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STABILITY ANALYSIS AND HOPF BIFURCATION
IN A DELAY-DYNAMICAL SYSTEM

SUMMARY

Nonlinear dynamical systems have had an important place in the financial science for
the last decades. These developments have helped the community understand the
internal complexity of financial and economical models especially through stability,
bifurcation and chaos theory. In literature, there is a great deal of studies and dynamical
systems on this field.

In this thesis work, the following dynamical system is considered

ẋ = z(t)+ [y(t)−a]x(t)+u(t), (1a)
ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (1b)
ż =−x(t)− cz(t), (1c)
u̇ =−dx(t)y(t)− ku(t) (1d)

where a,b,c,d,k are nonnegative parameters of the system. Here K is the feedback
strength and τ is time delay term, K,τ ∈R and K,τ ≥ 0. State variables of the systems
represent the interest rate x, the investment demand y, the price index z and average
profit margin u.

The main purpose of this study is to investigate the dynamic response of the system
with average profit margin variable and time delay. The topics covered in the thesis
study are as follows:

In Section 1, we introduce the model we are considering and we present information on
the properties of this system. We give a brief overview on the other financial dynamical
systems available in the literature.

In Section 2, we review some basic information about nonlinear stability analysis of
dynamical systems, in non-delay and delay case.

Section 3 includes the main work that was carried out in this thesis study. A financial
model with the delayed feedback term is considered and the fixed points of this system
are obtained. The distributions of the roots of the transcendental type characteristic
equation is analyzed at the fixed points. After stability analysis, we determine a
critical value for the time delay τ , which we name as τ0. We show that the system
undergoes a Hopf bifurcation at τ0 theoretically, switching its dynamics from stability
to instability under some conditions on the parameters. Furthermore, the information
obtained theoretically is represented by numerical simulations. We exhibit the stability
condition of the system at the different τ values by graphs.

In Section 4, we summarize our results and we conclude by some future
recommendations.
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GECİKMELİ BİR DİNAMİK SİSTEMİN
KARARLILIK ANALİZİ VE HOPF ÇATALLANMASI

ÖZET

Dinamik sistemler hayatımızın bir parçasıdır ve zamana göre değişimi modelleyen
sistemlerdir. Bu sistemler diferansiyel denklemler ile ifade edilirler ve lineer veya
nonlineer olabilirler. Matematiksel olarak bir dinamik sistem,

dx
dt

= ẋ = f (x), x, f ∈ Rn (2)

şeklinde ifade edilir.

Bu tez çalışmasının amacı zaman gecikmeli doğrusal olmayan finansal bir dinamik
sistemin nitel davranışlarını araştırmaktır. Faiz oranı, yatırım talebi, fiyat endeksi ve
ortalama kar marjı içeren bu sistemin dinamik yapısı incelenip, denge noktalarında
stabilite analizi yapılarak Hopf çatallanması incelenmiştir. Ayrıca bu stabilite analizleri
sayısal simüslayonlarla desteklenmiştir.

Sistemdeki kaotik bir davranış dış faktörlere bağlı kalmayıp sistemin doğal iç
yapısındaki belirsizliklerden meydana gelmektedir. Bu durum ise kaos teorisinin
ortaya çıkmasına ve bilim dünyasının dikkatini çekmesine sebep olmuştur. Kaos
teorisi ise hava durumu, borsa, türbülans gibi kontrol ve tahmin edilmesi zor olgularda
uygulama imkanı bulmaktadır.

Kaos teorisi fen bilimleri ve mühendislik bilimleri yanında ekonomi alanında da
önemli bir yere sahiptir. 2007 yılında ABD’de görülen mortgage krizinde olduğu
gibi ekonomi dünyasında herhangi bir kriz çıkması durumunda kaos meydana
gelmektedir. Dinamik sistem teorisi ve ekonomi-finans bilimleri arasındaki etkileşim
hem matematikçiler hem de ekonomi uzmanları için geçmişten günümüze önemli bir
araştırma alanıdır.

Literatürde dinamik sistemlere bakıldığında, finans teorisi ile igili birçok matematiksel
modeller vardır. Örneğin,

ẋ = z+(y−a)x, (3a)
ẏ = 1−by− x2, (3b)
ż =−x− cz (3c)

şeklindeki üç bağımlı değişkenli finansal dinamik sistem; üretim, para, sermaye ve
iş gücü olmak üzere dört alt değişkenden yola çıkılarak türetilmiş olup, sistemdeki
x değişkeni faiz oranını, y değişkeni yatırım talebini ve z değişkeni fiyat endeksini
ifade etmektedir. Sabit değerlerden bahsetmek gerekirse, a ≥ 0 sabit değeri tasarruf
miktarını, b ≥ 0 sabit değeri yatırım başına düşen maliyeti ve c ≥ 0 sabit değeri ise
ticari piyasalarda talebin fiyat esnekliğidir. Yatırım piyasasındaki, yatırım ve tasarruf
arasındaki fazlalık ve fiyatlardaki değişiklik faiz oranlarında önemli değişikliklere
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sebep olmaktadır. Bu durumu (3a) denklemi ifade etmektedir. (3b) denklemi ise y
değişkenindeki herhangi bir değişim oranının yatırım maliyeti ile faiz oranı ile ilgili
olduğunu söyler. Son olarak, fiyat endeksinin enflasyon oranlarından etkilenmesinden
hareketle (3c) denklemi formülize edilmiştir. Bu çalışmanın esas amacı ise (3)
sistemini esas alarak yeni bir sistem oluşturup, yeni sistemin stabilite analizini ve Hopf
çatallanmasını araştırmaktır.

Bu hedef doğrultusunda tez çalışmasında işlenen konular aşağıda belirtildiği gibidir.

Bölüm 1’de öncelikle bu tez çalışmasında araştırma yapılacak sistemin nasıl
oluşturulduğundan bahsedildi. Sistemin oluşturulmasında literatürdeki iki model ele
alınmıştır. Sistemlerden biri, kaotik davranış gösteren (3) denkleminin yatırım talebini
ifade eden y değişkeninin denklemine zaman gecikme geribildirimi eklenmesi ile

ẋ = z(t)+ [y(t)−a]x(t), (4a)
ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (4b)
ż =−x(t)− cz(t) (4c)

şeklinde ifade edilen diferansiyel denklem sistemidir. Sistemde τ ≥ 0 zaman
gecikmesini, K ise geri bildirim gücünü temsil etmektedir. Bu sistem parametrelere
bağlı olarak bir ya da üç denge noktasına sahiptir. Sistemde bir denge noktasında
stabilite analizi uygulanmış ve Hopf dallanması saptanmıştır, bu kritik değerde y
değişkeni periyodik davranış göstermektedir. Sistemdeki a,b,c sabit değerlerine
uygun değerler verildiğinde ve τ0 kritik zaman gecikme değeri olarak alındığında,
sistem τ ∈ [0,τ0) değerleri için stabil davranırken τ = τ0 değerinde Hopf dallanması
meydana gelmektedir.

Modelimizi inşa ederken esas aldığımız diğer denklem sistemi ise

ẋ = z+(y−a)x+u, (5a)
ẏ = 1−by− x2, (5b)
ż =−x− cz, (5c)
u̇ =−dxy− ku (5d)

şeklindedir. Bu sistemde faiz oranı sadece yatırım talebi ve fiyat endeksine bağlı
olmayıp ortalama kar marjına da bağlıdır. Ayrıca ortalama kar marjı ile faiz oranı doğru
orantılıdır. Bu sistem ise (3) sistemine ortalama kar marjını ifade eden u yeni durum
değişkeni eklenmesi ile elde edilmiştir. Parametrelerin bazı değer aralıkları için, (3)
sistemi bir pozitif Lyapunov üsteline sahipken, (5) sistemi iki pozitif Lyapunov üsteline
sahiptir. Dolayısıyla (3) sistemi kaotik bir yapıya sahipken (5) sistemi hiperkaotik bir
davranış sergilemektedir.

Bu sistemler ve çalışmamızda esas aldığımız dinamik finansal sistemimiz hakkında
bilgiler verilmiştir. Daha sonrasında bu sistemlere paralel olarak literatürdeki diğer
sistemler incelenmiştir.

Bölüm 2’de ise lineer ve nonlineer dinamik sistemler, stabilite analizi, linearizasyon
ve Hopf dallanması koşulları hakkında bilgiler verilmiştir. Lineer olmayan zaman
gecikmeli diferansiyel denklemler hakkında da bilgi verilip, örneklerle anlatım
yapılmıştır.
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Bölüm 3’te ise sistem (4) ve sistem (5)’in birleştirilmesi ile oluşturulan yeni dinamik
finans sistemimiz;

ẋ = z(t)+ [y(t)−a]x(t)+u(t), (6a)
ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (6b)
ż =−x(t)− cz(t), (6c)
u̇ =−dx(t)y(t)− ku(t) (6d)

şeklinde ifade edilmiştir. K geri bildirim gücünü ifade etmekte ve K,τ ≥ 0 olup,
a,b,c,d,k yine sistemin negatif olmayan parametreleridir.

Tez çalışmasının konusunu, yukarıda anlatılanlar ışığında, şu soruların cevaplanması
oluşturmaktadır:

• Sistem (6) denge noktaları civarında nasıl bir davranış gösterir?

