır.

Birinci bölümde nükleer Fréchet uzaylarının bazı önemli sonuçlarına değinilmiş
ve bu tez çalışmasının motivasyonu verilmiştir. İkinci bölümde bazı giriş yapıları ve
önemli teoremler verilmiştir.

Üçüncü bölümde ikinci sorunun sonsuz tip kuvvet serisi uzayları için olumlu
bir cevabının olduğu gösterilmiştir. Sonlu tip kuvvet serileri için ise ilk olarak
δ (E) = δ (Λ1 (ε)) koşulu altında ∆(E) = ∆(Λ1 (ε)) sağlandığı ispat edildi. Diğer
yönün E uzayının çapsal boyutunun topolojisi ile bağlantılı olduğu gösterildi:
eğer ∆(E) uzayının kanonik topolojisinin varilleri dolu ise ∆(E) = ∆(Λ1 (ε)) iken
δ (E) = δ (Λ1 (ε)) olduğunu ispat ettik. Ayrıca E uzayının üstüne çeşitli çapsal
koşullar koyduğumuzda da bu sonucu elde edebileceğimizi gösterdik. Bu bölümde bu
soruyu tam bir şekilde karakterize eden sonuçta ise belirgin sınırlı kümelerin varlığının
önemli bir rolü vardır: İkinci soru için, δ (E) = δ (Λ1 (ε)) koşulunun sağlanması
için gerek ve yeter koşulun E uzayının belirgin sınırlı bir alt kümesinin olması ve
∆(E) = ∆(Λ1 (ε)) sağlanması olduğu gösterildi.

Dördüncü bölümün ilk kısımında K(ak,n), DN ve Ω özelliğine sahip regüler
nükleer bir Köthe uzayı olmak üzere ∆(K(ak,n)) = ∆(Λ∞(ε)) koşulunun sağlanması
için gerek ve yeter koşul K(ak,n) uzayının Λ∞(ε) uzayına izomorf olması ve benzer
şekilde δ (K(ak,n)) = δ (Λ1(ε)) koşulunun sağlanması için gerek ve yeter koşul K(ak,n)
uzayının Λ1(ε) uzayına izomorf olması ifadelerini ispat edildi. Dördüncü bölümün
ikinci kısımında DN ve Ω özelliğine sahip K(ak,n) nükleer Köthe uzayılarından
oluşan bir aile kuruldu. Bu aileden herhangi eleman için Kolmogorov çapları uzun bir
kombinatoriyel yol ile hesap edildi. Ardından, Kolmogorov çapları için hem alt hem
de üst bir kestirimin olduğu ispat edildi. Bu kestirim kullanılarak, bu ailenin kararlı ε

ilişkili eksponansiyel dizisi olan bir elemanı K(ak,n) için ∆(K(ak,n)) = ∆(Λ1(α)) ve
δ (K(ak,n)) = δ (Λ1(α)) olduğunu gösterdik. Dolayısıyla, bu ailenin kararlı ε ilişkili
eksponansiyel dizisi olan bir elemanı K(ak,n) için ikinci sorunun olumlu bir cevabı
vardır. Bu ailenin kararsız ε ilişkili eksponansiyel dizisi olan herhangi bir elemanı
K(ak,n) için ∆(K(ak,n)) = ∆(Λ1(ε)) iken δ (K(ak,n)) 6= δ (Λ1(ε)) olduğunu ispat ettik.
Bu ise ikinci sorunun sonlu tip kuvvet serileri için olumsuz bir cevabının olduğunu
gösterir. Bu bilgiyi kullanarak, Teorem 4.3.1’te bu Köthe uzaylarının Λ1(ε) uzayına
izomorf bir alt uzayı olmadığını ispat ettik. Dolayısıyla, ilk sorunun da olumsuz bir
cevabı vardır. Dördüncü bölümün üçüncü kısımında ikinci bölümde elde ettiğimiz
sonuçlardan hareketle bazı ek bilgiler verdik. Mesela bu ailenin kararsız ε ilişkili
eksponansiyel dizisi olan herhangi bir elemanı E için

• E uzayı herhangi bir belirgin sınırlı alt kümeye sahip değildir.

• E uzayının çapsal boyutu ∆(E) doğal topolojisine göre varilleri dolu değildir ve
ultrabornolojik değildir.

• ∆(E) = Λ1(ε) ve ∆(E) uzayından Λ1(ε) uzayına giden kapsama tasvirinin grafiği
kapalı olmasına rağmen, bu kapsama tasviri sürekli değildir.
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1. INTRODUCTION

Fréchet spaces are one of the leading class of locally convex spaces and include most

of the important examples of non-normable locally convex spaces. In the fifties, by

pioneering works of A. Grothendieck’s, nuclear Fréchet spaces are introduced and it

became one of the important sources of inspiration for research.

A. Grothendieck posed an important question about the existence of a basis in a

nuclear Fréchet space. This question answered negatively by B. S. Mitiagin and N.

M. Zobin, [3], that is, there exists a nuclear Fréchet space with no Schauder basis.

In the sixties, Dynin and Mitiagin gave a theorem which states that if a nuclear Fréchet

space has a Schauder basis, then it is canonically isomorphic to a nuclear Köthe space.

Then, it is crucial to investigate the structure of nuclear Fŕechet spaces in terms of

Köthe spaces and power series spaces which constitute an important and well-studied

class in the theory of Köthe spaces.

Another important problem is posed by A. Pelczynski [4]: Does every complemented

subspace of a nuclear Köthe space have a basis? In 1975, B. S. Mitiagin and G.

Henkin, [5], solved Pelczynski’s problem positively for power series spaces of finite

type. On the other hand, it took a long time to solve Pelczynski’s problem for power

series space of infinite type.

In 1989, E. Dubinsky and D. Vogt, [6], showed that if Λ∞ (α) is tame, then every

complemented subspace of Λ∞ (α) has a basis. Also they proved that Λ∞ (α) is tame

if α is unstable. In 1990, A. Aytuna, J. Krone, T. Terzioğlu , [1], showed that a

complemented subspace of an infinite type power series space Λ∞ (α) with stable α ,

is indeed an infinite type power series space, therefore it has a basis. Finally, in 2018,

A. K. Dronov and V. M. Kaplitzkii, [7] showed that every complemented subspace

of a nuclear Köthe space E with a regular basis of type (d1) has a basis so, every

complemented subspace of Λ∞ (α) has a basis.

As mentioned above, the study of whether the (complemented) subspaces of nuclear

Fréchet spaces have a basis has been handled by several mathematicians. Also, various

1



topological invariants were introduced to determine the structure of nuclear Fréchet

spaces. For instance, D. Vogt and his school defined DN and Ω-type invariants and

characterized entirely subspaces and quotient spaces of stable power series spaces in

terms of these invariants and diametral dimension.

In this thesis, we are mainly interested in the class of nuclear Fréchet spaces with

the properties DN and Ω which comprises many natural nuclear Fréchet spaces

such as spaces of analytic functions, solutions of homogeneous elliptic linear partial

differential operators.

A. Aytuna, J. Krone, T. Terzioğlu in [8] showed that if E is a nuclear Fréchet space

with the properties DN and Ω, then there exists a sequence (unique up to equivalence)

ε such that

∆(Λ1 (ε))⊆ ∆(E)⊆ ∆(Λ∞ (ε)) (1.1)

where ∆(E) denotes the diametral dimension of E. The sequence ε was called

associated exponent sequence of E.

Furthermore, A. Aytuna, J. Krone, T. Terzioğlu showed that if E is a nuclear Fréchet

space with the properties DN and Ω, possessing stable associated exponent sequence

ε and ∆(E) = ∆(Λ∞ (ε)), then E has a complemented subspace which is isomorphic

to infinite type power series space Λ∞ (ε).

In this thesis, we deal with the other extreme, namely, the main question of this thesis

is:

Question 1.0.1 Let E be a nuclear Fréchet space with the properties DN and Ω and

ε be the associated exponent sequence of E. Is there a (complemented) subspace of E

which is isomorphic to Λ1(ε) if ∆(E) = ∆(Λ1 (ε))?

This problem led us to examine the relationship between the diametral dimension and

the other invariants. The most appropriate topological invariants for comparison with

the diametral dimension is the approximate diametral dimension.

By using the same calculation as in [8], for a nuclear Fréchet space E with properties

DN and Ω, it is easy to show

δ (Λ∞ (ε))⊆ δ (E)⊆ δ (Λ1 (ε)) (1.2)

for approximate diametral dimension δ (E) of E. Then, we always have
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∆(Λ1 (ε))⊆ ∆(E) and δ (E)⊆ δ (Λ1 (ε)) for a nuclear Fréchet space E with properties

DN and Ω. If we assumed that Question 1.0.1 have an affirmative answer, that is, Λ1 (ε)

is isomorphic to a complemented subspace of E provided ∆(E) = ∆(Λ1 (ε)), then this

would give us δ (Λ1 (ε))⊆ δ (E) and we would find δ (E) = δ (Λ1 (ε)). Therefore, the

condition ∆(E) = ∆(Λ1 (ε)) would give us the equality δ (E) = δ (Λ1 (ε)). This leads

to ask the following question:

Question 1.0.2 Let E be a nuclear Fréchet space with the properties DN and Ω. If

diametral dimension of E coincides with that of a power series space, then does this

imply that the approximate diametral dimension also do the same and vice versa?

This thesis is mainly concerned with these questions.

In the first chapter, some significant studies in the theory of nuclear Fréchet

spaces are mentioned and the aim of this thesis is given. In the second chapter, we

give preliminary materials and essential theorems.

In the third chapter, we showed that Question 1.0.2 has an affirmative answer

when power series space is of infinite type. Then we searched an answer for the

Question 1.0.2 in the finite type case and, in this regard, we first prove that the

condition δ (E) = δ (Λ1 (ε)) always implies ∆(E) = ∆(Λ1 (ε)). For other direction,

the existence of a prominent bounded subset in the nuclear Fréchet space E plays a

decisive role for the answer of Question 1.0.2. Among other things, we prove that

δ (E)= δ (Λ1 (ε)) if and only if E has a prominent bounded set and ∆(E)=∆(Λ1 (ε)).

In the first section of the fourth chapter, we showed that a regular nuclear Köthe

space with the properties DN and Ω is a power series space if its diametral dimension

coincides with that of a power series space of infinite type or its approximate diametral

dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family of

nuclear Köthe spaces K(ak,n) with the properties DN and Ω. First we showed that

for an element of the family of which is parameterized by a stable sequence α ,
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∆(K(ak,n)) = ∆(Λ1(α)) and δ (K(ak,n)) = δ (Λ1(α)). Second, we proved that for

an element of the family of which is parameterized by an unstable sequence

α , ∆(K(ak,n)) = ∆(Λ1(ε)) and δ (K(ak,n)) 6= δ (Λ1(ε)) for its associated exponent

sequence ε . This showed that the second question has a negative answer for power

series space of finite type. Furthermore, we proved in Theorem 4.3.1 that the first

question has a negative answer, that is, Λ1(ε) is not isomorphic to any subspace of

these Köthe spaces K(ak,n), let alone is isomorphic to a complemented subspace,

though the condition ∆(K(ak,n)) = ∆(Λ1(ε)) is satisfied. In the third section of fourth

chapter, motivated by our finding in the third section, we compiled some additional

information, for instance, for an element E of the family parameterized by an

unstable sequence,

• E does not have a prominent bounded set.

• ∆(E), with respect to the canonical topology, is neither barrelled nor

ultrabornological.

• Although the equality ∆(E) = Λ1(ε) is satisfied and the canonical imbedding from

∆(E) into Λ1(ε) has a closed graph, the canonical imbedding from ∆(E) into Λ1(ε)

is not continuous.
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2. PRELIMINARIES

In this section, after establishing terminology and notation, we collect some basic

facts and definitions that are needed them in the sequel.

We will use the standard terminology and notation of [9] and [10]. A complete

Hausdorff locally convex space E whose topology defined by countable fundamental

system of seminorms (‖.‖k)k∈N is called a Fréchet space. Without loss of

generality, we will assume the sequence (‖.‖k)k∈N is increasing. For each k ∈ N,

Ek := (E/ker‖.‖k ,‖.‖k)
∧

is called the local Banach space with respect to the seminorm

‖.‖k and we denote the closed unit ball of Ek by Uk. Since ker‖.‖k+1 ⊆ ker‖.‖k for all

k ∈ N, there exists a natural continuous map i k
k+1 : Ek+1→ Ek which is referred to as

linking map. Then, a Fréchet space E can be considered as a projective limit of the

projective system
(

Ek, i k
k+1

)
k∈N

.

Nuclear locally convex spaces were defined by A. Grothendieck in [11]. It is generally

accepted by many mathematicians that his definition is not practical to check whether

a given locally convex space is nuclear or not. In consequence, several mathematicians

reformulated the definition of nuclearity in terms of nuclear maps, Hilbert-Schmidt

maps, diametral dimension, etc. In this thesis, we call a nuclear Fréchet space E as

a Fréchet space that admits a representation as the projective limit of a sequence of

separable Hilbert spaces Ek with Hilbert-Schmidt linking maps i k
k+1.

2.1 Diametral Dimension and Approximate Diametral Dimension

For a Fréchet space E, we will denote the class of all neighborhoods of zero in E and

the class of all bounded sets in E by U (E) and B (E), respectively. If U and V are

absolutely convex sets of E and U absorbs V , that is, V ⊆CU for some C > 0, and L

is a subspace of E, then we set;

δ (V,U,L) = inf{t > 0 : V ⊆ tU +L} . (2.1)
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The nth Kolmogorov diameter of V with respect to U is defined as;

dn (V,U) = inf{δ (V,U,L) : dimL≤ n} n = 0,1,2, ... (2.2)

Here is a list of some useful properties of Kolmogorov diameters: for details see [12,

Pg. 208, Proposition 1 and Pg. 209, Corollary 5]

Proposition 2.1.1 Let E be a Fréchet space and U and V be two absolutely convex

sets such that U absorbs V . Then, for every n = 0,1,2, ...

• dn+1(V,U)≤ dn(V,U).

• If V1 ⊆V and U ⊂U1, then dn(V1,U1)≤ dn(V,U).

• dn(λV,βU) =
λ

β
dn(V,U) for all λ ,β > 0.

• V is precompact with respect to U if and only if lim
n→∞

dn(V,U) = 0.

Definition 2.1.2 The diametral dimension of E is defined as

∆(E) =
{
(tn)n∈N : ∀ U ∈U (E) ∃ V ∈U (E) lim

n→∞
tndn (V,U) = 0

}
=

⋂
U∈U (E)

⋃
V∈U (E)

∆(V,U)
(2.3)

where ∆(V,U) =
{
(tn)n∈N : lim

n→∞
tndn (V,U) = 0

}
.

Let U1 ⊃U2 ⊃ ·· · ⊃Up ⊃ ·· · be a base of neighborhoods of zero of Fréchet space E.

