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GROUP CLASSIFICATION FOR A HIGHER-ORDER BOUSSINESQ EQUATION

SUMMARY

Lie symmetry analysis of partial differential equations (PDE) is a connection for many
mathematical fields, including Lie algebras, Lie groups, differential geometry, ordinary
differential equations, partial differential equations and mathematical physics. This
list can be extended according to the research topic, type of the PDE and so on.
Finding analytical solution of a PDE is not easy in general. A powerful tool which
is used by both mathematicians and physicists to find analytical solution of a PDE is
transformation groups. Transformation groups, simply, can be defined as groups of
which action leave the solution space of an equation invariant. One can reduce the
number of independent variables of a PDE by using Lie groups and Lie algebras. The
Lie algorithm to find symmetry generators can be summarized as follows: First, one
generates the determining equations for the symmetries of the system. Second, these
equations are solved manually or with a computer package to determine the explicit
forms of the vector fields of which flows generate the transformation groups. By
using Lie series and commutation relations, one can compute adjoint representations,
determine the structure of the Lie algebra of the equation. From the Lie algebras,
symmetry groups are obtained and actions of these symmetry groups leave the solution
space of the PDE invariant.

One can use Lie theory to classify differential equations. The procedure for the
classification of symmetry algebras can be summarized as follows: First, find
equivalence transformation of the equation. Second, find non-equivalent forms of
the symmetry generator. Last, determine the invariance algebra of the equation from
two and higher dimensional Lie algebras (the well-known structural results on the
classification of low dimensional Lie algebras make this procedure possible). The
result of this procedure is a list of representative equations with canonical invariance
algebras, classified up to equivalence transformations.

Symmetry classification of PDEs are studied by both mathematicians and physicists.
Some mathematicians focus on Lie symmetry classification itself since it can be useful
for finding integrable systems of PDEs.

This thesis can be seen as an application of Lie symmetry analysis which is described
above. In this thesis, a family of higher-order Boussinesq (HBq) equations of the form

Urr = M1Uxxrr — M2Uxxxxer + (f(u))xx

where f(u) is an arbitary function, is considered to be classified according to the
Lie symmetry algebras the equation admits depending on the formulation of the
nonlinearity f(u).
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In Chapter 1, the literature about HB(q is reviewed and main results of the thesis are
given. In Chapter 2, some fundamental definitions, theorems and notations regarding
Lie group analysis of differential equations is introduced. In Chapter 3, the main result
of the thesis is proved, and three possible canonical forms of f(u) is obtained so that
the equation admits finite-dimensional Lie algebras. In Chapter 4, some exact solutions
to HBq is found by focusing on traveling wave solutions which is widely concerned in
literature.

Through this thesis, we believe that we contribute to the current literature on symmetry
algebras of Boussinesq-type equations and also on the solutions of this PDE.
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YUKSEK MERTEBELI BOUSSINESQ DENKLEMININ
GRUP SINIFLANDIRMASI

OZET

Norvecli matematik¢i Sophus Lie’nin doniisiim gruplart konusunda yaptigi calig-
malarin tizerinden yaklagik yiiz elli y1l gegmesine ragmen bir¢ok matematikgi ve fizikgi
icin bu caligmalar giincelligini yitirmemistir.

Geometrik bir nesnenin simetrisi, kabaca, bu geometrik nesneyi degistirmeyen
doniistim olarak tamimlanir. Fizik¢i ve matematik¢iler genel olarak yapi koruyan
simetriler ile ilgilenmislerdir. Kati bir geometrik nesnenin yapisini koruyan sonlu
sayida doniisiim bulabiliriz. Ornegin herhangi bir iiggeni gozoniinde bulunduralim.
Ucgeni kati halde birakan doniisiimler sadece yansima, oteleme ve dondiirme
simetrileridir. =~ Bu simetriler sonucunda {icgen iizerindeki herhangi iki nokta
arasindaki mesafe defismez. Ancak, eger iigcgen silgi malzemesinden yapilirsa, yapi
koruyan (yani yapildig1 malzeme degismeyen) doniisiimlerin grubu daha biiyiik olur.
Dolayisiyla, bu tiggen i¢in yeni simetriler elde edebiliriz.

Doniistimlerin simetri kabul edilme sartlari: 1. Yapiy1 korumalidir, 2. Difeomorfizma
olmalidir. Yani, eger x herhangi bir nesne iizerindeki konumu gosteren rastgele bir
noktave I':x— %(x) herhangibir simetriise, & x’e gore sonsuz tiirevlenebilir
olmalidir ve ayn1 sekilde ters fonksiyon I'~! de sonsuz tiirevlenebilir olmalidir. 3.
Geometrik nesneyi kendisine doniistiirmelidir. Yani, (x,y) diizlemindeki diizlemsel bir
nesne ile (%,y) diizlemindeki goriintiisii birbirinin aynist olmalidir. Bu, ayn1 zamanda
simetri sart1 olarak da bilinir.

Kismi diferansiyel denklemlerin Lie simetri analizi, Lie Cebiri, Lie Gruplari,
Diferansiyel Geometri, Adi Diferansiyel Denklemler, Kismi Diferansiyel Denklemler,
Matematiksel Fizik gibi bir¢cok alani kapsayan bir baglanti noktasidir. Bu liste
arastirma konusu, KDD’nin tiirii v.s. gore daha da uzatilabilir. KDD’lerin analitik
coziimlerini bulmak genel olarak kolay degildir. Fizik¢ilerin ve matematikgilerin
KDDlerin analitik ¢6ziimlerini bulmak maksadiyla kullandiklar1 en gii¢lii araclardan
biri doniisiim gruplaridir. Doniisiim gruplari, basitce, etkileri bir denklemin ¢6ziim
uzayini degismez birakan gruplardir. Lie gruplart ve Lie cebirleri kullanilarak bir
KDD’nin bagimsiz degisken sayis: diisiiriilebilir. Simetri iiretecinin bulunmasi icin
kullanillan Lie’nin algoritmasi miiteakip sekilde Ozetlenebilir: Oncelikle sistemin
simetrilerine ait belirleyici denklemleri bulunur. Daha sonra bu denklemleri elle
veya bilgisayar paket programlar1 vasitasiyla cozerek integral egrileri diferansiyel
denklemin simetri doniislimiinii veren vektor alanlari elde edilir. Komiitasyon
bagintilar1 ile Lie cebirinin yapisi, Lie serileri ile adjoint temsil elde edilir . Lie
cebirlerinden Lie gruplar: elde edilir ve bu gruplarin etkileri ¢6ziim uzayimi degismez
birakir.

Diferansiyel denklemlerin siiflandirilmasinda Lie teorisi kullamilabilir. ~ Simetri
cebirlerinin siniflandirilmasini miiteakip sekilde 6zetlenebilir: Oncelikle denklemin
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denklik doniisiimlerini bulunur. Ikinci olarak, simetri iireteclerinin denk-olmayan
formlarimi1 formlar1 bulunur. Son olarak iki veya daha yiiksek boyutlu Lie cebirlerini
kulanarak denklemin degismez cebirleri elde edilir. (Diisiik boyutlu Lie cebirlerinin
siniflandirilmast konusundaki iyi bilinen yapisal sonuglar bunu kolaylastirir.) Bu
islemlerin sonucunda; denklik doniisiimlerine gore siniflandirilmig, kuralli degismez
cebirlere sahip bir temsilci denklemler listesi elde edilir.

KDDlerin simetri siniflandirilmasi konusunda hem matematik¢iler hem de fizikgiler
calismaktadir. Bazi matematik¢iler KDDlerin integrallenebilir sistemlerini bulmak
maksadiyla sadece Lie simetri sinifflandirmalarina odaklanmiglardir.

