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STABILITY ANALYSIS AND HOPF BIFURCATION
IN A DELAY-DYNAMICAL SYSTEM

SUMMARY

Nonlinear dynamical systems have had an important place in the financial science for
the last decades. These developments have helped the community understand the
internal complexity of financial and economical models especially through stability,
bifurcation and chaos theory. In literature, there is a great deal of studies and dynamical
systems on this field.

In this thesis work, the following dynamical system is considered

X =z(t) +[y(t) —alx(t) +u(?), (1a)
¥ =1=by(t) —x*(t) + K[y(t) = y(t — 7)), (1b)
2= —x(t) — e2(t), (lc)
i = —dx(t)y(t) — ku(t) (1d)

where a, b, c,d, k are nonnegative parameters of the system. Here K is the feedback
strength and 7 is time delay term, K, 7 € R and K, T > 0. State variables of the systems
represent the interest rate x, the investment demand y, the price index z and average
profit margin u.

The main purpose of this study is to investigate the dynamic response of the system
with average profit margin variable and time delay. The topics covered in the thesis
study are as follows:

In Section 1, we introduce the model we are considering and we present information on
the properties of this system. We give a brief overview on the other financial dynamical
systems available in the literature.

In Section 2, we review some basic information about nonlinear stability analysis of
dynamical systems, in non-delay and delay case.

Section 3 includes the main work that was carried out in this thesis study. A financial
model with the delayed feedback term is considered and the fixed points of this system
are obtained. The distributions of the roots of the transcendental type characteristic
equation is analyzed at the fixed points. After stability analysis, we determine a
critical value for the time delay 7, which we name as 7). We show that the system
undergoes a Hopf bifurcation at 7 theoretically, switching its dynamics from stability
to instability under some conditions on the parameters. Furthermore, the information
obtained theoretically is represented by numerical simulations. We exhibit the stability
condition of the system at the different 7 values by graphs.

In Section 4, we summarize our results and we conclude by some future
recommendations.

Xix






GECIKMELI BIR DINAMIK SISTEMIN
KARARLILIK ANALIZI VE HOPF CATALLANMASI

OZET

Dinamik sistemler hayatimizin bir parcasidir ve zamana gore degisimi modelleyen
sistemlerdir. Bu sistemler diferansiyel denklemler ile ifade edilirler ve lineer veya
nonlineer olabilirler. Matematiksel olarak bir dinamik sistem,

dx . .
E:x—f(x), x,fER (2)

seklinde ifade edilir.

Bu tez caligmasinin amaci zaman gecikmeli dogrusal olmayan finansal bir dinamik
sistemin nitel davraniglarini aragtirmaktir. Faiz orani, yatirnm talebi, fiyat endeksi ve
ortalama kar marj1 iceren bu sistemin dinamik yapis1 incelenip, denge noktalarinda
stabilite analizi yapilarak Hopf ¢atallanmasi1 incelenmistir. Ayrica bu stabilite analizleri
sayisal simiislayonlarla desteklenmistir.

Sistemdeki kaotik bir davramis dis faktorlere baghi kalmayip sistemin dogal ic
yapisindaki belirsizliklerden meydana gelmektedir. Bu durum ise kaos teorisinin
ortaya ¢ikmasma ve bilim diinyasinin dikkatini ¢ekmesine sebep olmugtur. Kaos
teorisi ise hava durumu, borsa, tiirbiilans gibi kontrol ve tahmin edilmesi zor olgularda
uygulama imkan1 bulmaktadr.

Kaos teorisi fen bilimleri ve miihendislik bilimleri yaninda ekonomi alaninda da
onemli bir yere sahiptir. 2007 yilinda ABD’de goriilen mortgage krizinde oldugu
gibi ekonomi diinyasinda herhangi bir kriz ¢ikmasi durumunda kaos meydana
gelmektedir. Dinamik sistem teorisi ve ekonomi-finans bilimleri arasindaki etkilesim
hem matematikg¢iler hem de ekonomi uzmanlari i¢in ge¢gmisten giiniimiize 6nemli bir
aragtirma alanidir.

Literatiirde dinamik sistemlere bakildiginda, finans teorisi ile igili bircok matematiksel
modeller vardir. Ornegin,

x=z+(y—a)x, (3a)
y=1-by—x, (3b)
Z=—Xx—czZ (3¢)

seklindeki iic bagiml degiskenli finansal dinamik sistem; iiretim, para, sermaye ve
is giicii olmak iizere dort alt degiskenden yola cikilarak tiiretilmis olup, sistemdeki
x degiskeni faiz oranini, y de8iskeni yatinm talebini ve z de8iskeni fiyat endeksini
ifade etmektedir. Sabit degerlerden bahsetmek gerekirse, a > 0 sabit degeri tasarruf
miktarini, b > 0 sabit degeri yatirim basina diisen maliyeti ve ¢ > 0 sabit degeri ise
ticari piyasalarda talebin fiyat esnekligidir. Yatirim piyasasindaki, yatirim ve tasarruf
arasindaki fazlalik ve fiyatlardaki degisiklik faiz oranlarinda onemli degisikliklere
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sebep olmaktadir. Bu durumu (3a) denklemi ifade etmektedir. (3b) denklemi ise y
degiskenindeki herhangi bir degisim oraninin yatirnm maliyeti ile faiz orani ile ilgili
oldugunu soyler. Son olarak, fiyat endeksinin enflasyon oranlarindan etkilenmesinden
hareketle (3c) denklemi formiilize edilmistir. Bu c¢alismanin esas amaci ise (3)
sistemini esas alarak yeni bir sistem olusturup, yeni sistemin stabilite analizini ve Hopf
catallanmasini arastirmaktir.

Bu hedef dogrultusunda tez calismasinda iglenen konular asagida belirtildigi gibidir.

Bolim 1°de oncelikle bu tez caligmasinda arastirma yapilacak sistemin nasil
olusturuldugundan bahsedildi. Sistemin olusturulmasinda literatiirdeki iki model ele
alinmugtir. Sistemlerden biri, kaotik davranig gosteren (3) denkleminin yatirim talebini
ifade eden y degiskeninin denklemine zaman gecikme geribildirimi eklenmesi ile

X =z(t) +[y(t) — a]x(¢), (4a)
y=1=by(t) —x*(t) +K[y(t) — y(t — 7)], (4b)
2= —x(1) = ez(t) (4c)

seklinde ifade edilen diferansiyel denklem sistemidir. Sistemde 7 > 0 zaman
gecikmesini, K ise geri bildirim giiciinii temsil etmektedir. Bu sistem parametrelere
bagli olarak bir ya da iic denge noktasina sahiptir. Sistemde bir denge noktasinda
stabilite analizi uygulanmis ve Hopf dallanmasi saptanmistir, bu kritik degerde y
degiskeni periyodik davranig gostermektedir. Sistemdeki a,b,c sabit de8erlerine
uygun degerler verildiginde ve 7y kritik zaman gecikme degeri olarak alindiginda,
sistem 7 € [0, 7)) degerleri igin stabil davranirken 7 = 7y degerinde Hopf dallanmasi
meydana gelmektedir.

Modelimizi inga ederken esas aldigimiz diger denklem sistemi ise

x=z+(y—a)x+u, (5a)
y=1—by—x° (5b)
= —X—cz, (5¢)
u=—dxy—ku (5d)

seklindedir. Bu sistemde faiz orani sadece yatirnm talebi ve fiyat endeksine bagh
olmay1p ortalama kar marjina da baghdir. Ayrica ortalama kar marji ile faiz orani dogru
orantilidir. Bu sistem ise (3) sistemine ortalama kar marjin ifade eden u yeni durum
degiskeni eklenmesi ile elde edilmistir. Parametrelerin bazi de8er araliklari i¢in, (3)
sistemi bir pozitif Lyapunov iisteline sahipken, (5) sistemi iki pozitif Lyapunov iisteline
sahiptir. Dolayisiyla (3) sistemi kaotik bir yapiya sahipken (5) sistemi hiperkaotik bir
davranig sergilemektedir.

Bu sistemler ve calismamizda esas aldiimiz dinamik finansal sistemimiz hakkinda
bilgiler verilmistir. Daha sonrasinda bu sistemlere paralel olarak literatiirdeki diger
sistemler incelenmistir.