The diametral dimension of E can be represented as

∆(E) =
{
(tn)n∈N : ∀p ∈ N ∃ q > p lim

n→∞
tndn

(
Uq,Up

)
= 0
}
. (2.4)

Demeulenaere et al. [13] showed that the diametral dimension of a nuclear Fréchet

space can also be represented as

∆(E) =
{
(tn)n∈N : ∀ p ∈ N ∃ q > p sup

n∈N
|tn|dn

(
Uq,Up

)
<+∞

}
. (2.5)
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Definition 2.1.3 The approximate diametral dimension of a Fréchet space E is defined

as

δ (E) =
{
(tn)n∈N : ∃ U ∈U (E) ∃ B ∈B (E) lim

n→∞

tn
dn (B,U)

= 0
}

=
⋃

U∈U (E)

⋃
B∈B(E)

δ (B,U)
(2.6)

where δ (B,U) =

{
(tn)n∈N : lim

n→∞

tn
dn (B,U)

= 0
}

.

It follows from Proposition 6.6.5 of [14] that for a Fréchet space E with the base of

neighborhoods U1 ⊃U2 ⊃ ·· · ⊃Up ⊃ ·· · , the approximate diametral dimension can be

represented as;

δ (E) =

{
(tn)n∈N : ∃p ∈ N ∀ q > p lim

n→∞

tn
dn
(
Uq,Up

) = 0

}
. (2.7)

Let E and G be two Fréchet spaces and U and V be absolutely convex subsets of E

such that V ⊆ rU for some r > 0. If there is a linear map T : E→G, then for all n ∈N

dn (T (V ) ,T (U))≤ dn (V,U) (2.8)

holds and so we have the following proposition:

Proposition 2.1.4 Let E be a Fréchet space and F be a subspace or a qoutient of E.

Then,

• ∆(E)⊆ ∆(F).

• δ (F)⊆ δ (E).

Hence the diametral dimension and the approximate diametral dimension are linear

topological invariants.

Proof. [14, Proposition 6.6.7 and Proposition 6.6.25] �

The concept of the approximative dimension of a linear metric space which is based on

ε-capacity of compact sets in the space was introduced by Kolmogorov and Pelcyznski,

see also [15], [16] and [14]. The relation between invariants introduced above and

7



ε-capacity of compact sets in the space was discovered by Mityagin, see [17] and [18].

Among other things, Mityagin conducted a detailed study of these invariants and

used them characterize nuclear locally convex space. The concept of approximate

diametral dimension as stated above was given and studied by Bessaga, Pelczynski

and Rolewicz, [19].

For the proof of these and for additional properties of the diametral

dimension/approximate diametral dimension, we refer the reader to [18], [19], [20,

Chapter 9], [14, Chapter 6.6], and [21] .

The properties of the canonical topology on diametral dimension of a nuclear

Fréchet space:

Let E be a nuclear Fréchet space with the increasing systems of seminorms (‖.‖k)k∈N .

Then the diametral dimension

∆(E) =
{
(tn)n∈N : ∀ p ∈ N ∃q > p lim

n→∞
tndn

(
Uq,Up

)
= 0
}

=
⋂
p∈N

⋃
q>p

∆
(
Uq,Up

) (2.9)

is the projective limit of inductive limits of Banach spaces ∆
(
Uq,Up

)
with the norm

‖(tn)n‖= sup
n∈N
|tn|dn(Uq,Up). Hence ∆(E) is a topological vector space with respect to

that topology which will be called the canonical topology.

In the fourth chapter, we will give some results provided that the canonical

topology of ∆(E) is barrelled. So, we take a closer look the canonical topology

of ∆(E) and Theorem 2.1.5 gives a condition to the barrelledness of the canonical

topology of ∆(E). Before, we give some definitions that are needed in the sequel.

Let X be a locally compact σ -compact topological space. The space of continuous

functions on X will be denoted by C(X). Recall that a function h : X → R is said

to vanish at infinity on X if for every ε > 0 there is a compact set K in X such that

|h(x)|< ε for every x ∈ X−K. For a strictly positive function f , we define

C( f ,0)(X) = {g ∈C(X) : f |g| vanishes at infinity on X} . (2.10)
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Let A = ( fm,n)m,n∈N be a double indexed sequnce of strictly increasing positive

functions of C(X) satisyfing

fm,n+1 ≤ fm,n ≤ fm+1,n (2.11)

for every m,n ∈N. This gives continuous inclusions C( fm,n,0) ⊆C( fm,n+1,0) for each

n ∈ N and C( fm+1,n,0) ⊆C( fm,n+1,0) for each n ∈ N.

Hence, we can define the following weighted inductive limits

(Am)0(X) := indn∈NC( fm,n,0)(X) (2.12)

for each m ∈ N. Since the inclusion (Am+1)0(X)⊆ (Am)0(X) is continuous for every

m ∈ N, we can define the projective spectra of (LB)-spaces (Am)(X)0 with inclusions

as linking maps

(A C )0(X) := projm∈N (Am)0(X). (2.13)

The space (A C )0(X) is called a weighted (PLB)-space of continuous functions.

Now we show that ∆(E) is a weighted PLB-space of continuous functions. Indeed,

for fixed p,q ∈ N,
{

dn
(
Uq,Up

)}
n∈N can be identified with the continuous function

fp,q : N → R defined by fp,q (n) = dn
(
Uq,Up

)
where N is equipped with discrete

topology which is locally compact and σ -compact topological space. Then, for each

p,q,

∆
(
Uq,Up

)
=
{
(tn) : lim

n→∞
tndn

(
Uq,Up

)
= 0
}

=
{
(tn) ∈C (N) : tn fp,q (n) vanishes at infinity on N

}
=C( fp,q,0) (N) .

(2.14)

Since dn
(
Uq+1,Up

)
≤ dn

(
Uq,Up

)
≤ dn

(
Uq,Up+1

)
for all n ∈ N, the matrix(

fp,q
)

p,q∈N =
(
d(·)
(
Uq,Up

))
p,q∈N of a double sequence of weights increases with

respect to the first indices and decreases with respect to the second indices.

Therefore, ∆(E) is of the form weighted PLB-space of continuous functions

projpindq>p C( fp,q,0) (N), as desired.

The topological properties of weighted PLB-spaces of continuous functions were

studied in [22]. In particular, the following theorem gives an information about the

canonical topology of diametral dimension ∆(E) which is a direct consequence of [22,

Theorem 3.7].
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Theorem 2.1.5 Let E be a Fréchet space. The following conditions are equivalent:

1. ∆(E) is ultrabornological with respect to the canonical topology.

2. ∆(E) is barrelled with respect to the canonical topology.

3. ∆(E) satisfies (wQ)-condition

(wQ): ∀N ∃ M,n ∀K,m, ∃ k,S > 0 :

min(di (Un,UN) ,di (Uk,UK))≤ S di (Um,UM) ∀i ∈ N. (2.15)

2.2 Köthe Spaces and Power Series Spaces

A matrix
(
ak,n
)

k,n∈N of non-negative numbers is called a Köthe matrix if it is satisfies

that for each k ∈N there exists an n∈N with ak,n > 0 and ak,n ≤ ak,n+1 for all k,n∈N.

For a Köthe matrix
(
ak,n
)

k,n∈N,

K
(
ak,n
)
=

{
x = (xn) : ‖x‖k :=

∞

∑
n=1
|xn|ak,n <+∞ for all k ∈ N

}
(2.16)

is called a Köthe space. Every Köthe space is a Fréchet space given by the semi-norms

in its definition.

Dynin-Mitiagin Theorem [9, Theorem 28.12] states that if a nuclear Fréchet

space E with the sequence of seminorms (‖.‖k)k∈N has a Schauder basis (en)n∈N,

then it is canonically isomorphic to a nuclear Köthe space defined by the matrix

(‖en‖k)k,n∈N. Therefore, it is important to understand the structure of nuclear Köthe

spaces in the theory of nuclear Fréchet spaces.

Nuclearity of a Köthe space was characterized as follows:

Theorem 2.2.1 (Grothendieck-Pietsch Criterion) K (akn) is nuclear Köthe space if

and only if for every k ∈ N, there exists a l > k so that
∞

∑
n=1

ak,n

al,n
< ∞.

Proof. [9, Theorem 28.15]. �

T. Terzioğlu gave an estimation for nth-Kolmogorov diameters of a Köthe space K(ak,n)

by using the matrix (ak,n)k,n∈N.
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Proposition 2.2.2 Let K(ak,n) be a Köthe space and fixed n ∈ N. Assume J ⊂ N with

|J|= n+1 and I ⊂ N with |I| ≤ n. Then for every p and q > p,

inf
{

ap,i

aq,i
: i ∈ J

}
≤ dn(Uq,Up)≤ sup

{
ap,i

aq,i
: i /∈ I

}
. (2.17)

Proof. [23, Proposition 1]. �

Definition 2.2.3 A Köthe space K(ak,n) is called regular if the sequence
(

ap,n

aq,n

)
n∈N

is non-increasing for every p and q > p.

Remark 2.2.4 In the light of the above proposition, we conclude that for any regular

Köthe space K (ap,n), the nth-Kolmogorov diameter is dn
(
Uq,Up

)
=

ap,n+1

aq,n+1
. If, on

the other hand, K (ap,n) is not regular, then, one can find Kolmogorov diameters

by rewriting the sequence
(

ap,n

aq,n

)
n∈N

with terms in a descending order so that

the nth-Kolmogorov diameter of K (ap,n) is nothing but the n + 1− th term of this

descending sequence.

Power series spaces form an important family of Fréchet spaces and they play a

significant role in this thesis, for a comprehensive survey see [24]. Let α = (αn)n∈N be

a non-negative increasing sequence with lim
n→∞

αn =+∞. A power series space of finite

type is defined by

Λ1 (α) :=

{
x = (xn)n∈N : ‖x‖k :=

∞

∑
n=1
|xn|e−

1
k αn <+∞ for all k ∈ N

}
(2.18)

and a power series space of infinite type is defined by

Λ∞ (α) :=

{
x = (xn)n∈N : ‖x‖k :=

∞

∑
n=1
|xn|e kαn <+∞ for all k ∈ N

}
. (2.19)

Power series spaces are actually Fréchet spaces equipped with the seminorms in its

definitions. The nuclearity of a power series space of finite type Λ1 (α) and of infinite

type Λ∞ (α) are equivalent to the conditions lim
n→∞

ln(n)
αn

= 0 and sup
n∈N

ln(n)
αn

< +∞,

respectively.

Definition 2.2.5 An exponent sequence α is called finitely nuclear if Λ1(α) is nuclear.
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Diametral dimension and approximate diametral dimension of power series spaces are

∆(Λ1 (α)) = Λ1 (α) , ∆(Λ∞ (α)) = Λ∞ (α)′ (2.20)

and

δ (Λ1 (α)) = Λ1 (α)′ , δ (Λ∞ (α)) = Λ∞ (α) , (2.21)

for details see [19] and [18].

Definition 2.2.6 An exponent sequence α is called

stable if sup
n∈N

α2n

αn
<+∞,

weakly-stable if sup
n∈N

αn+1

αn
<+∞,

unstable if lim
n→∞

αn+1

αn
=+∞.

It follows that α is stable, respectively weakly-stable, if and only if E ∼= E × E,

respectively, E ∼= E×K where E = Λr(α) for r = 1 or r = ∞, for proofs see [25].

2.3 Dragilev’s Invariants, Bessaga’s Invariants and Vogt’s DN and Ω-Type

Invariants

The following topological invariants were defined by M. M. Dragilev, [26] and E.

Dubinsky, [27] to be used in the structure theory of Köthe spaces.

A Köthe space K(ak,n) is called of type di,

(d0): ∀ k,n
ak+1,n

ak,n
≤

ak+1,n+1

ak,n+1

(d1): ∃ k ∀ j ∃ l sup
n∈N

a2
j,n

ak,n al,n
<+∞

(d2): ∀ k ∃ j ∀ l sup
n∈N

ak,n al,n

a2
j,n

<+∞

(d3): ∀ k,n
ak+1,n

ak,n
≤

ak+2,n

ak+1,n
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(d4): ∀ k,n
ak+1,n

ak,n
≥

ak+2,n

ak+1,n

(d5): ∃ M ≥ 1 ∀ k,n
ak+1,n

ak,n
≤
(

ak+2,n

ak+1,n

)M

if the corresponding conditions holds. One can easily observe that d0 is equivalent to

regularity, see Definition 2.2.3.

Motivated by M. M. Dragilev’s work, C. Bessaga, [28], introduced the following

conditions (D1) and (D2) by using Kolmogorov diameters:

(D1): ∃U ∀ W ∃ V lim
n→+∞

dn(V,W )

dn(W,U)
= 0

(D2): ∀U ∃ W ∀ V lim
n→+∞

dn(W,U)

dn(V,W )
= 0

Note that if E is a regular nuclear Köthe space, then the conditions (D1) and (D2)

are equivalent the condition (d1) and (d2), respectively, since dn(Uq,Up) =
ap,n+1

aq,n+1
for

every p, q > p and n ∈ N.

Another basis-free formulations of properties (di), i = 0, ...,5 were given by D. Vogt

and his school in [29] and [30], as follows: A Fréchet space (E,‖.‖k)k∈N is said to

have the property:

(DN) ∃ k ∀ j ∃ l, C > 0 ‖x‖2
j ≤C ‖x‖k ‖x‖l ∀ x ∈ E

(DN) ∃ k ∀ j ∃ l, C > 0, 0 < λ < 1 ‖x‖ j ≤C ‖x‖λ

k ‖x‖
1−λ

l ∀ x ∈ E

(ΩΩΩ) ∀ p ∃ q ∀ k ∃ C > 0, 0 < τ < 1 ‖y‖∗q ≤C‖y‖∗p
1−θ‖y‖∗k

θ ∀ y ∈ E
′

(ΩΩΩ) ∀ p ∃ q ∀ k ∃ C > 0 ‖y‖∗q
2 ≤C‖y‖∗p ‖y‖

∗
k ∀ y ∈ E

′

where ‖y‖∗k := sup{|y(x)| : ‖x‖k ≤ 1} ∈ R ∪ {+∞} is the gauge functional of

the polar U◦k for Uk = {x ∈ E : ‖x‖k ≤ 1}.

These are independent of the choice of the seminorm-system, they are topological

invariants of the Fréchet space E.
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The DN-types invariants are inherited by subspaces and the Ω-type invariants are

inherited by quotient spaces, see [9, Chapter 29].

If E is a Köthe space K(ak,n), then d1 and d3 implies (DN), d2 implies Ω, d4 implies

Ω and d5 implies (DN). Moreover, the reverse of these implications hold true for

either the matrix (ak,n)k,n∈N or some matrix (bk,n)k,n∈N that is equivalent to (ak,n)k,n∈N,

see [31]. Further, in [31], D. Vogt characterized Ω for Köthe spaces in terms of Köthe

matrix as follows:

Proposition 2.3.1 A Köthe space K
(
ak,n
)

has the property Ω if and only if the

condition

∀ p ∃ q ∀ k ∃ j > 0, C > 0 (ap,n)
j ak,n ≤C

(
aq,n
) j+1 ∀n ∈ N (2.22)

is satisfied.