Bu tez yukarida ifade edilen Lie simetri analizinin bir uygulamasi olarak goriilebilir.
Bu tezde yiiksek mertebeli Boussinesq denklemi

Urr = M1 Uxxer — T2 Uxxxxer + (f(u) )xx

dogrusal olmayan f(u) fonksiyonunun formiiliine bagli olarak Lie simetri cebirlerine
gore siniflandirilmaya ¢aligilmistir. Bu, daha once c¢alisilmamis olan orijinal agik bir
problemdir.

Boliim 1°de yiiksek mertebeli Boussinesq denklemi ile ilgili literatiir gozden gecirilmis
ve tezin ana sonuglart verilmistir. Burada da belirtildigi gibi , bu denklem matematikci
Rosenau tarafindan elde edilmistir. Rosenau bu denklemi, daha once gelistirdigi bir
metodu (quasi-continuous formalism) yogun ayrik sistemlerin (dense discrete systems)
dinamigine uygulayarak elde etmistir.

Boliim 2°de diferansiyel denklemlerin Lie grubu analizinin temel tanimlari, teoremleri
ve gosterimleri verilmistir.

Boliim 3’te, tezin ana sonucu kanitlanmigtir ve f(u) fonksiyonlarinin kanonik formlari
belirtilen sekilde elde edilmistir:

(A) flu) = e, o=l
(B)  f(u) = arln(u), o=7Fl,
(C) f(u)=au", a=F1, R>n#0,l1.

Ayrica, 6zel bir f(u) fonksiyonu i¢in dort boyutlu Lie simetri cebiri elde edilmistir
ki bu durum 71, = 0 oldugu zaman da gegerlidir. 7 = 0 durumu icin simetri
siniflandirmasi literatiirde mevcuttur, ancak bunun incelendigi calismada simetri
cebirinin maksimal boyutu 3 olarak gosterilmektedir.  Dolayisiyla analizimiz,
12 = 0 durumunda literatiirde bulunan sonuglara da bir diizeltme getirmekte, 1, # 0
durumunu inceleyerek de orijinal bir caligma olarak literatiirde yerini almaktadir.
Durum (A) icin sonuclar acik bir sekilde ifade edilmistir. Durum (B) ve Durum (C)
icin elde edilen sonuclar bir tabloda 6zetlenmistir.

Boliim 4°de literatiirde yaygin olarak ilgilenilen hareketli dalga ¢oziimleri kullanilarak,
yiiksek mertebeli Boussinesq denklemi i¢in bazi tam ¢oziimler bulunmustur. Bunun
icin oncelikle yiiksek mertebeli Boussinesq denklemi f(u) = u + au? igin hareketli
dalga ¢oziimlerinin arastirilmasiyla asagida belirtilen forma doniistiiriilmuistiir:

1, ol Mk, ., ok A —k?

4 2\t~ N AV 3
nzkc[FF G B e e

F?=K,.
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Daha sonra katsayilar iizerinde cesitli tahminlerde bulunularak yiiksek mertebeli
Boussinesq denklemlerinin tam c¢oziimleri bulunmaya calisilmistir.  Bu sekilde
literatiirde mevcut olmayan bazi trigonometrik, hiperbolik ve elliptik ¢oziimler elde
edilmistir.

Bu tez sayesinde, Boussinesq sinifi KDDlerin simetri cebirleri ve bu KDDlerin
coziimleriyle ilgili olarak literatiire katkida bulundugumuza inanmaktayiz.
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1. INTRODUCTION

1.1 Purpose of Thesis

The aim of the thesis is to classify higher-order Boussinesq (HBq) equations of the

form

Uy = Mlxxer — T2 U + (f(u))xx (L.1.1)

according to the Lie symmetry algebras the equation admits depending on the
formulation of the nonlinearity f(u) and to study possible reductions of this equation
to find exact solutions. Here we assume 11, 1, are nonzero constants and f,, # 0.
More explicitly, the purpose is to determine the classes of functions f(u) for which the
equation has finite-dimensional Lie symmetry algebras. Among these classes, we will
concentrate on a specific family, which is widely concerned in literature, to find exact

traveling wave solutions.

1.2 Literature Review

The derivation of (1.1.1) appears in [1]. In that paper Rosenau uses quasi-contionuous
formalism which he introduced in his previous works to treat the dynamics of dense
discrete systems. After introducing the method he gives three physical example which
necessitates the use of higher order effects of discreteness: Two neighbors interaction,
non-linear 3-D motion of a string and transmission line modelled by a long chain of
L-C circuits. The approximation of the equations of motion of a 1-dimensional lattice
to the continuum requires considering higher order effects. Eq. (1.1.1) is also derived
in [2] for the propagation of longitudinal waves in an infinite elastic medium within
the context of nonlinear non-local elasticity. In that paper the authors also investigate
the well-posedness of the Cauchy problem. As a recent literature, Eq. (1.1.1) is seen
in [3] where the authors study the local and global existence and blow-up of solutions
to the initial and boundary value problem of the equation. In that literature, 17y and

1M, are positive constants and f(u) is considered to be an arbitrary nonlinearity. HBq

1



equations of [2] and [3] are obtained from (1.1.1) when we replace f(u) — u+ f(u).

The Lie symmetry algebra of the Boussinesq equation
gy + Uty + (1) + Uy = 0 (1.2.1)
is the Lie algebra of the vector fields
D = xdy+2tdy —2ud,, Py =0, Py=0, (1.2.2)

which generate translations and dilations, see Refs. [4—7]. Classical and non-classical

similarity reductions of the Boussinesq equation
Uy —|—auxx+b(u2)xx+cuxxxx =0 (1.2.3)

are obtained in [5] and these nonclassical reductions are given a group-theoretical

framework in the context of conditional symmetries in [4].

In connection with classification problem in Lie theory, [8] performs the symmetry

classification of the generalized Boussinesq equation

Urr = Uyyxx T (f(u))xx (1.2.4)

In [9], the authors perform Lie symmetry analysis of the equation

Urr — Uy + Uxxxx + (f(u))xx =0. (1.2.5)

Ref. [10] handles the double-dispersion equation

Upt = Uyx + Alyxrr — DUy + Ay + (f(u))xx (1.2.6)

and exhibits the functional forms of f(u) so that the equation has Lie symmetry

algebras.

Ref. [11] studies the symmetry algebra and reductions of the equation
Uy — Au— Aty + N2u+ kAuy = Af (u) (1.2.7)

where x € R? and f is a power-type nonlinearity. [12] considers this equation for n = 1,

in the form

Ut — Uy + Qe — Dty = (f(u))xm (1 28)



and for n = 2, to derive conservation laws. Ref. [13] considers symmetry algebras of
the equation

Usr = CUyy ~+ Dllyyry + QU + (f(”))xx (1.2.9)

and derives the conservation laws of this equation which admits a Hamiltonian form

when written as a system.

Let us finally mention two references which consider the closest family of equations

to the one considered. Ref. [14] considers

Urr = Uy + Uxxrr — Uxxxrr — Cllyxxx T (f(u))xx (1.2.10)

in the case ¢ # 0 and finds exact solutions to this equation in terms of trigonometric,
hyperbolic and elliptic functions when f(u) has some certain forms. Note that the case
¢ = 0 1s not considered in this article separately in the search of the Lie symmetry

algebra, therefore they do not cover results in the thesis.

Classification of the family of equations (1.1.1) in the case 1, = 0; explicitly, the family

Ur = Oyxx + (f(”))xx (1.2.11)

according to symmetry algebras the equation admits is studied in [15]. Clearly,the
main equation (1.1.1) is an extension of this family to sixth-order. According to the
results of [15], the Lie symmetry algebra of an equation from the class (1.2.11) can be
at most three-dimensional. However, it is shown in the thesis that for a specific form
of f(u), (1.1.1) has a four-dimensional symmetry algebra and this result is also valid

when 1, = 0, namely, for Eq. (1.2.11).