Boliim 2°de ise lineer ve nonlineer dinamik sistemler, stabilite analizi, linearizasyon
ve Hopf dallanmasi kosullar1 hakkinda bilgiler verilmistir. Lineer olmayan zaman
gecikmeli diferansiyel denklemler hakkinda da bilgi verilip, orneklerle anlatim
yapilmugtir.
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Boliim 3’te ise sistem (4) ve sistem (5)’in birlestirilmesi ile olusturulan yeni dinamik
finans sistemimiz;

x=z(t) + [v(t) — a]x(t) + u(t), (6a)
y=1=by(t) = x*(t) + K[y(t) = y(t — 7)], (6b)
2= —x(t) —cz(1), (6¢)
u=—dx(t)y(t) —ku(r) (6d)

seklinde ifade edilmigstir. K geri bildirim giiclinii ifade etmekte ve K,7 > 0 olup,
a,b,c,d, k yine sistemin negatif olmayan parametreleridir.

Tez calismasinin konusunu, yukarida anlatilanlar 1s181inda, su sorularin cevaplanmasi
olusturmaktadir:

Sistem (6) denge noktalar1 civarinda nasil bir davranig gosterir?

Bu sistemin stabilite analizi yapildiginda Hopf catallanmasi meydana gelir mi?

Sistemde catallanmaya sebep olan kritik 7y degerini analitik olarak hesaplayabilir
miyiz?

(5) sistemine zaman gecikme teriminin eklenmesinin denklemin stabilitesi
tizerindeki etkisi nedir?

Sonug olarak, bu tez ¢alismasinda ek degiskenler ve zaman gecikme terimlerinin (3)
sistemine etkilerini hesaba katarak, (4) ve (5) sistemlerinin birlestirilmesiyle dinamik
finans sistemi (6) incelenmigtir. Yeni kurulan bu dinamik sistemin stabilite analizi
yapildiktan sonra sistemde Hopf ¢atallanmasinin meydana geldigi hem analitik olarak
hem de sayisal simiilasyonlarla gosterilmistir.

xxiii






1. INTRODUCTION

The aim of this thesis work is to investigate the qualitative behaviour of a financial
dynamical system which contains a time delay. We investigate the dynamic response
of this system of which variables are interest rate, investment demand, price index and
average profit margin. We perform a stability analysis at the fixed points and show that
the system undergoes a Hopf bifurcation. The bifurcation analyses are supported by

numerical simulations.

Jun-Hai and Yu-Shu [1] states that chaotic behaviour is the inherent randomness in a
given system. Internal properties of the system cause that uncertainty, not the external
disturbances. This makes chaos theory "attractive", as the complicated things can be
interpreted as the internal behaviours in themselves with a certain structure and aims,
but not as the external and accidental behaviour [1]. Also, it is the more harder to

predict the behavior of the system when the inherent randomness is irregular.

Chaos theory has had an important place in economics besides nature and engineering
fields. In economic field, chaos occurs during economic crisis; for instance, as in the
USA mortgage crisis. When this crisis happened in the USA in 2007, the chaos had
started at the financial world. The interplay between the dynamical systems theory
and economic and financial science has been a major subject of research both for the

mathematicians and experts of economic fields in the past decades and to date.

In dynamical systems literature, there are lots of mathematical models related to

finance theory. We would like to mention first the financial dynamical system

x=z+(y—a)x, (1.1a)
y=1-by—x’, (1.1b)
= —X—cz. (1.1¢)

Refs. [1], [2], [3], [4], [5], [6] said that this financial dynamic model is formed of four
sub-blocks: production, money, stock and labor force, and can be written as three first

order differential equations. Three state variables of the system denote interest rate

1



x, the investment demand y, and the price index z. To mention the constants, a > 0
is the saving amount, b > 0 is the cost per investment, and ¢ > 0 is the elasticity of
demand of commercial markets. Two factors cause the major changes in the interest
rate x: one of them is contradiction from the investment market, which is the surplus
between investment and savings, and the other one is structural adjustment from the
prices. This is expressed in (1.1a). The rate of change of y is related with the cost of
investment and the interest rate as given in (1.1b). Change in z is affected by inflation
rates, therefore, at the same time, it can be expressed by the nominal interest rate and

real interest rate, which is formulated in (1.1¢) [1].

The model we will be interested in is based on two existing models. When we focus
on Ref. [6], we see that besides exhibiting the chaotic behaviour of the model (1.1)
for some ranges of the parameters, by calculating the Lyapunov exponents; they also

consider the case where there is a time delay feedback in the investment demand;

x=z(t)+ [y(t) — alx(2), (1.2a)
¥ =1=by(t) =x*(1) +K[y(t) = y(t = 7)], (1.2b)
z=—x(t) —cz(t). (1.2¢)

Here 7 > 0 is the time delay and K stands for the strength of the feedback. Depending
on the parameters, the system may have one or three equilibrium points. They perform
the stability analysis of the system in the single equilibrium case and occurrence of a
Hopf bifurcation in which the variable y experiences periodic behavior is exhibited. If
the constants a, b, ¢ of the system satisfy certain conditions, the authors show that the
system is stable for T € [0, 17y), where 1Ty is a critical value of the time delay, and the

system undergoes a Hopf bifurcation when 7 = 7.

The other model that we build our main problem upon is the hyperchaotic system of

Ref. [7] which they formulate as

i=z+(—a)x+u, (1.3a)
y=1—by—x° (1.3b)
7=—x—cz, (1.3¢)
u= —dxy—ku. (1.3d)



Basically, the authors of [7] state that the factors related to interest rate are relevant
not only to investment demand and price index but also to the average profit margin:
average profit margin and interest rate are proportional. By adding average profit
margin as a new state variable u to the system (1.1), they obtain the system (1.3).
This newly constructed system has an interesting property: While the system (1.1) has
one positive Lyapunov exponent for some range of the parameters, a sign for intrinsic
chaotic behaviour, (1.3) is shown in [7] to possess two positive Lyapunov exponents
for some region of the parameter space, which is defined in literature as a signal to

hyperchaotic behaviour.

Motivated by the two works above, we consider the following system,

x=z(t)+ [y(t) —alx(t) +u(t), (1.4a)
¥ =1=by(t) = (1) + K[y(1) = y(t — )], (1.4b)
z=—x(t) —cz(1), (1.4¢)
= —dx(t)y(t) —ku(t), (1.44d)

which is a combination of (1.2) and (1.3), taking into account a time-delayed
feedback in the investment demand variable y and the effect of average profit margin
simultaneously in (1.1). Here K is the feedback strength, K, 7 > 0, and also a,b,c,d, k

are the nonnegative parameters of the system (1.4).

To our knowledge, the existing literature does not consider the system (1.4) and in our
analysis, we would like to answer the following questions:
(Q1) How is the qualitative behaviour of the system (1.4) around its fixed points?

(Q2) When we follow the route in [6] and do the stability analysis of (1.4), does the

system undergo a Hopf bifurcation?
(Q3) Can we analytically determine the critical value of 7 that gives the bifurcation?
(Q4) How is the effect of addition of the delay term on the stability of the system (1.3)?
Therefore, the main purpose of this thesis is to search the dynamics of the

financial model (1.4) by taking into account the effects of the additional variable

and delay-feedback terms in (1.1). After performing stability analysis of the
3



constructed finance system, we theoretically demonstrate that the system undergoes
a Hopf-bifurcation and this phenomenon is supported by numerical simulations. We
wish that our results on controlled and delayed feedback analysis can be useful for

constructing fiscal policy.

The thesis is organized as follows. In the following subsection we present a literature
survey. In Section 2 we provide some basic knowledge about nonlinear stability
analysis of dynamical systems, in non-delay and delayed case. Section 3 contains the
main work, presenting the stability analysis and the investigation of a Hopf bifurcation
for the constructed finance system at the fixed points. Bifurcation analyses are
demonstrated by numerical simulations. Section 4 is devoted to concluding remarks

and future discussions.

1.1 Literature Review

The motivation of the this thesis is based on the system (1.1), and, as we explained
above, our model is a combination of (1.2) and (1.3). In addition to the References [1],
[2], [3], [4], [5], [6] and [7], in this subsection we will present a brief literature survey

on these type of systems.

Refs., [1], [2] and [8] consider the topological structure, Hopf bifurcation and the
chaotic situation with different parameter combinations and the effect of any change
of the parameters on the economy of the equation (1.1). Another study [5] tackles
with this equation (1.1) in view of fractional nonlinear models and its aim is to
consider the chaotic behavior in fractional financial systems. Also, Ref. [9] considers

synchronization strategies of a three-dimensional chaotic finance system.