Proof. [31, Proposition 5.3]. �

By using the technique in [31, 5. 1 Proposition], one can easily obtain the following:

Proposition 2.3.2 A Köthe space K
(
ak,n
)

has the property DN if and only if the

condition

∃ p0 ∀ p ∃ q ∃ 0 < λ < 1, C > 0 ap,n ≤C (ap0,n)
λ
(
aq,n
)1−λ ∀n∈N (2.23)

is satisfied.

A power series space of finite type Λ1(α) has the properties DN and Ω, a power series

space of infinite type Λ∞(α) has the properties DN and Ω, see [9, Ch. 29].

Most of the spaces appearing in the theory of nuclear Fréchet spaces have the

properties DN and Ω. For example, the space O(M) of analytic functions on a Stein

manifold M with the topology of uniform convergence on compact subsets of M has

the properties DN and Ω, see [1], [32] and references therein.

DN−ΩΩΩ Compatible Semi-norm System

Let E be a nuclear Fréchet space with the properties DN and Ω. We can assume the
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topology of E defined by an increasing sequence (‖.‖k)k∈N of Hilbertian semi-norms

satisfying

DN : ∀ k ∃ C > 0, 0 < λ < 1 ‖x‖k+1 ≤C ‖x‖λ

k ‖x‖
1−λ

k+2 ∀ x ∈ E

and

Ω : ∀ k ∃ C > 0, 0 < τ < 1 ‖y‖∗k+1 ≤C(‖y‖∗k)
1−θ

(‖y‖∗k+2)
θ ∀ y∈ E

′
.

The nuclear Fréchet space with the increasing sequence (‖.‖k)k∈N of Hilbertian

semi-norms satisfying the conditions DN and Ω as indicated above is called DN−Ω

Compatible Semi-norm System.

In [33], T. Terzioğlu showed that DN- and Ω-type invariants are related to some

conditions on Kolmogorov diameters.

Proposition 2.3.3 Let E be a nuclear Fréchet space. If E has DN-property, then the

condition

∃ k ∀ j ∃ l, C > 0, 0< λ < 1 dn(Ul,Uk)≤C dn(U j,Uk)
1

1−λ ∀n∈N (2.24)

is satisfied. If E has Ω-property, then the condition

∀ p ∃q ∀ k ∃C > 0, 0 < j < 1 dn(Uq,Up)≤C dn(Uk,Up)
j ∀n ∈ N (2.25)

is satisfied.

Proof. [33, Page 4 and 7]. �

As a direct consequence of the above proposition, one can obtain the following:

Corollary 2.3.4 Let E be a nuclear Fréchet space with DN−Ω compatible semi-norm

system (‖.‖k)k∈N. The following conditions

∀ k ∃C > 0, 0 < λ < 1 dn(Uk+2,Uk)≤C dn(Uk+1,Uk)
1

1−λ ∀n ∈ N (2.26)

and

∀ p, k ∃C > 0, 0 < j < 1 dn(Up+1,Up)≤C dn(Uk,Up)
j ∀n ∈ N (2.27)

are satisfied.
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2.4 Associated Exponent Sequence and Power Series Subspaces

We end this section by recalling the following results which gives a relation between

th diametral dimension/approximate diametral dimension of a nuclear Fréchet spaces

with the properties DN, Ω and that of a power series spaces Λ1 (ε) and Λ∞ (ε) for some

special exponent sequence ε .

Proposition 2.4.1 Let E be a nuclear Fréchet space with the properties DN and Ω.

There exists an exponent sequence (unique up to equivalence) ε = (εn) satisfying:

∆(Λ1 (ε))⊆ ∆(E)⊆ ∆(Λ∞ (ε)) . (2.28)

Furthermore, Λ1 (α) ⊆ ∆(E) implies Λ1 (α) ⊆ Λ1 (ε) and ∆(E) ⊆ Λ′∞ (α) implies

Λ′∞ (ε)⊆ Λ
′
∞ (α).

Proof. [8, Proposition 1.1]. �

Definition 2.4.2 Let E be a nuclear Fréchet space with the properties DN and Ω. The

sequence ε (unique up to equivalence) in the above proposition is called the associated

exponent sequence of E in [8].

We note that Λ∞(ε) is always nuclear provided E is nuclear, but it may happen that

Λ1(ε) is not nuclear. For example, if we take the space of rapidly decreasing sequence

s = Λ∞(ln(n)), the associated exponent sequence of s is (ln(n))n∈N and Λ1(ln(n)) is

not nuclear.

In the proof of the above proposition, A. Aytuna, J. Krone and T. Terzioğlu showed

that there exists an exponent sequence (unique up to equivalence) (εn) such that for

each p ∈ N and q > p, there exist C1,C2 > 0 and a1,a2 > 0 satisfying

C1 e−a1 εn ≤ dn
(
Uq,Up

)
≤C2 e−a2 εn (2.29)

for all n ∈ N. From this inequality, one can easily obtain

δ (Λ∞ (ε))⊆ δ (E)⊆ δ (Λ1 (ε)) . (2.30)
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In [8], A. Aytuna, J. Krone and T. Terzioğlu showed that for a d-dimensional Stein

manifold M, the exponent sequence associated to the space O(M) of analytic functions

on M is the sequence (n
1
d )n∈N. We note that the sequence (n

1
d )n∈N is stable and

Λ1(n
1
d ) is nuclear. We also note that Λ∞(n

1
d ) is isomorphic to the space O(Cd) and

Λ1(n
1
d ) is isomorphic to the space O(∆d) where ∆d denotes the unit polycylinder in

Cd , see [34] and references therein.

When it is necessary to explicitly state the associated exponent sequence ε of a

nuclear Fréchet space E, we always work with DN-Ω compatible semi-norm system

on E and then, the associated exponent sequence ε of a nuclear Fréchet space E

with DN-Ω compatible semi-norm system will be taken as ε = (− logdn(U2,U1))n∈N

where Ui denotes the closed unit ball of the local Banach space Ei, i = 1,2, see [8, Pg.

128] .

For a nuclear Fréchet space E with the properties DN and Ω and the associated

exponent sequence ε , concidence of the diametral dimension of E with that of

power series spaces defined by ε form two extreme cases. In [2, Theorem 3.4],

A. Aytuna showed that only extreme cases hold for the space O(M) of analytic

functions on M with dimension d by proving that either ∆(O(M)) = ∆(Λ∞(n
1
d )) or

∆(O(M)) = ∆(Λ1(n
1
d )).

The extreme case ∆(E) = ∆(Λ∞(ε)) gives an information about a (complemented)

subspace of a nuclear Fréchet space E with the properties DN and Ω and stable

associated exponent sequence ε . In [8], A. Aytuna, J. Krone and T. Terzioğlu proved

that a nuclear Fréchet space E with the properties DN and Ω contains a complemented

copy of Λ∞(ε) provided that ∆(E) = ∆(Λ∞(ε)) and ε is stable.

Theorem 2.4.3 Let E be a nuclear Fréchet space with the properties DN and Ω

and stable associated exponent sequence ε . If ∆(E) = ∆(Λ∞ (ε)), then E has

complemented subspace which is isomorphic to Λ∞ (ε).

Proof. [8, Theorem 1.2]. �

17



There is another observation which contains some information about some subspaces

of E without assuming the extreme ∆(E) = ∆(Λ∞(ε)). A. Aytuna, J. Krone and T.

Terzioğlu, [8], proved that there is an imbedding from subspaces of Λ1(ε) with the

property DN into E:

Theorem 2.4.4 Let E be a nuclear Fréchet space with the properties DN and Ω and

ε the stable associated exponent sequence with Λ1(ε) nuclear. If Y has property DN

and is isomorphic to a subspace Λ1(ε), then Y is also isomorphic to a subspace of E.

Proof. [8, Theorem 2.2]. �

As a consequence of the above theorem, we conclude that Λ∞(ε) is isomorphic to a

subspace of E if Λ∞(ε) is isomorphic to a subspace Λ1(ε). It is well-known that Λ∞(ε)

is isomorphic to a subspace Λ1(ε) for stable ε , [35, 4.2 Theorem]. On the other hand,

Λ∞(α) is not isomorphic to a subspace Λ1(α) for an unstable α , [25, 3.3 Corollary].

Although there is no complete characterization of when Λ∞(α) is isomorphic to a

subspace Λ1(α), Z. Nurlu proved that if Λ∞(α) is isomorphic to a subspace Λ1(α),

then α is weakly stable, [36, Proposition 2.6]. But the reverse implication is not

true since Z. Nurlu construct a weakly stable α so that Λ∞(α) is not isomorphic to a

subspace Λ1(α) see [36, Example 2.10].

On the other hand, there is no information for the other extreme ∆(E) = ∆(Λ1(ε)).

This leads us to ask the Question 1.0.1 in Introduction.
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3. THE PROPERTIES OF NUCLEAR FRÉCHET SPACES WHOSE
DIAMETRAL AND/OR APPROXIMATE DIAMETRAL DIMENSION
COINCIDES WITH THAT OF A POWER SERIES SPACE

The main purpose of this chapter is to give an answer to Question 1.0.2 in stated

Introduction:

Question 1.0.2 Let E be a nuclear Fréchet space with the properties DN and

Ω. If diametral dimension of E coincides with that of a power series space, then does

this imply that the approximate diametral dimension also do the same and vice versa?

We first relate the Question 1.0.2 to Bessaga’s D1 and D2-conditions. Then, we

give a necessary and sufficient condition confirming Question 1.0.2. However, the

answer of Question 1.0.2 in finite type case is negative as seen in the fourth chapter.

Throughout this chapter, we will assume that the sequence (‖.‖k)k∈N of semi-norms

on a nuclear Fréchet spaces with the properties DN and Ω is DN −Ω compatible

system.

3.1 Results for the Case of Power Series Space of Infinite Type

The main result in this section is the following theorem which shows that Question

1.0.2 has an affirmative answer when the power series space is of infinite type.

Theorem 3.1.1 Let E be a nuclear Fréchet space with properties DN and Ω and ε

be the associated exponent sequence of E. Then ∆(E) = ∆(Λ∞ (ε)) if and only if

δ (E) = δ (Λ∞ (ε)) .
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For the proof of Theorem 3.1.1 we need the following Lemma characterizing

coincidence of δ (E) with δ (Λ∞(ε)), motivated by the following formula given by

A. Aytuna in [2]:

Proposition 3.1.2 Let E be a nuclear Fréchet space E with the properties DN, Ω and

associated exponent sequence ε . Then

δ (E) = δ (Λ1 (ε)) ⇔ inf
p

sup
q≥p

limsup
n∈N

εn (p,q)
εn

= 0 (3.1)

where εn (p,q) =− logdn
(
Uq,Up

)
.

Proof. [2, Corollary 1.10] �

The same characterization can be given for power series spaces of infinite type as

follows:

Lemma 3.1.3 Let E be a nuclear Fréchet space with properties DN and Ω and ε =

(εn)n∈N be the associated exponent sequence of E. Then

δ (E) = δ (Λ∞ (ε)) ⇔ inf
p∈N

sup
q>p

liminf
n∈N

εn (p,q)
εn

=+∞ (3.2)

where εn (p,q) =− logdn
(
Uq,Up

)
.

Proof. The approximate diametral dimension δ (E) can be written as

δ (E) =
⋃
p

⋂
q≥p

δpq (3.3)

where δpq =

{
(tn)n∈N : sup

n∈N

|tn|
dn
(
Uq,Up

) <+∞

}
is a Banach space with norms

|tn|pq = sup
n∈N

|tn|
dn
(
Uq,Up

) . Hence, the approximate diametral dimension can be

equipped with the topological inductive limit of Fréchet spaces. Then, the approximate

diametral dimension with this topology is barrelled. On the other hand, the inclusion

δ (E)⊆ δ (Λ∞ (ε)) = Λ∞ (ε) gives us that the identity mapping i : δ (E)→ Λ∞ (ε) has

a closed graph. Since δ (E) is barrelled, by using Theorem 5 of [37], we conclude that

the identity mapping is continuous. Therefore,
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δ (E) =
⋃
p

⋂
q≥p

δpq ↪→ Λ∞ (ε) is continuous ⇔ ∀p
⋂

q≥p
δpq ↪→ Λ∞ (ε) is continuous

⇔ ∀p ∀R > 1 ∃q≥ p, C > 0 sup
n∈N
|tn|Rεn ≤C sup

n∈N

|tn|
dn
(
Uq,Up

) ∀(tn) ∈ δ (E)

⇔ ∀p ∀R > 1 ∃q≥ p,C > 0 Rεn ≤ C
dn
(
Uq,Up

) ∀n ∈ N

⇔ ∀p ∀R > 1 lnR≤ sup
q≥p

liminf
n∈N

εn (p,q)
εn

⇔ ∀p sup
q≥p

liminf
n∈N

εn (p,q)
εn

=+∞ ⇔ inf
p∈N

sup
q≥p

liminf
n∈N

εn (p,q)
εn

=+∞.

(3.4)

Now since δ (E)⊇ δ (Λ∞ (ε)) always holds for the associated exponent sequence ε of

E, we have

δ (E) = δ (Λ∞ (ε)) ⇔ inf
p∈N

sup
q≥p

liminf
n∈N

εn (p,q)
εn

=+∞, (3.5)

as desired. �

Proof of Theorem 3.1.1 For the proof of necessity part, we assume that δ (E) =

δ (Λ∞ (ε)). By Lemma 3.1.3, inf
p∈N

sup
q>p

liminf
n∈N

εn (p,q)
εn

=+∞. Then we have

∀ p ∀M > 0 ∃q≥ p liminf
n∈N

εn (p,q)
εn

≥M (3.6)

and

∀ p ∀M > 0 ∃q≥ p dn
(
Uq,Up

)
≤ e−Mεn ∀n ∈ N (3.7)

Let take a (xn)n∈N ∈ ∆(Λ∞ (ε)), then there exists a S > 0 such that

sup
n∈N
|xn|e−Sεn <+∞ (3.8)

which means that there exists a C > 0 such that for every n ∈ N

|xn| ≤CeSεn . (3.9)

Now, for a fixed p and the number S, from (3.6) we can find a q≥ p such that for every

n ∈ N

|xn|dn
(
Uq,Up

)
≤CeSεne−Sεn =C. (3.10)
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Then, (xn)n∈N ∈ ∆(E) and so ∆(Λ∞ (ε)) ⊆ ∆(E). Since we always have ∆(E) ⊆

∆(Λ∞ (ε)), we obtain ∆(E) = ∆(Λ∞ (ε)) .

To prove the sufficiency part, assume ∆(E) = ∆(Λ∞ (ε)) and δ (E) 6= δ (Λ∞ (ε)) .