• Bu sistemin stabilite analizi yapıldığında Hopf çatallanması meydana gelir mi?

• Sistemde çatallanmaya sebep olan kritik τ0 değerini analitik olarak hesaplayabilir
miyiz?

• (5) sistemine zaman gecikme teriminin eklenmesinin denklemin stabilitesi
üzerindeki etkisi nedir?

Sonuç olarak, bu tez çalışmasında ek değişkenler ve zaman gecikme terimlerinin (3)
sistemine etkilerini hesaba katarak, (4) ve (5) sistemlerinin birleştirilmesiyle dinamik
finans sistemi (6) incelenmiştir. Yeni kurulan bu dinamik sistemin stabilite analizi
yapıldıktan sonra sistemde Hopf çatallanmasının meydana geldiği hem analitik olarak
hem de sayısal simülasyonlarla gösterilmiştir.
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1. INTRODUCTION

The aim of this thesis work is to investigate the qualitative behaviour of a financial

dynamical system which contains a time delay. We investigate the dynamic response

of this system of which variables are interest rate, investment demand, price index and

average profit margin. We perform a stability analysis at the fixed points and show that

the system undergoes a Hopf bifurcation. The bifurcation analyses are supported by

numerical simulations.

Jun-Hai and Yu-Shu [1] states that chaotic behaviour is the inherent randomness in a

given system. Internal properties of the system cause that uncertainty, not the external

disturbances. This makes chaos theory "attractive", as the complicated things can be

interpreted as the internal behaviours in themselves with a certain structure and aims,

but not as the external and accidental behaviour [1]. Also, it is the more harder to

predict the behavior of the system when the inherent randomness is irregular.

Chaos theory has had an important place in economics besides nature and engineering

fields. In economic field, chaos occurs during economic crisis; for instance, as in the

USA mortgage crisis. When this crisis happened in the USA in 2007, the chaos had

started at the financial world. The interplay between the dynamical systems theory

and economic and financial science has been a major subject of research both for the

mathematicians and experts of economic fields in the past decades and to date.

In dynamical systems literature, there are lots of mathematical models related to

finance theory. We would like to mention first the financial dynamical system

ẋ = z+(y−a)x, (1.1a)

ẏ = 1−by− x2, (1.1b)

ż =−x− cz. (1.1c)

Refs. [1], [2], [3], [4], [5], [6] said that this financial dynamic model is formed of four

sub-blocks: production, money, stock and labor force, and can be written as three first

order differential equations. Three state variables of the system denote interest rate

1



x, the investment demand y, and the price index z. To mention the constants, a ≥ 0

is the saving amount, b ≥ 0 is the cost per investment, and c ≥ 0 is the elasticity of

demand of commercial markets. Two factors cause the major changes in the interest

rate x: one of them is contradiction from the investment market, which is the surplus

between investment and savings, and the other one is structural adjustment from the

prices. This is expressed in (1.1a). The rate of change of y is related with the cost of

investment and the interest rate as given in (1.1b). Change in z is affected by inflation

rates, therefore, at the same time, it can be expressed by the nominal interest rate and

real interest rate, which is formulated in (1.1c) [1].

The model we will be interested in is based on two existing models. When we focus

on Ref. [6], we see that besides exhibiting the chaotic behaviour of the model (1.1)

for some ranges of the parameters, by calculating the Lyapunov exponents; they also

consider the case where there is a time delay feedback in the investment demand;

ẋ = z(t)+ [y(t)−a]x(t), (1.2a)

ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (1.2b)

ż =−x(t)− cz(t). (1.2c)

Here τ ≥ 0 is the time delay and K stands for the strength of the feedback. Depending

on the parameters, the system may have one or three equilibrium points. They perform

the stability analysis of the system in the single equilibrium case and occurrence of a

Hopf bifurcation in which the variable y experiences periodic behavior is exhibited. If

the constants a,b,c of the system satisfy certain conditions, the authors show that the

system is stable for τ ∈ [0,τ0), where τ0 is a critical value of the time delay, and the

system undergoes a Hopf bifurcation when τ = τ0.

The other model that we build our main problem upon is the hyperchaotic system of

Ref. [7] which they formulate as

ẋ = z+(y−a)x+u, (1.3a)

ẏ = 1−by− x2, (1.3b)

ż =−x− cz, (1.3c)

u̇ =−dxy− ku. (1.3d)

2



Basically, the authors of [7] state that the factors related to interest rate are relevant

not only to investment demand and price index but also to the average profit margin:

average profit margin and interest rate are proportional. By adding average profit

margin as a new state variable u to the system (1.1), they obtain the system (1.3).

This newly constructed system has an interesting property: While the system (1.1) has

one positive Lyapunov exponent for some range of the parameters, a sign for intrinsic

chaotic behaviour, (1.3) is shown in [7] to possess two positive Lyapunov exponents

for some region of the parameter space, which is defined in literature as a signal to

hyperchaotic behaviour.

Motivated by the two works above, we consider the following system,

ẋ = z(t)+ [y(t)−a]x(t)+u(t), (1.4a)

ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (1.4b)

ż =−x(t)− cz(t), (1.4c)

u̇ =−dx(t)y(t)− ku(t), (1.4d)

which is a combination of (1.2) and (1.3), taking into account a time-delayed

feedback in the investment demand variable y and the effect of average profit margin

simultaneously in (1.1). Here K is the feedback strength, K,τ ≥ 0, and also a,b,c,d,k

are the nonnegative parameters of the system (1.4).

To our knowledge, the existing literature does not consider the system (1.4) and in our

analysis, we would like to answer the following questions:

(Q1) How is the qualitative behaviour of the system (1.4) around its fixed points?

(Q2) When we follow the route in [6] and do the stability analysis of (1.4), does the

system undergo a Hopf bifurcation?

(Q3) Can we analytically determine the critical value of τ0 that gives the bifurcation?

(Q4) How is the effect of addition of the delay term on the stability of the system (1.3)?

Therefore, the main purpose of this thesis is to search the dynamics of the

financial model (1.4) by taking into account the effects of the additional variable

and delay-feedback terms in (1.1). After performing stability analysis of the

3



constructed finance system, we theoretically demonstrate that the system undergoes

a Hopf-bifurcation and this phenomenon is supported by numerical simulations. We

wish that our results on controlled and delayed feedback analysis can be useful for

constructing fiscal policy.

The thesis is organized as follows. In the following subsection we present a literature

survey. In Section 2 we provide some basic knowledge about nonlinear stability

analysis of dynamical systems, in non-delay and delayed case. Section 3 contains the

main work, presenting the stability analysis and the investigation of a Hopf bifurcation

for the constructed finance system at the fixed points. Bifurcation analyses are

demonstrated by numerical simulations. Section 4 is devoted to concluding remarks

and future discussions.

1.1 Literature Review

The motivation of the this thesis is based on the system (1.1), and, as we explained

above, our model is a combination of (1.2) and (1.3). In addition to the References [1],

[2], [3], [4], [5], [6] and [7], in this subsection we will present a brief literature survey

on these type of systems.

Refs., [1], [2] and [8] consider the topological structure, Hopf bifurcation and the

chaotic situation with different parameter combinations and the effect of any change

of the parameters on the economy of the equation (1.1). Another study [5] tackles

with this equation (1.1) in view of fractional nonlinear models and its aim is to

consider the chaotic behavior in fractional financial systems. Also, Ref. [9] considers

synchronization strategies of a three-dimensional chaotic finance system.

By doing the shift y→ y− 1
b in the equation (1.1), and adding a delay term to the first

equation of the system,

ẋ = (
1
b
−a)x+ z+ xy+ k(x(t− τ)− x(t)), (1.5a)

ẏ =−by− x2, (1.5b)

ż =−x− cz (1.5c)

4



is obtained, which is analyzed in [10]. Another version of this system appears in [11]

as

ẋ =−a(x+ y)+K(x(t)− x(t− τ)), (1.6a)

ẏ =−y−axz, (1.6b)

ż = b+axy. (1.6c)

In Refs. [6] and [12], time delay is added to the second equation of (1.1), the system

becoming

ẋ = z+[y−a]x, (1.7a)

ẏ = 1−by− x2 +K[y(t)− y(t− τ)], (1.7b)

ż =−x− cz (1.7c)

to investigate the influence of the time delay on investment demand y. Chen’s system

[13] is expressed as the following

ẋ = a(y− x), (1.8a)

ẏ = (c−a)x− xz+ cy, (1.8b)

ż = xy−bz. (1.8c)

By adding a time-delayed term to the second equation of Chen system in [14], they

obtain the system

ẋ = a(y− x), (1.9a)

ẏ = (c−a)x− xz+ cy+K(y(t)− y(t− τ)), (1.9b)

ż = xy−bz. (1.9c)

In [14], they study both the effect of the delayed feedback on Chen’s system and the

existence of a Hopf bifurcation.

Another delayed financial model is handled as follows in [15],

ẋ = (y−a)x+ z(t− τ), (1.10a)

ẏ = 1−by− x2, (1.10b)

ż =−x− cz (1.10c)
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where τ represents price change delay.