By doing the shifty — y — % in the equation (1.1), and adding a delay term to the first

equation of the system,

x:(%—a)x+z+xy+k(x(t—”c)—x(t)), (1.52)
y=—by—x?, (1.5b)
Z=—X—czZ (1.5¢)



is obtained, which is analyzed in [10]. Another version of this system appears in [11]

as

x=—alx+y)+K(x(t) —x(t — 1)), (1.6a)
y=—y—axz, (1.6b)
Z = b+ axy. (1.6¢)

In Refs. [6] and [12], time delay is added to the second equation of (1.1), the system

becoming
x=z+[y—alx, (1.7a)
y=1=by—x*+K[y(t) = y(t —1)], (1.7b)
Z=—X—cCZ (1.7¢)

to investigate the influence of the time delay on investment demand y. Chen’s system

[13] is expressed as the following

x=a(y—x), (1.8a)
y=(c—a)x—xz+cy, (1.8b)
Z=xy—bz. (1.8¢c)

By adding a time-delayed term to the second equation of Chen system in [14], they

obtain the system

x=a(y—x), (1.9a)
y=(c—a)x—xz+cy+K(y(t)—y(t—1)), (1.9b)
Z=xy—bz. (1.9¢)

In [14], they study both the effect of the delayed feedback on Chen’s system and the

existence of a Hopf bifurcation.

Another delayed financial model is handled as follows in [15],

x=(y—a)x+z(t—1), (1.10a)
y=1—by—x2, (1.10b)
I=—x—czZ (1.10c)

5



where 7 represents price change delay.

In the studies [4] and [16], the authors construct the delayed financial system as follows

i=z+@—ax+ki{x—x(t—7)}, (1.11a)
y=1-by—2+h{y—yt—n)}, (1.11b)
i=—x—czt+k{z—z(t— 1)} (1.11c¢)

where 71, 7o, and 73 are time delays and ki, k», and k3 demonstrate the strengths of the
feedbacks. The aim is to investigate the effect of delayed feedbacks on the financial
system with time delay terms on the interest rate, the investment demand and the price

index of the financial system.

Another system in [17] is constructed by adding the fourth variable w to an

autonomous chaotic system which is proposed by Qi [18]

x=aly—x)+eyz—ko, (1.12a)
y=cx—dy—xz, (1.12b)
Z=xy—bz, (1.12¢)
o =rx+ fyz (1.124d)

and the new system has chaotic or hyperchaotic behavior with wide frequency

bandwith with suitable parameters.



2. NONLINEAR DYNAMICAL SYSTEMS AND STABILITY

Considering what qualitative information can be obtained about the solutions of the
differential equations without solving directly them is so important because many
differential equations cannot be solved easily by analytical methods. In this section,
we present the essential basics for the stability analysis of nonlinear systems. We start
by summarizing the necessary concepts for the linear systems which are related to the

notion of stability of solutions.

2.1 Linear Systems

n-dimensional systems of the first order linear homogenous equations has the form
X =Ax 2.1

where x € R" and A is a n X n matrix. The solution of the linear system (2.1) is proposed

in the form x = ¢’ and when substituted into the equation (2.1), one gets
(A—rD)E =0 (2.2)

revealing that £ is an eigenvector of the coefficient matrix A and r is an eigenvalue.

The eigenvalues are obtained by solving the roots of polynomial equation
det(A—rl) =0, (2.3)

and the eigenvectors are acquired by substituting the eigenvalues to the equation (2.2).
If we develop geometrical interpretations of the solutions to (2.1), we can build up
a connection between the geometrical considerations and general solutions for linear
systems. Also, this information helps to understand the more complicated nonlinear
systems. A critical point is the equilibrium solution which is obtained by solving
Ax = 0 of the equation (2.1). A vector function x = ¢(¢z) € R" which is the solution
of equation (2.1) can be visualized as a parametric representation for a curve in the
X1 ...Xxp-space. We can interpret this curve as a path or trajectory which is traversed

by a moving particle whose velocity dx/dt is specified by the differential equation.
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For example, when n = 2, the xjx;-space is called the phase plane, the trajectory is a
curve in R%. All solution curves of the system in the phase space in R" make up the

phase portrait of the system. For instance, consider the simple uncoupled system

. -1 0 2
X = Ax, A_{O 2}, XER 2.4)
for which we simply get
xi(t) =cie™, x(t) = cre¥, (2.5)
or, in a different notation,
e’ 0
)C(l) = 0 eZt ¢ (26)

with ¢ = [?] = x(0). Under the evolution of this dynamics, every point ¢ = x(0) € R?
2
travels to the point x(t) € R?. Therefore, the dynamical system which is determined

by (2.4) is just the mapping ¢ : R x R*> — R?

—t
o(t,c) = {eo 62,} c. (2.7)

The behavior of the linear system can be determined according to the eigenvalues of
the coefficient matrix A. Also, differential equations can be classified depending on
their phase potraits and trajectories. For detA # 0, the following theorem is an easy
way to determine if the linear system has whether saddle, node, focus or center at the

origin.
Theorem 1 Let § = detA and t = trace A. Consider the linear system

x=Ax, x€R". (2.8)

(a) The equation (2.8) has a saddle at the origin for § < 0.

(b) The equation (2.8) has a node at the origin when 6 > 0 and 12 —48 >0 ; which is

stable for T < 0 and unstable for T > 0.

(c) Assume that § >0, 1> —40 <0, and © # 0 then (2.8) has a focus at the origin;

which is stable for T < 0 and unstable for T > O.

(d) The equation (2.8) has a center at the origin when 6 > 0and T =0.



Note that in case (b), T* > 4|8] > 0; i.e., T#NO.

A stable node or focus of (2.8) is called a sink of the linear system and an unstable node
or focus of (2.8) is called a source of the linear system. Additionally, for illustrating

the case in R?, when the linear system is taken as the following
x=Ax, x€R? (2.9)

with det(A — rI) = 0 and detA # 0, we can classify the stability properties of linear

systems in R? in the following table.

Table 2.1 : Stability Properties of Linear Systems

Eigenvalues Type of Critical Point Stability

rp>rp>0 Node Unstable
r<r <0 Node Asimptotically stable
rn<0<n Saddle Point Unstable
rr=r>0 Proper or improper node Unstable
r=r<0 Proper or improper node Asymptotically stable
ri,rp =AFiu  Spiral point
A>0 Unstable
A <0 Asymptotically stable
ry =iu,rp = —in Center Stable

2.2 Nonlinear Systems

2.2.1 Stability and Instability, Linearization

In this part, we mention the stability properties of the nonlinear systems at the
equilibrium points and mathematical definitions of stability and unstability are given.

Let us consider the autonomous sytem
x=f(x), x,feR" (2.10)

in which the function f does not depend on the time variable ¢ explicitly. Let us
mention that any non-autonomous system x = f(x,#) in R" can be considered as an
autonomous system in R"!, by setting t = x,,1, so having X = f(x,x,,) with

xn+1 - 1



In the stability analysis of a nonlinear system of type (2.10) we first find the
critical/equilibrium points of the system. These are time-independent solutions of the
system, i.e., x = 0, which are found by solving the (nonlinear) system f(x) = 0. After
that we determine the behavior of (2.10) in the vicinity of its critical points. This
local behavior of the non-autonomous system near a hyperbolic equilibrium point xg is

determined by the behavior of the linear system
X = Ax, (2.11)

with the matrix A = D f(xp), xo denoting the equilibrium point.

Definition 1 The solution of f(xo) =0, xo € R" is called an equilibrium point or
critical point of (2.10). The point xq is a hyperbolic point if and only if Re(A) # 0 for
VA € Df(xo).

If xg is a critical point of (2.10), then f(xp) = 0 and, by Taylor’s Theorem,

f(x) =Df(xo)x+ %DZ Fxo)(x,x)+.... (2.12)

The linear function D f(xp)x is the first approximation to the nonlinear function f(x)
in the neighborhood of x = x¢. The behavior of the nonlinear system (2.10) in some
neighbourhood of the equilibrium point xy will be determined by the behavior of its
linearization at x = xo approximately.

For Vt € R, assume that ¢ is the flow of the equation (2.10). If for all € > O there

exists a ¢ > 0 such that for all x € Ny (xo) and 7 > 0 we have

¢ (x) € Ne(xo), (2.13)

an equilibrium point xy is called stable. If the critical point is not stable, it is called
unstable. If x is stable and if there exists a ¢ > 0 such that Vx € Ng(xp) we have
im0 ¢ (x) = X9, it is called asymptotically stable. If these mathematical definitions
are thought geometrically, it means that all solutions starting sufficiently close to xy
must stay close to xg in case of a stable equilibrium point. Additionally, if the paths of
the solutions that start close enough to xy converge to xy in some sense while ¢ — oo,

then the equilibrium point is asymptotically stable.
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Theorem 2 If xg is a sink of the nonlinear system (2.10) and Re(Aj) < —a < 0 for
all of the eigenvalues Df (xy), then given € > 0 there exists a ¢ > 0 such that for all
X € Ng(xq), the flow ¢;(x) of (2.10) satisfies

|1 (x) —x0| < ge™ (2.14)

forall + <O0.