δ (E) 6= δ (Λ∞ (ε)) ⇔ ∃ p sup
q≥p

liminf
n∈N

εn (p,q)
εn

<+∞

⇔∃ p ∃M > 0 sup
q≥p

liminf
n∈N

εn (p,q)
εn

≤M

⇔∃ p ∃M > 0 ∀q≥ p liminf
n∈N

εn (p,q)
εn

≤M

⇔∃ p ∃M > 0 ∀q≥ p ∃ Iq ⊆ N dn
(
Uq,Up

)
≥ e−Mεn ∀n ∈ Iq

(3.11)

Now since ∆(E) = ∆(Λ∞ (ε)) = Λ∞ (ε)′ =

{
(xn)n∈N : ∃R > 0 sup

n∈N
|xn|e−Rεn <+∞

}
,

for every R > 0, we have eRεn ∈ Λ∞ (ε)′ = ∆(E). Therefore, for the above p, we can

find a q̃ > p, such that

sup
n∈N

eRεndn
(
Uq̃,Up

)
<+∞. (3.12)

Then for every n ∈ Iq̃, we obtain

e(R−M)εn ≤ eRεndn
(
Uq̃,Up

)
≤ sup

n∈N
eRεndn

(
Uq̃,Up

)
<+∞. (3.13)

But then if we choose R > M, we have a contradiction. Hence ∆(E) = ∆(Λ∞ (ε))

implies δ (E) = δ (Λ∞ (ε)), as desired. �

We end this section with the following result which gives a relation between having the

property D1 and its diametral dimension of a nuclear Fréchet space with the properties

DN and Ω.

Proposition 3.1.4 Let E be a nuclear Fréchet space with the properties DN and Ω and

ε be the associated exponent sequence of E. Then, ∆(E) = ∆(Λ∞(ε)) implies that E

has the property D1.

Proof. Let us assume that ∆(E) = ∆(Λ∞(ε)). From Lemma 3.1.3 and Theorem 3.1.1,

we have

inf
p∈N

sup
q>p

liminf
n∈N

εn (p,q)
εn

=+∞ (3.14)
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where εn (p,q) =− logdn
(
Uq,Up

)
. Then,

∆(E) = ∆(Λ∞ (ε)) ⇔ inf
p∈N

sup
q>p

liminf
n∈N

εn (p,q)
εn

=+∞

⇔ ∀M > 0 ∀ p ∃q liminf
n∈N

εn (p,q)
εn

≥M

⇔ ∀M > 0 ∀ p ∃q ∃n0 ∈ N ∀n≥ n0 dn(Uq,Up)≤ dn(U2,U1)
M

(3.15)

Now we fix p ∈ N. From Corollary 2.3.4, there exists a C > 0 and 0 < j < 1 so that

dn(U2,U1)≤C dn(Up,U1)
j (3.16)

for all n ∈ N. We also choose a M0 which is greater than
2
j
, and from (3.14), there

exists a q > p and n0 ∈ N such that

dn(Uq,Up)≤ dn(U2,U1)
M0 ≤C M0 dn(Up,U1)

M0 j (3.17)

for all n≥ n0. This gives us that

dn(Uq,Up)

dn(Up,U1)
≤C M0 dn(Up,U1)

M0 j−1 ≤C M0 dn(Up,U1) (3.18)

for all n≥ n0. Since E nuclear, we can assume lim
n→∞

dn(Up,U1) = 0. Then we have that

∀ p ∃q lim
n→∞

dn(Uq,Up)

dn(Up,U1)
= 0. (3.19)

This means that E has the property D1, as requested. �

3.2 Results for the Case of Power Series Space of Finite Type

In this section, we turn our attention to the finite type power series case for Question

1.0.2. First of all, we show that δ (E) = δ (Λ1 (ε)) implies ∆(E) = ∆(Λ1 (ε)) which

supports Question 1.0.2 in one direction. Furthermore, we give certain conditions on

Kolmogorov diameters of E for which Question 1.0.2 verifies in the other direction.

Then in main result of this section, we prove that if E is a nuclear Fréchet space with

the properties DN and Ω, then δ (E) = δ (Λ1 (ε)) if and only if E has a prominent

bounded set and ∆(E) = ∆(Λ1 (ε)). However, the answer of Question 1.0.2 in finite

type case in general is negative as seen in the fourth chapter.

We begin this section by giving the following proposition which answers Question

1.0.2 in one direction.
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Proposition 3.2.1 Let E be a nuclear Fréchet space with properties DN and Ω and

ε =(εn)n∈N be the associated exponent sequence of E. Then δ (E)= δ (Λ1 (ε)) implies

∆(E) = ∆(Λ1 (ε)).

Proof. Let us assume that δ (E) = δ (Λ1 (ε)). From Proposition 3.1.2, we have

δ (E) = δ (Λ1 (ε)) ⇔ inf
p

sup
q≥p

limsup
n∈N

εn (p,q)
εn

= 0

⇔∀r > 0 ∃p ∀q≥ p limsup
n∈N

εn (p,q)
εn

≤ r

⇔∀r > 0 ∃p ∀q≥ p ∃n0 ∈ N ∀n≥ n0 dn
(
Uq,Up

)
≥ e−rεn.

(3.20)

Now, we take (xn)n∈N ∈ ∆(E) and for the above p, we find a q̃ > p such that

sup
n∈N
|xn|dn

(
Uq̃,Up

)
<+∞ (3.21)

and from the above inequality, we obtain

|xn|e−rεn ≤ sup
n∈N
|xn|dn

(
Uq̃,Up

)
(3.22)

for sufficienty large n, this means that (xn)n∈N ∈ ∆(Λ1 (ε)) and so ∆(E)⊆ ∆(Λ1 (ε)).

But then since ∆(E)⊇ ∆(Λ1 (ε)), we have ∆(E) = ∆(Λ1 (ε)) . �

One can prove the converse of Proposition 3.2.1 under some assumption on the

canonical topology of the diametral dimension as shown in the following theorem:

Theorem 3.2.2 Let E be a nuclear Fréchet space with properties DN and Ω and

ε = (εn)n∈N be the associated exponent sequence of E. If ∆(E), with the canonical

topology, is barrelled, then ∆(E) = ∆(Λ1 (ε)) if and only if δ (E) = δ (Λ1 (ε)).

Proof. The proof of the necessity part follows from Proposition 3.2.1. To prove

the sufficiency part, let ∆(E) = ∆(Λ1 (ε)) and assume that ∆(E) with the canonical

topology be barrelled. Then since the convergence in ∆(E) implies the coordinate-wise

convergence, the inclusion ∆(E) ↪→ Λ1 (ε) has a closed graph. But then since ∆(E) is

barrelled, the inclusion map ∆(E) ↪→ Λ1 (ε) is continuous by [37, Theorem 5]. Taking

into account that ∆(E) is the projective limit of inductive limits of Banach spaces,
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⋂
p∈N

⋃
q≥p+1

∆
(
Uq,Up

)
, the continuity of the inclusion map

⋂
p∈N

⋃
q≥p+1

∆
(
Uq,Up

)
↪→

Λ1 (ε) gives us

∀ t > 0 ∃ p ∀q > p ∃C > 0 ∀n ∈ N e−tεn ≤C dn
(
Uq,Up

)
. (3.23)

This implies inf
p∈N

sup
q>p

limsup
n∈N

εn(p,q)
εn

= 0, so δ (E) = δ (Λ1 (ε)), as desired. �

It is worth noting that, by Theorem 2.1.5, the barrelledness of the canonical topology

of ∆(E) is equivalent to the following condition

(wQ) : ∀ N ∃ M,n ∀ K,m ∃ k,S > 0 :

min(di (Un,UN) ,di (Uk,UK))≤ S di (Um,UM) ∀i ∈ N.
(3.24)

However, determining the barrelledness of ∆(E) is not easy in practice. In the

following proposition, by posing below condition on diameters, we eliminate the

barrelledness condition of Theorem 3.2.2.

Condition A: ∀p , ∀q > p, ∃s > q, ∀k > s, ∃C > 0 dn
(
Uq,Up

)
≤ Cdn (Uk,Us)

∀n ∈ N.

Proposition 3.2.3 Let E be a nuclear Fréchet space with the properties DN and Ω

and ε be the associated exponent sequence of E. If E satisfies the condition A and

∆(E) = ∆(Λ1 (ε)), then δ (E) = δ (Λ1 (ε)).

Proof. Suppose that E satisfies the condition A and ∆(E) = ∆(Λ1 (ε)). If

δ (E) 6= δ (Λ1 (ε)), then by Proposition 3.1.2, we have inf
p

sup
q≥p

limsup
n∈N

εn (p,q)
εn

6= 0. and

this gives the following condition:

∃M > 0 ∀p ∃qp > p, Ip ⊆ N dn
(
Uq,Up

)
< e−Mεn ∀n ∈ Ip (3.25)

For p=1, there exists a number q1 and an infinite subset I1 so that for all n ∈ I1

dn
(
Uq1 ,Up

)
< e−Mεn , (3.26)

and so it follows from the condition A that we have a number q2 such that for all k≥ q2

there exists a C > 0 so that for all n ∈ N
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dn
(
Uq1,U1

)
≤Cdn

(
Uk,Uq2

)
(3.27)

holds. Then, by the inequality 3.25, there exists a number q3 and an infinite subset I2

so that for all n ∈ I2

dn
(
Uq3,Uq2

)
< e−Mεn. (3.28)

It follows that there exists a C1 > 0 so that for all n ∈ N

dn
(
Uq1,U1

)
≤C1dn

(
Uq3,Uq2

)
(3.29)

holds. Now applying the same process for q2 and q3, we can find q4, q5 and C2 > 0

such that

dn
(
Uq3 ,Uq2

)
≤C2dn

(
Uq5,Uq4

)
, (3.30)

for all n ∈ N. Continuing in this way, we can find the sequences {qk}k∈N and {Ck}k∈N

satisfying

dn
(
Uq1,U1

)
≤C1dn

(
Uq3,Uq2

)
≤C2dn

(
Uq5,Uq4

)
≤ ·· · ≤Ckdn

(
Uq2k+1,Uq2k

)
≤ ·· ·

(3.31)

for all n ∈ N. Moreover, for each k ∈ N, there exists a Ik ⊆ N such that

dn
(
Uq2k+1,Uq2k

)
< e−Mεn (3.32)

for all n ∈ Ik.

Now, for each k ∈ N, we define

Bk =

{
x = (xn) : sup

n∈N
Ck|xn|dn

(
Uq2k+1,Uq2k

)
<+∞

}
, (3.33)

where Bk is a Banach space under the norm ‖x‖k = sup
n∈N

Ck|xn|dn
(
Uq2k+1,Uq2k

)
for all

k ∈ N. By the inequality 3.31, we have Bk+1 ⊆ Bk and ‖ · ‖k ≤ ‖ · ‖k+1 for all k ∈ N.

Since (qk)k∈N is strictly increasing and unbounded, for all p ∈N, there exists a k0 ∈N

such that q2k0 > p and this gives us Uq2k0
⊆Up. For all n ∈ N

dn

(
Uq2k0+1,Up

)
≤ dn

(
Uq2k0+1,Uq2k0

)
, (3.34)

which means that
⋂
k

Bk ⊆ ∆(E). Moreover, the equality ∆(E) = ∆(Λ1 (ε)) yields a

continuous imbedding of the projective limit
⋂
k

Bk into Λ1 (ε). Then since
⋂
k

Bk and
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Λ1 (ε) are Fréchet spaces and the imbedding map has a closed graph, by [37, Theorem

5], this map is continuous and so⋂
k

Bk ↪→ ∆(Λ1 (ε)) is continuous

⇔ ∀t > 0 ∃ k,C sup
n
|xn|e−tεn ≤C sup

n∈N
|xn|dn

(
Uq2k+1,Uq2k

)
∀(xn) ∈

⋂
p

Bp

⇔ ∀t > 0 ∃ k,C ∀n ∈ N e−tεn ≤C dn
(
Uq2k+1,Uq2k

)
.

(3.35)

But, this contradics to the inequality 3.28. Therefore, δ (E) = δ (Λ1 (ε)) holds when

∆(E) = ∆(Λ1 (ε)) and the condition A holds. �

There could be other diameter conditions as above which yields the same conclusion

in Proposition 3.2.3. For example, by introducing

Condition B: ∀ p ∀q1,q2, ...,qp, ∃ s≤ p, ∃C > 0 max
1≤i≤q

dn
(
Uqi,Ui

)
≤Cdn

(
Uqs ,Us

)
∀n ∈ N.

we get the following result:

Proposition 3.2.4 Let E be a nuclear Fréchet space with the properties DN and Ω

and ε be the associated exponent sequence of E. If E satisfies the condition B and

∆(E) = ∆(Λ1 (ε)), then δ (E) = δ (Λ1 (ε)).

The proof is similar to Proposition 3.2.3 except that the projective limit will be

replaced by
⋂
k

Dk, where Dk =

{
x = (xn) : sup

n∈N
|xn| max

1≤i≤p
dn
(
Uqi,Ui

)
<+∞

}
.

In [38], T. Terzioğlu defined the notion prominent bounded subset in order to

show that the diametral dimension of some Fréchet spaces is determined by a single

bounded set:

Definition 3.2.5 Let E be a Fréchet space. A bounded set B is said to prominent if

∆(E) =
{
(xn)n∈N : lim

n→+∞
xn dn (B,Up) = 0 ∀ p

}
. (3.36)
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In this case one can introduce a natural Fréchet space topology on ∆(E) as well as its

canonical topology which is not Fréchet.

T. Terzioğlu also gave a necessary and sufficient condition for a bounded subset

to be prominent [Proposition 3, [39]], namely, B is a prominent set if and only if for

each p there is a q and C > 0 such that

dn
(
Uq,Up

)
≤Cdn

(
B,Uq

)
(3.37)

holds for all n ∈ N.

In the following proposition, we prove that having a prominent bounded subset is

closely related to Bessaga’s condition D2:

D2 : ∀ p ∃q ∀ k lim
n→∞

dn
(
Uq,Up

)
dn
(
Uk,Uq

) = 0. (3.38)

Proposition 3.2.6 Let E be a nuclear Fréchet space. The following are equivalent:

1. E has a prominent bounded set B.

2. E has the property D2.

3. For every p there exists q > p such that sup
l≥q

limsup
n∈N

εn (q, l)
εn (p,q)

< 1 holds.

We need the following lemma for the proof of Proposition 3.2.6. As usual, we assume

that all semi-norms are Hilbertian.

Lemma 3.2.7 Let E be a nuclear Fréchet space. Then for all p,q > p, there is a s > q

such that

lim
n→+∞

dn (Us,Up)

dn
(
Uq,Up

) = 0. (3.39)

Proof. Let E be a nuclear Fréchet space and p,q > p. Since nuclear Fréchet spaces

are Schwartz, there is a number k > p such that Uk is precompact with respect to Up

and so the canonical inclusion map ikp : Eq→ Ep is compact.

Now assume that k ≥ q. Then Uk ⊆Uq and there exists a s≥ k so that isk : Es→ Ek is
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compact. Thus it follows from [13, Proposition 1.2 ] given by Demeulenaere et al.

lim
n→+∞

dn (Us,Up)

dn (Uk,Up)
= 0 (3.40)

and since Uk ⊆Uq, dn (Uk,Up)≤ dn
(
Uq,Up

)
for all n ∈ N. Hence we get

lim
n→+∞

dn (Us,Up)

dn
(
Uq,Up

) = 0. (3.41)

If now q≥ k, then the map iqp : Eq→ Ep is compact since iqp = iqk ◦ ikp and ikp is compact.