In the studies [4] and [16], the authors construct the delayed financial system as follows

ẋ = z+(y−a)x+ k1{x− x(t− τ1)}, (1.11a)

ẏ = 1−by− x2 + k2{y− y(t− τ2)}, (1.11b)

ż =−x− cz+ k3{z− z(t− τ3)} (1.11c)

where τ1,τ2, and τ3 are time delays and k1,k2, and k3 demonstrate the strengths of the

feedbacks. The aim is to investigate the effect of delayed feedbacks on the financial

system with time delay terms on the interest rate, the investment demand and the price

index of the financial system.

Another system in [17] is constructed by adding the fourth variable ω to an

autonomous chaotic system which is proposed by Qi [18]

ẋ = a(y− x)+ eyz− kω, (1.12a)

ẏ = cx−dy− xz, (1.12b)

ż = xy−bz, (1.12c)

ω̇ = rx+ f yz (1.12d)

and the new system has chaotic or hyperchaotic behavior with wide frequency

bandwith with suitable parameters.
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2. NONLINEAR DYNAMICAL SYSTEMS AND STABILITY

Considering what qualitative information can be obtained about the solutions of the

differential equations without solving directly them is so important because many

differential equations cannot be solved easily by analytical methods. In this section,

we present the essential basics for the stability analysis of nonlinear systems. We start

by summarizing the necessary concepts for the linear systems which are related to the

notion of stability of solutions.

2.1 Linear Systems

n-dimensional systems of the first order linear homogenous equations has the form

ẋ = Ax (2.1)

where x∈Rn and A is a n×n matrix. The solution of the linear system (2.1) is proposed

in the form x = ξ ert and when substituted into the equation (2.1), one gets

(A− rI)ξ = 0 (2.2)

revealing that ξ is an eigenvector of the coefficient matrix A and r is an eigenvalue.

The eigenvalues are obtained by solving the roots of polynomial equation

det(A− rI) = 0, (2.3)

and the eigenvectors are acquired by substituting the eigenvalues to the equation (2.2).

If we develop geometrical interpretations of the solutions to (2.1), we can build up

a connection between the geometrical considerations and general solutions for linear

systems. Also, this information helps to understand the more complicated nonlinear

systems. A critical point is the equilibrium solution which is obtained by solving

Ax = 0 of the equation (2.1). A vector function x = φ(t) ∈ Rn which is the solution

of equation (2.1) can be visualized as a parametric representation for a curve in the

x1 . . .xn-space. We can interpret this curve as a path or trajectory which is traversed

by a moving particle whose velocity dx/dt is specified by the differential equation.
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For example, when n = 2, the x1x2-space is called the phase plane, the trajectory is a

curve in R2. All solution curves of the system in the phase space in Rn make up the

phase portrait of the system. For instance, consider the simple uncoupled system

ẋ = Ax, A =

[
−1 0
0 2

]
, x ∈ R2 (2.4)

for which we simply get

x1(t) = c1e−t , x2(t) = c2e2t , (2.5)

or, in a different notation,

x(t) =
[

e−t 0
0 e2t

]
c (2.6)

with c =
[

c1
c2

]
= x(0). Under the evolution of this dynamics, every point c = x(0) ∈ R2

travels to the point x(t) ∈ R2. Therefore, the dynamical system which is determined

by (2.4) is just the mapping φ : R×R2→ R2

φ(t,c) =
[

e−t 0
0 e2t

]
c. (2.7)

The behavior of the linear system can be determined according to the eigenvalues of

the coefficient matrix A. Also, differential equations can be classified depending on

their phase potraits and trajectories. For detA 6= 0, the following theorem is an easy

way to determine if the linear system has whether saddle, node, focus or center at the

origin.

Theorem 1 Let δ = detA and τ = trace A. Consider the linear system

ẋ = Ax, x ∈ Rn. (2.8)

(a) The equation (2.8) has a saddle at the origin for δ < 0.

(b) The equation (2.8) has a node at the origin when δ > 0 and τ2−4δ ≥ 0 ; which is

stable for τ < 0 and unstable for τ > 0.

(c) Assume that δ > 0, τ2− 4σ < 0, and τ 6= 0 then (2.8) has a focus at the origin;

which is stable for τ < 0 and unstable for τ > 0.

(d) The equation (2.8) has a center at the origin when δ > 0 and τ = 0 .
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Note that in case (b), τ2 ≥ 4|δ |> 0; i.e., τ 6= 0.

A stable node or focus of (2.8) is called a sink of the linear system and an unstable node

or focus of (2.8) is called a source of the linear system. Additionally, for illustrating

the case in R2, when the linear system is taken as the following

ẋ = Ax, x ∈ R2 (2.9)

with det(A− rI) = 0 and detA 6= 0, we can classify the stability properties of linear

systems in R2 in the following table.

Table 2.1 : Stability Properties of Linear Systems

Eigenvalues Type of Critical Point Stability
r1 > r2 > 0 Node Unstable
r1 < r2 < 0 Node Asimptotically stable
r2 < 0 < r1 Saddle Point Unstable
r1 = r2 > 0 Proper or improper node Unstable
r1 = r2 < 0 Proper or improper node Asymptotically stable

r1,r2 = λ ∓ iµ Spiral point
λ > 0 Unstable
λ < 0 Asymptotically stable

r1 = iµ,r2 =−iµ Center Stable

2.2 Nonlinear Systems

2.2.1 Stability and Instability, Linearization

In this part, we mention the stability properties of the nonlinear systems at the

equilibrium points and mathematical definitions of stability and unstability are given.

Let us consider the autonomous sytem

ẋ = f (x), x, f ∈ Rn (2.10)

in which the function f does not depend on the time variable t explicitly. Let us

mention that any non-autonomous system ẋ = f (x, t) in Rn can be considered as an

autonomous system in Rn+1, by setting t = xn+1, so having ẋ = f (x,xn+1) with

ẋn+1 = 1.
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In the stability analysis of a nonlinear system of type (2.10) we first find the

critical/equilibrium points of the system. These are time-independent solutions of the

system, i.e., ẋ = 0, which are found by solving the (nonlinear) system f (x) = 0. After

that we determine the behavior of (2.10) in the vicinity of its critical points. This

local behavior of the non-autonomous system near a hyperbolic equilibrium point x0 is

determined by the behavior of the linear system

ẋ = Ax, (2.11)

with the matrix A = D f (x0), x0 denoting the equilibrium point.

Definition 1 The solution of f (x0) = 0, x0 ∈ Rn is called an equilibrium point or

critical point of (2.10). The point x0 is a hyperbolic point if and only if Re(λ ) 6= 0 for

∀λ ∈ D f (x0).

If x0 is a critical point of (2.10), then f (x0) = 0 and, by Taylor’s Theorem,

f (x) = D f (x0)x+
1
2

D2 f (x0)(x,x)+ . . . . (2.12)

The linear function D f (x0)x is the first approximation to the nonlinear function f (x)

in the neighborhood of x = x0. The behavior of the nonlinear system (2.10) in some

neighbourhood of the equilibrium point x0 will be determined by the behavior of its

linearization at x = x0 approximately.

For ∀t ∈ R, assume that φt is the flow of the equation (2.10). If for all ε > 0 there

exists a σ > 0 such that for all x ∈ Nσ (x0) and t ≥ 0 we have

φt(x) ∈ Nε(x0), (2.13)

an equilibrium point x0 is called stable. If the critical point is not stable, it is called

unstable. If x0 is stable and if there exists a σ > 0 such that ∀x ∈ Nσ (x0) we have

limt→∞ φt(x) = x0, it is called asymptotically stable. If these mathematical definitions

are thought geometrically, it means that all solutions starting sufficiently close to x0

must stay close to x0 in case of a stable equilibrium point. Additionally, if the paths of

the solutions that start close enough to x0 converge to x0 in some sense while t→ ∞,

then the equilibrium point is asymptotically stable.
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Theorem 2 If x0 is a sink of the nonlinear system (2.10) and Re(λ j) < −a < 0 for

all of the eigenvalues D f (x0), then given ε > 0 there exists a σ > 0 such that for all

x ∈ Nσ (x0), the flow φt(x) of (2.10) satisfies

|φt(x)− x0| ≤ εe−at (2.14)

for all t ≤ 0.

The hyperbolic equilibrium points are stable, asymptotically stable or unstable. If one

of the eigenvalues is equal to 0 or pure imaginary like λ = ±ib, x0 can be stable but

not asymptotically stable.

Theorem 3 If x0 is a stable equilibrium point of (2.10), no eigenvalue of D f (x0) has

positive real part.