The hyperbolic equilibrium points are stable, asymptotically stable or unstable. If one
of the eigenvalues is equal to O or pure imaginary like A = +ib, x( can be stable but

not asymptotically stable.

Theorem 3 If xq is a stable equilibrium point of (2.10), no eigenvalue of Df (xqy) has

positive real part.

2.2.2 Stable, Unstable and Center Manifolds for Nonlinear Systems
Let us remember that, given the nonlinear equation
x=f(x), x€eR", (2.15)

in order to obtain information about the nature of solutions around an equilibrium point

X = Xxp, we analyze the linear system
y=Ay, y€ER", (2.16)

where A = Df(xg). At this point, the stable, unstable and center manifold theorem will
help us to get information about the solutions of the nonlinear system. For that theory,
we need to transform (2.15) another form. First we shift the fixed point x = x( of (2.15)

to the origin by the transformation y = x — xo. Then (2.15) takes the form

y=flxo+y), yeR" (2.17)

After expanding f(xo+y) to Taylor series at x = xp <> y = 0, we get

y=Df(xo)y+R(y), y€eR", (2.18)

where R(y) = O(|y|?), using the fact that f(xy) = 0. According to elementary linear

algebra theory [Hirsch and Smale 1974], there exists a linear transformation 7' that

11



transforms the linear equation (2.16) into block diagonal form

u A; 0 O u
v | = 0 A, O v |, (2.19)
w 0 0 A, w

S

where 77y = (u,v,w) ER* X R* X R®, s+u+c=n, Ayisans X s matrix having
eigenvalues with negative real parts, A, is an u X u matrix having eigenvalues with
positive real parts and A, is an ¢ X ¢ matrix having eigenvalues zero real parts. It follows
that equation (2.19) is a linear vector field which has a s-dimensional invariant stable
manifold, a u-dimensional invariant unstable manifold and a c-dimensional invariant

center manifold at the origin. If this linear transformation is used in (2.18), one gets

u=Asu+Rs(u,v,w), (2.20a)
v=Aw+R,(u,v,w), (2.20b)
w=Aw~+R(u,v,w). (2.20c)

This non-linear vector field will be analyzed at the next theorem.

Theorem 4 Suppose (2.20) is C", r > 2. The equation (2.20) has a C" s-dimensional
invariant, local stable manifold denoted as Wlso . (0), a C" u-dimensional invariant, local
unstable manifold denoted as W} (0) and a C" c-dimensional invariant, local center
manifold W, .(0) at the fixed point (u,v,w) = 0, all of which intersect at (u,v,w) = 0.
This situation means geometrically that these manifolds are tangent to the respective
invariant subspaces of the linear vector field (2.19) at the origin. Then, these manifolds

are locally demonstrated as graphs. Especially, we have

Wi (o) ={(u,v,w) € R* X R* X R°|v = h,(u),w = h;,(u);

Dh}(0) =0, Dh;,(0) =0; |u| sufficiently small} (2.21a)

Wioe(0) = {(u,v,w) € R* X R X R[u = hy,(v),w = hy, (v);

Dh;;(0) =0, Dhy,(0) = 0;  |v| sufficiently small} (2.21b)

Wioe(0) = {(1tv,w) € R x R x R = I (w), v = S w):

Dh;,(0) =0, Dh{,(0) =0; |w| sufficiently small} (2.21c¢)
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where h(u), K, (u), h4(v), K4 (v), hi(c), and h$(w) are C" functions. In addition,

trajectories in W (0) and W}

1 .(0) have the same properties asymptotically with

trajectories in E* and E", respectively. That is, trajectories of (2.20) with initial

conditions in W}

2 .(0) (resp., W (0)) approach the origin at an exponential rate

asymptotically as lim;_, o (resp., t — —oo).

We need to make some explanations about the theorem. First of all, the "local" term
used many times tells that manifolds are defined within some neighbourhood of the
fixed point and that is why they have a boundary. Also, DA$(0) = 0, DAS,(0) = 0, etc.

means that nonlinear manifolds are tangent to the related linear manifolds at the origin.

2.2.3 Hopf Bifurcation

What do we understand exactly by the term of bifurcation? It, generally, includes
the concept of "topological equivalence". When the parameters are varied, the phase
portrait changes its topological structure and we say that bifurcation has occured. Hopf
bifurcation is a critical point where system’s stability switches and a periodic solution

arises [19].

Assume that a two dimensional system has a stable fixed point. When does it lose its
stability as a parameter u varies? The eigenvalues of the Jacobian matrix are the key.
If the equilibrium point is stable, A; and A, both lie in the left half-plane Re(1) < 0.
There are two possibilities: either the eigenvalues are both real and negative or complex
conjugates with negative real parts. To make the fixed point unstable, it is necessary

that one or both of the eigenvalues passes to the right half- plane as u varies.
Hopf bifurcation is defined according to the properties of the eigenvalues as follows.

Consider a system

= fulx), x€R", HER (2.22)

where U is a parameter. Suppose the system has an equilibrium (xg, ty), and f € C*

[20], [21].

Assume that

e The Jacobian matrix D, f,(xo) has a simple pair of purely imaginary eigenvalues

and other eigenvalues have negative real parts.
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Then there is a smooth curve of equilibria (x(u),u) with x(to) = xo. The

eigenvalues A(u),A(u) of J(u) = Dy fu(x()) which are purely imaginary at
W = Uo vary smoothly with u. Moreover, if

d(Re(A(1)))
o Thtzuo #0
then there is a Hopf bifurcation. Whether it is supercritical, subcritical, or

degenerate depends on the higher order terms in system (2.22).

2.3 Nonlinear Delay Differential Equations, Linear Stability Analysis and Hopf

Bifurcation

A general delay differential equation (DDE) with a single constant delay term can be
shown as the following

X=F(t,X(1),X(t—1)) (2.23)

with X, F € R". In specific cases, depending on the value of delay, nonlinearity,
the number of dynamical variables etc., analytical solutions of such a system can be
determined. Of course, in many cases, numerical investigations is inevitable to search

for solutions of this system.

The information about the solution of a DDE can be obtained via local stability analysis
at the critical point. The stability of an equilibrium point of a DDE is decided by
examining whether the near trajectories are getting close to or going far away from the

equilibrium point.

In analogy with the non-delay systems, a fixed/critical/equilibrium point X* of (2.23) is
a solution that does not change in time, therefore for which we have X (1) =X (t — 7) =

X* for every t. Then, X* is found by solving
ft,Xt)=X"X(t—71)=X")=0, X* = (x},x5,...,x0)T. (2.24)

To investigate the stability of the equilibrium point, we perturb it in usual way by
infinitesimally varying the solution in the vicinity of the critical point X* by a time
dependent function 6X (¢), existing over an interval of at least the values of the longest
delay, T4y, in the case of multiple delays. Restricting to the autonomous case and

denoting X = X(¢) and X; = X (¢ — 1), we have

X =X*+8X, X.=X"+6X;. (2.25)
14



Then
XzSXzf(X*+6X,X*+5XT), (2.26)

where 6X’s are the infinitesimal displacements from the equilibrium point over the

interval (f) — 7,fy). Eq. (2.26) can be linearized at the equilibrium point as

0X =Jy6X +J; 86X, (2.27)
(Jo)iﬁj:(g—g)hj:x; for i,j=1.2,..,n, (2.28)
V)i = (F ) gy for ij=1,2,.m, (2.29)

using the Taylor series expansion, Jy being the Jacobian matrix with respect to X
whereas J; represents the Jacobian matrix with respect to X, which are both evaluated
at X = X; = X*. Assume that 6X(7) is solved by exponential functions of time along

with the exponents given by the eigenvalue of the corresponding Jacobian matrix,
8X(1) =AM (2.30)

where A is a constant column matrix. Substituting the equation (2.30) into the equation

(2.27) and collecting the coefficients of ¢ one obtains the matrix equation

AA = (Jo+e I )A. (2.31)
This equation obviously can be satisfied with a nonzero vector A if

Jo+e I — Al =0, (2.32)

where [/ is the identity matrix.