1.3 Main Results
As the original outcomes of this thesis, we have two main results.

The first one is the following Theorem.

Theorem 1.3.1 The Lie symmetry algebra L of the higher order Boussinesq equation

(1.1.1) can be 2-dimensional, 3-dimensional, or 4-dimensional.

(i) The Abelian two-dimensional Lie algebra 2A is admitted as the invariance the

algebra of Eq. (1.1.1) for any f(u), and is realized by the Lie algebra with basis
{X] ,X2} — {ata ax}



(ii)

(iii)

The three-dimensional Lie algebra A» & Ay (where Ay is the one-dimensional Lie
algebra and A, is the two-dimensional non-Abelian algebra) is admitted as the
symmetry algebra of Eq. (1.1.1) if f(u) respects one of the forms given in (3.1.11),
or, equivalently, (3.1.12). The related generators of the Lie algebras for these cases
are given in, respectively, for case A in (3.2.2), and in case B and case C.1 of the
Table for the latter two. In all of these cases, the Lie algebra has the decomposition

{X1,X2} & X5.

If f(u) = a(Bu+8)~3+ 7y, onequivalently, if f(u) = ou™>, o = F1, then L is
4-dimensional, which is denoted as case C.2 in the Table. The symmetry algebra

has the structure
Lcor = {Xl,Xz,X3}@X4ESI(2,R)@R (1.3.1)

which contains the simple algebra s1(2,R) as a subalgebra.

(iv) According to these results, maximal dimension of the Lie algebra of a higher-order

Boussinesq equation belonging to the class (1.1.1) can be 4.

In Chapter 3 the proof is given.

The second main result of the current thesis is the existence of trigonometric,

hyperbolic and elliptic type solutions to HBq equation (1.1.1), many of which appear in

the literature through this work the first time. In Chapter 4, we perform this analysis.



2. BASIC NOTIONS OF LIE SYMMETRY ANALYSIS

In Chapter 2, the fundamental concepts of the Lie groups and Lie algebras are given.

All the information is collected from [16]. The proofs are not given.

2.1 Lie Groups of Transformations

Definition 2.1.1 A transformation is a symmetry if it satisfies the following:

(S1) The transformation preserves the structure,

(S2) The transformation is a diffeomorphism,

(S3) The transformation maps the object to itself. (For more information one can see

the textbook [17])

Definition 2.1.2 A group G is a set of elements with a law of composition ¢ between
elements satisfying the following axioms:
(i) Closure property: For any element a and b of G, ¢(a,b) is an element of G.

(ii) Associative property: For any elements a,b, and c of G,

(P(a7 (p(b,c)) = (p((P(aab)7c)'

(iii) Identity element: There exists a unique identity element e of G such that for any
element a of G, ¢(a,e) = ¢(e,a) = a.

(iv) Inverse element: For any element a of G there exists a unique inverse element a™
-1

in G such that ¢(a,a=') = ¢(a~!,a).

Definition 2.1.3 (Group of Transformations) Let x = (x1,x2,...,X,) lie in region D C
R™. The set of transformations

F=X(x¢€) 2.1.1)

defined for each x in D, depending on parameter € lying in set S C R, with ¢@(&,9)

defining a law of composition of parameters € and O in S, forms a group of

5



transformations on D if:

(i) For each parameter € in S the transformations are one-to-one onto D, in particular
X lies in D.

(ii) S with the law of composition @ forms a group G.

(iii) X = x when € = e (identity), i.e. X (x;€) = x.

(iv) If £ = X(x;€), ¥ = X (%, 0), then ¥ = X (x; (€, 8)).

Definition 2.1.4 (One-Parameter Lie Group of Transformation) A group of trans-
formations defines a one-parameter Lie group of transformations if in addition to
satisfying axioms (i)-(iv) of Definition 2.1.3:

(v) € is a continuous parameter, i.e. S is an interval in R. Without loss of generality
€ = 0 corresponds to the identity element e.

(vi) X is infinitely differentiable with respect to x in D and an analytic function of € in
S.

(vii) (&, ) is an analytic function of € and 8, € € S, € € S.

2.2 Infinitesimal Transformations

Definition 2.2.1 (Infinitesimal Transformations) Consider a one-parameter (€) Lie
group of transformations

F=X(x;€) (2.2.1)

with identity € = 0 and law of composition ¢. Expanding (2.2.1) about € =0, we get

(for some neighborhood of € =0)

0X 2 9°X
£ = x+8(a—8(x;8)|g:0)+%(a—gz(x;&‘ﬂg:o)—i—... (2.2.22)
= x+8(3—§(x;8)|8_0)+0(82). (2.2.2b)
Let
X
E(x) = ¢ (58)le=0- (2.2.3)

The transformation x+ €& (x) is called the infinitesimal transformation of the Lie group
of transformations (2.2.1); the components of &(x) are called the infinitesimals of

(2.2.1).



Theorem 2.2.1 (First Fundamental Theorem of Lie) There exists a parametriza-
tion T(€) such that the Lie group of transformations (2.2.1) is equivalent to the solution

of the initial value problem for the system of first order differential equations

dx .
i &(%), (2.2.4)
with
X=x when 1=0. (2.2.5)
In particular
€
() — / I'(s)ds, (2.2.62)
0
dp(a,b
where T'(g) = %ka’m_(gl’g) (2.2.6b)
and T(0) = 1. (2.2.6¢)

(e~ denotes the inverse element to €).

Definition 2.2.2 (Infinitesimal Generator) The infinitesimal generator of the

one-parameter Lie group of transformations (2.2.1) is the operator

X=X() =)V = ééi(x)a% @27)

where V is the gradient operator,

Jd 0 8)_
ox;’ dxy” T dx,”

V= (2.2.8)

for any differentiable function F(x)= F(x1,X2,...,%),

XF() = §0)-VF() = ¥ &0 2.

i=1

Theorem 2.2.2 The one-parameter Lie group of transformations (2.2.1) is equivalent

to

2

2 k

£ E £
F=eFx=x+eXo+ =X x4 =[l+eX+ =X+ x= ) =X (229

2 2 = k!

(o<}

where the operator X = X (x) is defined by (2.2.7) and the operator X* = XX*1,
k=1,2,...;inparticular X*F(x) is the function obtained by applying the operator
X to the function X*'F(x), Xt=Xxx*1 k=1,2,... withX°F(x) = F(x).
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Corollary 2.2.1 If F(x) is infinitely differentiable, then for a Lie group of

transformations (2.2.1) with infinitesimal generator X =X (x) =Y | & (x)a%l

F(%) = F(e*x) = ¢*¥F (x). (2.2.10)

Definition 2.2.3 (Invariant Function) An infinitely differentiable function F(x) is an

invariant function of the Lie group of transformation (2.2.1) if

F(%) = F(x). (2.2.11)

If F(x) is an invariant function of (2.2.1), then F(x) is called an invariant of (2.2.1)

and F (x) is said to be invariant under (2.2.1) .