2.2.2 Stable, Unstable and Center Manifolds for Nonlinear Systems

Let us remember that, given the nonlinear equation

ẋ = f (x), x ∈ Rn, (2.15)

in order to obtain information about the nature of solutions around an equilibrium point

x = x0, we analyze the linear system

ẏ = Ay, y ∈ Rn, (2.16)

where A = D f (x0). At this point, the stable, unstable and center manifold theorem will

help us to get information about the solutions of the nonlinear system. For that theory,

we need to transform (2.15) another form. First we shift the fixed point x = x0 of (2.15)

to the origin by the transformation y = x− x0. Then (2.15) takes the form

ẏ = f (x0 + y), y ∈ Rn. (2.17)

After expanding f (x0 + y) to Taylor series at x = x0↔ y = 0, we get

ẏ = D f (x0)y+R(y), y ∈ Rn, (2.18)

where R(y) = O(|y|2), using the fact that f (x0) = 0. According to elementary linear

algebra theory [Hirsch and Smale 1974], there exists a linear transformation T that
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transforms the linear equation (2.16) into block diagonal form u̇
v̇
ẇ

=

 As 0 0
0 Au 0
0 0 Ac

 u
v
w

 , (2.19)

where T−1y ≡ (u,v,w) ∈ Rs×Ru×Rc, s+u+ c = n, As is an s× s matrix having

eigenvalues with negative real parts, Au is an u× u matrix having eigenvalues with

positive real parts and Ac is an c×c matrix having eigenvalues zero real parts. It follows

that equation (2.19) is a linear vector field which has a s-dimensional invariant stable

manifold, a u-dimensional invariant unstable manifold and a c-dimensional invariant

center manifold at the origin. If this linear transformation is used in (2.18), one gets

u̇ = Asu+Rs(u,v,w), (2.20a)

v̇ = Auv+Ru(u,v,w), (2.20b)

ẇ = Acw+Rc(u,v,w). (2.20c)

This non-linear vector field will be analyzed at the next theorem.

Theorem 4 Suppose (2.20) is Cr, r ≥ 2. The equation (2.20) has a Cr s-dimensional

invariant, local stable manifold denoted as W s
loc(0), a Cr u-dimensional invariant, local

unstable manifold denoted as W u
loc(0) and a Cr c-dimensional invariant, local center

manifold W c
loc(0) at the fixed point (u,v,w) = 0, all of which intersect at (u,v,w) = 0.

This situation means geometrically that these manifolds are tangent to the respective

invariant subspaces of the linear vector field (2.19) at the origin. Then, these manifolds

are locally demonstrated as graphs. Especially, we have

W s
loc(o) = {(u,v,w) ∈ Rs×Ru×Rc|v = hs

v(u),w = hs
w(u);

Dhs
v(0) = 0, Dhs

w(0) = 0; |u| su f f iciently small} (2.21a)

W u
loc(0) = {(u,v,w) ∈ Rs×Ru×Rc|u = hu

u(v),w = hu
w(v);

Dhu
u(0) = 0, Dhu

w(0) = 0; |v| su f f iciently small} (2.21b)

W c
loc(0) = {(u,v,w) ∈ Rs×Ru×Rc|u = hc

u(w),v = hc
v(w);

Dhc
u(0) = 0, Dhc

v(0) = 0; |w| su f f iciently small} (2.21c)
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where hs
v(u), hs

w(u), hu
u(v), hu

w(v), hv
u(c), and hc

v(w) are Cr functions. In addition,

trajectories in W s
loc(0) and W u

loc(0) have the same properties asymptotically with

trajectories in Es and Eu, respectively. That is, trajectories of (2.20) with initial

conditions in W s
loc(0) (resp., W u

loc(0)) approach the origin at an exponential rate

asymptotically as limt→+∞ (resp., t→−∞).

We need to make some explanations about the theorem. First of all, the "local" term

used many times tells that manifolds are defined within some neighbourhood of the

fixed point and that is why they have a boundary. Also, Dhs
v(0) = 0, Dhs

w(0) = 0, etc.

means that nonlinear manifolds are tangent to the related linear manifolds at the origin.

2.2.3 Hopf Bifurcation

What do we understand exactly by the term of bifurcation? It, generally, includes

the concept of "topological equivalence". When the parameters are varied, the phase

portrait changes its topological structure and we say that bifurcation has occured. Hopf

bifurcation is a critical point where system’s stability switches and a periodic solution

arises [19].

Assume that a two dimensional system has a stable fixed point. When does it lose its

stability as a parameter µ varies? The eigenvalues of the Jacobian matrix are the key.

If the equilibrium point is stable, λ1 and λ2 both lie in the left half-plane Re(λ ) < 0.

There are two possibilities: either the eigenvalues are both real and negative or complex

conjugates with negative real parts. To make the fixed point unstable, it is necessary

that one or both of the eigenvalues passes to the right half- plane as µ varies.

Hopf bifurcation is defined according to the properties of the eigenvalues as follows.

Consider a system

ẋ = fµ(x), x ∈ Rn, µ ∈ R (2.22)

where µ is a parameter. Suppose the system has an equilibrium (x0,µ0), and f ∈C∞

[20], [21].

Assume that

• The Jacobian matrix Dx fµ0(x0) has a simple pair of purely imaginary eigenvalues

and other eigenvalues have negative real parts.
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Then there is a smooth curve of equilibria (x(µ),µ) with x(µ0) = x0. The

eigenvalues λ (µ), λ̄ (µ) of J(µ) = Dx fµ(x(µ)) which are purely imaginary at

µ = µ0 vary smoothly with µ . Moreover, if

• d(Re(λ (µ)))
dµ

|µ=µ0 6= 0

then there is a Hopf bifurcation. Whether it is supercritical, subcritical, or

degenerate depends on the higher order terms in system (2.22).

2.3 Nonlinear Delay Differential Equations, Linear Stability Analysis and Hopf

Bifurcation

A general delay differential equation (DDE) with a single constant delay term can be

shown as the following

Ẋ = F(t,X(t),X(t− τ)) (2.23)

with X ,F ∈ Rn. In specific cases, depending on the value of delay, nonlinearity,

the number of dynamical variables etc., analytical solutions of such a system can be

determined. Of course, in many cases, numerical investigations is inevitable to search

for solutions of this system.

The information about the solution of a DDE can be obtained via local stability analysis

at the critical point. The stability of an equilibrium point of a DDE is decided by

examining whether the near trajectories are getting close to or going far away from the

equilibrium point.

In analogy with the non-delay systems, a fixed/critical/equilibrium point X∗ of (2.23) is

a solution that does not change in time, therefore for which we have X(t) = X(t−τ) =

X∗ for every t. Then, X∗ is found by solving

f (t,X(t) = X∗,X(t− τ) = X∗) = 0, X∗ = (x∗1,x
∗
2, ...,x

∗
n)

T . (2.24)

To investigate the stability of the equilibrium point, we perturb it in usual way by

infinitesimally varying the solution in the vicinity of the critical point X∗ by a time

dependent function δX(t), existing over an interval of at least the values of the longest

delay, τmax, in the case of multiple delays. Restricting to the autonomous case and

denoting X = X(t) and Xτ = X(t− τ), we have

X = X∗+δX , Xτ = X∗+δXτ . (2.25)
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Then

Ẋ = δ Ẋ = f (X∗+δX ,X∗+δXτ), (2.26)

where δX’s are the infinitesimal displacements from the equilibrium point over the

interval (t0− τ, t0). Eq. (2.26) can be linearized at the equilibrium point as

δ Ẋ = J0 δX + Jτ δXτ , (2.27)

(J0)i, j =
(

∂Fi
∂x j

)
|x j=x∗j f or i, j = 1,2, ...,n, (2.28)

(Jτ)i, j =
(

∂Fi
∂xτ j

)
|xτ j=x∗j f or i, j = 1,2, ...,n, (2.29)

using the Taylor series expansion, J0 being the Jacobian matrix with respect to X

whereas Jτ represents the Jacobian matrix with respect to Xτ , which are both evaluated

at X = Xτ = X∗. Assume that δX(t) is solved by exponential functions of time along

with the exponents given by the eigenvalue of the corresponding Jacobian matrix,

δX(t) = Aeλ t (2.30)

where A is a constant column matrix. Substituting the equation (2.30) into the equation

(2.27) and collecting the coefficients of eλ t , one obtains the matrix equation

λA = (J0 + e−λτJτ)A. (2.31)

This equation obviously can be satisfied with a nonzero vector A if

|J0 + e−λτJτ −λ I|= 0, (2.32)

where I is the identity matrix.

The characteristic equation (2.32) of a delay-differential equation system consists of

two parts: The same terms in a characteristic equation of a non-delay system and the

transcendental part originating from the delay terms containing τ . As we know if all

eigenvalues of the characteristic equation are negative, it is a stable fixed point. When

one of the eigenvalues is with a positive real part, the equilibrium point is unstable. If

one of the eigenvalues is zero, the stability is undetermined, so to decide the stability

of the equilibrium point we need to take into account the higher order terms in Taylor

expansion (2.26). In case of degree n polynomial characteristic equations, there are

exactly n roots (counting the repeated ones, too). Characteristic equations that include

both transcendental terms and polynomials may have infinite number of roots in the
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complex plane. Therefore, to find these roots is a difficult task. However, to determine

the stability of the equilibrium points, in the case of transcendental characteristic

equations, some methodologies have been developed.