The characteristic equation (2.32) of a delay-differential equation system consists of
two parts: The same terms in a characteristic equation of a non-delay system and the
transcendental part originating from the delay terms containing 7. As we know if all
eigenvalues of the characteristic equation are negative, it is a stable fixed point. When
one of the eigenvalues is with a positive real part, the equilibrium point is unstable. If
one of the eigenvalues is zero, the stability is undetermined, so to decide the stability
of the equilibrium point we need to take into account the higher order terms in Taylor
expansion (2.26). In case of degree n polynomial characteristic equations, there are
exactly n roots (counting the repeated ones, too). Characteristic equations that include

both transcendental terms and polynomials may have infinite number of roots in the
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complex plane. Therefore, to find these roots is a difficult task. However, to determine
the stability of the equilibrium points, in the case of transcendental characteristic

equations, some methodologies have been developed.

2.3.1 Example 1

Let us the illustrate the above topic with a basic example in a DDE of the form
x=—bx(t)+af(x(rt—1)), (2.33)

where a and b are positive parameters and f is a nonlinear function. For the simple

functional form
fx(t—1)) = —x(t—1), (2.34)

the general DDE (2.33) becomes the linear DDE (LDDE),
x=—bx(t)—ax(t — 7). (2.35)
The corresponding characteristic equation of the Eq. (2.35) 1is as follows;

Ad+btae ™ =0. (2.36)

Let A = o+ if be the eigenvalue associated with the equilibrium point and the critical
stability curve is the ones on which & = 0 as one can expect that there is a change in
stability when the value of o crosses the imaginary axis at A = if3. Substituting A = i3

to the equation (2.36) and after simple algebra, it is obtained that;
B =++va*—b? (2.37)
and
b
Bt =arccos(——)+2nx (2.38)
a
where n is any integer (0,+1,£2,...). As a result, we find that

2n7 + arccos(—2
tn) =2 az_bz( a). (2.39)

To determine those curves for 7 > 0 which encompass the stable regions, the critical

curves should be the ones on which % > 0.
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The above characteristic equation (2.36) is evaluated by the derivative of the equation

with respect to T

A gaet pae et g, (2.40)
dt dt
After arranging (2.40), one gets
dr _ —A(A+b) (2.41)
dt  1+7t(A+Db)
From the above characteristic equation (2.36), evaluate
dA 21
Re(==)|—o = B*D 242
6( dt ) ‘OC—O B ’ ( )
where
D= (141b)*+12B>. (2.43)
Therefore
i > 0. (2.44)
dt

Let us show the existence of a Hopf bifurcation by numerical simulations of the LDDE
(2.36). To give an example, the values of the parameters are choosen as a = 0.5,
b = 0.1 and the existence of a bifurcation analysis is found out as a function of the
delay time 7. The origin is the equilibrium point for the LDDE (2.36), so there exists
a stable equilibrium point up to the value of delay time 7 < 3.61739 according to the
given values of the parameters. In Figure 2.1a, the solution of the equation exhibits a
damped oscillatory decay to the equilibrium point for 7 = 3.0. Although, the value of 7
reachs to the critical value, 7 = 3.61739, the LDDE exhibits only periodic oscillations
(Hopf oscillations) as shown in Figure 2.1b and this is called Hopf bifurcation curve.
For 7 = 4.0, the LDDE exhibits undamped growing oscillations as depicted in Figure
2.1c. Thus the change from stability to instability across the critical 7 value confirms

the existence of a Hopf bifurcation.
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7 =3.61739

()

x(t)

(©
Figure 2.1 : Numerical simulations of the system (2.33) for different 7 values (a)
7=23.0,(b) T=23.61739, (c) T = 4.0. Here we take the parameter values
asa=0.5,b=0.1. Also, the initial condition is taken as x(0) = 1.
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3. ANALYSIS AND NUMERICAL SIMULATIONS OF THE MODEL

In this section, we will analyze the new financial model which we construct as follows

% =z(t)+ [y(t) —alx(t) +u(?), (3.1a)
y=1=by(t) =x*(1) +K[y(1) —y(t = 7)], (3.1b)
z=—x(t) —cz(t), (3.1¢)
u=—dx(t)y(t) —ku(t). (3.1d)

The model with the time delay term will be investigated for stability conditions at the
equilibrium points and the existence of a Hopf bifurcation will be shown. Also, the

results will be supported by numerical simulations.

3.1 Stability of Equilibrium Points and Hopf Bifurcation

By solving the equations

4 —ax*+ut = 0, (3.2a)

1—by* —x2+K[y*(t) —y*(t—1)] = 0, (3.2b)
—x*—cz" = 0, (3.2¢)

—dx*y* —ku* = 0, (3.2d)

and taking into account that y* = y*(r) = y*(t — 7), we find the equilibrium points of

the system. The results are given in the following Lemmas.

Lemma 1 In the case
kb+abck+cd—ck<0, (3.3)

c(d—k) -

the system has a unique equilibrium,

1
Py (O, E’O’O) . (3.4)
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Lemma 2 If the parameters of the system satisfy

kb + abck + cd — ck

>0, 3.5
c(d—k) (3-5)
the system has three equilibrium points;
1
Py (0, E’O’O) (3.6)
and
kb + abck (1+ca)k 1 |kb+abck d(1+4ca) [kb+ abck
P +—| —/——++1 1].
1’2<]F cd—1) T et—a)y e\ wd—r) T T e@—n \ eld=n
(3.7
By the change of variables
1
X =x, Y:y—z, Z=z, U=u (3.8)
the equilibrium point F is shifted to
Py(0,0,0,0). (3.9)

After this transformation, the new system can be arranged as;

X:Z(t)+[Y(r)+%—a]X(r)+U(r), (3.10a)
Y = —bY(t) = X*(t) +K[Y (t) — Y (t — 7)], (3.10b)
Z=—X(t)—cZ(t), (3.10¢)
U = —dx(0)[Y (1) + %] — KU, (3.10d)

3.1.1 Stability Analysis and Hopf Bifurcation for P,

We work with the system (3.10), for which the equlibrium point is the origin.

Remember that the characteristic equation for a delayed system is
Jo+e 2T — Al =0. (3.11)

At the equilibrium point Py(0,0,0,0), we find Jy and J; for Eq. (3.10) to be

no=| " (3.12)



and

0 0 0O
0 -K 0 0

Jro= 0 0 0 0 (3.13)
0 0 0O

Solving (3.11), the characteristic equation is obtained. The characteristic equation

which is a fourth degree exponential polynomial equation is as follows

A— (—b+K—Ke—“)] (A3 4 piA2+ pod +p3) =0 (3.14)
where
pi=k+a+c—1, (3.15a)
p2 = ck+ak+ac— "2 41, (3.15b)
p3=(1+ac—§)k+ <. (3.15¢)

Now we can state the following result (one can look at Refs. [6], [22]).

Lemma 3 According to the Routh-Hurwitz criterion, when the conditions

p1>0, p3>0, pip2>ps3 (3.16)

hold, the three roots of the characteristic equation (3.14) originating from the
algebraic term in the second paranthesis, have negative real parts; i.e., the roots are

on the left half plane, for all T > 0.

Remark 1 When © =0, the transcendental part of (3.14) reduces to
A+b=0, (3.17)

b represents the cost per investment. When b > 0, the root of the equation (3.17)
is negative. Therefore, in case T = 0, when the conditions of Lemma 3 are met, the

system stable at the equilibrium P.

Let us underline that although the system (3.1) is analyzed in [7], they do not provide

any stability criterion as we state here.

See that Lemma 3 guarantees, for all values of 7 > 0, the eigenvalues originating from

the algebraic part of (3.14) have negative real parts when the conditions in (3.16)
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are satisfied. Therefore stability is at our disposal for this part of the characteristic
equation. Then we just need to analyze the root of the transcendental part of (3.14),
which is

A+b—K+Ke*"=0. (3.18)
The machinery in the rest of this subsection shares the same calculations and lines with

the computations in [6]. We assume that the root of the transcendental equation is of
the form

A7) =a(t)+B(7)i (3.19)
Suppose that for some critical value T = 7%, we have a(7*) = 0 and B(7*) # 0. Then
the system (3.1) undergoes a Hopf bifurcation at the origin provided the transversality
condition is satisfied. It is clear that, if A = i@ (@ > 0) is a root of (3.18), it must
satisfy

i0+b—K+K(coswt—isinwt) =0. (3.20)

If the imaginary and real parts are separated, we obtain;

b—K+Kcosot =0, (3.21a)

o—Ksinot  =0. (3.21b)
Eliminating the trigonometric terms, one obtains
w? = 2Kb— b* (3.22)

and hence
®,; = \/2Kb— b2 (3.23)

It is clear that
if K>b/2, o >0 isdetermined uniquely,
if K< b/2, thereis no real m.
Using (3.23) in (3.21), we get
1 K—-b 2jn

Tj:w—+arCCOS +a)_+7 j:O71727"' (3'24)

We prove that T = 7;, A(7;) = i®w4 is a pure imaginary root of the transcendental

equation (3.18).