Theorem 2.2.3 F(x) is invariant under (2.2.1) if and only if

XF(x)=0 (2.2.12)
Theorem 2.2.4 For a Lie group of transformations (2.2.1), the identity
F(X)=F(x)+¢ (2.2.13)
holds if and only if F (x) is such that
XF(x)=1 (2.2.14)

(Notation for Change of Coordinates) Suppose we make a change of coordinates (one

to one and continuously differentiable in a some appropriate domain)

y=Y(x) = (yi(x),y2(x),...,ya(x)). (2.2.15)
The infinitesimal generator with respect to the new coordinates (2.2.15) is

L J
Y = i(y)=—- 2.2.16
b0 (2.2.16)

The infinitesimal with respect to coordinate y is
) =m),m),-- ) =Yy. (2.2.17)

Theorem 2.2.5 With respect to new coordinates y given by (2.2.15), the Lie group
transformations (2.2.1) is

j=ey (2.2.18)



Definition 2.2.4 (Canonical Coordinates) A change of coordinates (2.2.15) defines a
set of canonical coordinates for the one-parameter Lie group transformations (2.2.1)

if in terms of such coordinates the group (2.2.1) becomes

_)71- = yi, i:1,2,...,n_1, (2.2193)

Vi = ypte. (2.2.19b)

Theorem 2.2.6 (Existence of Canonical Coordinates) For any Lie group of
transformations (2.2.1) there exists a set of canonical coordinates y = (y1,y2,...,Yn)

such that (2.2.1) is equivalent to (2.2.19).

Theorem 2.2.7 (Infinitesimal Generator for Canonical Coordinates) In terms of
any set of canonical coordinates y = (y1,2,-..,Yn), the infinitesimal generator of the

one-parameter Lie group of transformations (2.2.1) is

)

Y = f
dyn

(2.2.20)

Definition 2.2.5 (Invariant Surface) A surface F(x) = 0 is an invariant surface for

a one parameter Lie group of transformations (2.2.1) if and only if F(X) = 0 when
F(x)=0.

Definition 2.2.6 (Invariant Curve) A curve F(x,y) = 0 is an invariant curve for a

one-parameter Lie group of transformations

= X(x,y;6) =x+e&(x,y)+0(?), (2.2.21a)

J o= Y(xy:€) =y+en(xy) +0(e), (2.2.21b)
with the infinitesimal generator

d d

if and only if F (X,5) = 0 when F(x,y) = 0.

Theorem 2.2.8 (Invariance Conditions for Solved Forms) (i) A surface written in a
solved form F(x) = x, — f(x1,Xx2,...,x,—1) = 0, is an invariant surface for (2.2.1) if
and only if
XF(x)=0 when F(x)=0. (2.2.23)
9



(ii) A curve written in a solved form F(x,y) =y — f(x) = 0, is an invariant curve for

(2.2.21) if and only if

XF(x,y) =n(x,y) —é(x,y)f’(x) =0 when F(x,y)=y—f(x)=0. (22.24)

Definition 2.2.7 (Invariant Family of Surfaces) The family of surfaces
®(x) = const =c
is an invariant family of surfaces for (2.2.1) if and only if

0(X) =const=¢ when o(x)=c

2.3 Extended Transformations (Prolongations)

(Notation for Prolongations) To study the invariance properties of kth order ordinary
differential equation with independent variable x and dependent variable y one needs

to find admitted one-parameter Lie groups of transformations of the form
¥ = X(x,y€), (2.3.1a)
¥y o= Y(xye) (2.3.1b)
where y = y(x). The equations (2.3.1) are naturally extended to (x,y,y,...,yx)-space,
k=1,2,..., by the demanding that (2.3.1) preserve the contact conditions relating
differentials dx,dy,dyy,dy,,...:
dy = yidx, (2.3.2a)

and dyy = yr+1dx, k=1,2,... (2.3.2b)

In particular under the group action of the group transformations (2.3.1) the

transformed derivatives Vi, k = 1,2,... are defined successively by
dy = ¥dx, (2.3.3a)
dyy = Jrp1dX (2.3.3b)

where X and y defined by (2.3.1). After simplifying above equations one can obtain

following equation:

(r:€)+y1 5% (x:€)

J1="1(x,y,y1;€) = (2.3.4)

SIS

(x;€) +y1‘39—’y‘(x;s)
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Theorem 2.3.1 The Lie group of transformations (2.3.1) acting on (x,y)-space

(naturally) extends to the following one-parameter Lie group of transformations acting

on (x,y,y1)-space:

¥ = X(x,y¢), (2.3.52)
y = Y(x,y;€). (2.3.5b)
1 = Yi(x,yy:€), (2.3.5¢)

where Y1 (x,y,y1;€) is given by (2.3.4).

Theorem 2.3.2 The Lie group of transformations (2.3.1) extends to its kth

extension, k > 2, which is the following one-parameter Lie group of transformations

acting on (x,y,y1,...,Yx)-space:

¥ = X(x,y¢€), (2.3.6a)
y = Y(x,y;€), (2.3.6b)
Vi = Yxyyi:E), (2.3.6¢)
(2.3.6d)

Iy Y Y

+yi +oo

- J 0 oV

Ve = Yel@y v €)=~ —2 UL (2.3.6e)

K e)+nF(xe)

where Y1 =Y (x,y,y1;€) is defined by (2.3.4), and Y1 = Y1 (X, Y, )15+, Vk—15€)-

Theorem 2.3.3 (i) n®) is linear in y,, k=2,3,... .
(ii) n(k) is a polynomial in yy,y;,...,yr whose coefficients are linear homogeneous in

(&(x,y),n(x,y)) up to their kth order partial derivatives.

Theorem 2.3.4

n' = Dm—(DEuj, i=12.m (2.3.72)

k k—1 .
0 o = Dl — (D& a1 =120 (2.3.7b)

forl=1,2,....k with k=2,3,....

11



2.4 Lie Algebras

For an r-parameter Lie group of transformations,
F=X(x;€), (24.1)

let x = (x1,xp, -+ ,x,) and let the parameters be denoted by € = (€1,&,--- ,&-). Let the

law of composition of parameters be denoted by

¢(€,8) = (1(€,8), ¢2(€,6),- -, 9r(¢,6))

where 0 = (81,02, ,6,); ¢(€,0) satisfies group axioms with € = 0 corresponding to
the identity €y = & = --- = & = 0; ¢(€, ) is assumed to be analytic in its domain of

definition.

Definition 2.4.1 The infinitesimal generator Xy, corresponding to the parameter €y

of r-parameter Lie group of transformations (2.4.1) is
a d
Xoq = i(xX)=—, a=1,2,...,n 24.2
o jzléa](x)axja )<y )T ( )
The exponentiation of any infinitesimal generator is a one-parameter Lie group of

transformations which is a subgroup of the r-parameter Lie group of transformations.

Definition 2.4.2 Consider an r-parameter Lie group of transformation (2.4.1) with
infinitesimal generators Xo, 0 = 1,2,...,r1, defined by (2.4.2). The commutator of Xg

and Xg is another first order operator

u d

[Xa, Xp] = XaXp —XpXa = Y, 1(x) 5 — (24.3)
j=1 J
where
- 95p,;(x) 980, (x)
1) = Llbarl) =52~ (0 =51
It follows that
[Xo, Xg] = —[Xp, Xa] (2.4.4)
Any three infinitesimal generator Xq, Xg, Xy, satisfy Jacobi’s identity:
[XOU [X[%XY]] + [X,B, [X%XOCH + [X}’J [XOhXﬁ]] =0. (2.4.5)

12



Theorem 2.4.1 (Second Fundamental Theorem of Lie) The commutator of any two
infinitesimal generators of an r-parameter Lie group of transformations is also an

infinitesimal generator, in particular
[Xo, Xp] = Cl g Xy, (2.4.6)

where the coefficients CZC p are called structure constants.

Definition 2.4.3 A Lie algebra £ is a vector space over some field ¥ with an
additional law of combination of elements in £ (the commutator) satisfying the

properties (2.4.4), (2.4.5) and closedness with respect to commutation.

In particular the infinitesimal generators Xy, @ = 1,2,---,r, of an r-parameter Lie
group of transformations (2.4.1) form an r-dimensional Lie algebra . over the field

R.

Definition 2.4.4 A subalgebra . C £ is called an ideal or normal subalgebra of £
if forany X € 7Y € L, we have [X,Y] € Z.