On the other hand, there exists a s̄ satisfying s̄ > q and is̄q : Es̄→ Eq is compact. Again

from [13, Proposition 1.2], we get

lim
n→+∞

dn (Us̄,Up)

dn
(
Uq,Up

) = 0. (3.42)

Therefore,

∀p, q > p ∃s > q, lim
n→+∞

dn (Us,Up)

dn
(
Uq,Up

) = 0, (3.43)

as desired. �

It is worth noting that, by using Lemma 4.6, the condition D2 can also be stated as

follows:

D2 : ∀p ∃q ∀k sup
n∈N

dn
(
Uq,Up

)
dn
(
Uk,Uq

) <+∞. (3.44)

We are now ready to give the proof of Proposition 3.2.6.

Proof of Proposition 3.2.6 1⇒ 2 : This follows immediately from Lemma 4.6 and the

definition of D2.

2⇒ 3 : Suppose E has the condition D2. Then, for every p, there exists a q > p such

that for all k > q

sup
n∈N

dn
(
Uq,Up

)
dn
(
Uk,Uq

) <+∞ ⇔ ∃M > 0 ∀n ∈ N
dn
(
Uq,Up

)
dn
(
Uk,Uq

) < M

⇔ ∃M > 0 ∀n ∈ N εn (p,q)>− lnM+ εn (q,k)

⇔ limsup
n∈N

εn (q,k)
εn (p,q)

≤ 1.

(3.45)
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Further by Corollary 2.3.4, we have a condition on Kolmogorov diameters for this q

∃C > 0, 0 < λ < 1 dn(Uq+2,Uq)≤C dn(Uq+1,Uq)
1

1−λ ∀n ∈ N. (3.46)

Then, for every k > q+1, there exists a C̃ > 0 such that the inequality

εn(q+1,k)≤ C̃+(1−λ )εn(q,k) ∀n ∈ N (3.47)

holds. This gives

εn (q+1,k)
εn (p,q+1)

=
εn (q+1,k)
εn (p,q+1)

εn (q,k)
εn (q,k)

≤ εn (q+1,k)
εn (q,k)

εn (q+1,k)
εn (p,q)

(3.48)

and

limsup
n∈N

εn (q+1,k)
εn (p,q+1)

≤ limsup
n∈N

εn (q+1,k)
εn (q,k)

εn (q+1,k)
εn (p,q)

≤ (1−λ )< 1 (3.49)

Hence, for every p there exists a q̃ > p such that

sup
l≥q

limsup
n∈N

εn (q, l)
εn (p, q̃)

< 1. (3.50)

3 ⇒ 1 : Now we assume that the condition in 3 is satisfied. We fix a p ∈ N

and choose a q satisfying sup
k≥q

limsup
n∈N

εn (q,k)
εn (p,q)

< 1. We also fix an ε > 0 satisfying

sup
k≥q

limsup
n∈N

εn (q,k)
εn (p,q)

≤ 1− ε. Then, for each k ≥ q there exists N(k) so that

εn (q,k)≤ (1− ε) εn (p,q) ∀n≥ N(k). (3.51)

Without loss of generality, we can choose the sequence (N(k))k∈N to be increasing.

Let δ1 :=
1
2

e−(1− ε)εN(q+1)(p,q). Since E is in particular Schwartz, we can assume

that Uq+1 is precompact with respect to Uq. Therefore, we can find a finite subset

Z1
(q,1) ⊆Uq+1 satisfying

Uq+1 ⊆ Z1
(q,1)+δ1Uq. (3.52)

Thus, we can write

dn(Uq+1,Uq)≤ dn(Z1
(q,1),Uq)+δ1 ∀n ∈ N (3.53)

and
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2δ1 = e−(1− ε)εN(q+1)(p,q) ≤ e−εN(q+1)(p,q+1)
= dN(q+1)(Uq+1,Uq)

≤ dN(q+1)(Z
1
(q,1),Uq)+δ1.

(3.54)

This gives us that

dN(q+1)(Z
1
(q,1),Uq)≥ δ1 =

1
2

e−(1− ε)εN(q+1)(p,q)
. (3.55)

For each N(q+1)≤ n≤N(q+2), using the above argument, we can get a finite subset

Z1
(q,n) ⊆Uq with

dn(Z1
(q,n),Uq)≥

1
2

e−(1− ε)εn(p,q) (3.56)

Let Z1
q =

⋃
N(q+1)≤n≤N(q+2)

Z1
(q,n). Then,

dn(Z1
q ,Uq)≥

1
2

e−(1− ε)εn(p,q) ∀ N(q+1)≤ n≤ N(q+2). (3.57)

We proceed to get a finite set Zs
q ⊆Uq+s so that

dn(Zs
q,Uq)≥

1
2

e−(1− ε)εn(p,q) ∀ N(q+ s)≤ n≤ N(q+ s+1). (3.58)

Let Zq =
∞⋃

s=1

Zs
q. Since Zs

q ⊆Uq+s for all s, then Zq is bounded and

dn(Zq,Uq)≥
1
2

e−(1− ε)εn(p,q) ∀n≥ N(q+1). (3.59)

Without loss of generality, we can assume q = p+1. Then, we can write

dn(Zp,Up+1)≥
1
2

e−(1− ε)εn(p, p+1) ∀n≥ N(p+1). (3.60)

Now we choose a sequence (λk)k∈N, λk > 0 such that Z =
∞⋃

k=1

λk Zk is bounded. Then,

we find that for every p,

dn(Z,Up+1)≥ λpdn(Zp,Up+1)≥
λp

2
dn(Up+1,Up)

(1−ε) ≥
λp

2
dn(Up+1,Up) (3.61)

for all n ∈ N. This completes the proof, as desired. �

As an easy consequence of Proposition 3.2.6 and Proposition 3.1.2, we obtain the

following result which gives a relation between having prominent bounded subset and
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its approximate diametral dimension of a nuclear Fréchet space with the properties DN

and Ω:

Corollary 3.2.8 Let E be a nuclear Fréchet space with the properties DN and Ω and

the associated exponent sequence ε . Then δ (E) = δ (Λ1 (ε)) implies that E has a

prominent bounded subset.

The following theorem is the main result of this section which says that Question 1.0.2

holds true provided E has a prominent bounded subset:

Theorem 3.2.9 Let E be a nuclear Fréchet space with the properties DN and Ω and ε

the associated exponent sequence. δ (E) = δ (Λ1 (ε)) if and only if E has a prominent

bounded set and ∆(E) = Λ1 (ε).

Proof. Let E be a nuclear Fréchet space with a prominent bounded subset B. Then E

satisfies condition D2

∀p ∃q ∀k lim
n→∞

dn
(
Uq,Up

)
dn
(
Uk,Uq

) = 0 (3.62)

and, in particular, if we take N = p, M = n = q and m = k, we get

∀N ∃ M,n ∀m, ∃ S > 0 : dn (Un,UN)≤ Sdn (Um,UM) ∀n ∈ N. (3.63)

which means that E satisfy the condition (wQ) given in Theorem 2.1.5 and so ∆(E)

is barrelled with respect to the canonical topology. Hence the result follows from

Theorem 3.2.2. �

In the final part of this section we examine the conditions for which the converse of

Corollary 3.2.8 also holds.

For this, we define

(E) :=
{
(tn)n∈N : ∀ p, ∀0 < ε < 1, ∃q > p lim

n→+∞
tn dn

(
Uq,Up

) ε
= 0
}
.

(3.64)

The next result provides a condition that implies δ (E) = δ (Λ1 (ε)) when E has a

prominent subset.

Proposition 3.2.10 Let E be a nuclear Fréchet space with the properties DN and Ω,

its associated exponent sequence ε = (εn)n∈N. If E has a prominent bounded subset B

and ∆(E) = (E), then δ (E) = δ (Λ1 (ε)).
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Proof. Let B be a prominent bounded subset of E. Then, for all p ∈ N, there exists a

q > p and a C > 0 so that for every n ∈ N

dn
(
Uq,Up

)
≤Cdn

(
B,Uq

)
(3.65)

holds. Also, since B is bounded and εn is the associated exponent sequence, then there

exist C1,C2,D1,D2 > 0 and a1,a2 > 0 satisfying

D1e−a1εn ≤C1dn
(
Uq,Up

)
≤ dn

(
B,Uq

)
≤C2dn

(
Uq+1,Uq

)
≤ D2e−a2εn (3.66)

for every n ∈ N. On the other hand,

∆(E) =
{
(xn)n∈N : ∀p lim

n→+∞
|xn|dn (B,Up) = 0

}
(3.67)

is a Fréchet space since B is a prominent bounded set. Fix p, q > p and ε . Consider

the Banach space

Bp,ε,q =

{
t = (tn)n∈N : lim

n→+∞
|tn|dn

(
Uq,Up

)ε
= 0
}
. (3.68)

Since Uq+1 ⊆Uq, we have dn
(
Uq+1,Up

)
≤ dn

(
Uq,Up

)
for every n ∈ N and Bp,ε,q ⊆

Bp,ε,q+1. Then we endowe the space (E) =
⋂
(p,ε)

⋃
q>p

Bp,ε,q with the projective limit

of inductive limits of Banach spaces Bp,ε,q. In view of Grothendieck Factorization

theorem ( [10], p.225), for all p, 0 < ε < 1 there exists a q > p such that ∆(E) ↪→ Bp,ε,q

is continous

∀p, 0 < ε < 1, ∃q > p, C > 0 dn
(
Uq,Up

)ε ≤ dn
(
B,Uq

)
∀n ∈ N. (3.69)

Now take δ > 0. Then, for a given p, we choose 0 < ε < 1 so that 0 < ε <
δ

a1
. Then

there exists a C > 0 so that for all n ∈ N,

Ce−εa1εn ≤Cdn (B,Up)
ε ≤ dn

(
Uq,Up

)ε ⇔ Ce−δεn ≤ dn
(
Uq,Up

)ε ≤Cdn
(
B,Uq

)
⇔ lnC−δεn ≤ lnC+ lndn

(
B,Uq

)
≤ lnC+ lndn

(
Ul,Uq

)
⇒ − lndn

(
Ul,Uq

)
≤
(
lnC− lnC

)
+δεn

⇒ limsup
n

εn (q, l)
εn

≤ δ .

Hence, we obtain that for all δ > 0 there is a q such that

sup
l>q

limsup
n

εn (q, l)
εn

≤ δ and inf
q

sup
l>q

limsup
n

εn (q, l)
εn

= 0, (3.70)

which means that δ (E) = δ (Λ1 (ε)). �
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Below we observe that the reverse implication in Proposition 3.2.10 is also true.

Tndeed:

Note that (E) is always an algebra under pointwise multiplication. If (tn)n∈N ∈

(E), then for all p, 0 < ε < 1, we can choose q > p such that

lim
n→∞

tndn
(
Uq,Up

) ε

2 = 0, (3.71)

which means
(
t2
n
)
∈ (E). Thus for any (tn)n∈N ,(sn)n∈N ∈ (E), we have that

(tnsn)n∈N ∈ (E) as |tnsn| ≤
|tn|2

2
+
|sn|2

2
for all n ∈ N.

However ∆(E) need not to be an algebra under pointwise multiplication. If it does,

then ∆(E) satisfies the condition "(tn) ∈ ∆(E) implies
(
t2
n
)
∈ ∆(E)", vice versa. This

condition gives that
(
t2m

n
)
∈ ∆(E) for all m∈N. Now, for a p and ε > 0, we can choose

sufficiently large m ∈ N such that
1

2m ≤ ε and find a q so that

lim
n→∞

t2m

n dn
(
Uq,Up

)
= 0 and lim

n→∞
tndn

(
Uq,Up

)ε
= 0 (3.72)

which gives that ∆(E) ⊆ (E). Since the inclusion (E) ⊆ ∆(E) always holds, we

have (E) = ∆(E). Hence we have proved the following:

Proposition 3.2.11 Let E be a nuclear Fréchet space with the properties DN and Ω.

The following conditions are equivalent:

1. ∆(E) = (E)

2. ∆(E) is an algebra under pointwise multiplication.

3. (tn) ∈ ∆(E) implies
(
t2
n
)
∈ ∆(E).

As a consequence we get the following result completing Proposition 3.2.10 with

which we end this section:

Corollary 3.2.12 Let E be a nuclaer Fréchet space with the properties DN and Ω,

its associated exponent sequence ε = (εn)n∈N. Then E has a prominent bounded

subset and ∆(E) is an algebra under pointwise multiplication if and only if δ (E) =

δ (Λ1 (ε)).
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4. POWER SERIES SUBSPACES OF A NUCLEAR KÖTHE SPACE WITH
THE PROPERTIES DN AND Ω

This chapter centered around the Question 1.0.1 stated in Introduction that is about

the existence power series subspaces of a nuclear Köthe space with the properties DN

and Ω such that its diametral and/or approximate diametral dimension coincides with

that of a power series space.

In the first section, we show that a regular nuclear Köthe space with the properties DN

and Ω is itself a power series space if its diametral dimension coincides with that of a

power series space of infinite type or its approximate diametral dimension coincides

with that of a power series space of finite type.

In the second section, we construct a family of nuclear Köthe spaces with

the properties DN and Ω whose elements parameterized by an exponent sequence

α . Motivated by our finding in the third section, we obtain that Question 1.0.2 has a

negative answer for some element of with certain parameter α . Then, we show

that for certain parameter α , an element of does not have a subspace which is

isomorphic to power series space of finite type generated by its associated exponent

sequence. Hence the Question 1.0.1 is answered negatively in general.

4.1 Regular Köthe Spaces Whose Diametral and/or Approximate Diametral

Dimension Coincides with That of A Power Series Space.

The aim of this section is to prove the following results:

Proposition 4.1.1 Let K(ak,n) be a regular nuclear Köthe space with the properties

DN and Ω and ε be the associated exponent sequence of K(ak,n). Then, ∆(K(ak,n)) =

∆(Λ∞(ε)) if and only if K(ak,n) is isomorphic to Λ∞(ε).
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Proposition 4.1.2 Let K(ak,n) be a regular nuclear Köthe space with the properties

DN and Ω and ε be the associated exponent sequence of K(ak,n). Then, δ (K(ak,n)) =

δ (Λ1(ε)) if and only if K(ak,n) is isomorphic to Λ1(ε).

Before giving the proofs of the above propositions, we need to mention two significant

results:

Proposition 4.1.3 If E is a nuclar Köthe space with the property d1 and d4, then E is

isomorphic to a power series space of infinite type.

Proof. [27, 1.4.2 Proposition] �

Proposition 4.1.4 If E is a nuclar Köthe space with the property d2 and d5, then E is

isomorphic to a power series space of finite type.