In order to show the existence of the Hopf bifurcation, we need to check the

transversality condition. This is done in the following Lemma.
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dRe(A(7;
Lemma 4 A(7;) satisfies the transversality condition; that is, % >0 for
j=0,1,2,...
Proof: Consider A = A(7) in (3.18),
A+b—K+Ke " =0, (3.25)
evaluate the derivative of the equation with respect to T
dA ae, dA
—+Ke " (——1—-1)=0. 3.26
ar ke ( P ) (3.26)
After arranging (3.26) one gets
dA Kde 7
_—= 3.27
dt  1—Kte ** G:27)
If we substitute A = i, , and T = Tj, we get
—_—— 3.28
dt €% —Kr1; (3:28)
Since
€'?" = cos 0T + isin @7, (3.29)
we obtain,
dA Ko, sinw, ;i
Re{Z} = SO . (3.30)
dtJe=1; (cosw;Tj—KTj)>+ (sinwy ;)
Using
o = Ksinwt (3.31)

from (3.21), one gets

A o
R {_} - R >0 3.32
Vdt =1, (cos@yTj— KT;)?+ (sinwy 7j)? G-32)

which proves the Lemma.

To analyze the roots of the exponential polynomial equation (3.18), the result of the

following lemma which is proved by Ruan & Wei (2003) [23] is needed.

Lemma S Consider the exponential polynomial equation ;

P(ATy,...,e ™) =" +p§°)/1"—1 +... +p,(1(1)17t _I_ple)
P pD A pDe A
A L p A e =0, (3.33)
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(i)
J
(T1,T2, ..., T) vary, the sum of the order of the zeros of P(A,e *% ... .e=A™) on the

where 1, >0 (i=1,2,....m) and p’ (i=0,1,2,....m;j=1,2,....,n) are constants. As
open right half-plane can change only if a zero appears on or crosses the imaginary

axis.

Remark 2 Let us summarize the steps we have gone through so far and comment on

how to arrive at Theorem 5 which follows on the next page.

e When 7 = 0: If condition (3.16) of Lemma 3 holds and if 4 > 0, then all the
eigenvalues of the linearization of the system (3.10) have negative real parts, hence
(3.10) is stable at Fy. (3.14) is an algebraic equation of degree four. Since all the
eigenvalues have negative real parts, the sum of the multiplicities of zeros of (3.14)
(let us call this LS) on the left half plane is equal to 4, write LS = 4. Since there is
no eigenvalue with a positive real part, the sum of multiplicities of the eigenvalues

on the right half plane (let us call this RS) is 0, write RS = 0.

e Lemma 5 is an only if statement, and it says, if RS changes, then there arises a pure
imaginary root of (3.14). This is equivalent to the following statement: If (3.14)

does not have any imaginary root, then RS does not change.

e Suppose K > b/2. Then, we have a pure imaginary root of the characteristic

equation.

— The smallest value of 7 such that (3.14) has a pure imaginary root is T = T,
where A(7y) = iw;. Therefore, when 7 € [0,7)), RS does not change and
remains the same as RS = 0. Hence, when 7 € [0, 7p), there is no eigenvalue
with positive real part. A = 0 is already not an eigenvalue since we put the
conditions » > 0 and p3 > 0. Hence when 7 € [0, 79), all the eigenvalues have

negative real parts, and the system is stable at the equilibrium point 7.

R
— We have shown that Re(A(7))) =Re(iw;) =0 and wh_% > 0.

This means, at T = Ty, Re(A(7)) is an increasing function of 7. Re(A (7)) must
pass from negative to positive values at 7 = 7p. Hence, on the interval (7o, 71 ),
Re(A) takes on positive values. For some value of 7 in (79, 7;), we have

RS > 1. Since on the interval (7p, 7)) there does not occur a pure imaginary

24



root, RS does not change, hence RS > 1 for every 7 € (19, 7] ). Therefore, for
T € (19, T1) the system has at least one eigenvalue with positive real part and

it is unstable at the equilibrium point P;.

e Suppose K < b/2. Then, we do not have a pure imaginary root of the characteristic

equation.

— If condition (3.16) of Lemma 3 hold and if » > 0, since no imaginary root
occurs for any value of 7 > 0, there does not appear any eigenvalue on the

right half plane and the system remains stable for all values of 7 > 0.

Based on the arguments that we tried to explain above, considering the Lemmas [1-5],

the following Theorem can be obtained.

Theorem 5 We assume that the conditions of (3.16) hold and b > 0.

IfK>b/2,

(i) The equilibrium point Py of the system (3.1) is stable for T € [0, 1) while it behaves
unstable for T € (19, T1).

(ii) The system (3.1) undergoes a Hopf bifurcation at the equilibrium point Py when

T =1Tp.

IfFK<b/2,

(iii) The equilibrium point Py of the system (3.1) is stable for T > 0.

3.1.2 Stability Analysis and Hopf Bifurcation for P;

In the previous subsection, the stability condition of the system (3.1) is considered
at the equilibrium point Py = (0, %,0,0), or equaivalently, of the system (3.10) at the
point Py(0,0,0,0). There remains to consider the stability of the other two equilibrium
points. We shall deal with P; only, the analysis follows similar lines for the equilibrium
point P;.
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Remember that the equilibrium point P; was

P+ kb+abck+1(1+ca)k 1 kb+abck+1+d(1+ca) kb+abck+1
! cld—k) ' clk—d) c\l cld—k) " cld—k) \| c(d—k) '

The related Jacobians Jy and J; at the equilibrium P; are found to be

k+acd kb+abck +1 1 1
ck—cd c(d—k)
. kb+abck .
Joa = 2,/ c(d—k) +1 b+K 0 O (3.34)
—1 0 —c 0
dk-+acdk kb+abck
o cl—c’_—agd —d c(—gikc) +10 —k
and
0 0 00
0 —K 00
Jr1= 0 0 00 (3.35)
0 0 0O
The characteristic equation
Jo+e I — Al =0 (3.36)
yields
M a A +b1A%+cid+di + (@A +bA2 + A )e T =0 (3.37)
where
kb + abck
0= ——+1
\e@—n "
. (acd+k+c(d—k)(b+c+k—K))
1= ’
(c(d —k))
1 2
by = d—F) (c*(ad+ (d —k)(b+k—K)))
1
+m(k(b—d+k—1<)+c(k(—bk+k1<—292)+d(1+(a+k)(b—1<)+292))),
cold —
2
- — K
Cl:cd+k( d+k)+c (ad+(d—k)k)(D )+2(c—d+k)92, (3.38)
c(d—k)
dy =2c(—d + k)62,
ar =K,
b ((acd+k+c(d—k)(c+k))K)
2 = ;
(c(d —k))
. ((cd +k(—d+k) +c*(ad + (d — k)k))K)
2= .
(c(d —k))
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We see that the characteristic equation is different than that of Py, and we will make use
of works of Ruan and Wei (2003) [22] and Li and Wei (2005) [24] in order to discover
the distribution of zeros of the system (3.37), which is a fourth degree transcendental

polynomial equation.