Definition 2.4.5 %Y is a g-dimensional solvable Lie algebra if there exists a chain of

subalgebras

) = ) ... pla-1) -~ @) — g4 (2.4.7)

such that £®) is a k-dimensional Lie algebra and £* Y is an ideal of ¥, k=
1,2,....q.

Definition 2.4.6 . is called an Abelian Lie algebra if for any Xq,Xg € £, we have
[Xa,Xﬁ] - 0.

Theorem 2.4.2 Every Abelian Lie algebra is a solvable Lie algebra.

Theorem 2.4.3 Every two dimensional Lie algebra is solvable.

13



2.5 Partial Differential Equations

Definition 2.5.1 The one-parameter Lie group of transformations

¥ = X(xue), (2.5.1a)

i = U(xue), (2.5.1b)

leaves a PDE invariant if and only if its kth extension leaves the surface equation of

the PDE invariant.

Theorem 2.5.1 (Infinitesimal Criterion for Invariance of a PDE). Let

d )
X =§(x, u)a— +n(x, M)E (2.5.2)

1

be the infinitesimal generator of (2.5.1). Let

d d d d
x k) — &i(x, u)a_xi—i_n(x’ ”)a'i'ni(l)(x’”’”l)a_ui-i_ .. '+ni(1ki;..ik(x’u’ul’u2’ oo Ug) )
(2.5.3)

i g

be the kth extended infinitesimal generator of (2.5.2) where nl-(l) is given by Theorem

235 ij=12,....,nfor j=1,2,...k, in terms of (& (x,u),n(x,u)).
Then (2.5.1) is admitted by a PDE if and only if

X(k)F(x,u,ul,...,uk) =0

when

F(x,u,uy,...,u;) =0.

Remark 2.5.1 The content of this Chapter 2 serves as a preliminary and brief
discussion of the theory of Lie group analysis of differential equations related to the
analysis we are going to perform in Chapter 3. Each and every information available
in this Chapter 2 was collected directly or by paraphrasing from the source [16]
therefore is not to be understood as an original content submitted by the author of

this thesis in fulfillment of this degree.
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3. THE LIE ALGEBRA AND REDUCTIONS OF THE HIGHER ORDER
BOUSSINESQ EQUATION

3.1 The Symmetry Algebra of the Equation

In what follows it is assumed that 1; # 0, 172 # 0, f,,, # 0. The infinitesimal generator

is of the form

V = 01 (t,x,u)0, + §2(t,x,1u) Oy + P3(£,x, 1) . (3.1.1)
We find
V =1(t)0 4 &(x) 0 + ¢ (t,x,u)0,, (3.12)
where
¢=Q&0+éﬁ+§§+%ﬁ, (3.1.3a)
Tt = 0, (3.1.3b)
2M16x — 5M28u = 0, (3.1.3¢)
88+ — 311 Er + 3128 e = 0, (3.1.3d)
208+ ) fut ¢ fuu =0, (3.1.3¢)
Sxxfu+ Oxfuu =0, (3.1.3f)
O~ M Quun + M 0uaver — (Qut G u =0, (13p)

where ¢g is an arbitrary constant. If we differentiate (3.1.3e) with respect to x and
subtract it from (3.1.3f), we get &, = 0 and ¢, = 0, and hence Q, = 0. Eq. (3.1.3¢)

gives &, =0, so £ (x) = &y, a constant. After these, the infinitesimal generator is of the

form
V =1(t)0; + Eo 0 + ¢ (t,u)0, (3.1.4)

with
¢=mw+gu+%w, (3.1.5a)
T =0, Qun =0, (3.1.5b)
2% fu+ 9 fuu = 0. (3.1.5¢)
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It is seen that when f is arbitrary, we have the two symmetries
X1 =09, Xp=0 (3.1.6)

and the algebra is the Abelian two-dimensional Lie algebra. One can proceed and solve
the system above for different cases. It has been taken another approach and played a
little bit on (3.1.5¢) to get an equation involving only f.Differentiating (3.1.5c) with

respect to u,we obtain

Zthuu + ¢ufuu + (Pfuuu =0. 3.1.7)
Using (3.1.5¢) and (3.1.7) we can eliminate the term with 7; and get

O fu L + Oufufuuw — O fry = O. (3.1.8)

Again if we differentiate (3.1.8) with respect to u and we get

If we eliminate ¢ between (3.1.8) and (3.1.9), we obtain

fufuufuuuu +f3ufuuu_2fuf3uu :0, (3.1.10)

which is exactly the same equation for f(u) that was obtained in [15]. Compatible with

their findings, Eq. (3.1.10) is solved by the following different forms of f:

(a) f(u)=aeP"+y, (3.1.11a)
(b)  f(u) = aln(Bu+8)+7, (3.1.11b)
(c) f(u)=oa(Bu+d)"+y, n#0,l. (3.1.11c¢)

Here o, 3,7,0,n are arbitrary constants where aff # 0. Actually, the constant 7y has
no significance when we consider the HBq equation (1.1.1). By a transformation u =
01ii + 6y, X = ux, r = At and relabeling the constants, Eq. (1.1.1) with the above forms

of f(u) can be converted to an equation with

(A) flu)=oae, o=7Fl, (3.1.12a)
B) f)=al@), oa=Fl, (3.1.12b)
) fw)=au", oa=%F1, Ron#0,1. (3.1.12¢)
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3.2 Canonical Classes, the Optimal System and the Reduced Equations

Now we concentrate on these simplified forms of the nonlinearity f(«). Note that, in
the remaining part of the thesis, for all of the cases (A), (B) and (C), we did not restrict
the constant & to F1 in our calculations, therefore one can use the following results

for any nonzero constant .

Case A: f(u) = ae", o =7Fl.

Equation (1.1.1) is of the form

Ut = M1Uxxer — M2Uxxxxee + a(eu)xx- (3.2.1)

The Lie algebra Ly of this equation is three dimensional, Ly = {X1,X>,X3}, generated
by the vector fields
Xy =0, Xp=td—20d, X;=0,. (3.2.2)

The nonzero commutation relation is
[X1,X:] = X1, (3.2.3)

therefore the Lie algebra has the structure Ly = Ay $A| = {X1,X,} @ X3. The optimal
system of one-dimensional subalgebras of Ay @A is given in [18]. Therefore, the

optimal system of one-dimensional subalgebras of L4 is
{X]}, {X] —|—8X3}, {—X2COSG+X3 sin 9} (3.2.4)

with € = F1 and 0 < 0 < 7. The reductions through the last subalgebra should be
analyzed carefully. (i) When 6 = 7, we have the generator X3 = d,. Solutions invariant
under the group of transformations generated by this subalgebra are time-dependent
ones, u = u(t). Not only for (3.2.1), but for any form of f in (1.1.1), these solutions
are found from u;; = 0 hence u = at + b. This subalgebra will not be considered in
any of the subcases. (ii)) When 6 € [0,7) — {7}, we have {—X;cos6 + X3sinf} ~
{X2 — (tan 6)X3}, for which it is simply written {X» +cX3}, ¢ € R. It is observed that
when ¢ = 0, the reduction obtained is 2 less in the order than the order of the reduced
equation that is obtained through X, + cX3; therefore, for this subalgebra, the cases

¢ = 0 and ¢ # 0 are considered separately.