2.3.1 Example 1

Let us the illustrate the above topic with a basic example in a DDE of the form

ẋ =−bx(t)+a f (x(t− τ)), (2.33)

where a and b are positive parameters and f is a nonlinear function. For the simple

functional form

f (x(t− τ)) =−x(t− τ), (2.34)

the general DDE (2.33) becomes the linear DDE (LDDE),

ẋ =−bx(t)−ax(t− τ). (2.35)

The corresponding characteristic equation of the Eq. (2.35) is as follows;

λ +b+ae−λτ = 0. (2.36)

Let λ = α + iβ be the eigenvalue associated with the equilibrium point and the critical

stability curve is the ones on which α = 0 as one can expect that there is a change in

stability when the value of α crosses the imaginary axis at λ = iβ . Substituting λ = iβ

to the equation (2.36) and after simple algebra, it is obtained that;

β =±
√

a2−b2 (2.37)

and

βτ = arccos(−b
a
)+2nπ (2.38)

where n is any integer (0,±1,±2, . . .). As a result, we find that

τ(n) =
2nπ + arccos(−b

a)√
a2−b2

. (2.39)

To determine those curves for τ > 0 which encompass the stable regions, the critical

curves should be the ones on which dλ

dτ
> 0.
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The above characteristic equation (2.36) is evaluated by the derivative of the equation

with respect to τ

dλ

dτ
−λae−λτ −λae−λτ dλ

dτ
= 0. (2.40)

After arranging (2.40), one gets

dλ

dτ
=
−λ (λ +b)

1+ τ(λ +b)
. (2.41)

From the above characteristic equation (2.36), evaluate

Re(
dλ

dτ
)|α=0 = β

2D−1, (2.42)

where

D = (1+ τb)2 + τ
2
β

2. (2.43)

Therefore

dα

dτ
> 0. (2.44)

Let us show the existence of a Hopf bifurcation by numerical simulations of the LDDE

(2.36). To give an example, the values of the parameters are choosen as a = 0.5,

b = 0.1 and the existence of a bifurcation analysis is found out as a function of the

delay time τ . The origin is the equilibrium point for the LDDE (2.36), so there exists

a stable equilibrium point up to the value of delay time τ < 3.61739 according to the

given values of the parameters. In Figure 2.1a, the solution of the equation exhibits a

damped oscillatory decay to the equilibrium point for τ = 3.0. Although, the value of τ

reachs to the critical value, τ = 3.61739, the LDDE exhibits only periodic oscillations

(Hopf oscillations) as shown in Figure 2.1b and this is called Hopf bifurcation curve.

For τ = 4.0, the LDDE exhibits undamped growing oscillations as depicted in Figure

2.1c. Thus the change from stability to instability across the critical τ value confirms

the existence of a Hopf bifurcation.
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Figure 2.1 : Numerical simulations of the system (2.33) for different τ values (a)
τ = 3.0, (b) τ = 3.61739, (c) τ = 4.0. Here we take the parameter values

as a = 0.5, b = 0.1. Also, the initial condition is taken as x(0) = 1.
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3. ANALYSIS AND NUMERICAL SIMULATIONS OF THE MODEL

In this section, we will analyze the new financial model which we construct as follows

ẋ = z(t)+ [y(t)−a]x(t)+u(t), (3.1a)

ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (3.1b)

ż =−x(t)− cz(t), (3.1c)

u̇ =−dx(t)y(t)− ku(t). (3.1d)

The model with the time delay term will be investigated for stability conditions at the

equilibrium points and the existence of a Hopf bifurcation will be shown. Also, the

results will be supported by numerical simulations.

3.1 Stability of Equilibrium Points and Hopf Bifurcation

By solving the equations

z∗+[y∗−a]x∗+u∗ = 0, (3.2a)

1−by∗− x∗2 +K[y∗(t)− y∗(t− τ)] = 0, (3.2b)

−x∗− cz∗ = 0, (3.2c)

−dx∗y∗− ku∗ = 0, (3.2d)

and taking into account that y∗ = y∗(t) = y∗(t− τ), we find the equilibrium points of

the system. The results are given in the following Lemmas.

Lemma 1 In the case
kb+abck+ cd− ck

c(d− k)
≤ 0, (3.3)

the system has a unique equilibrium,

P0

(
0,

1
b
,0,0

)
. (3.4)
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Lemma 2 If the parameters of the system satisfy

kb+abck+ cd− ck
c(d− k)

> 0, (3.5)

the system has three equilibrium points;

P0

(
0,

1
b
,0,0

)
(3.6)

and

P1,2

(
∓

√
kb+abck
c(d− k)

+1,
(1+ ca)k
c(k−d)

,±1
c

√
kb+abck
c(d− k)

+1,∓d(1+ ca)
c(d− k)

√
kb+abck
c(d− k)

+1

)
.

(3.7)

By the change of variables

X = x, Y = y− 1
b
, Z = z, U = u (3.8)

the equilibrium point P0 is shifted to

P0 (0,0,0,0) . (3.9)

After this transformation, the new system can be arranged as;

Ẋ = Z(t)+ [Y (t)+
1
b
−a]X(t)+U(t), (3.10a)

Ẏ =−bY (t)−X2(t)+K[Y (t)−Y (t− τ)], (3.10b)

Ż =−X(t)− cZ(t), (3.10c)

U̇ =−dX(t)[Y (t)+
1
b
]− kU(t). (3.10d)

3.1.1 Stability Analysis and Hopf Bifurcation for P0

We work with the system (3.10), for which the equlibrium point is the origin.

Remember that the characteristic equation for a delayed system is

|J0 + e−λτJτ −λ I|= 0. (3.11)

At the equilibrium point P0(0,0,0,0), we find J0 and Jτ for Eq. (3.10) to be

J0,0 =


1
b −a 0 1 1

0 −b+K 0 0
−1 0 −c 0
−d

b 0 0 −k

 (3.12)
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and

Jτ,0 =


0 0 0 0
0 −K 0 0
0 0 0 0
0 0 0 0

 . (3.13)

Solving (3.11), the characteristic equation is obtained. The characteristic equation

which is a fourth degree exponential polynomial equation is as follows[
λ − (−b+K−Ke−λτ)

]
(λ 3 + p1λ

2 + p2λ + p3) = 0 (3.14)

where

p1 = k+a+ c− 1
b , (3.15a)

p2 = ck+ak+ac− k+c−d
b +1, (3.15b)

p3 = (1+ac− c
b)k+

cd
b . (3.15c)

Now we can state the following result (one can look at Refs. [6], [22]).

Lemma 3 According to the Routh-Hurwitz criterion, when the conditions

p1 > 0, p3 > 0, p1 p2 > p3 (3.16)

hold, the three roots of the characteristic equation (3.14) originating from the

algebraic term in the second paranthesis, have negative real parts; i.e., the roots are

on the left half plane, for all τ ≥ 0.

Remark 1 When τ = 0, the transcendental part of (3.14) reduces to

λ +b = 0, (3.17)

b represents the cost per investment. When b > 0, the root of the equation (3.17)

is negative. Therefore, in case τ = 0, when the conditions of Lemma 3 are met, the

system stable at the equilibrium P0.

Let us underline that although the system (3.1) is analyzed in [7], they do not provide

any stability criterion as we state here.

See that Lemma 3 guarantees, for all values of τ ≥ 0, the eigenvalues originating from

the algebraic part of (3.14) have negative real parts when the conditions in (3.16)
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are satisfied. Therefore stability is at our disposal for this part of the characteristic

equation. Then we just need to analyze the root of the transcendental part of (3.14),

which is

λ +b−K +Ke−λτ = 0. (3.18)

The machinery in the rest of this subsection shares the same calculations and lines with

the computations in [6]. We assume that the root of the transcendental equation is of

the form

λ (τ) = α(τ)+β (τ)i. (3.19)

Suppose that for some critical value τ = τ∗, we have α(τ∗) = 0 and β (τ∗) 6= 0. Then

the system (3.1) undergoes a Hopf bifurcation at the origin provided the transversality

condition is satisfied. It is clear that, if λ = iω (ω > 0) is a root of (3.18), it must

satisfy

iω +b−K +K(cosωτ− isinωτ) = 0. (3.20)

If the imaginary and real parts are separated, we obtain;

b−K +K cosωτ = 0, (3.21a)

ω−K sinωτ = 0. (3.21b)

Eliminating the trigonometric terms, one obtains

ω
2 = 2Kb−b2 (3.22)

and hence

ω+ =
√

2Kb−b2. (3.23)

It is clear that

if K > b/2, ω > 0 is determined uniquely,

if K ≤ b/2, there is no real ω .

Using (3.23) in (3.21), we get

τ j =
1

ω+
arccos

K−b
K

+
2 jπ
ω+

, j = 0,1,2, . . . (3.24)

We prove that τ = τ j, λ (τ j) = iω+ is a pure imaginary root of the transcendental

equation (3.18).

In order to show the existence of the Hopf bifurcation, we need to check the

transversality condition. This is done in the following Lemma.
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Lemma 4 λ (τ j) satisfies the transversality condition; that is,
dRe(λ (τ j))

dτ
> 0 for

j = 0,1,2, . . ..

Proof : Consider λ = λ (τ) in (3.18),

λ +b−K +Ke−λτ = 0, (3.25)

evaluate the derivative of the equation with respect to τ

dλ

dτ
+Ke−λτ(−dλ

dτ
τ−λ ) = 0. (3.26)

After arranging (3.26) one gets

dλ

dτ
=

Kλe−λτ

1−Kτe−λτ
. (3.27)

If we substitute λ = iω+, and τ = τ j, we get

dλ

dτ
=

Kω+i
eiω+τ j −Kτ j

. (3.28)

Since

eiωτ = cosωτ + isinωτ, (3.29)

we obtain,

Re
{dλ

dτ

}
τ=τ j

=
Kω+ sinω+τ j

(cosω+τ j−Kτ j)2 +(sinω+τ j)2 . (3.30)

Using

ω = K sinωτ (3.31)

from (3.21), one gets

Re
{dλ

dτ

}
τ=τ j

=
ω2
+

(cosω+τ j−Kτ j)2 +(sinω+τ j)2 > 0 (3.32)

which proves the Lemma.