Proof. [27, 1.4.3 Proposition] �

Proof of Proposition 4.1.1 The proof of the necessity part is clear. For the sufficiency

part, assume that ∆(K(ak,n)) = ∆(Λ∞(ε)) for a regular nuclear Köthe space with the

properties DN and Ω. Proposition 3.1.4 gives us that K(ak,n) has the property D1 which

is equivalent the properties d1 and DN. Then, K(ak,n) is isomorphic to a power series

space of infinite type by Proposition 4.1.3. Since ∆(K(ak,n)) = ∆(Λ∞(ε)), it follows

that K(ak,n) and Λ∞(ε) are isomorphic, as desired. �

Proof of Propostion 4.1.2 The proof of the necessity part is clear. For the sufficiency

part, assume that δ (K(ak,n)) = δ (Λ∞(ε)) for a regular nuclear Köthe space with the

properties DN and Ω. Proposition 3.2.6 and Corollary 3.2.8 give us that K(ak,n) has the

property D2 which is equivalent the properties d2 and Ω. Then, K(ak,n) is isomorphic

to a power series space of finite type from Proposition 4.1.4. Since ∆(K(ak,n)) =

∆(Λ1(ε)), it follows that K(ak,n) and Λ1(ε) are isomorphic, as desired. �
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4.2 α -Spaces

In this section, we will construct a family of nuclear Köthe spaces with the properties

DN and Ω and parameterized by a finitely nuclear sequence α and show that

a subfamily of these Köthe spaces satisfied that ∆
(
K
(
ak,n
))

= ∆(Λ1 (ε)) and

δ
(
K
(
ak,n
))
6= δ (Λ1 (ε)) for its associated exponent sequence ε . This shows that

Question 1.0.2 has a negative answer.

We proceed as follows: First, we will divide natural numbers N into infinite

disjoint union of infinite subsets. For this purpose, we order the elements of N2 by

matching them with the elements of N such that any element (x,y) ∈ N2 corresponds

to the element
(x+1)(x+2)

2
+ y(x + 1) +

y(y−1)
2

∈ N. One can visualize this

ordering as shown in the following graphic:

1

2

3

4

5

6

7

8

9

10

I1 I2 I3 I4 Is

Figure 4.1 : Graphic 1

As shown in the above figure, each vertical line Is has infinitely many elements and N

can be expressed as an infinite disjoint union of Is, that is, N =
⋃
s∈N

Is.
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Let α = (αn)n∈N be a strictly increasing, positive, finitely nuclear sequence. We
define a matrix

(
ak,n
)

k,n∈N by setting

ak,n =


e
−1

k
αn

, if k ≤ s

e

(
−1

k
+1
)

αn
, if k ≥ s+1.

(4.1)

where n ∈ Is, s ∈ N.

Infact,
(
ak,n
)

k,n∈N is a Köthe matrix, since for every n,k ∈ N, 0 < ak,n ≤ ak+1,n. We

denote the Köthe space generated by a matrix (ak,n)k,n∈N as in 4.1 by α . We say

that the space α is parameterized by the sequence α . We denote the family of all

Köthe space α by .

Now, we show that each element of the family is nuclear and satisfies the

properties DN and Ω:

Lemma 4.2.1 Let α be an element of the family parametrized by α = (αn)n∈N.

Then, α is nuclear and has the properties DN and Ω.

Proof. In order to prove the nuclearity of α , we show that the series
∞

∑
n=1

ak,n

ak+1,n
is

convergent for each k ∈ N: Since

ak,n

ak+1,n
≤ e
(
−1

k +
1

k+1

)
αn (4.2)

for every k,n ∈N and Λ1(α) is nuclear, then the series
∞

∑
n=1

ak,n

ak+1,n
is convergent and so

α is nuclear, as asserted.

We now prove that α has the DN property by using Proposition 2.3.2. We will

show that for all p ∈ N there exists a 0 < λ < 1 such that the inequality

ap,n ≤ (a1,n)
λ
(
ap+1,n

)1−λ (4.3)

is satisfied for all n ∈ N.

Let p,n∈N and assume n∈ Is, s∈N. There are two cases for p and s: p≤ s or p > s.

First we assume that p≤ s: In this case,
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a1,n = e−αn, ap,n = e
− 1

p αn and ap+1,n ≥ e
− 1

p+1 αn. (4.4)

Then, the inequality 4.3 is satisfied for any λ <

1
p −

1
p+1

1− 1
p+1

.

Second we assume that s < p: In this case,

a1,n = e−αn , ap,n = e
(
− 1

p+1
)
αn and ap+1,n = e

(
− 1

p+1+1
)
αn. (4.5)

But then the inequality 4.3 is satisfied for any λ <

1
p −

1
p+1

2− 1
p+1

.

Hence, if we choose a λ > 0 satisfying

λ < min

{ 1
p −

1
p+1

1− 1
p+1

,

1
p −

1
p+1

2− 1
p+1

}
=

1
p −

1
p+1

2− 1
p+1

(4.6)

then inequality 4.3 holds in general and so α has the property DN, as claimed.

We now prove that α has ΩΩΩ -property by using Proposition 2.3.1. We will

show that for all p ∈ N and for k > p there exists a j > 0 such the inequality

(ap,n)
j ak,n ≤

(
ap+1,n

) j+1 (4.7)

is satisfied for all n ∈ N.

Let p,n ∈N and assume n ∈ Is, s ∈N. There are two case for p and s: p≤ s or p > s.

First we assume that p≤ s: In this case,

ap,n = e
− 1

p αn, ap+1,n ≥ e
− 1

p+1 αn and ak,n ≤ e
(
−1

k+1
)
αn (4.8)

for all k ≥ q. Then, the inequality 4.7 is satisfied for any j ≥
1

p+1 −
1
k +1

1
p −

1
p+1

.

Second we assume that s < p: In this case,

ap,n = e
(
− 1

p+1
)
αn , ap+1,n = e

(
− 1

p+1+1
)
αn and ak,n = e

(
−1

k+1
)
αn (4.9)

for all k ≥ q. Therefore, the inequality 4.7 is satisfied for any j ≥
1

p+1 −
1
k +1

1
p −

1
p+1

.

Now, we choose a j > 0 satisfying

j ≥max

( 1
p+1 −

1
k +1

1
p −

1
p+1

,

1
p+1 −

1
k

1
p −

1
p+1

)
=

1
p+1 −

1
k +1

1
p −

1
p+1

(4.10)

and so that the inequality 4.7 is satisfied for all n ∈ N. Hence α has the property Ω,

as claimed. �
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Remark 4.2.2 It is worth noting that any element α of the family does not have

the property (d2),

(d2) : ∀k ∃ j ∀l sup
n

akn aln

(a jn)2 <+∞. (4.11)

Since for all j ∈ N, n ∈ I j,

a1,n = e−αn a jn = e
−1

j αn a j+1,n = e
(− 1

j+1+1)αn (4.12)

and

a1,n a j+1,n

(a jn)2 = e
j+2

j( j+1)αn ⇒ sup
n∈I j

a1,n a j+1,n

(a jn)2 = sup
n∈N

a1,n a j+1,n

(a jn)2 =+∞ (4.13)

then, α does not have the property (d2). So the family does not contain a power

series space of finite type.

4.2.1 Kolmogorov diameters of an element α of the family

In this subsection, we calculate Kolmogorov diameters of an element α of the

family . In order to determine nth-Kolmogorov diameter of a Köthe space α , we

will rerwrite the sequence
(

ap,n

aq,n

)
n∈N

in descending order. We know from Remark

2.2.4 that the nth-Kolmogorov diameter of the space α is the n+1th-term of this

descending sequence.

Let α be an element of the family parameterized by an exponent sequence α .

Let us take a p, a q > p and an n ∈ Is, s ∈ N. Then, we can write

ap,n

aq,n
=

{
ecpq αn , s≥ q or s < p

e
(
cpq−1

)
αn, p≤ s < q

(4.14)

where cpq is the negative number =−1
p
+

1
q

.

We define the set I =
⋃

p≤s<q
Is with the elements (ni)∈N ordered increasingly, namely,

ni ≤ ni+1 for all i ∈ N. We also denote the index of the element of Ip on the line with

the equation x+ y = q+ k−2 by sk for each k = 0,1,2, ..., as seen from the following

graphic. Since every a line with the equation x+y = q+k−2 has q− p elements of I,

then sk+1− sk = q− p for every k = 0,1,2, ....
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ns0

ns1

nsk+1

ni

ni+1

n1

n2

nsk

n3

I

the line with the equation

x+ y = q+ k−2

the line with the equation

x+ y = q+ k−1

Ip Iq−1

Figure 4.2 : Graphic 2

Considering the above graphic, the elements of I are placed in N as follows:

n1

1 element

n2 n3

2 elements

n4n5n6

3 elements

... ...

q-p many elements q-p many elements

Figure 4.3 : Graphic 3

Now we assume that the terms ecpq αm , m ∈ N− I, are on the blue points and the

terms e
(
cpq−1

)
αni , ni ∈ I, are on the red points at this line.

Before sorting the terms of the sequence
(

ap,n

aq,n

)
n∈N

, we note that the terms of

the sequences
(
ecpqαm

)
m∈N−I and

(
e
(
cpq−1

)
αni

)
i∈N

have decreasing order in

themselves.
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We are now ready to order the terms of the sequence
(

ap,n

aq,n

)
n∈N

decreasing

and read Kolmogorov diameters dn
(
Uq,Up

)
for all n = 0,1,2, ....

At first, we take into account the part of
(

ap,n

aq,n

)
n∈N

including the first n1 − 1

terms:

ecpq α1 ecpq α2 ecpq α3 ecpq αn1−1
...

Figure 4.4 : Diagram 1

Since α is increasing, this part has decreasing order and all terms in this part is greater

than the terms corresponding to the elements of I. Then, having decreasing order, this

part remains the same. However, we write this part by shifting to the left taking into

account the zero indices for Kolmogorov diameter.

ap,n

aq,n
ecpq α1 ecpq α2 ecpq αn1−1

...

...

e
(
cpq−1

)
αn1

dn(Uq,Up) ecpq α1 ecpq α2 ecpq αn1−1

d0 d1 dn1−2 dn1−1

Figure 4.5 : Diagram 2

So, for every 0≤ n≤ n1−2,

dn(Uq,Up) = ecpq αn+1 . (4.15)

In order to find the diameter dn1−1(Uq,Up), we will compare the term e
(
cpq−1

)
αn1

with the terms ecpq αm , m ∈ N− I, m > n1, and the greatest term gives the diameter

dn1−1(Uq,Up):
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e(cpq−1)αn1 ≤ ecpq αm ⇔ αm ≤ Apqαn1 (4.16)

where Apq = 1 +
pq

q− p
. Then, the terms ecpq αm , m ∈ N− I, m > n1, satisfying

αm ≤ Apqαn1 is greater than the term e
(
cpq−1

)
αn1 . So we must write the terms

ecpq αm , m ∈ N− I, m > n1, satisfying αm ≤ Apqαn1 before the term e
(
cpq−1

)
αn1

in decreasing order.

We call the greatest element m ∈N− I satisfying αm ≤ Apqαn1 as i1. As shown in the

following figure, we can assume that there exists a k1 > 0 so that the inequality

nsk1
< i1 < ns(k1 +1) (4.17)

holds.

ns(k1 +1)

nsk1

i1
I

Figure 4.6 : Graphic 4

The above figure can also be visualized as follows:

n1 n2 n3 n4 n5 n6

...
nsk1

i1 ns(k1 +1)

...

Figure 4.7 : Graphic 5
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This means that the number of elements of I which is less than i1 is s(k1 +1)−1.

So, before the term e
(
cpq−1

)
αn1 , we will write i1− [s(k1 +1)− 1] many ecpq αm ,

m ∈ N− I, m ≤ i1, terms in decreasing order. Furthermore, while writing these terms

in decreasing order, every term e
(
cpq−1

)
αna , 1≤ a≤ s(k1 +1)−1 shifts to the right

and every term ecpqαm , m ∈ N− I, m≤ i1, shifts to the left, as shown in Figure 4.9.

In order to find n1−1th Kolmogorov diameter, we shift the term corresponding to the

first element n1 of I. Considering also that we shift the terms to the left for d0(Uq,Up),

we find that for every n1−1≤ n≤ n2−3,

dn(Uq,Up) = ecpq αn+2 . (4.18)

So, we found the Kolmogorov diameters until the indices n2− 2. Now, we also shift

the terms corresponding to the element n2 and n3 of I. Up till now, we shift the terms

to the left four-indices, then we find that for every n2−2≤ n≤ n4−5

dn(Uq,Up) = ecpq αn+4 . (4.19)

We would like to point out that the endpoints of the intervals in which we determine

Kolmogorov diameters are generally represented by the elements of Ip. Because the

terms corresponding to the elements of I that we shift to the right and the terms

corresponding to the elements of N− I that we shift to the left are between the two

elements of Ip, as seen in the following figure.

... ...
nsk+1nsk

Figure 4.8 : Graphic 6

Another significant point in writing the endpoints of the intervals in which we

determine the diameters are to find out how many elements, the terms corresponding

to the elements of I, we shift to the right.

Let’s continue to calculate the diameters with this perspective.
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ap,n

aq,n

dn(Uq,Up)

1

1

1

d0

2

2

2

d1

...

...

...

n1

...

...

...

n2 n3

...

...

...

n4 n5 n6

...

...

...

nsk1

...

... ...

...

...

i1

i1

i1 n1

d j1

For decreasing order, we will lift the red boxes and shift the blue boxes to the left.

Figure 4.9 : Diagram 3



Let us assume that we replaced ns0 − [s0 + 1] terms in decreasing order. In order to

find ns0−s0-th Kolmogorov diameter, we shift s1 terms corresponding to the elements

of I in total, for every ns0− s0 ≤ n≤ ns1− [s1 +1], we have

dn(Uq,Up) = ecpqαn+ s1 . (4.20)

Considering the terms that we shift to the right in each step, we can write for every

0≤ k < k1 and for every nsk− sk ≤ n≤ ns(k+1)− [s(k+1) +1]

dn (Uq,Up) = e
cpq αn+ s(k+1) (4.21)

and for all nsk1
− sk1

≤ n≤ i1− s(k1 +1)

dn (Uq,Up) = e
cpq αn+ s(k1 +1) . (4.22)

Therefore, we shift i1− [s(k1 +1)− 1] many terms ecpq αm , m ∈ N− I, m ≤ i1 to

left, namely, we sort all terms which is greater than e(cpq−1)α n1 . Hence, the term

e(cpq−1)α n1 is replaced at the indices j1 = i1− s(k1 +1) +1 , namely,

dj1
(Uq,Up) = e(cpq−1)αn1 . (4.23)

Now assume that the first a−1, (a ≥ 1) terms corresponding to the elements of I are

placed in decreasing order.

Before the term e(cpq−1)αna , we must write the terms ecpq αm , m ∈ N − I

which is greater than e(cpq−1)αna , satisfying the inequality αm ≤ Apqαna . We call

the greatest element of m ∈N satisfying αm ≤ Apqαna as ia. We can assume that there

exists a ka ∈ N so that

nska
< ia < ns(ka +1) (4.24)

nska
ia ns(ka +1)

Figure 4.10 : Graphic 7
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This means that the number of elements of I which is less than ia is s(ka +1)−1.