(i) The Subalgebra X; = ;. The solutions will have the form u = u(x) and from (3.2.1)

we get u = In(ax+ D), where a, b are arbitrary constants.
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(ii) The Subalgebra X\ + €X3 = 0, + €d,, € = F1. The invariant solution will have the
form u(x,t) = F(&) = F(x— €t). This generator produces traveling wave solutions, and
will appear in other forms of the nonlinearity f(u). Instead of working on (3.2.1), let us
do the reduction for (1.1.1), which will be useful for other cases of f(u). (Furthermore,
see that since d; and d, are symmetries of (1.1.1) for any form of f(u), so is the

generator d; + £d,.) Substituting u = F(§), & = x— €t in (1.1.1), it reduces to
F'=mF® —mF© 4 [f(F))” (3.2.5)
which is integrated to
MFY —mF" +F — f(F) = K| € + K. (3.2.6)

Here Ky, K; are arbitrary constants and the derivatives are with respect to the variable

&. Therefore, for f(u) = ae", the reduced equation is

T]ZF(4) —an”—f—F—OCeF = K& +Kp. (3.2.7)

(iii) The Subalgebra X, = td; — 20,. The invariant solution is of the form u = —2Inz +

1
F (x), of which substitution into (3.2.1) gives F(x) = ln(ax2 +ax+ b) and hence

u(x,t) =1In [tlz (éx2+ax—|—b)]. (3.2.8)

(iv) The Subalgebra X, + cX3 = td; + cdy — 2d,. The group-invariant solution will
have the form u = —2Inz + F(§), & = x — cInt. From (3.2.1) we get, after a further

integration,
nzczF(s) +cn2F(4) — mczF(3) —McF" +*F — a(ef) +cF+26 =K (32.9)

with K being the integration constant.
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Case B: f(u) = alnu, a==Fl1.

It is summarized the results in Table (3.1). For this case of f(u), the Lie algebra Lg
of the equation is again three-dimensional, and the basis of the algebra is presented in
Table 1. Let us note that the nonzero commutation relation for this algebra is exactly
the same as (3.2.3); therefore, the same Lie algebra is realized as the Case A by the

vector fields that generate the group of transformations of the related equation.

Case C:f(u)=au", a=F1, R>nrn#0,1. This case has two different

branches.

C.1: n # —3. In that case, the Lie symmetry algebra L¢ | is 3-dimensional, with the
generators given in Table 1. The canonical form of f(u) is with & = F1, but for an
arbitrary o we find the symmetries and the reduced equation. The structure of the Lie

algebra is the same with L4 and Lp. The nonzero commutation relation is as in (3.2.3).

C.2: n= -3, f(u) = au~3. The symmetry generators of L¢ | are also admitted in
this case. Besides, there arises a new symmetry generator and the equation admits a
4-dimensional Lie algebra Lc = {X1,X>,X3,X4}, and the basis of the Lie algebra is

presented in Table 1. The nonzero commutation relations are

[X17X2] :X17 [X15X3] = 2X2v [X27X3] :X3' (3210)

In [18] it is seen this algebra as A3 3 6 A; and the optimal system of one-dimensional

subalgebras is
{Xl}v {X4}> {X2+CX4}7 {_Xl +X3+dX4}7 {X1+8X4}> (3.2.11)

where ¢ > 0 and d € R. The ODE:s that are satisfied by the group-invariant solutions
of (1.1.1) under the transformations generated by these one-dimensional subalgebras

are presented in Table (3.1).
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Table 3.1 : Table of Case B and Case C

Subalgebra

Urr = N1 Uxxer — N2 Uxxxxer + (f(”) )xx

Similarity variable

Case B
The equation

flu)=alnu, a=Fl
Usr = N1 Uxxer — N2 Uxxxxer + (X(h’l M)xx

LB:{Xl,XQ,X3} Xi :8t, X2:t8,+2u8u, X3:8x
Reduction by
X1 u(x) = aeb*
Xi+eXs,e=F1 | mF® —mF'+F—oalnF =K & +K, u=F(E)=F(x—et)
X>o+cX3,ceR T[zczF(6) — 31’]2CF(5) + (21’]2 — T]]Cz)F(4) + 3T]1CF(3) u= tzF(g)
+(? —2m)F" —a(InF)" —3cF' +2F =0 E=x—clnt
X5 mF® —mF" — %4(InF)" +F =0 u=12F(x)
Case C.1 fw)=au", a==Fl, n#0,1, neR
The equation Urr = Milhorr — M2lcear + (U™ ) xx
Lc :{Xl,Xz,X3} X :8,, X2:t8t+ linuau, X3:8x
Reduction by
X, u(x) = (ax+b)'/"
X +€eXs,e=T1 | mF® —nF"+F —aF"=K & +K, u=F(E)=F(x—er)
Xo+cX3,ceR Mac(n—1)2F©) 4 mye(n—1)(n+3)F®)
2+ 1) —mE(n— 12 F®
—Mc(n—1)(n+3)F®) +2(n+1)F u=r2/-"F (&)
+[c2(n— 1)2—2m(n+1)}1:" £ =x—clnt
—a(n—1)*F" +c(n—1)(n+3)F' =0
X5 2(n+ 1) (mF® —mF"+F) —a(m—1)XF") =0 | u=r>0""F(x)
Case C.2 fw)=au™>, a=7FI1

The equation

_ -3
Uy = nl Usxtt — n2uxxxxtt + OC(M )xx

Lco Xy =0, Xo=10+3udy,

= {X1,X2,X3,X4} | X3 =120, +tud,, X4=0,

Reduction by

X u(x) = (ax+b)~1/3

X4 u(t) =at+b

Xo+cXy 4172€2F(6) — (T[z —{—41‘[102)F(4) u= l‘1 2F(§)
(c>0) +(Mm +4A)F" —4a(F3)" —F =0 & =x—clnt

X2 T[QF(4)—1’]1F”—{-4O€(F73)”+F=0 u=t! ZF(X)

X1 +X34+dXy | md?*FO) — (my+md®)F®) + (ny +d>)F" u= /|2 —1|F (&)
(d €R) —a(F3)'"-F=0 & =x+dtanh !¢

X|+€Xy,e=F1

mF® —mF"+F —aF 3 = K& +K

u=F(&)=F(x—et)
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The main result of this thesis is presented in the following Theorem.

Theorem 3.2.1 The Lie symmetry algebra L of the higher order Boussinesq equation

(1.1.1) can be 2-dimensional, 3-dimensional, or 4-dimensional.

(i) The Abelian two-dimensional Lie algebra 2A is admitted as the invariance the
algebra of Eq. (1.1.1) for any f(u), and is realized by the Lie algebra with basis
{X17X2} - {&lagx}

(ii) The three-dimensional Lie algebra A> & Ay (where Ay is the one-dimensional Lie
algebra and Ay is the two-dimensional non-Abelian algebra) is admitted as the
symmetry algebra of Eq. (1.1.1) if f(u) respects one of the forms given in (3.1.11),
or, equivalently, (3.1.12). The related generators of the Lie algebras for these cases
are given in, respectively, for case A in (3.2.2), and in case B and case C.1 of Table
1 for the latter two. In all of these cases, the Lie algebra has the decomposition
{X1,X2} & X3.

(iii) If f(u) = a(Bu+ &)~ + v, onequivalently, if f(u) = au=3, o = F1, then L is
4-dimensional, which is denoted as case C.2 in Table 1. The symmetry algebra has

the structure

Leo = {X1,X0, X3} © X4 ~sl(2,R) &R (3.2.12)

which contains the simple algebra s1(2,R) as a subalgebra.

(iv) According to these results, maximal dimension of the Lie algebra of a higher-order

Boussinesq equation belonging to the class (1.1.1) can be 4.

Remark 3.1 Let us have a more close look to the case C.2, i.e., when f(u) = ou™3.
The Lie algebra with the basis
Leo={X1 =0, Xo =10, + %u&u, X3 =120, 4+ tudy,, X4 = o} (3.2.13)
is the symmetry algebra of the equation
e = Mty — Motbecerts + 0L (U ) e (3.2.14)

regardless of the values of 71, 12 and &. Therefore, when 1, = 0, the symmetry
algebra of the equation
= Mtk + 0L (1) (3.2.15)
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is also 4-dimensional. Eq. (3.2.15) falls into the class (1.2.11), the generalized
modified Boussinesq equation, analyzed in [15]. In their classification of the symmetry
algebras of Eq. (1.2.11), they arrive at the same forms of f(u) given in (3.1.11),
and, according to their results, for these forms of f(u) the symmetry algebras are at
most three-dimensional. As far as we can see, this work does not consider the case
n=-3, f(u) = au~3 separately and seems to miss the fourth symmetry generator

X3 = t%0; + tud, appearing.