To analyze the roots of the exponential polynomial equation (3.18), the result of the

following lemma which is proved by Ruan & Wei (2003) [23] is needed.

Lemma 5 Consider the exponential polynomial equation ;

P(λτ1, . . . ,e−λτm) = λ
n + p(0)1 λ

n−1 + . . .+ p(0)n−1λ + p(0)n

+[p(1)1 λ
n−1 + . . .+ p(1)n−1λ + p(1)n ]e−λτ1 + . . .

+[p(m)
1 λ

n−1 + . . .+ p(m)
n−1λ + p(m)

n ]e−λτm = 0, (3.33)
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where τi ≥ 0 (i = 1,2, ...,m) and p(i)j (i = 0,1,2, ...,m; j = 1,2, ...,n) are constants. As

(τ1,τ2, ...,τm) vary, the sum of the order of the zeros of P(λ ,e−λτ1, ...,e−λτm) on the

open right half-plane can change only if a zero appears on or crosses the imaginary

axis.

Remark 2 Let us summarize the steps we have gone through so far and comment on

how to arrive at Theorem 5 which follows on the next page.

• When τ = 0: If condition (3.16) of Lemma 3 holds and if b > 0, then all the

eigenvalues of the linearization of the system (3.10) have negative real parts, hence

(3.10) is stable at P0. (3.14) is an algebraic equation of degree four. Since all the

eigenvalues have negative real parts, the sum of the multiplicities of zeros of (3.14)

(let us call this LS) on the left half plane is equal to 4, write LS = 4. Since there is

no eigenvalue with a positive real part, the sum of multiplicities of the eigenvalues

on the right half plane (let us call this RS) is 0, write RS = 0.

• Lemma 5 is an only if statement, and it says, if RS changes, then there arises a pure

imaginary root of (3.14). This is equivalent to the following statement: If (3.14)

does not have any imaginary root, then RS does not change.

• Suppose K > b/2. Then, we have a pure imaginary root of the characteristic

equation.

– The smallest value of τ such that (3.14) has a pure imaginary root is τ = τ0,

where λ (τ0) = iω+. Therefore, when τ ∈ [0,τ0), RS does not change and

remains the same as RS = 0. Hence, when τ ∈ [0,τ0), there is no eigenvalue

with positive real part. λ = 0 is already not an eigenvalue since we put the

conditions b > 0 and p3 > 0. Hence when τ ∈ [0,τ0), all the eigenvalues have

negative real parts, and the system is stable at the equilibrium point P0.

– We have shown that Re
(
λ (τ0)

)
=Re(iω+) = 0 and

dRe(λ (τ))
dτ

|τ=τ0 > 0.

This means, at τ = τ0, Re(λ (τ)) is an increasing function of τ . Re
(
λ (τ)

)
must

pass from negative to positive values at τ = τ0. Hence, on the interval (τ0,τ1),

Re(λ ) takes on positive values. For some value of τ in (τ0,τ1), we have

RS ≥ 1. Since on the interval (τ0,τ1) there does not occur a pure imaginary
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root, RS does not change, hence RS ≥ 1 for every τ ∈ (τ0,τ1). Therefore, for

τ ∈ (τ0,τ1) the system has at least one eigenvalue with positive real part and

it is unstable at the equilibrium point P1.

• Suppose K ≤ b/2. Then, we do not have a pure imaginary root of the characteristic

equation.

– If condition (3.16) of Lemma 3 hold and if b > 0, since no imaginary root

occurs for any value of τ ≥ 0, there does not appear any eigenvalue on the

right half plane and the system remains stable for all values of τ ≥ 0.

Based on the arguments that we tried to explain above, considering the Lemmas [1-5],

the following Theorem can be obtained.

Theorem 5 We assume that the conditions of (3.16) hold and b > 0.

If K > b/2,

(i) The equilibrium point P0 of the system (3.1) is stable for τ ∈ [0,τ0) while it behaves

unstable for τ ∈ (τ0,τ1).

(ii) The system (3.1) undergoes a Hopf bifurcation at the equilibrium point P0 when

τ = τ0.

If K ≤ b/2,

(iii) The equilibrium point P0 of the system (3.1) is stable for τ ≥ 0.

3.1.2 Stability Analysis and Hopf Bifurcation for P1

In the previous subsection, the stability condition of the system (3.1) is considered

at the equilibrium point P0 = (0, 1
b ,0,0), or equaivalently, of the system (3.10) at the

point P0(0,0,0,0). There remains to consider the stability of the other two equilibrium

points. We shall deal with P1 only, the analysis follows similar lines for the equilibrium

point P2.
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Remember that the equilibrium point P1 was

P1

(
+

√
kb+abck
c(d− k)

+1,
(1+ ca)k
c(k−d)

,−1
c

√
kb+abck
c(d− k)

+1,+
d(1+ ca)
c(d− k)

√
kb+abck
c(d− k)

+1

)
.

The related Jacobians J0 and Jτ at the equilibrium P1 are found to be

J0,1 =


k+acd
ck−cd

√
kb+abck
c(d−k) +1 1 1

−2
√

kb+abck
c(d−k) +1 −b+K 0 0

−1 0 −c 0

−dk+acdk
ck−cd −d

√
kb+abck
c(d−k) +1 0 −k

 (3.34)

and

Jτ,1 =


0 0 0 0
0 −K 0 0
0 0 0 0
0 0 0 0

 . (3.35)

The characteristic equation

|J0 + e−λτJτ −λ I|= 0 (3.36)

yields

λ
4 +a1λ

3 +b1λ
2 + c1λ +d1 +(a2λ

3 +b2λ
2 + c2λ )e−λτ = 0 (3.37)

where

θ =

√
kb+abck
c(d− k)

+1,

a1 =
(acd + k+ c(d− k)(b+ c+ k−K))

(c(d− k))
,

b1 =
1

c(d− k)
(c2(ad +(d− k)(b+ k−K)))

+
1

c(d− k)
(k(b−d + k−K)+ c(k(−bk+ kK−2θ

2)+d(1+(a+ k)(b−K)+2θ
2))),

c1 =
cd + k(−d + k)+ c2(ad +(d− k)k)(b−K)

c(d− k)
+2(c−d + k)θ 2, (3.38)

d1 = 2c(−d + k)θ 2,

a2 = K,

b2 =
((acd + k+ c(d− k)(c+ k))K)

(c(d− k))
,

c2 =
((cd + k(−d + k)+ c2(ad +(d− k)k))K)

(c(d− k))
.
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We see that the characteristic equation is different than that of P0, and we will make use

of works of Ruan and Wei (2003) [22] and Li and Wei (2005) [24] in order to discover

the distribution of zeros of the system (3.37), which is a fourth degree transcendental

polynomial equation.

If iω , (ω > 0) is a root of Eq. (3.37), it must satisfy

ω
4−a1ω

3i−b1ω
2 + c1ωi+d1 +(−a2ω

3i−b2ω
2 + c2ωi)e−iωτ = 0. (3.39)

After separating the real and imaginary parts of the equation, we get

ω
4−b1ω

2 +d1 = (a2ω
3− c2ω)sin(ωτ)+b2ω

2 cos(ωτ), (3.40a)

a1ω
3− c1ω = (c2ω−a2ω

3)cos(ωτ)+b2ω
2 sin(ωτ). (3.40b)

Taking the squares of both equations and adding up obtain

ω
8 +(a2

1−2b1−a2
2)ω

6 +(b2
1 +2d1−2a1c1−b2

2 +2a2c2)ω
4

+(c2
1−2b1d1− c2

2)ω
2 +d2

1 = 0. (3.41)

Let z = ω2 and denote p = a2
1− 2b1− a2

2 , q = b2
1 + 2d1− 2a1c1− b2

2 + 2a2c2, u =

c2
1−2b1d1− c2

2 and v = d2
1 . Then Eq. (3.41) becomes

z4 + pz3 +qz2 +uz+ v = 0. (3.42)

We need to give a remark here. The transcendental-polynomial characteristic equation

(3.37) is different and more complicated than the characteristic equation considered

in [24] . Their characteristic equation is in the form

λ
4 +aλ

3 +bλ
2 + cλ +d + re−λτ = 0, (3.43)

which appears as Eq. (2.1) in [24]. Although our characteristic equation (3.37) was

different than theirs, we followed their lines in the search of a root λ = iω , ω > 0 and

obtained exactly the same fourth-degree equation (3.42) up to a difference in all of the

constants, of course. Therefore, apart from this line, we will adapt the development

from Eq. (2.5) of [24]. Let us call

h(z) = z4 + pz3 +qz2 +uz+ v. (3.44)

After differentiating h(z), we have h′(z) = 4z3 +3pz2 +2qz+u. Set

4z3 +3pz2 +2qz+u = 0. (3.45)
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Let y = z+ p
4 . Then equation (3.45) becomes

y3 + p1y+q1 = 0, (3.46)

where p1 =
q
2
− 3

16
p2, q1 =

p3

32
− pq

8
+

u
4

.