So, before the term e
(
cpq−1

)
αna , we write ia − (s(ka +1) − 1) many ecpq αm ,

m ∈ N− I, m ≤ ia, terms in decreasing order. Since we assume that the first a− 1

terms corresponding to the elements of I is placed in decreasing order, then the term

e(cpq−1)αna are replaced at the indices ja = ia− s(ka +1) +a , namely,

dja
(Uq,Up) = e(cpq−1)αna . (4.25)

Now, we determine Kolmogorov diameters between the indices ja and ja+1 for every

a≥ 1.

Starting the index ja, we must compare the term e
(
cpq−1

)
αna+1 with the terms

ecpq αm , m ∈ N− I and for every m ∈ N− I satisfying αm ≤ Apqαna+1 , we write the

terms ecpqαm , before the term e
(
cpq−1

)
αna+1 . Again, we call the largest element of

N− I satisfying above inequality as ia+1 for which there is ka+1 ∈ N satisfying

nska+1
< ia+1 < ns(ka+1 +1). (4.26)

Let us continue to decreasing order from ja +1:

For all ja +1≤ n≤ ns(ka +1)− s(ka +1) +a−1

dn (Uq,Up) = e
cpq αn+ s(ka +1)−a

. (4.27)

If any, for every ka + 1 ≤ k ≤ ka+1− 1 and for every nsk − sk + a ≤ n ≤ ns(k+1) −

s(k+1)+a−1

dn (Uq,Up) = e
cpq αn+ s(k+1)−a (4.28)

and for every nska+1
− ska+1

+a≤ n≤ ia+1− s(ka+1 +1) +a

dn (Uq,Up) = e
cpq αn+ s(ka+1 +1)−a

. (4.29)

We sort all terms which is greater than e(cpq−1)α na+1 . Then, the term

e(cpq−1)α na+1 is replaced at the indices ja+1 = ia+1− s(ka+1 +1) +a+1 ,

namely,

dja+1
(Uq,Up) = e(cpq−1)α na+1 . (4.30)
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Hence, we determine all Kolmogorov diameters between the terms e(cpq−1)α na

and e(cpq−1)α na+1 for every a ≥ 1. Therefore, we can calculate all Kolmogorov

diameters by following the above observation, and finally we can write:

1. Let J := { ja : a ∈ N} where ja = ia− s(ka +1) +a. For all a ∈ N,

d ja
(
Uq,Up

)
= e
(
cpq−1

)
αna . (4.31)

2. For a,k ∈ N, we define

Ia,k =
[
nsk − sk +a,nsk+1− sk+1 +a−1

]
(4.32)

and

K =
⋃

a ∈ N

⋃
ka +1≤ k ≤ ka+1−1

Ia,k. (4.33)

For every n ∈ K, there is an a ∈ N and a k ∈ N satisfying ka + 1 ≤ k ≤ ka+1− 1 such

that

dn
(
Uq,Up

)
= ecpqαn+ sk+1−a . (4.34)

3. Let L =
⋃

a∈N

[
ja +1,ns(ka +1)− s(ka +1) +a−1

]
. For every n ∈ L, there is an

a ∈ N such that

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)−a
. (4.35)

4. Let M =
⋃

a∈N

[
nska

− ska
+a−1, ja−1

]
. For every n ∈M, there is an a ∈ N such

that

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)− (a−1) . (4.36)

All Kolmogorov diameters in the light of above observation are found since N =

{0,1, ...,n1−2}∪ J∪K∪L∪M. This completes the determination of the diameters.

Now, we give an estimation for Kolmogorov diameters of an element α of the family

which is parameterized by α .

Theorem 4.2.3 Let α be an element of the family with the parameter α . For

every p, q > p there exists a N ∈ N such that

ecpq α4n ≤ dn(Uq,Up)≤ ecpq αn (4.37)

for every n≥ N.
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Proof. Let p ∈ N and q > p. Above we obtained Kolmogorov diameters dn(Uq,Up)

on each subsets {0,1, ...,n1−1}, J, K, L and M of N. We will show that the inequality

4.37 holds for sufficiently large elements of each subsets J, K, L, and M of N.

Primarily, we will show that 2 ja > ia for sufficiently large a ∈ N. We know that for

every ia there exists a ka ∈ N satisfying nska
< ia < ns(ka +1).

ns(ka +1)

ns0

nska

ia
I

Ip−1 Iq Iq+ka−1Iq+ka−2

the line with the equation x+ y = q+ ka−2

the line with the equation x+ y = q+ ka−1

Figure 4.11 : Graphic 8

As shown in the above figure, nska
is on the line which has the equation x + y =

q+ ka−2. Since the first element of Iq+ka−2 is less than nska
, we can write

nska
≥ (q+ ka−2)(q+ ka−1)

2
=

(q−2)(q−1)
2

+(q−1)ka +
ka (ka−1)

2
. (4.38)

Also as nska
≤ ia, then we can write

ia ≥
(q−2)(q−1)

2
+(q−1)ka +

ka (ka−1)
2

. (4.39)
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Since lim
a→+∞

ka = +∞, we can assume that
ka (ka−1)

4
≥ (ka +1)(q− p) and

(q−1)ka

2
≥ s0 for sufficiently large a ∈ N. Hence we can write

ia
2
≥ s0 +(ka +1)(q− p) = s(ka +1) (4.40)

and we find

ja = ia− s(ka +1) +a > ia−
ia
2
=

ia
2

⇒ 2 ja > ia . (4.41)

Now, we will show that the inequality 4.37 is satisfied for a sufficiently large element

of J. Let take an a ∈ N satisfiying 2 ja > ia. There exist two cases for 2 ja: 2 ja ∈ N− I

or 2 ja ∈ I.

We know that ia is the greatest element of m ∈ N− I satisfying e
(
cpq−1

)
αna ≤

ecpqαm , then we can write

ecpqαk < e
(
cpq−1

)
αna (4.42)

for every k > ia, k ∈ N− I. If 2 ja ∈ N− I, then

e
cpqα4 ja ≤ e

cpqα2 ja < e
(
cpq−1

)
αna . (4.43)

If 2 ja ∈ I, then 2 ja + (q− p) ∈ N− I and 2 ja + (q− p) ≤ 4 ja is satisfied for a

sufficiently large a and we find

e
cpqα4 ja ≤ e

cpqα2 ja +(q− p) < e
(
cpq−1

)
αna . (4.44)

Also, we know that ia ≥ ja for every a ∈ N, thus we can write

d ja(Uq,Up) = e
(
cpq−1

)
αna ≤ ecpqαia ≤ ecpqα ja . (4.45)

The above inequalites give us that

ecpqα4 ja ≤ d ja(Uq,Up) = e
(
cpq−1

)
αna ≤ ecpqα ja . (4.46)

Then, the inequality 4.37 is satisfied for sufficiently large element of J.

We now prove that the inequality 4.37 is satisfied for sufficiently large elements of K,

L and M. In order to see this, we first show that
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nsk ≥ 2sk (4.47)

for sufficently large k ∈ N.

nsk

I

Ip−1 Iq Iq+k−2

the line with the equation x+ y = q+ k−2

Figure 4.12 : Graphic 9

We know that nsk is on the line which has equation x+ y = q+ k− 2 for every k =

0,1.... Since the first element of Iq+k−2 is less than nsk , then we can write

nsk ≥
(q+ k−2)(q+ k−1)

2
=

(q−2)(q−1)
2

+(q−1)k+
k (k−1)

2
. (4.48)

The inequalities

k.(k−1)
4

≥ k(q− p) and (q−1)k ≥ 2(s0 +1) (4.49)

hold for a sufficiently large k. Then we find

nsk ≥ 2(s0 + k(q− p)+1) = 2sk (4.50)

for a sufficiently large k ∈ N.

Now we show that the inequality 4.37 is satisfied for sufficiently large element of K.

Let take an n∈K. Then, there exist a a∈N and a k∈N satisfying ka+1≤ k≤ ka+1−1

such that nsk − sk +a≤ n≤ nsk+1− sk+1+a−1 and
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dn
(
Uq,Up

)
= ecpqαn+ sk+1−a . (4.51)

Since nsk ≥ 2sk for a sufficiently large k ∈ N, we can write

sk ≤ nsk − sk +a≤ n ⇒ n+ sk+1−a≤ 2n. (4.52)

for sufficiently large a. Then, we obtain

dn
(
Uq,Up

)
= ecpqαn+ sk+1−a ≥ ecpqα2n ≥ ecpqα4n (4.53)

and always we have

dn
(
Uq,Up

)
= ecpqαn+ sk+1−a ≤ ecpqαn (4.54)

since α is increasing.

Therefore, the inequality 4.37 is satisfied for sufficiently large elemets of K.

Now, we will show that the inequality 4.37 is satisfied for a sufficiently large element

of L. Let us take a n ∈ L. Then, there is an a ∈ N such that

ja +1≤ n≤ ns(ka +1)− s(ka +1) +a−1 (4.55)

and

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)−a
. (4.56)

Since ska
≤ nska

− ska
+a ≤ ja +1 ≤ n and n+ s(ka +1)−a ≤ 2n for a sufficiently

large n, then we find

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)−a
≥ ecpqα2n ≥ ecpqα4n , (4.57)

and always we have

dn
(
Uq,Up

)
= e

cpqαn+ ska
−a ≤ ecpqαn (4.58)

since α is increasing. Therefore, the inequality 4.37 is satisfied for sufficiently large

element of L.

Now we will show that the inequality 4.37 is satisfied for a sufficiently large element

of M. If n ∈M, then there is an a ∈ N

nska
− ska

+a≤ n≤ ja−1(4.59)
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and

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)− (a−1).(4.60)

Again we can write ska
≤ nska

− ska
+a ≤ n and nska

+ s(ka +1)−a+1≤ 2n for a

sufficiently large a. Hence we find

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)− (a−1)
≥ ecpqα2n ≥ ecpqα4n (4.61)

and always we have

dn
(
Uq,Up

)
= e

cpqαn+ s(ka +1)−a
≤ ecpqαn (4.62)

since α is increasing. Therefore, the inequality 4.37 is satisfied for a sufficiently large

element of M. This completes the proof. �

4.2.2 The diametral dimension and the approximate diametral dimension of an

element of the family parameterized by a stable sequence α

As a consequence of Theorem 4.2.3, we will compute the diametral dimension and

the approximate diametral dimension of an element α of the family which is

parameterized by a stable sequence α .

Corollary 4.2.4 Let α be an element of the family which is parameterized by a

stable sequence α . Then, ∆( α) = ∆(Λ1 (αn)) and δ ( α) = δ (Λ1 (αn)).

Proof. From Proposition 4.2.3, we have

∆(Λ1(αn))⊆ ∆( α)⊆ ∆(Λ1(α4n)) (4.63)

and

δ (Λ1(α4n))⊆ δ ( α)⊆ δ (Λ1(αn)). (4.64)

On the other hand, Λ1(αn) ∼= Λ1(α4n) since α is stable. Then ∆( α) = ∆(Λ1 (αn))

and δ ( α) = δ (Λ1 (αn)). �

4.2.3 The diametral dimension and the approximate diametral dimension of an

element of the family parameterized by an unstable sequence α
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In this subsection, we will prove that ∆( α) = ∆(Λ1 (αn+1)) and δ ( α) 6=

δ (Λ1 (αn+1)) for an element α of the family which is parameterized by an

unstable sequence α . Besides, we will show that all regular elements of the family

are parameterized by an unstable sequence α .

Proposition 4.2.5 Let α be an element of the family which is parameterized by

an unstable sequence α . Then, ∆( α) = ∆(Λ1 (αn+1)).

Proof. We can calculate Kolmogorov diameters as in the previous determined for

every p and q > p. Since α is unstable, then there exists an a0 ∈ N such that for

all a≥ a0, there is no m > na, m ∈ N satisfying

αm ≤ Apq αna (4.65)

Now, we examine closely the indices replaced the term e
(
cpq−1

)
αna0 . We know

that

d j(a0−1)
(Uq,Up) = e

(cpq−1)αn(a0−1) (4.66)

where j(a0−1) := i(a0−1) − s(a0−1) + a0−2. Since αi(a0−1)
≤

Apq αn(a0−1) and there is no m > na0 satisfying αm ≤ A pq αna0
, then we

find i(a0−1) < na0 . Therefore, the following figure below is valid:

na0−1 ja0−1 ia0−1 na0

Figure 4.13 : Graphic 10

This gives that for all j
(a0−1) ≤ n≤ na0−2,

dn(Uq,Up) = ecpq αn+1. (4.67)

Besides, we obtain that the sequence
(

ap,n

aq,n

)
n∈N

has decreasing order starting from

the indices j(a0−1) + 1, since for every a ≥ a0, there is no n > na0 satisfying αn ≤

Apq αna . Then, we have for all a≥ a0

dna−1(Uq,Up) = e(cpq−1)αna (4.68)

and for all m≥ j(a0−1), m ∈ N− I
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dm(Uq,Up) = ecpq αm+1 . (4.69)

Since dn(Uq,Up)≤ ecpqαn+1 for every n ∈ N, then we find ∆( α)⊇ ∆(Λ1(αn+1)).

For the other direction, let us take a sequence (xn)n∈N ∈ ∆( α), an ε > 0 and a p ∈N

satisfying
1
p
< ε . We will show that

sup
n∈N
|xn|e−ε αn+1 <+∞. (4.70)

Since (xn)n∈N ∈ ∆( α), there exist a q > p and M1 > 0 satisfying

sup
n∈N
|xn|dn

(
Up,Uq

)
< M1. (4.71)

Let us define I =
⋃

p≤s<q
Is. For sufficiently large n ∈ N− I, we can write

|xn|e−ε αn+1 ≤ |xn|dn
(
Uq,Up

)
= ecpqαn+1 ≤M1 (4.72)

since cpq ≥ −ε . Therefore, the sequence |xn|e−εαn+1 is bounded on the set N− I.

If we show that |xn|e−ε αn+1 is also bounded on I, then we will find that (xn)n∈N ∈

∆(Λ1 (αn+1)).

Let take another p0 > q, then there exist a q0 and M2 > 0 such that

sup
n∈N
|xn|dn

(
Uq0 ,Up0

)
< M2. (4.73)

Let us define J =
⋃

p0≤s<q0

Is. Since cp0,q0 ≥−ε , we find

|xn|e−ε αn+1 ≤ |xn|dn
(
Uq0,Up0

)
= ecp0,q0αn+1 ≤M2. (4.74)

for sufficently large n+ 1 ∈ N− J. Also, it is easy to see that I ⊂ N− J. Then, the

above inequalities give us that

|xn|e−ε αn+1 ≤M2. (4.75)

for all n ∈ I. Hence, the sequence |xn|e−ε αn+1 is also bounded on I. Therefore, we

find

sup
n∈N
|xn|e−ε αn+1 <+∞ (4.76)

and (xn)n∈N ∈ ∆(Λ1 (αn+1)). This says that ∆( α) = ∆(Λ1 (αn+1)). �
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Proposition 4.2.6 Let α be an element of the family which is parameterized by

a stable sequence α . Then, δ ( α) 6= δ (Λ1 (αn+1)).