Therefore, it should be stated that, the Theorem 3.2.1 is also valid when 1, = 0,
hence the maximal dimension of the symmetry algebra of the generalized modified
Boussinesq equation (1.2.11), studied in [15], is equal to 4. The simple algebra L¢ 2

with the decomposition (3.2.12) is also admitted as an invariance algebra in the case

flu) = o3,
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4. SOME EXACT SOLUTIONS
In this Chapter, some exact solutions to the Equation (1.1.1) is presented.

4.1 Employing the Traveling Wave Ansatz

We consider the nonlinearity f(u) = au?® +u, which gives rise to the equation

Urr = Uy + N1lyxer — N2Usxxxer + a(uz)xx 4.1.1)

where o # 0 is any constant. The reason for the inclusion of the term u,, is obvious, as
one can see from the literature review. For our analysis above, we had considered the
Uy, term to covered by the nonlinearity f(u), just on a purpose of bookkeeping. The
quadratic nonlinearity x> can be interpreted like that one considers the stress-strain

function of the physical model to be having a quadratic nonlinearity; see [2].

We aim at finding traveling wave solutions to (4.1.1), therefore we assume u = F (&)
with & = kx — ¢t (which amounts to finding the group-invariant solutions under the
action of the transformation produced by the generator c¢d, + kdt). Putting this ansatz
in (4.1.1) and integrating thrice, we obtain

T[]k2C2

2
> F?=K). (4.1.2)

FVYZ - F

1
n2k402 FUE 5(F//)z] _

We chose the coefficients of the first two integrations as zero and kept only the last
one, Kp. Since this equation does not contain the independent variable &, it can be
integrated once by setting ' = W (F) and treating W as the dependent variable and F
as independent. However, the resulting equation is so complicated that we could not

proceed with it further.

At this point, let us briefly outline the results of [19] in their Section 4, in which they

consider a 2 + 1-dimensional Boussinesq type equation

Uy — Usy — Uy — Q(U?) xx — @Usxxx — 00€*Usxex = O. (4.1.3)
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In order to find traveling wave solutions of this equation, they propose the following

ansatz:

U = a+a19(§)+a9*(§) +a30>(0) +asp*((),  (4.14a)

Sloyt) = x+y—xt, (4.1.4b)
(%’)2 = c+a@(8)+a0’ () +c30 (§) +cap(§). (4140

Notice that, if successful, this ansatz will produce trigonometric, hyperbolic or elliptic
type solutions due to the Eq. (4.1.4c) that ¢({) satisfies. It is easy to see that, under
the traveling wave ansatz, Eq. (4.1.1) with u = F(kx — ct) and Eq. (4.1.3) with
U = U(x+y— xt) reduce to ordinary differential equations which are the same up
to coefficients. Therefore we adapt the methodology in [19] find the exact solutions to
(4.1.1). Let us stress that we obtained some more solutions which were not mentioned

there. Therefore, for (4.1.2) we propose

F(E) = ao+ar9(§)+ag’(§)+asp’(§) +asp*(8). (4.1.52)
doN2
(F2) = cota@)+ep’(@)+ae’(@) +ear'(E) = Pe)@15)
where & (x,1) = kx — ct. Upon this substitution, in the resulting expression we express
all derivatives of @(&) in terms of ¢ using (4.1.5b). Afterwards, we look for the

possibility that coefficients of ¢/, j =0,1,2,... vanish. Below are the several cases we

examined.

4.2 Hyperbolic and Trigonometric Solutions

We assume ¢y = c¢; =c¢3 =0and a; = ap = a3 = 0. We find two main branches for the

remaining constants ao, a4, c2, ¢4, k and c.

The first set of parameters is

a = O, (4.2.1a)

o — 84Oc4ci(1166991(7xz—361112)’ 4.2.1b)
1

) = 402(16913:1—361712)’ (4.2.1¢c)

K= cz(l—%ri) 4.2.1d)
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and the second set of possible parameters is

2
WOT Ty 169?76211 361%)’ (4.2.22)
a = 840646‘2‘(11669922+36n‘2), (4.2.2b)
@ - 4c2(1691;:jr36n12)’ (4:2.2¢)
K= (1+13669"1712> (4.2.2d)

. ) do

In both cases, ¢ and ¢4 are arbitrary. Equation (4.1.5b) reduces to =
|@l\/c2+cap?
d&, and it is integrated in three different ways depending on the signs of ¢, and
c4. Observe that c; = 1,/(52k*n;). Although the physical derivation of (1.1.1)
gives M1, M2 > 0 and the case ¢y < 0 seems irrelevant, we include this case also, for

completeness.

Casel.a Incasec; >0, ¢4 > 0, we obtain

1/2
o(E) = <C—2) cosech (8\/0_2@ - §O)> 4.2.3)
C4
and the solution to (4.1.1) is
2
u(x,t) = ag M cosech4 <8\/_(kx —ct— 50)) (4.2.4)
4

with € = F1. The set of four constants ag,aq,c>,cq4 can be chosen as in (4.2.1) or

(4.2.2).

Casel.b Ifcy >0, cq4 <0, we obtain

&)= (1) seon(evante ) @25)
and hence
2
w(x,r) = ag+ 22 sech4<e\/_ (kx — ct — §0)> (4.2.6)
4

with € = F1. When qp = 0, this result is in the same form with the exact solution

presented in [3].
Case L.c Finally, when ¢; <0, ¢4 > 0 we find

—C

0(5) = (_2)1/2860 (ev=eate - &). @27)

C4
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(4.2.7) also appears in [19]. The solution becomes

2
u(x,t) = ag+ a4_§‘2 sec (8 —cp(kx—ct — 50)) : (4.2.8)
€y

In the solutions (4.2.4), (4.2.6) and (4.2.8) the valid sets of parameters are those given
in (4.2.1) and (4.2.2).

4.3 Elliptic Type Solutions

We assume c4 = 0 and a; = az = a4 = 0. We find the following values for the remaining
constants ao, az, co, ¢1 and c3;

1691, (c? — K +42c%k*cic3ma) — 36¢n?

_ 43.1
g0 338k2am, (4.3.12)
10562c§k2n2
= X5k 43.1b
ar Yo ; (4.3.1b)
 dem
cy = 652, (4.3.1¢c)
R
o = e, (4.3.1d)
c3
M
- 43.1
(&) 3k2m,’ (4.3.1e)
\/28561(c2 —k2)23 — 1296¢*
R = , 43.1
507V161c%k*n3 (4310

where & = %1 and c3 is arbitrary.
Now that we have determined the constants appearing in (4.1.5) successfully, we need

to integrate (4.1.5b), which takes the form
¢* = co+c19+9> +c30° = P(9), (4.32)

and find @ (&) and hence u(x,7). Evaluation of the integral of (4.3.2) depends on the
factorization of the polynomial P(¢). Assume that ¢@;, ¢, and @3 are zeros of the

equation P(¢) = 0, for which the discriminant is
A = 18cpcic203 + c%c% — 27c(2)c§ — 4C3C? — 4cocg. (4.3.3)

Making use of (4.3.1) we obtain

_ &R(80n] +7943g0k*Rnin; 4 2856100k°R*n3)

A=
714025c3k813

. (4.3.4)