The roots of the equation (3.46) are

y1 =
3

√
−q1

2
+
√

D+ 3

√
−q1

2
−
√

D, (3.47)

y2 =
3

√
−q1

2
+
√

Dσ + 3

√
−q1

2
−
√

Dσ2, (3.48)

y3 =
3

√
−q1

2
+
√

Dσ2 + 3

√
−q1

2
−
√

Dσ , (3.49)

with (3.50)

D = (
q1

2
)2 +(

p1

3
)3, σ =

−1+
√

3i
2

, (3.51)

and there f ore (3.52)

zi = yi−
pi

4
, i = 1,2,3. (3.53)

Lemma 6 [24] Observe that v = d2
1 ≥ 0.

(i) When D≥ 0, the equation (3.42) has positive roots iff z1 > 0 and h(z1)< 0.

(ii) When D < 0, the equation (3.42) has a positive root iff there exists at least one

z∗ ∈ z1,z2,z3, such that z∗ > 0 and h(z∗)≤ 0.

Proof : (i) For D≥ 0, (3.46) has the unique real root y1, hence the equation (3.45) has

the unique real root z1 . Also, z1 is the unique stationary point of h(z) and the minimum

point of h(z) because h(z) is a differentiable function and

lim
z→∞

h(z) = ∞. (3.54)

The sufficiency is clear, so we just prove the necessity. Now, we analyze the situations

of either z1 ≤ 0 or z1 > 0 and h(z1)> 0. If we assume that z1 ≤ 0, since h(0) = v≥ 0

is the minimum of h(z) for z ≥ 0, it follows that h(z) has no positive real zeros. If we

assume that z1 > 0 and h(z1)> 0, as minz>0{h(z)}= h(z1)> 0, it follows that h(z) has

no positive real zeros.

(ii) For D< 0, the equation (3.46) has the roots y1,y2 and y3, it follows that the equation

(3.45) has three roots z1,z2 and z3 where at least one of them is real. Without loss of
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generality, if we suppose that z1,z2 and z3 are all real that means h(z) has at most three

stationary points at z1,z2 and z3. Since the remainder of the proof is parallel to that of

(i), we can skip it. [24]

Assume that Eq. (3.42) has positive roots. We can suppose that it has four positive

roots which we will denote as z∗i , i = 1,2,3,4. It follows that the equation (3.41) has

four positive roots, denoted by ωi =
√

z∗i , i = 1,2,3,4. From (3.40) we solve

τ
( j)
k =

1
ωk

[
arccos

(−ω4a1a2 +ω4b2−ω2b1b2 +ω2a2c1 +ω2a1c2− c1c2 +b2d1

ω4a2
2 +ω2b2

2−2ω2a2c2 + c2
2

)
+2( j−1)π

]
, k = 1,2,3,4; j = 1,2, .... (3.55)

Then ∓iωk is a pair of purely imaginary roots of equation (3.37) when τ = τ
( j)
k , k =

1,2,3,4; j = 1,2, .... Obviously,

lim
j→∞

τ
( j)
k = ∞, k = 1,2,3,4. (3.56)

Then, it can be defined as

τ0 = τ
( j0)
k0

= min1≤k≤4,1≤ j{τ
( j)
k }, ω0 = ωk0, z0 = z∗k0

. (3.57)

Lemma 7 Assume that a1 +a2 > 0, (a1 +a2)(b1 +b2)− (c1 + c2) > 0, d1 > 0 and

(c1 + c2)[(a1 +a2)(b1 +b2)− (c1 + c2)]− (a1 +a2)
2d1 > 0.

(i) For τ ∈ [0,τ0), if one of following conditions holds: (a) v ≥ 0, D ≥ 0, z1 > 0 and

h(z1) ≤ 0; (b) v ≥ 0, D < 0 and there exists a z∗ ∈ {z1,z2,z3} such that ∃z∗ > 0

and h(z∗)≤ 0, then all roots of equation (3.37) have negative real parts.

(ii) For all τ ≥ 0, if the conditions (a)and (b) of (i) are not satisfied, then all roots of

equation (3.37) have negative real parts.

Proof : When τ = 0, equation (3.37) becomes

λ
4 +a1λ

3 +b1λ
2 + c1λ +d1 +(a2λ

3 +b2λ
2 + c2λ ) = 0. (3.58)

According to the Routh-Hurwitz criterion, all roots of equation (3.58) have negative

real parts if and only if

a1 +a2 > 0, (a1 +a2)(b1 +b2)− (c1 + c2)> 0, d1 > 0, (3.59)

(c1 + c2)[(a1 +a2)(b1 +b2)− (c1 + c2)]− (a1 +a2)
2d1 > 0. (3.60)
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Now, under this condition, at τ = 0, (3.37) has no eigenvalue with positive real part,

RS = 0. Lemma 6 proposes if and only if conditions for (3.37) to have a pure imaginary

root. If (a)− (b) are not satisfied, Lemma 6 states that (3.37) has no pure imaginary

root for all τ ≥ 0. Therefore, according to Lemma 5, RS does not change for (3.37) for

all τ ≥ 0, which means it does not have any eigenvalue with positive real part for τ ≥ 0.

λ = 0 is not an eigenvalue since we assumed d1 > 0. Therefore, all the eigenvalues are

with negative real parts for τ ≥ 0. This proves (ii).

Now let us prove (i). Since one of (a)-(b) holds, then by Lemma 6, there is a pure

imaginary root of (3.37) at τ = τ0. Since there is no pure imaginary root of (3.37) for

all values of τ ∈ [0,τ0), by Lemma 5, RS does not change on 0≤ τ < τ0, hence all the

eigenvalues of (3.37) have negative real parts when τ ∈ [0,τ0). This proves (i).

Let

λ (τ) = α(τ)+ iω(τ) (3.61)

be the root of equation (3.37) satisfying α(τ0) = 0, ω(τ0) = ω0.

Lemma 8 Assume that h′(z0) 6= 0. Then, ∓iω0 is a simple (i.e., not multiple) pure

imaginary root of the equation (3.37) when τ = τ0. Additionally, if the conditions of

Lemma 7-(i) hold, the following transversality condition holds:

d(Reλ (τ))

dτ

∣∣∣
τ=τ0
6= 0 (3.62)

and the sign of d(Reλ (τ))/dτ|τ=τ0 is consistent with that of h′(z0).

Proof : Denote

R(λ ) = λ
4 +a1λ

3 +b1λ
2 + c1λ +d1, (3.63)

Q(λ ) = a2λ
3 +b2λ

2 + c2λ . (3.64)

Then (3.37) can be represented as

R(λ )+Q(λ )e−λτ = 0, (3.65)

and (3.41) can be written as following:

R(iω)R̄(iω)−Q(iω)Q̄(iω) = 0. (3.66)
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Then, together with (3.42) and (3.44), we get

h(ω2) = R(iω)R̄(iω)−Q(iω)Q̄(iω). (3.67)

Differentiating both sides of (3.67) with respect to the ω , we obtain

2ωh′(ω2) =−i{RR̄′−R′R̄+Q′Q̄−QQ̄′}. (3.68)

If iω0 is not a simple root, then it must satisfy

d
dλ

[R(λ )+Q(λ )e−λτ ]|λ=iω0 = 0, (3.69)

that is,

R′(iω0)+Q′(iω0)e−iω0τ0− τ0Q(iω0)e−iω0τ0 = 0. (3.70)

With (3.65), we have

τ0 =
−R′(iω0)

R(iω0)
+

Q′(iω0)

Q(iω0)
. (3.71)

Thus, by (3.66) and (3.67), we get

Im(τ0) = Im
(

Q′(iω0)

Q(iω0)
− R′(iω0)

R(iω0)

)
= Im

(
Q′(iω0Q̄(iω0)

Q(iω0)Q̄(iω0)
− R′(iω0)R̄(iω0)

R(iω0)R̄(iω0)

)
= Im

(
Q′(iω0)Q̄(iω0)−R′(iω0)R̄(iω0)

R(iω0)R̄(iω0)

)

=

−i
[

Q′(iω0)Q̄(iω0)−R′(iω0)R̄(iω0)− Q̄′(iω0)Q(iω0)+ R̄′(iω0)R(iω0)

]
2R(iω0)R̄(iω0)

=
ω0h′(ω2

0 )

|R(iω0)|2
.

(3.72)

It is obtained that h′(ω2
0 ) = 0, because τ0 is real and Im(τ0) = 0. We have a

contradiction to the assumption h′(ω2
0 ) 6= 0. This is the proof of the first conclusion.

Now, we need to prove that
d(Re(λτ))

dτ

∣∣∣
τ=τ0,λ=iω0

6= 0.

Differentiating both sides of (3.65) with respect to τ ,

d
dτ

[R(λ )+Q(λ )e−λτ ] = 0, (3.73)

we obtain;

dλ

dτ
[R′(λ )+Q′(λ )e−λτ − τQ(λ )e−λτ ]−λQ(λ )e−λτ = 0 (3.74)
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which implies

dλ

dτ
=

λQ(λ )e−λτ

[R′(λ )+Q′(λ )e−λτ − τQ(λ )e−λτ ]

=
λQ(λ )

R′(λ )eλτ +Q′(τ)− τQ(λ )
=

λQ(λ )[R̄′(λ )eλ̄ τ + Q̄′(λ )− τQ̄(λ )]

|R′(λ )eλτ +Q′(λ )− τQ(λ )|2

=
λ [−R(λ )R̄′(λ )eλτeλ̄ τ +Q(λ )Q̄′(λ )− τQ̄(λ )Q(λ )]

|R′(λ )eλτ +Q′(λ )− τQ(λ )|2
(3.75)

=
{λ [−R(λ )R̄′eλτeλ̄ τ(λ )+Q(λ )Q̄′(λ )− τ|Q(λ )|2]}

|R′(λ )eλτ +Q′(λ )− τQ(λ )|2
.