Proof. In the proof of the previous proposition, we show that if α is unstable, then for

all p ∈ N and q > p, there is a a0 ∈ N such that for all a≥ a0

dna−1(Uq,Up) = e(cp,q−1)αna , (4.77)

so the last equality holds except for finitely many numbers of elements of I. Then we

have
εna−1 (p,q)

αna

= 1− cp,q (4.78)

and

limsup
a∈N

εna−1 (p,q)
αna

= 1− cp,q ⇒ inf
p

sup
q

limsup
n∈N

εn (p,q)
αn+1

> 0. (4.79)

By Proposition 3.1.2, we have δ
(
K
(
ak,n
))
6= δ (Λ1 (αn+1)). �

Remark 4.2.7 Proposition 4.2.5 and Proposition 4.2.6 shows that Question 1.0.2 has

a negative answer for the elements of the family which is parametrized by an

unstable exponent sequence.

Now, we will show that all regular elements of the family are parameterized by an

unstable sequence α . First, we will give a condition for the regularity of the elements

of the family .

Recall that a Köthe space generated by the matrix
(
ak,n
)

k,n∈N is called regular

if the inequality
ak+1,n

ak,n
≤

ak+1,n+1

ak,n+1
(4.80)

is satisfied for all k,n ∈ N see Definition 2.2.3.

Let α be an element of the family parameterized by an exponent sequence α

and n ∈ Is, s ∈ N. Then, there exist two cases for n+1: n+1 ∈ Is+1 or n+1 ∈ I1.

• First we assume n+1 ∈ Is+1: For this case, n+1≥ (s+1)(s+2)
2

≥ s+1.
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i) For k+1≤ s, we have

ak,n = e−
1
k αn , ak+1,n = e−

1
k+1 αn ,

ak,n+1 = e−
1
k αn+1 , ak+1,n+1 = e−

1
k+1 αn+1.

(4.81)

Since α is increasing, the inequality

ak+1,n

ak,n
= e(

1
k −

1
k+1)αn ≤ e(

1
k −

1
k+1)αn+1 =

ak+1,n+1

ak,n+1
(4.82)

holds in this case.

ii) For k ≥ s+1, we have

ak,n = e(−
1
k +1)αn , ak+1,n = e(−

1
k+1 +1)αn ,

ak,n+1 = e(−
1
k +1)αn+1 , ak+1,n+1 = e(−

1
k+1 +1)αn+1 .

(4.83)

Since α is increasing, the inequality

ak+1,n

ak,n
= e(

1
k −

1
k+1)αn ≤ e(

1
k −

1
k+1)αn+1 =

ak+1,n+1

ak,n+1
. (4.84)

holds in this case.

iii) For k = s, we have

ak,n = e−
1
k αn , ak+1,n = e(−

1
k+1 +1)αn ,

ak,n+1 = e−
1
k αn+1 , ak+1,n+1 = e−

1
k+1αn+1.

(4.85)

Then, these give that

ak+1,n

ak,n
= e(

1
k −

1
k+1 +1)αn and

ak+1,n+1

ak,n+1
= e(

1
k −

1
k+1)αn+1.

(4.86)

In this case, the regularity condition
ak+1,n

ak,n
≤

ak+1,n+1

ak,n+1
is equivalent to the

following inequality:

(1+ k(k+1))αn ≤ αn+1 ∀n ∈ Ik, k ∈ N (4.87)

• Next, we assume n+1 ∈ I1: For this case, n =
s(s+1)

2
≥ s.

i) For k+1≤ s, we have

ak,n = e−
1
k αn, ak+1,n = e−

1
k+1 αn,

ak,n+1 ≤ e(−
1
k +1)αn+1 , ak+1,n+1 = e(−

1
k+1 +1)αn+1 .

(4.88)

Since α is increasing,

ak+1,n

ak,n
= e(

1
k −

1
k+1)αn ≤ e(

1
k −

1
k+1)αn+1 ≤

ak+1,n+1

ak,n+1
. (4.89)
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ii) For k ≥ s+1, we have

ak,n = e(−
1
k +1)αn , ak+1,n = e(−

1
k+1 +1)αn ,

ak,n+1 = e(−
1
k +1)αn+1 , ak+1,n+1 = e(−

1
k+1 +1)αn+1.

(4.90)

Since α is increasing,

ak+1,n

ak,n
= e(

1
k −

1
k+1)αn ≤ e(

1
k −

1
k+1)αn+1 =

ak+1,n+1

ak,n+1
. (4.91)

iii) For k = s, we have

ak,n = e−
1
k αn, ak+1,n = e(−

1
k+1 +1)αn,

ak,n+1 ≤ e(−
1
k +1)αn+1 , ak+1,n+1 = e(−

1
k+1 +1)αn+1.

(4.92)

Then, these gives that

ak+1,n

ak,n
= e(

1
k −

1
k+1 +1)αn and e(

1
k −

1
k+1)αn+1 ≤

ak+1,n+1

ak,n+1
. (4.93)

In this case, the regularity condition
ak+1,n

ak,n
≤

ak+1,n+1

ak,n+1
is equivalent to the

inequality (4.5).

Hence, we have obtained a regularity condition for a Köthe space α from above

observation:

Proposition 4.2.8 Let α be an element of the family parameterized by the

sequence α . Then, α is regular if and only if the inequality

(1+ s(s+1))αn ≤ αn+1 (4.94)

is satisfied for all n ∈ Is and s ∈ N.

We also note that the sequence (αn)n∈N =

(
n−1

∏
i=0

(1+ i(i+1))

)
n∈N

satisfies the

condition of Proposition 4.2.8 since

αn+1

αn
= (1+n(n+1))≥ (1+ s(s+1)) (4.95)

for all n ∈ Is, s ∈ N.

As a consequence of Proposition 4.2.8, we obtain the following result:
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Corollary 4.2.9 Let α be an element of the family parameterized by the

sequence α . If α is regular, then the sequence α is unstable.

Proof. Let α be a regular Köthe space generated by the matrix (akn)k,n∈N given

in 4.1 and assume α is not unstable, that is, lim
n→∞

αn+1

αn
6= +∞. Then, there exist a

M > 0 and a non-decreasing sequence (nk)k∈N so that sup
k∈N

αnk+1

αnk

< M. Since (nk)k∈N

is non-decrasing and α is regular, we can write

αk+1

αk
≤

αnk+1

αnk

≤M (4.96)

for all k ∈ N and from Proposition 4.2.8, we find that

(1+ s(s+1))≤ αk+1

αk
≤M (4.97)

for all k ∈ Is, s ∈ N. This is a contradiction, therefore α must be unstable, as desired.

�

Remark 4.2.10 Being unstable is not sufficient for regularity of Köthe space α .

For instance, the sequence (αn)n∈N = ((n−1)!)n∈N does not satisfy the condition of

Proposition 4.2.8. Indeed, for every s ∈ N, n =
s(s+1)

2
∈ Is and

αn+1

αn
= n =

s(s+1)
2

< 1+ s(s+1). (4.98)

Remark 4.2.11 As a corollary of Proposition 4.2.5, Proposition 4.2.6 and Corollary

4.2.9, we can obtain that ∆( α)) = ∆(Λ1 (αn+1)) and δ ( α) 6= δ (Λ1 (αn+1)) for a

regular element α of the family which is parameterized by an exponent sequence

α .
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4.3 Inferences Acquired From the Family

In this section, we compile some additional information for the family .

We have shown that an element α of the family which is parametrized by

an unstable sequence α constitutes a counterexample to Question 1.0.2. An element

α of the family which is parametrized by an unstable sequence α is crucial for

Question 1.0.1, as well:

Theorem 4.3.1 There exists a nuclear Fréchet space E with the properties DN and Ω

satisfying ∆(E) = ∆(Λ1(ε)), for its associated exponent sequence ε , with the property

that there is no subspace of E which is isomorphic to Λ1(ε).

Proof. Let α be an element of the family which is parametrized by an unstable

sequence α . We proved that ∆( α) = ∆(Λ1(αn+1)) in Proposition 4.2.5. Therefore,

the sequence (αn+1)n∈N is the associated exponent sequence of α . Besides, we

showed that δ ( α) 6= δ (Λ1(αn+1)) in Proposition 4.2.6.

Assume that there exists a subspace of α which is isomorphic to Λ1(αn+1). This

gives us that δ (Λ1(αn+1)) ⊆ δ ( α) by Proposition 2.1.4. Since always δ ( α) ⊆

δ (Λ1(αn+1)), we conclude that δ ( α) = δ (Λ1(αn+1)). But this is a contradiction.

Hence, there is no subspace of α which is isomorphic to Λ1(αn+1). �

Remark 4.3.2 The above theorem indicates that Question 1.0.1 has a negative answer.

It is worth mentioning that we can even find even a nuclear regular Köthe space with

the properties listed in Theorem 4.3.1.

In the third chapter, we gave conditions confirming an affirmative answer for Question

1.0.2. Obviously, these conditions are not valid for an element α of the family

which is parameterized by an unstable sequence α . For instance, Theorem 3.2.2 says

that Question 1.0.2 has positive answer provided that ∆(E) is barrelled with respect to

the canonical topology. Therefore, we obtain the following:
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Proposition 4.3.3 Let α be an element of the family parameterized by an

unstable sequence α . Then ∆( α), with the canonical topology, is neither barrelled

nor ultrabornological.

We actually wanted the barrelledness in Theorem 3.2.2 to be able to use a closed

graph type theorem, [37, Theorem 5, Pg. 40] which says that a linear map f from a

barrelled space X into a Fréchet space Y is continuous provided that the graph of f is

closed in X×Y .

Since δ ( α) 6= δ (Λ1(αn+1)) and ∆( α) = Λ1(αn+1), the technique used in

the proof of Theorem 3.2.2 is not valid for an element α of the family

parameterized by an unstable sequence α . Hence, this gives us that the identity

mapping from ∆( α) into Λ1(αn+1) is not continuous although it has a closed graph:

Theorem 4.3.4 Let α be an element of the family parameterized by an unstable

sequence α . Then ∆( α) = ∆(Λ1(αn+1)) and the identity map from ∆( α) into

Λ1(αn+1) is not continuous although it has a closed graph.

Again since ∆( α) = ∆(Λ1(αn+1)) and δ ( α) 6= δ (Λ1(αn+1)) for an element

α of the family parameterized by an unstable sequence α , as a corollary of

Proposition 3.2.6 and Corollary 3.2.8, we have the following:

Theorem 4.3.5 There exists a nuclear Fréchet space E with the properties DN and Ω

satisfying ∆(E) = ∆(Λ1(ε)) for its associated exponent sequence ε such that there is

no prominent bounded set of E. Hence, this space also does not satisfy D2-property.

Remark 4.3.6 It is worth to note that as a consequence of Corollary 4.2.4, Proposition

3.2.6 and Corollary 3.2.8, an element α of the family parameterized by a stable

sequence α has the property D2, whereas, we showed that this space does not have the

property d2 in Remark 4.2.2.

A nuclear Fréchet space E with an increasing sequence of seminorms (‖.‖k)k∈N is

called tame if there exists an increasing function σ : N→ N, such that for every
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continuous linear operator T : E→ E there exists a n0 ∈ N and C > 0 so that

‖T (x)‖k ≤C‖x‖
σ(k) ∀ x ∈ E. (4.99)

In [2, Theorem 2.3], A. Aytuna proved that a nuclear Fréchet space E with the

properties DN and Ω and stable associated exponent sequence ε is isomorphic to a

power series space of finite type if and only if E is tame and δ (E) = δ (Λ1(ε)). As a

consequence of this result and Remark 4.3.6, we have the following:

Proposition 4.3.7 Let α be an element of the family parameterized by a stable

sequence α . Then, α is not tame.
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5. CONCLUSIONS

In this thesis we have investigated the structure of nuclear Fréchet spaces with the

properties DN and Ω by studying the relations between their topological invariants.

Diametral dimension and/or approximate diametral dimension of a nuclear Fréchet

space E with the properties DN and Ω is closely related to those of a designated power

series space. In this thesis, we focused our attention to nuclear Fréchet spaces E with

the properties DN and Ω whose diametral and/or approximate diametral dimension

coincides with that of a designated power series space.

In the first chapter, we mention some significant studies in the theory of nuclear

Fréchet spaces and give the aim of this thesis. In the second chapter, we give

preliminary materials and essential theorems.

In the third chapter, we showed that Question 1.0.2 has an affirmative answer

when power series space is of infinite type. Then we searched an answer for the

Question 1.0.2 in the finite type case and, in this regard, we first prove that the

condition δ (E) = δ (Λ1 (ε)) always implies ∆(E) = ∆(Λ1 (ε)). For the other

direction, existence of a prominent bounded subset in the nuclear Fréchet space E

plays a decisive role for the answer of Question 1.0.2. Among other things, we

prove that δ (E) = δ (Λ1 (ε)) if and only if E has a prominent bounded set and

∆(E) = ∆(Λ1 (ε)).

In the first section of the fourth chapter, we showed that a regular nuclear Köthe

space with the properties DN and Ω is a power series space if its diametral dimension

coincides with that of a power series space of infinite type or its approximate diametral

dimension coincides with that of a power series space of finite type.

In the second section of the fourth chapter, we constructed a family of nuclear
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Köthe spaces α with the properties DN and Ω. First we showed that for an

element of the family of which is parameterized by a stable sequence α , we have

∆( α) = ∆(Λ1(α)) and δ ( α) = δ (Λ1(α)). Next, we proved that for an element

of the family of which is parameterized by an unstable sequence α , we have

∆( α) = ∆(Λ1(ε)) and δ ( α) 6= δ (Λ1(ε)) for its associated exponent sequence ε .

This showed that the second question has a negative answer for power series space

of finite type. Furthermore, we proved in Theorem 4.3.1 that the first question has

a negative answer, that is, Λ1(ε) is not isomorphic to any subspace of these Köthe

spaces α , let alone is isomorphic to a complemented subspace, though the condition

∆( α) = ∆(Λ1(ε)) is satisfied. In the third section of fourth chapter, motivated by our

finding in the third section, we compiled some additional information. For instance,

for an element E of the family parameterized by an unstable sequence:

• E does not have a prominent bounded set.

• ∆(E), with respect to the canonical topology, is not barrelled, hence, not

ultrabornological.

• Although the equality ∆(E) = Λ1(ε) is satisfied and the canonical imbedding from

∆(E) into Λ1(ε) has a closed graph, the canonical imbedding from ∆(E) into Λ1(ε)

is not continuous.

In the future, we would like to search the conditions which will give us an imbedding

from a power series space of finite type to a nuclear Fréchet spaces with the properties

DN and Ω. In this context we propose to give special emphasize to the elements of the

family parameterized by a stable sequence.
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