If iw, (0 > 0) is a root of Eq. (3.37), it must satisfy
o* —a10%i — b @0* +cwi+d) + (—ar 03 — br? +cr0i)e T =0.  (3.39)

After separating the real and imaginary parts of the equation, we get

3

o' — b0’ +d, = (ar® —cza))sin(a)r)+b2a)zcos(an'), (3.40a)

@@ —ci10 = (0 —ay®®)cos(wT)+byw*sin(wt).  (3.40b)

Taking the squares of both equations and adding up obtain
b + (a% —2b| — a%)a)6 + (b% +2d; —2ajc1 — b% + 261202)604
+(c? —2bid) — 3)w? + d} = 0. (3.41)

Let z = @2 and denote p= a% —2b —a% , q= b% +2d; —2aicy — b% +2asrcr, u =

¢} —2byd) —c3 and v = d}. Then Eq. (3.41) becomes
a +pz3 + qz2 +uz+v=0. (3.42)

We need to give a remark here. The transcendental-polynomial characteristic equation
(3.37) is different and more complicated than the characteristic equation considered

in [24] . Their characteristic equation is in the form
A +ar® + A% +cd+d+re P =0, (3.43)

which appears as Eq. (2.1) in [24]. Although our characteristic equation (3.37) was
different than theirs, we followed their lines in the search of a root A = i@, @ > 0 and
obtained exactly the same fourth-degree equation (3.42) up to a difference in all of the
constants, of course. Therefore, apart from this line, we will adapt the development

from Eq. (2.5) of [24]. Let us call
h(z) =2* +p2 +q7* +uz+v. (3.44)
After differentiating (z), we have /' (z) = 42> + 3pz® +2qz +u. Set

42 +3ps* +2qz+u=0. (3.45)
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Lety=z+ i—’. Then equation (3.45) becomes

Y +piy+aq =0, (3.46)

3
q 3 P’ pq  u
whete pr =5 =g @ =3 gty

The roots of the equation (3.46) are

y1=§/—%+¢5+3 —%—\/5, (3.47)
_ 3/ q 3/ 41 2
Y2 = \/—?‘F\/BG—F —?—\/BG ) (3.48)
_ 3 1 24 341
y3 = \/—?Jm/ﬁc + —5—\/1_36, (3.49)
with (3.50)
q1\2 , (P13 —14+V3i
D= (4 £l — il Sl
A2+ BP, o= ==, (35D
and therefore (3.52)
Zi:yi_%a l:17273 (353)

Lemma 6 [24] Observe thatv = dj > 0.

(i) When D > 0, the equation (3.42) has positive roots iff z; > 0 and h(z;) < 0.

(ii) When D < 0, the equation (3.42) has a positive root iff there exists at least one

7 € 21,22,23, such that z7* > 0 and h(z*) <O0.

Proof: (1) For D > 0, (3.46) has the unique real root y;, hence the equation (3.45) has
the unique real root z; . Also, z; is the unique stationary point of 4(z) and the minimum

point of h(z) because h(z) is a differentiable function and

lim /i(z) = oo (3.54)

oo
The sufficiency is clear, so we just prove the necessity. Now, we analyze the situations
of either z; < 0or z; > 0 and h(z;) > 0. If we assume that z; <0, since 2(0) =v >0
is the minimum of h(z) for z > 0, it follows that A(z) has no positive real zeros. If we
assume that z; > 0 and h(z;) > 0, as ming~o{h(z)} = h(z1) > 0, it follows that /(z) has

no positive real zeros.

(i1) For D < 0, the equation (3.46) has the roots y1,y; and y3, it follows that the equation

(3.45) has three roots z;,z> and z3 where at least one of them is real. Without loss of
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generality, if we suppose that z1, 7, and z3 are all real that means A(z) has at most three
stationary points at z1,22 and z3. Since the remainder of the proof is parallel to that of

(i), we can skip it. [24]

Assume that Eq. (3.42) has positive roots. We can suppose that it has four positive
roots which we will denote as z7, i = 1,2,3,4. It follows that the equation (3.41) has

four positive roots, denoted by w; = \/z_j‘, i=1,2,3,4. From (3.40) we solve

) 1 —a)4a1a2+a)4b2— w2b1b2+w2a2c1 —|—(1)2a16'2 —cicr+ bad;
T, :—[arccos< o) ) 5 5 )
S w*a; + ®-b5 —20-acy +c;
—|—2(j—1)7r], k=1,2,3,4, j=1,2,... (3.55)
Then Fiwy is a pair of purely imaginary roots of equation (3.37) when 7 = ‘L',Ej ), k=

1,2,3,4; j =1,2,.... Obviously,

lim 7/ =, k=1,2,34. (3.56)
J—oo
Then, it can be defined as
To = 1530) = minlgkgms/{l—lg])}’ Wy = Wy, 20 = tho' (3.57)

Lemma 7 Assume that aj+a; >0, (a1 +az)(b1+b2) —(c1+¢2) >0, di >0 and
(c1+e2)[(ar+az)(b1+b2) — (c1+¢2)] — (a1 +a2)2d1 > 0.

(i) For T € [0, 19), if one of following conditions holds: (a) v >0, D >0, z; > 0 and
h(z1) <0; (b) v>0, D < 0 and there exists a z* € {z1,22,23} such that 3z* >0

and h(z*) <0, then all roots of equation (3.37) have negative real parts.

(ii) For all T > 0, if the conditions (a)and (b) of (i) are not satisfied, then all roots of
equation (3.37) have negative real parts.
Proof: When 7 = 0, equation (3.37) becomes
A4 a1 A+ b A%+ A +dy + (@A + A% + ) = 0. (3.58)

According to the Routh-Hurwitz criterion, all roots of equation (3.58) have negative

real parts if and only if
ay+ay >0, (a1 +a2)(by+b2)—(c1+¢2) >0, dy >0, (3.59)
(C] —I—Cz)[(a] +a2)(b| —I—bz) — (C] —|—Cz)] — (a1 +(12)2d1 > 0. (3.60)
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Now, under this condition, at T = 0, (3.37) has no eigenvalue with positive real part,
RS =0. Lemma 6 proposes if and only if conditions for (3.37) to have a pure imaginary
root. If (a) — (b) are not satisfied, Lemma 6 states that (3.37) has no pure imaginary
root for all T > 0. Therefore, according to Lemma 5, RS does not change for (3.37) for
all T > 0, which means it does not have any eigenvalue with positive real part for 7 > 0.
A = 01is not an eigenvalue since we assumed d; > 0. Therefore, all the eigenvalues are

with negative real parts for T > 0. This proves (ii).

Now let us prove (i). Since one of (a)-(b) holds, then by Lemma 6, there is a pure
imaginary root of (3.37) at T = 7. Since there is no pure imaginary root of (3.37) for
all values of 7 € [0, 7p), by Lemma 5, RS does not change on 0 < T < Ty, hence all the

eigenvalues of (3.37) have negative real parts when T € [0, Tp). This proves (i).

Let
A7) =a(t)+io(r) (3.61)

be the root of equation (3.37) satisfying a(79) =0, ®(1)) = wp.

Lemma 8 Assume that ' (z9) # 0. Then, Fiwy is a simple (i.e., not multiple) pure
imaginary root of the equation (3.37) when T = Ty. Additionally, if the conditions of

Lemma 7-(i) hold, the following transversality condition holds:

d(ReA (1))

0 3.62
drt T=T) 7& ( )

and the sign of d(ReA (7)) /dT|c=z, is consistent with that of I (zo).
Proof: Denote

RA) = A"+ a1A’ +b1A% 4+ A +di, (3.63)
Q(A) = ayA> + A + ). (3.64)

Then (3.37) can be represented as
R(A)+0(A)e ™" =0, (3.65)
and (3.41) can be written as following:

R(io)R(iw) — Q(iw)Q(iw) = 0. (3.66)
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Then, together with (3.42) and (3.44), we get
h(®?) = R(io)R(io) — Q(io) O (iv). (3.67)
Differentiating both sides of (3.67) with respect to the @, we obtain

20h' (0*) = —i{RR'—R'R+Q'0— 00'}. (3.68)

If i@y is not a simple root, then it must satisfy

d
7 [RA)+0(A)e |3 iap, = 0. (3.69)
that is,
R'(iox) + Q' (iw)e ™™ — gy Q(iay)e ™™ = 0. (3.70)

With (3.65), we have
_ —R(i)  Q'(ion)

O Riiw)  Qlioy)’ 70
Thus, by (3.66) and (3.67), we get
_ [ Qlio) Ra)\ _ [ O(icQ(iw) R'(ian)R(iex)
i gl (Q(iwo) R(iwo)> ! (Q(iab)Q(iaJo) R(iab)R(iah))
Q)00 R ) G)
R(iax)R(iap)
i) Qi) - R (i Riian) - & ion) Qlian) + RiGan R ()| oo
= 2R (i) R(i) ~ [R(iao) >
(3.72)

It is obtained that /'(w3) = 0, because 7y is real and Im(1p) = 0. We have a

contradiction to the assumption 4’/ (a)(%) = 0. This is the proof of the first conclusion.

d(Re(A7))

0.
dt T=Tp,A=iy 75

Now, we need to prove that

Differentiating both sides of (3.65) with respect to 7,

d —ATy) _
IR + (M) =0, (3.73)
we obtain;
di / / —AT —-At —At
SR+ 0 (M)e ™t~ 10(A)e ] = RQ(A)e T =0 (3.74)
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which implies

i _ aQ(M he
dt  [R(A )+Q’(7L) A7 —1Q(A)e 7]
AQ(2) _AQM)R(M)eF +0'(A) — TO(A)]