A =0if R=0. When we analyze this branch, the coefficients in (4.3.1) give results

the same as in Case 1.
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Let & = —1. The sign of A is determined by the sign of the term inside the paranthesis
in (4.3.4). When we consider this term as a second-degree polynomial in R and
calculate its discriminant, we see it is negative, therefore the polynomial is always
positive. Hence A > 0. Therefore the polynomial (4.3.2) has three distinct real zeros

1, ¢2, ¢3. Then we can factorize (4.3.2) as

9> =P(p) = c3(9— 91)(9— 92) (9 — 93). (4.3.5)
Casell.a Let ¢z > 0. In order that (4.3.5) makes sense, the right hand side must
be nonnegative. Therefore we should consider the intervals @ > ¢@; > @2 > @3 and
@1 > @ > @ > @3 when integrating (4.3.5). Let us first write

de

Ves(@—0)(0—¢2) (90— ¢3)
where € = F1. In the first hand, when ¢ > @; > @> > @3, using the results available

= edé (4.3.6)

in the handbook [20], we obtain

Y dt 1 1 9= ¢
= , 4.3.7
/«n Va0 Voo ( o — m) (437

2 _
for the integration of the left hand side of (4.3.6), where g = —, m? = P2~ 93 .
¢1— @3 1 — @3

This gives rise to the elliptic function solution ¢ to (4.3.2),

c3 c3
9(&) = pinc? (eY 2 (6~ &) m) — pon? (e V2 (& &)m),  (438)
8 8
and hence the solution to (4.1.1) can be written as follows
2

u(x,t) =ap+a {(plnc2 <8?(kx —ct— 50),m> — @ytn? (8\/?5(&— ct — éo),m)}

(4.3.9)
CaseII.b  When the coefficient c3 > 0, for ¢ > @2 > ¢ > ¢3 we obtain
¢ dv -1 ®—¢s
= gsn ,m (4.3.10)
o V(o =) (@ —T)(T—93) VG ( P2 — 3 )
2 02— @3
where g = ——, m? = . After we find
Vo1 —¢3 01— ¢3
NG NG
(&) = gosn’ (3?3(5 ~&)m) + paen’ (8?3(5 ~&).m) 43.11)

and hence the solution to (4.1.1) can be written as follows:

2
u(x,t) =ap+az [(pzsn2 <8ﬁ(kx —ct— 50),m> + @3cn’ <8£(kx —ct — 50),m>} :
8 8
(4.3.12)
27



Case Il.c  If the coefficient c3 < 0, working on the interval @; > @ > @3 > ¢ we

find the following:
¢3 _
/ ar _ ! gsn*l( LS q),m) (4.3.13)
o V-ale-0@-1(e-1) V=& ¢~ ¢
2 or—¢ ..
where g = ——, m* = . This gives us
Vo9 o3¢

v=e3

8

(& —&).m) — gotn? (e%(g ~G)m)  (@314)

¢(&) = @snc’ (8

therefore the solution to (4.1.1) can be written as follows:

u(x,t)=ap+az |:(P3IIC2 <8\/?(kx—ct — 50),m> — @ytn? <8%(kx—ct — 50),m>} 2.

(4.3.15)

CaseIl.d For c3 <0, on the interval ¢; > @ > @2 > @3 we see that we can proceed

to obtain
¢ dt 1 1 [(e—¢3)(@— @)
A Voo 0t-—e)—g) Voo <\/<<P1 “eo—o")
(4.3.16)
where g = \/ﬁ, m? = Z: : Z This immediately results in
0(8) = o (&Y= (6~ Go)m) — s (e 2 (E ~G)m)  @317)

producing the solution to (4.1.1) as

u(x,t) =ap+az [(pznd2 (8?(/@6— ct — éo),m> — @ym?*sd? <8@(1¢x— ct — &ﬁ,m)}

(4.3.18)

In case gy = 1 we have A < 0. Therefore the polynomial (4.3.2) has one real zero ¢;

and two complex conjugate zeros @, Q3.

Case Il.e If the coefficient ¢3 > 0 we can obtain

® _
/ dt . (w,m> (4.3.19)
oo ele-npra VA ARt
where by = P2+ s 2——(%_%)2 A? = (b — 2 2 = ! 2 —
1= Ty d = = (b %)+%g—;im——
A+by— ¢
—x After that we find
1—cn (82 (& — &),m)
o&)=0+A (4.3.20)

%|§%
w

en (€55 (& — &).m)
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and hence the solution to (4.1.1) can be written as

2
1—cn (Sg(kx—ct—ﬁo),m)

1+cn (Sf(kx—ct—ﬁo),m)

u(x,t)=ap+a |1 +A (4.3.21)

ﬂ

Case ILf If the coefficient c3 < 0 one can proceed to get

(P E—
/1 dt _ gcn—l(ﬂ,m) 43.22)
’ \/_63(901 —0)[(t1—b1)>+af] V—es A+ —o

@2+ 3 ¢ —93)° 1
where by = ———, a%z—( 1 ) A= (b1 — @)’ +ai. g = 7T m* =
A—bi+¢
2A '
After this we get
1 —cn (e¥2(&—&),m)
PG)=p1—A = (4.3.23)
L+ en (eY22 (& — &).m)
and hence the solution to (4.1.1) turns out to be
2
1 —cn <8—”;C3(kx—ct—§o),m>
ulx,t) =ap+a | —A (4.3.24)

l+cn (8@(kx—ct—§o),m>
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this thesis, higher-order Boussinesq (HBq) equations of the form

Ut = M Uxxrr — T2 Uxxxxtt + (f(u) )xx (511)

are classified according to the Lie symmetry algebras the equation admits depending
on the formulation of the nonlinearity f(u). It is shown that, for an arbitrary f(u),
(5.1.1) admits the two-dimensional abelian algebra as the invariance algebra. For the

following three canonical possible forms of f(u),

(A) flu)=ae", a=7Fl, (5.1.2a)
(B) f(u)= aln(u), o =7Fl1, (5.1.2b)
(C) f(u)=oau", a=F1, R>3nrn#0,l. (5.1.2¢)

(or, equivalently, for the forms of f(u) given in (3.1.11)), the symmetry algebra is
three-dimensional. It is also shown that for a specific form of f(u), the HBq has a
four-dimensional symmetry algebra and this result is also valid when 17, = 0. The
results for the cases obtained by the algorithm due to Lie are shown in a table. As
indicated in the table, the sixth-order PDE (5.1.1) is reduced to ODEs of fourth and

sixth-order by similarity reductions.

Moreover, some exact solutions to the HBq equation are obtained by traveling wave
ansatz method. When f(u) = u+ au?, (5.1.1) is reduced to

1 ( //)2] N nlkzcz (F/)Z o a§2F3 + C2 _k2

4 2\ gt 2
F"F' — F*=K 1.
nak'e? |FF — 2 . . o .13)

by this method. Some trigonometric, hyperbolic and elliptic type solutions to the HBq

equation which do not exist in the literature are obtained.
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5.2 Future Discussions

In this thesis, we restricted ourselves to a subclass of (3.1.11c), by searching for
the exact solution in the case f(u) = u+ au®. Actually, the analysis of the reduced
equation for n = 2 for Case C.1 in Table 1 which were obtained by the infinitesimal
generator X| + €X3 would follow similar lines to the analysis in Section 3. Mainly
due to the complicated nature of the reduced equations, we do not perform a further
analysis for the reduced equations in this work. Regarding the families (3.1.11) or
equivalently (3.1.12), which means some HBq equations with certain symmetries, one
can ask another question: Do these canonical forms of nonlinearities f(u) have any
physical meaning? As far as we know, the answer is affirmative when f has power-type
nonlinearities like f(u) = u+ ou?, etc., and that has been the main reason for writing

Chapter 4 of this thesis. The analysis of the other reduced equations remains still open.
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