It follows together with (3.68) that

d(Reλ (τ))

dτ

∣∣∣
τ=τ0,λ=iω0

=
Re{λ [−R(λ )R̄′(λ )eλτeλ̄ τ +Q(λ )Q̄′(λ )− τ|Q(λ )|2]}τ=τ0,λ=iω0

|R′(λ )eλτ +Q′(λ )− τQ(λ )|2
τ=τ0,λ=iω0

=
iω0

2
[−R(iω0)R̄′(iω0)+Q(iω0)Q̄′(iω0)+ R̄(iω0)R′(iω0)− Q̄(iω0)Q′(iω0)]

|R′(iω0)eiω0τo +Q′(iω0)− τ0Q(iω0)|2

=
iω0

2
2ω0h′(ω2

0 )

i|R′(iω0)eiω0τo +Q′(iω0)− τ0Q(iω0)|2
(3.76)

=
ω2

0 h′(ω2
0 )

|R′(iω0)eiω0τo +Q′(iω0)− τ0Q(iω0)|2
6= 0.

The statement of Lemma 8 appears in [24]. We adapted the proof from [15] doing

some corrections. Now we can state the following Theorem.

Theorem 6 The values of ω0, τ0, z0 and λ (τ) are given in equations (3.57) and (3.61).

Suppose that

• a1 +a2 > 0, (a1 +a2)(b1 +b2)− (c1 + c2)> 0, d1 > 0,

• (c1 + c2)[(a1 +a2)(b1 +b2)− (c1 + c2)]− (a1 +a2)
2d1 > 0.

(i) When the assumptions (a)-(b) of Lemma (7) do not hold, the roots of equation (3.37)

have negative real parts for all τ ≥ 0. The system (3.1) is stable for all τ ≥ 0.

(ii) If either (a) or (b) is satisfied, roots of Eq. (3.37) have negative real parts for

τ ∈ [0,τ0). It is obtained that the roots of (3.37) is ∓ω0i and other roots have

negative real parts when τ = τ0 and h′(z0) 6= 0. Additionally, dReλ (τ0)
dτ

> 0 and if

τ1 is taken the first value of τ > τ0 such that Eq. (3.37) has purely imaginary root,

Eq. (3.37) has at least one root with positive real part for (τ0,τ1). Therefore, at the

equilibrium point P1, the system (3.1),
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– is stable for τ ∈ [0,τ0),

– undergoes a Hopf bifurcation when τ = τ0,

– is unstable for τ ∈ (τ0,τ1).

Let us note that arriving at Theorem 6 from Lemmas 5-8 is follows the same lines of

reasoning we tried to explain in Remark 2 for Theorem 5. Therefore we do not repeat

them here. In Lemma 8, it is shown that λ =∓iω0 is a simple (pure imaginary) root of

the characteristic equation (3.1). Being a simple root of the eigenvalue equation, not a

multiple root, is a necessary condition for the existence of the derivative
d(Reλ (τ))

dτ
,

from which we check the transversality condition for a Hopf bifurcation to occur.

3.2 Numerical Simulations of the System

In this subsection we support our theoretical results, with plots of the time series

of the dependent variables of the system for different values of the time-delay τ .

Our simulations are well in accordance with the theoretical findings of the previous

subsection. We give the dependent variable versus time plots for values of the

time-delay τ for which

• τ < τ0, and the system is stable at the fixed points P0, P1,

• τ = τ0, and the system undergoes a Hopf bifurcation exhibited by the periodic

behaviour in the variable y for P0 and in x and y for P1,

• τ > τ0, and the system becomes unstable, demonstrated by the unbounded

development in the graph of the variable y for P0 and in x and y for P1.

After these numerical investigations, we end this subsection by plotting phase portraits

of the system corresponding to the cases summarized above.
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Figure 3.1 : Numerical simulations of the system (3.1) for different τ values (a)
τ = 0.7, (b) τ = 1.15912, (c) τ = 1.2. Here we take the parameter values
as a = 5, b = 0.4, c = 1.5, d = 0.2, k = 0.17 and K = 1. Also, the initial

conditions are taken as x(0) = 1, y(0) = 2, z(0) = u(0) = 0.5.

In Figure 3.1, the parameter values and initial conditions are chosen for testing the

theoretical results which were obtained for the critical point P0. Numerical results

given in (a), (b) and (c) are examples for stable, Hopf bifurcation and unstable cases,

respectively. These results are compatible with predictions of our theoretical results.

34



0 20 40 60 80 100
t

-4

-3

-2

-1

0

1

2

3

4

x
,y

,z
,u

τ  = 0.2

x
y
z
u

(a)

0 10 20 30 40 50 60 70
t

-4

-3

-2

-1

0

1

2

3

4

x
,y

,z
,u

τ  = 0.30329

x
y
z
u

(b)

0 10 20 30 40 50 60 70
t

-5

-4

-3

-2

-1

0

1

2

3

4

x
,y

,z
,u

τ  = 0.34

x
y
z
u

(c)

Figure 3.2 : Numerical simulations of the system (3.1) for different τ values (a)
τ = 0.2, (b) τ = 0.030329, (c) τ = 0.034. Here we take the parameter

values as a = 0.2, b = 0.2, c = 2.5, d = 0.2, k = 1 and K = 1. Also, the
initial conditions are taken as x(0) = y(0) = z(0) = u(0) = 2.

In Figure 3.2, the parameter values and initial conditions are chosen for testing the

theoretical results which were obtained for the critical point P1. Numerical results

given in (a), (b) and (c) are examples for stable, Hopf bifurcation and unstable cases,

respectively. These results are compatible with predictions of our theoretical results.
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Figure 3.3 : Two dimensional phase portraits obtained from the numerical solutions
of the system (3.1) for the chosen parameter values and initial

conditions. (a), (c), (e) for P0, (b), (d), (f) for P1.
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Figure 3.4 : Three dimensional phase portraits of the variables x, y and z obtained
from the numerical solutions of the system (3.1) for the chosen parameter

values and initial conditions. (a), (c), (e) for P0, (b), (d), (f) for P1.
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Figure 3.5 : Three dimensional phase portraits of the variables y, z and u obtained
from the numerical solutions of the system (3.1) for the chosen parameter

values and initial conditions. (a), (c), (e) for P0, (b), (d), (f) for P1.
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Figure 3.6 : Three dimensional phase portraits of the variables x, z and u obtained
from the numerical solutions of the system (3.1) for the chosen parameter

values and initial conditions. (a), (c), (e) for P0, (b), (d), (f) for P1.
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Figure 3.7 : Three dimensional phase portraits of the variables x, y and u obtained
from the numerical solutions of the system (3.1) for the chosen parameter

values and initial conditions. (a), (c), (e) for P0, (b), (d), (f) for P1.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a new dynamical finance system is established. The new system’s basic

dynamical behavior, stability and Hopf bifurcation are investigated at the equilibrium

points. We analysed the system

ẋ = z(t)+ [y(t)−a]x(t)+u(t), (4.1a)

ẏ = 1−by(t)− x2(t)+K[y(t)− y(t− τ)], (4.1b)

ż =−x(t)− cz(t), (4.1c)

u̇ =−dx(t)y(t)− ku(t). (4.1d)

We constructed the above model on two existing models in the literature. In the system

S1, which is given in (1.2), there are three state variables, x,y,z and S1 includes a delay

term in the variable y. In the system S2, which is in (1.3), there are four state variables,

x,y,z,u. When K = 0 in S1 and u = 0 in S2, they coincide and become the system (1.1).

Our main system Sm, Eq. (4.1) is a composition of S1 and S2, with four state variables

x,y,z,u, the delay feedback coefficient K, and the parameters a,b,c,d,k. Since Sm is

obtained by adding a delay term to S2, it reflects the delay effect on the system S2.

Time delay parameter τ is taken as a bifurcation and control parameter in order to

search the system’s stability behavior. After linearization, the characteristic equations

are examined at the equilibrium points and we proved that a Hopf bifurcation exists.

If time delay τ passes a critical value, the system experiences a Hopf bifurcation,

the stability condition of the system changing from stable to unstable. Through

numerical simulations, our main results are confirmed; that the system undergoes a

Hopf bifurcation with appropriate parameters and some graphs are shown at different

time delay τ values.

The equilibrium points of S2 and Sm are the same. Sm differs from the system S2

by the delay feedback term. For the values of the parameters considered in Section

3.2, Sm when K = 0, namely the system S2 is stable. When K = 1, Sm is stable for

some range of the time-delay term τ; however, it becomes unstable after this critical
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threshold. Therefore, we can say that, there are cases in which time-delay term has a

destabilizing effect on S2.

We worked out bifurcation analysis of a dynamic finance system and we found that

the system has rich dynamic behaviors and responses. Then, this study can be helpful

for the relevant fields, especially economy, as a theoretical reference and it deserves to

be studied more. As an open problem for further investigation, for instance, we can

mention the search for chaotic or hyperchaotic character of the system.
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