TRM)FT+Q (1) -tQ(R)  [R(A)T+Q(A) —TQ(A)

_ ALFRMIR (W) +0()0'(A) ~1Q(M)Q(A)] (375)
[R'(A)e* +Q'(2) — 2Q(A)]2 '
_ {A[FRMR (1) +0(A) Q' (A )—TIQ(M\Z]}‘
[R'(L)er™+Q'(A) —TQ(A) 2
It follows together with (3.68) that
d(ReA()) _ Re{A[=RA)R(A)e**e*™ + 0(2)0'(A) = T|Q(A) ]} ey i
dr =g =ioy R(A)er "+ 0'(A) = 1@ 4 i
i [—R(ian)R' (i) + Qi) Q' (i) + R(iwn)R' (iax) — Qi) Q' (icw)]
2 R (ieop)ei®% + Q' (iwp) — T0Q(iy)|?
_ iy 2a0h (@)
=2 TR (iwy)e@ + /(o) — (i) G-70)
21,/ 2
wyh' (ay) ‘2#0‘

R/ (i) ei ™% + Q' (iax) — ToQ(iewp)
The statement of Lemma 8 appears in [24]. We adapted the proof from [15] doing

some corrections. Now we can state the following Theorem.

Theorem 6 The values of @, Ty, zo and A(T) are given in equations (3.57) and (3.61).
Suppose that

e aj+ar >0, (a1+a2)(b1+b2)—(61+62) >0, d; >0,

o (ci+cp)lar+az)(by+by)—(c1+c2)]—(ay +a2)2d1 > 0.

(i) When the assumptions (a)-(b) of Lemma (7) do not hold, the roots of equation (3.37)

have negative real parts for all T > 0. The system (3.1) is stable for all T > 0.

(ii) If either (a) or (b) is satisfied, roots of Eq. (3.37) have negative real parts for
T € [0,7). It is obtained that the roots of (3.37) is Fwyi and other roots have
negative real parts when T = Ty and W (z0) # 0. Additionally, % > 0 and if
T\ is taken the first value of T > Ty such that Eq. (3.37) has purely imaginary root,
Eq. (3.37) has at least one root with positive real part for (Ty, T1). Therefore, at the
equilibrium point Py, the system (3.1),
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— is stable for T € [0, 79),
— undergoes a Hopf bifurcation when T = 1,

— is unstable for T € (19, T1).

Let us note that arriving at Theorem 6 from Lemmas 5-8 is follows the same lines of
reasoning we tried to explain in Remark 2 for Theorem 5. Therefore we do not repeat
them here. In Lemma 8, it is shown that A = Fiay is a simple (pure imaginary) root of
the characteristic equation (3.1). Being a simple root of the eigenvalue equation, not a
d(ReA (7))

multiple root, is a necessary condition for the existence of the derivative — g

from which we check the transversality condition for a Hopf bifurcation to occur.

3.2 Numerical Simulations of the System

In this subsection we support our theoretical results, with plots of the time series
of the dependent variables of the system for different values of the time-delay 7.
Our simulations are well in accordance with the theoretical findings of the previous
subsection. We give the dependent variable versus time plots for values of the

time-delay 7 for which

e T < Ty, and the system is stable at the fixed points Py, Py,

e T = Ty, and the system undergoes a Hopf bifurcation exhibited by the periodic

behaviour in the variable y for Py and in x and y for Pj,

e T > Ty, and the system becomes unstable, demonstrated by the unbounded

development in the graph of the variable y for Py and in x and y for P;.

After these numerical investigations, we end this subsection by plotting phase portraits

of the system corresponding to the cases summarized above.
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Figure 3.1 : Numerical simulations of the system (3.1) for different 7 values (a)
7=0.7,(b) T=1.15912, (c) T = 1.2. Here we take the parameter values
asa=5,b=04,c=15,d=0.2,k=0.17 and K = 1. Also, the initial

conditions are taken as x(0) = 1, y(0) =2, z(0) = u(0) = 0.5.

In Figure 3.1, the parameter values and initial conditions are chosen for testing the
theoretical results which were obtained for the critical point Py. Numerical results
given in (a), (b) and (c) are examples for stable, Hopf bifurcation and unstable cases,

respectively. These results are compatible with predictions of our theoretical results.
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(©)
Figure 3.2 : Numerical simulations of the system (3.1) for different 7 values (a)
T =0.2, (b) T=0.030329, (c) T = 0.034. Here we take the parameter
valuesasa=0.2,6=0.2,¢c=2.5,d =02, k=1 and K = 1. Also, the
initial conditions are taken as x(0) = y(0) = z(0) = u(0) = 2.

In Figure 3.2, the parameter values and initial conditions are chosen for testing the
theoretical results which were obtained for the critical point P;. Numerical results
given in (a), (b) and (c) are examples for stable, Hopf bifurcation and unstable cases,

respectively. These results are compatible with predictions of our theoretical results.
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Figure 3.3 : Two dimensional phase portraits obtained from the numerical solutions
of the system (3.1) for the chosen parameter values and initial
conditions. (a), (¢), (e) for Py, (b), (d), (f) for P;.
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(a) (b)

7=1.15912 7=0.30329

(e) ®
Figure 3.4 : Three dimensional phase portraits of the variables x, y and z obtained
from the numerical solutions of the system (3.1) for the chosen parameter
values and initial conditions. (a), (c), (e) for Py, (b), (d), (f) for P;.
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Figure 3.5 : Three dimensional phase portraits of the variables y, z and u obtained
from the numerical solutions of the system (3.1) for the chosen parameter
values and initial conditions. (a), (c), (e) for Py, (b), (d), (f) for P;.
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Figure 3.6 : Three dimensional phase portraits of the variables x, z and u obtained
from the numerical solutions of the system (3.1) for the chosen parameter
values and initial conditions. (a), (c), (e) for Py, (b), (d), (f) for P;.
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Figure 3.7 : Three dimensional phase portraits of the variables x, y and « obtained
from the numerical solutions of the system (3.1) for the chosen parameter
values and initial conditions. (a), (c), (e) for Py, (b), (d), (f) for P;.

40



4. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a new dynamical finance system is established. The new system’s basic
dynamical behavior, stability and Hopf bifurcation are investigated at the equilibrium

points. We analysed the system

x=2z(t)+ [y(t) —a]x(t) +u(t), (4.1a)
y=1=by(t) =x*(1) + K[y(1) —y(t = 7)], (4.1b)
2= —x(t) —cz(1), (4.1¢)
i = —dx(t)y(t) — ku(?). (4.1d)

We constructed the above model on two existing models in the literature. In the system
S1, which is given in (1.2), there are three state variables, x,y,z and S} includes a delay
term in the variable y. In the system S, which is in (1.3), there are four state variables,
x,y,z,u. When K =01in S| and u = 0 in S5, they coincide and become the system (1.1).
Our main system S,,, Eq. (4.1) is a composition of S| and S,, with four state variables
x,y,z,u, the delay feedback coefficient K, and the parameters a, b, c,d, k. Since S, is

obtained by adding a delay term to S5, it reflects the delay effect on the system S,.

Time delay parameter 7 is taken as a bifurcation and control parameter in order to
search the system’s stability behavior. After linearization, the characteristic equations
are examined at the equilibrium points and we proved that a Hopf bifurcation exists.
If time delay 7 passes a critical value, the system experiences a Hopf bifurcation,
the stability condition of the system changing from stable to unstable. Through
numerical simulations, our main results are confirmed; that the system undergoes a
Hopf bifurcation with appropriate parameters and some graphs are shown at different

time delay 7 values.

The equilibrium points of S, and S,, are the same. S, differs from the system S,
by the delay feedback term. For the values of the parameters considered in Section
3.2, S, when K = 0, namely the system S, is stable. When K =1, §,, is stable for

some range of the time-delay term 7; however, it becomes unstable after this critical
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threshold. Therefore, we can say that, there are cases in which time-delay term has a

destabilizing effect on S,.

We worked out bifurcation analysis of a dynamic finance system and we found that
the system has rich dynamic behaviors and responses. Then, this study can be helpful
for the relevant fields, especially economy, as a theoretical reference and it deserves to
be studied more. As an open problem for further investigation, for instance, we can

mention the search for chaotic or hyperchaotic character of the system.
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